% % (c) The University of Glasgow 2006 % (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 % Type subsumption and unification \begin{code}
{-# OPTIONS -fno-warn-tabs #-}
-- The above warning supression flag is a temporary kludge.
-- While working on this module you are encouraged to remove it and
-- detab the module (please do the detabbing in a separate patch). See
--     http://ghc.haskell.org/trac/ghc/wiki/Commentary/CodingStyle#TabsvsSpaces
-- for details

module TcUnify (
  -- Full-blown subsumption
  tcWrapResult, tcSubType, tcGen, 
  checkConstraints, newImplication, 

  -- Various unifications
  unifyType, unifyTypeList, unifyTheta, 
  unifyKindX, 

  --------------------------------
  -- Holes
  tcInfer,
  matchExpectedListTy,
  matchExpectedPArrTy,
  matchExpectedTyConApp,
  matchExpectedAppTy, 
  matchExpectedFunTys,
  matchExpectedFunKind,
  wrapFunResCoercion

  ) where

#include "HsVersions.h"

import HsSyn
import TypeRep
import TcMType
import TcRnMonad
import TcType
import Type
import TcEvidence
import Name ( isSystemName )
import Inst
import Kind
import TyCon
import TysWiredIn
import Var
import VarEnv
import ErrUtils
import DynFlags
import BasicTypes
import Maybes ( isJust )
import Util
import Outputable
import FastString

import Control.Monad
\end{code} %************************************************************************ %* * matchExpected functions %* * %************************************************************************ Note [Herald for matchExpectedFunTys] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The 'herald' always looks like: "The equation(s) for 'f' have" "The abstraction (\x.e) takes" "The section (+ x) expects" "The function 'f' is applied to" This is used to construct a message of form The abstraction `\Just 1 -> ...' takes two arguments but its type `Maybe a -> a' has only one The equation(s) for `f' have two arguments but its type `Maybe a -> a' has only one The section `(f 3)' requires 'f' to take two arguments but its type `Int -> Int' has only one The function 'f' is applied to two arguments but its type `Int -> Int' has only one Note [matchExpectedFunTys] ~~~~~~~~~~~~~~~~~~~~~~~~~~ matchExpectedFunTys checks that an (Expected rho) has the form of an n-ary function. It passes the decomposed type to the thing_inside, and returns a wrapper to coerce between the two types It's used wherever a language construct must have a functional type, namely: A lambda expression A function definition An operator section This is not (currently) where deep skolemisation occurs; matchExpectedFunTys does not skolmise nested foralls in the expected type, because it expects that to have been done already \begin{code}
matchExpectedFunTys :: SDoc 	-- See Note [Herald for matchExpectedFunTys]
            	    -> Arity
            	    -> TcRhoType 
                    -> TcM (TcCoercion, [TcSigmaType], TcRhoType)

-- If    matchExpectFunTys n ty = (co, [t1,..,tn], ty_r)
-- then  co : ty ~ (t1 -> ... -> tn -> ty_r)
--
-- Does not allocate unnecessary meta variables: if the input already is 
-- a function, we just take it apart.  Not only is this efficient, 
-- it's important for higher rank: the argument might be of form
--		(forall a. ty) -> other
-- If allocated (fresh-meta-var1 -> fresh-meta-var2) and unified, we'd
-- hide the forall inside a meta-variable

matchExpectedFunTys herald arity orig_ty 
  = go arity orig_ty
  where
    -- If     go n ty = (co, [t1,..,tn], ty_r)
    -- then   co : ty ~ t1 -> .. -> tn -> ty_r

    go n_req ty
      | n_req == 0 = return (mkTcNomReflCo ty, [], ty)

    go n_req ty
      | Just ty' <- tcView ty = go n_req ty'

    go n_req (FunTy arg_ty res_ty)
      | not (isPredTy arg_ty)
      = do { (co, tys, ty_r) <- go (n_req-1) res_ty
           ; return (mkTcFunCo Nominal (mkTcNomReflCo arg_ty) co, arg_ty:tys, ty_r) }

    go n_req ty@(TyVarTy tv)
      | ASSERT( isTcTyVar tv) isMetaTyVar tv
      = do { cts <- readMetaTyVar tv
	   ; case cts of
	       Indirect ty' -> go n_req ty'
	       Flexi        -> defer n_req ty }

       -- In all other cases we bale out into ordinary unification
       -- However unlike the meta-tyvar case, we are sure that the
       -- number of arrows doesn't match up, so we can add a bit 
       -- more context to the error message (cf Trac #7869)
    go n_req ty = addErrCtxtM mk_ctxt $
                  defer n_req ty

    ------------
    defer n_req fun_ty 
      = do { arg_tys <- newFlexiTyVarTys n_req openTypeKind
                        -- See Note [Foralls to left of arrow]
           ; res_ty  <- newFlexiTyVarTy openTypeKind
           ; co   <- unifyType fun_ty (mkFunTys arg_tys res_ty)
           ; return (co, arg_tys, res_ty) }

    ------------
    mk_ctxt :: TidyEnv -> TcM (TidyEnv, MsgDoc)
    mk_ctxt env = do { orig_ty1 <- zonkTcType orig_ty
                     ; let (env', orig_ty2) = tidyOpenType env orig_ty1
                           (args, _) = tcSplitFunTys orig_ty2
                           n_actual = length args
                     ; return (env', mk_msg orig_ty2 n_actual) }

    mk_msg ty n_args
      = herald <+> speakNOf arity (ptext (sLit "argument")) <> comma $$ 
	sep [ptext (sLit "but its type") <+> quotes (pprType ty), 
	     if n_args == 0 then ptext (sLit "has none") 
	     else ptext (sLit "has only") <+> speakN n_args]
\end{code} Note [Foralls to left of arrow] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider f (x :: forall a. a -> a) = x We give 'f' the type (alpha -> beta), and then want to unify the alpha with (forall a. a->a). We want to the arg and result of (->) to have openTypeKind, and this also permits foralls, so we are ok. \begin{code}
----------------------
matchExpectedListTy :: TcRhoType -> TcM (TcCoercion, TcRhoType)
-- Special case for lists
matchExpectedListTy exp_ty
 = do { (co, [elt_ty]) <- matchExpectedTyConApp listTyCon exp_ty
      ; return (co, elt_ty) }

----------------------
matchExpectedPArrTy :: TcRhoType -> TcM (TcCoercion, TcRhoType)
-- Special case for parrs
matchExpectedPArrTy exp_ty
  = do { (co, [elt_ty]) <- matchExpectedTyConApp parrTyCon exp_ty
       ; return (co, elt_ty) }

----------------------
matchExpectedTyConApp :: TyCon                -- T :: forall kv1 ... kvm. k1 -> ... -> kn -> *
                      -> TcRhoType 	      -- orig_ty
                      -> TcM (TcCoercion,     -- T k1 k2 k3 a b c ~ orig_ty
                              [TcSigmaType])  -- Element types, k1 k2 k3 a b c

-- It's used for wired-in tycons, so we call checkWiredInTyCon
-- Precondition: never called with FunTyCon
-- Precondition: input type :: *
-- Postcondition: (T k1 k2 k3 a b c) is well-kinded

matchExpectedTyConApp tc orig_ty
  = go orig_ty
  where
    go ty 
       | Just ty' <- tcView ty 
       = go ty'

    go ty@(TyConApp tycon args) 
       | tc == tycon  -- Common case
       = return (mkTcNomReflCo ty, args)

    go (TyVarTy tv)
       | ASSERT( isTcTyVar tv) isMetaTyVar tv
       = do { cts <- readMetaTyVar tv
            ; case cts of
                Indirect ty -> go ty
                Flexi       -> defer }
   
    go _ = defer

    -- If the common case does not occur, instantiate a template
    -- T k1 .. kn t1 .. tm, and unify with the original type
    -- Doing it this way ensures that the types we return are
    -- kind-compatible with T.  For example, suppose we have
    --       matchExpectedTyConApp T (f Maybe)
    -- where data T a = MkT a  
    -- Then we don't want to instantate T's data constructors with  
    --    (a::*) ~ Maybe
    -- because that'll make types that are utterly ill-kinded.
    -- This happened in Trac #7368
    defer = ASSERT2( isSubOpenTypeKind res_kind, ppr tc )
            do { kappa_tys <- mapM (const newMetaKindVar) kvs
               ; let arg_kinds' = map (substKiWith kvs kappa_tys) arg_kinds
               ; tau_tys <- mapM newFlexiTyVarTy arg_kinds'
               ; co <- unifyType (mkTyConApp tc (kappa_tys ++ tau_tys)) orig_ty
               ; return (co, kappa_tys ++ tau_tys) }

    (kvs, body)           = splitForAllTys (tyConKind tc)
    (arg_kinds, res_kind) = splitKindFunTys body

----------------------
matchExpectedAppTy :: TcRhoType                         -- orig_ty
                   -> TcM (TcCoercion,                   -- m a ~ orig_ty
                           (TcSigmaType, TcSigmaType))  -- Returns m, a
-- If the incoming type is a mutable type variable of kind k, then
-- matchExpectedAppTy returns a new type variable (m: * -> k); note the *.

matchExpectedAppTy orig_ty
  = go orig_ty
  where
    go ty
      | Just ty' <- tcView ty = go ty'

      | Just (fun_ty, arg_ty) <- tcSplitAppTy_maybe ty
      = return (mkTcNomReflCo orig_ty, (fun_ty, arg_ty))

    go (TyVarTy tv)
      | ASSERT( isTcTyVar tv) isMetaTyVar tv
      = do { cts <- readMetaTyVar tv
           ; case cts of
               Indirect ty -> go ty
               Flexi       -> defer }

    go _ = defer

    -- Defer splitting by generating an equality constraint
    defer = do { ty1 <- newFlexiTyVarTy kind1
               ; ty2 <- newFlexiTyVarTy kind2
               ; co <- unifyType (mkAppTy ty1 ty2) orig_ty
               ; return (co, (ty1, ty2)) }

    orig_kind = typeKind orig_ty
    kind1 = mkArrowKind liftedTypeKind (defaultKind orig_kind)
    kind2 = liftedTypeKind    -- m :: * -> k
                              -- arg type :: *
        -- The defaultKind is a bit smelly.  If you remove it,
        -- try compiling        f x = do { x }
        -- and you'll get a kind mis-match.  It smells, but
        -- not enough to lose sleep over.
\end{code} %************************************************************************ %* * Subsumption checking %* * %************************************************************************ All the tcSub calls have the form tcSub actual_ty expected_ty which checks actual_ty <= expected_ty That is, that a value of type actual_ty is acceptable in a place expecting a value of type expected_ty. It returns a coercion function co_fn :: actual_ty ~ expected_ty which takes an HsExpr of type actual_ty into one of type expected_ty. \begin{code}
tcSubType :: CtOrigin -> UserTypeCtxt -> TcSigmaType -> TcSigmaType -> TcM HsWrapper
-- Check that ty_actual is more polymorphic than ty_expected
-- Both arguments might be polytypes, so we must instantiate and skolemise
-- Returns a wrapper of shape   ty_actual ~ ty_expected
tcSubType origin ctxt ty_actual ty_expected
  | isSigmaTy ty_actual
  = do { (sk_wrap, inst_wrap) 
            <- tcGen ctxt ty_expected $ \ _ sk_rho -> do
            { (in_wrap, in_rho) <- deeplyInstantiate origin ty_actual
            ; cow <- unify in_rho sk_rho
            ; return (coToHsWrapper cow <.> in_wrap) }
       ; return (sk_wrap <.> inst_wrap) }

  | otherwise	-- Urgh!  It seems deeply weird to have equality
    		-- when actual is not a polytype, and it makes a big 
		-- difference e.g. tcfail104
  = do { cow <- unify ty_actual ty_expected
       ; return (coToHsWrapper cow) }
  where
    -- In the case of patterns we call tcSubType with (expected, actual)
    -- rather than (actual, expected).   To get error messages the 
    -- right way round we have to fiddle with the origin
    unify ty1 ty2 = uType u_origin ty1 ty2
      where
         u_origin = case origin of 
                      PatSigOrigin -> TypeEqOrigin { uo_actual = ty2, uo_expected = ty1 }
                      _other       -> TypeEqOrigin { uo_actual = ty1, uo_expected = ty2 }
  
tcInfer :: (TcType -> TcM a) -> TcM (a, TcType)
tcInfer tc_infer = do { ty  <- newFlexiTyVarTy openTypeKind
                      ; res <- tc_infer ty
		      ; return (res, ty) }

-----------------
tcWrapResult :: HsExpr TcId -> TcRhoType -> TcRhoType -> TcM (HsExpr TcId)
tcWrapResult expr actual_ty res_ty
  = do { cow <- unifyType actual_ty res_ty
       	        -- Both types are deeply skolemised
       ; return (mkHsWrapCo cow expr) }

-----------------------------------
wrapFunResCoercion
        :: [TcType]     -- Type of args
        -> HsWrapper    -- HsExpr a -> HsExpr b
        -> TcM HsWrapper        -- HsExpr (arg_tys -> a) -> HsExpr (arg_tys -> b)
wrapFunResCoercion arg_tys co_fn_res
  | isIdHsWrapper co_fn_res
  = return idHsWrapper
  | null arg_tys
  = return co_fn_res
  | otherwise
  = do  { arg_ids <- newSysLocalIds (fsLit "sub") arg_tys
        ; return (mkWpLams arg_ids <.> co_fn_res <.> mkWpEvVarApps arg_ids) }
\end{code} %************************************************************************ %* * \subsection{Generalisation} %* * %************************************************************************ \begin{code}
tcGen :: UserTypeCtxt -> TcType
      -> ([TcTyVar] -> TcRhoType -> TcM result)
      -> TcM (HsWrapper, result)
        -- The expression has type: spec_ty -> expected_ty

tcGen ctxt expected_ty thing_inside
   -- We expect expected_ty to be a forall-type
   -- If not, the call is a no-op
  = do  { traceTc "tcGen" empty
        ; (wrap, tvs', given, rho') <- deeplySkolemise expected_ty

        ; when debugIsOn $
              traceTc "tcGen" $ vcat [
                           text "expected_ty" <+> ppr expected_ty,
                           text "inst ty" <+> ppr tvs' <+> ppr rho' ]

	-- Generally we must check that the "forall_tvs" havn't been constrained
        -- The interesting bit here is that we must include the free variables
        -- of the expected_ty.  Here's an example:
        --       runST (newVar True)
        -- Here, if we don't make a check, we'll get a type (ST s (MutVar s Bool))
        -- for (newVar True), with s fresh.  Then we unify with the runST's arg type
        -- forall s'. ST s' a. That unifies s' with s, and a with MutVar s Bool.
        -- So now s' isn't unconstrained because it's linked to a.
        -- 
	-- However [Oct 10] now that the untouchables are a range of 
        -- TcTyVars, all this is handled automatically with no need for
	-- extra faffing around

        -- Use the *instantiated* type in the SkolemInfo
        -- so that the names of displayed type variables line up
        ; let skol_info = SigSkol ctxt (mkPiTypes given rho')

        ; (ev_binds, result) <- checkConstraints skol_info tvs' given $
                                thing_inside tvs' rho'

        ; return (wrap <.> mkWpLet ev_binds, result) }
	  -- The ev_binds returned by checkConstraints is very
	  -- often empty, in which case mkWpLet is a no-op

checkConstraints :: SkolemInfo
		 -> [TcTyVar]		-- Skolems
		 -> [EvVar]             -- Given
		 -> TcM result
		 -> TcM (TcEvBinds, result)

checkConstraints skol_info skol_tvs given thing_inside
  | null skol_tvs && null given
  = do { res <- thing_inside; return (emptyTcEvBinds, res) }
      -- Just for efficiency.  We check every function argument with
      -- tcPolyExpr, which uses tcGen and hence checkConstraints.

  | otherwise
  = newImplication skol_info skol_tvs given thing_inside

newImplication :: SkolemInfo -> [TcTyVar]
	       -> [EvVar] -> TcM result
               -> TcM (TcEvBinds, result)
newImplication skol_info skol_tvs given thing_inside
  = ASSERT2( all isTcTyVar skol_tvs, ppr skol_tvs )
    ASSERT2( all isSkolemTyVar skol_tvs, ppr skol_tvs )
    do { ((result, untch), wanted) <- captureConstraints  $ 
                                      captureUntouchables $
                                      thing_inside

       ; if isEmptyWC wanted && null given
       	    -- Optimisation : if there are no wanteds, and no givens
       	    -- don't generate an implication at all.
            -- Reason for the (null given): we don't want to lose 
            -- the "inaccessible alternative" error check
         then 
            return (emptyTcEvBinds, result)
         else do
       { ev_binds_var <- newTcEvBinds
       ; env <- getLclEnv
       ; emitImplication $ Implic { ic_untch = untch
             		     	  , ic_skols = skol_tvs
                                  , ic_fsks  = []
                                  , ic_no_eqs = False
                             	  , ic_given = given
                                  , ic_wanted = wanted
                                  , ic_insol  = insolubleWC wanted
                                  , ic_binds = ev_binds_var
             		     	  , ic_env = env
                                  , ic_info = skol_info }

       ; return (TcEvBinds ev_binds_var, result) } }
\end{code} %************************************************************************ %* * Boxy unification %* * %************************************************************************ The exported functions are all defined as versions of some non-exported generic functions. \begin{code}
unifyType :: TcTauType -> TcTauType -> TcM TcCoercion
-- Actual and expected types
-- Returns a coercion : ty1 ~ ty2
unifyType ty1 ty2 = uType origin ty1 ty2
  where
    origin = TypeEqOrigin { uo_actual = ty1, uo_expected = ty2 }

---------------
unifyPred :: PredType -> PredType -> TcM TcCoercion
-- Actual and expected types
unifyPred = unifyType

---------------
unifyTheta :: TcThetaType -> TcThetaType -> TcM [TcCoercion]
-- Actual and expected types
unifyTheta theta1 theta2
  = do  { checkTc (equalLength theta1 theta2)
                  (vcat [ptext (sLit "Contexts differ in length"),
                         nest 2 $ parens $ ptext (sLit "Use RelaxedPolyRec to allow this")])
        ; zipWithM unifyPred theta1 theta2 }
\end{code} @unifyTypeList@ takes a single list of @TauType@s and unifies them all together. It is used, for example, when typechecking explicit lists, when all the elts should be of the same type. \begin{code}
unifyTypeList :: [TcTauType] -> TcM ()
unifyTypeList []                 = return ()
unifyTypeList [_]                = return ()
unifyTypeList (ty1:tys@(ty2:_)) = do { _ <- unifyType ty1 ty2
                                     ; unifyTypeList tys }
\end{code} %************************************************************************ %* * uType and friends %* * %************************************************************************ uType is the heart of the unifier. Each arg occurs twice, because we want to report errors in terms of synomyms if possible. The first of the pair is used in error messages only; it is always the same as the second, except that if the first is a synonym then the second may be a de-synonym'd version. This way we get better error messages. \begin{code}
------------
uType, uType_defer
  :: CtOrigin
  -> TcType    -- ty1 is the *actual* type
  -> TcType    -- ty2 is the *expected* type
  -> TcM TcCoercion

--------------
-- It is always safe to defer unification to the main constraint solver
-- See Note [Deferred unification]
uType_defer origin ty1 ty2
  = do { eqv <- newEq ty1 ty2
       ; loc <- getCtLoc origin
       ; emitFlat $ mkNonCanonical $
             CtWanted { ctev_evar = eqv
                      , ctev_pred = mkTcEqPred ty1 ty2
                      , ctev_loc = loc }

       -- Error trace only
       -- NB. do *not* call mkErrInfo unless tracing is on, because
       -- it is hugely expensive (#5631)
       ; whenDOptM Opt_D_dump_tc_trace $ do
            { ctxt <- getErrCtxt
            ; doc <- mkErrInfo emptyTidyEnv ctxt
            ; traceTc "utype_defer" (vcat [ppr eqv, ppr ty1,
                                           ppr ty2, ppr origin, doc])
            }
       ; return (mkTcCoVarCo eqv) }

--------------
-- unify_np (short for "no push" on the origin stack) does the work
uType origin orig_ty1 orig_ty2
  = do { untch <- getUntouchables
       ; traceTc "u_tys " $ vcat 
              [ text "untch" <+> ppr untch
              , sep [ ppr orig_ty1, text "~", ppr orig_ty2]
              , ppr origin]
       ; co <- go orig_ty1 orig_ty2
       ; if isTcReflCo co
            then traceTc "u_tys yields no coercion" empty
            else traceTc "u_tys yields coercion:" (ppr co)
       ; return co }
  where
    go :: TcType -> TcType -> TcM TcCoercion
	-- The arguments to 'go' are always semantically identical 
	-- to orig_ty{1,2} except for looking through type synonyms

        -- Variables; go for uVar
	-- Note that we pass in *original* (before synonym expansion), 
        -- so that type variables tend to get filled in with 
        -- the most informative version of the type
    go (TyVarTy tv1) ty2 
      = do { lookup_res <- lookupTcTyVar tv1
           ; case lookup_res of
               Filled ty1   -> go ty1 ty2
               Unfilled ds1 -> uUnfilledVar origin NotSwapped tv1 ds1 ty2 }
    go ty1 (TyVarTy tv2) 
      = do { lookup_res <- lookupTcTyVar tv2
           ; case lookup_res of
               Filled ty2   -> go ty1 ty2
               Unfilled ds2 -> uUnfilledVar origin IsSwapped tv2 ds2 ty1 }

        -- See Note [Expanding synonyms during unification]
	--
	-- Also NB that we recurse to 'go' so that we don't push a
	-- new item on the origin stack. As a result if we have
	--   type Foo = Int
	-- and we try to unify  Foo ~ Bool
	-- we'll end up saying "can't match Foo with Bool"
	-- rather than "can't match "Int with Bool".  See Trac #4535.
    go ty1 ty2
      | Just ty1' <- tcView ty1 = go ty1' ty2
      | Just ty2' <- tcView ty2 = go ty1  ty2'
      	     
        -- Functions (or predicate functions) just check the two parts
    go (FunTy fun1 arg1) (FunTy fun2 arg2)
      = do { co_l <- uType origin fun1 fun2
           ; co_r <- uType origin arg1 arg2
           ; return $ mkTcFunCo Nominal co_l co_r }

        -- Always defer if a type synonym family (type function)
      	-- is involved.  (Data families behave rigidly.)
    go ty1@(TyConApp tc1 _) ty2
      | isSynFamilyTyCon tc1 = uType_defer origin ty1 ty2   
    go ty1 ty2@(TyConApp tc2 _)
      | isSynFamilyTyCon tc2 = uType_defer origin ty1 ty2   

    go (TyConApp tc1 tys1) (TyConApp tc2 tys2)
      -- See Note [Mismatched type lists and application decomposition]
      | tc1 == tc2, length tys1 == length tys2
      = do { cos <- zipWithM (uType origin) tys1 tys2
           ; return $ mkTcTyConAppCo Nominal tc1 cos }

    go (LitTy m) ty@(LitTy n)
      | m == n
      = return $ mkTcNomReflCo ty

	-- See Note [Care with type applications]
        -- Do not decompose FunTy against App; 
        -- it's often a type error, so leave it for the constraint solver
    go (AppTy s1 t1) (AppTy s2 t2)
      = go_app s1 t1 s2 t2

    go (AppTy s1 t1) (TyConApp tc2 ts2)
      | Just (ts2', t2') <- snocView ts2
      = ASSERT( isDecomposableTyCon tc2 ) 
        go_app s1 t1 (TyConApp tc2 ts2') t2'

    go (TyConApp tc1 ts1) (AppTy s2 t2) 
      | Just (ts1', t1') <- snocView ts1
      = ASSERT( isDecomposableTyCon tc1 ) 
        go_app (TyConApp tc1 ts1') t1' s2 t2 

    go ty1 ty2
      | tcIsForAllTy ty1 || tcIsForAllTy ty2 
      = unifySigmaTy origin ty1 ty2

        -- Anything else fails
    go ty1 ty2 = uType_defer origin ty1 ty2 -- failWithMisMatch origin

    ------------------
    go_app s1 t1 s2 t2
      = do { co_s <- uType origin s1 s2  -- See Note [Unifying AppTy]
           ; co_t <- uType origin t1 t2        
           ; return $ mkTcAppCo co_s co_t }

unifySigmaTy :: CtOrigin -> TcType -> TcType -> TcM TcCoercion
unifySigmaTy origin ty1 ty2
  = do { let (tvs1, body1) = tcSplitForAllTys ty1
             (tvs2, body2) = tcSplitForAllTys ty2

       ; defer_or_continue (not (equalLength tvs1 tvs2)) $ do {
         (subst1, skol_tvs) <- tcInstSkolTyVars tvs1
                  -- Get location from monad, not from tvs1
       ; let tys      = mkTyVarTys skol_tvs
             phi1     = Type.substTy subst1                   body1
             phi2     = Type.substTy (zipTopTvSubst tvs2 tys) body2
	     skol_info = UnifyForAllSkol skol_tvs phi1

       ; (ev_binds, co) <- checkConstraints skol_info skol_tvs [] $
                           uType origin phi1 phi2

       ; return (foldr mkTcForAllCo (TcLetCo ev_binds co) skol_tvs) } }
  where
    defer_or_continue True  _ = uType_defer origin ty1 ty2
    defer_or_continue False m = m
\end{code} Note [Care with type applications] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Note: type applications need a bit of care! They can match FunTy and TyConApp, so use splitAppTy_maybe NB: we've already dealt with type variables and Notes, so if one type is an App the other one jolly well better be too Note [Unifying AppTy] ~~~~~~~~~~~~~~~~~~~~~ Consider unifying (m Int) ~ (IO Int) where m is a unification variable that is now bound to (say) (Bool ->). Then we want to report "Can't unify (Bool -> Int) with (IO Int) and not "Can't unify ((->) Bool) with IO" That is why we use the "_np" variant of uType, which does not alter the error message. Note [Mismatched type lists and application decomposition] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When we find two TyConApps, you might think that the argument lists are guaranteed equal length. But they aren't. Consider matching w (T x) ~ Foo (T x y) We do match (w ~ Foo) first, but in some circumstances we simply create a deferred constraint; and then go ahead and match (T x ~ T x y). This came up in Trac #3950. So either (a) either we must check for identical argument kinds when decomposing applications, (b) or we must be prepared for ill-kinded unification sub-problems Currently we adopt (b) since it seems more robust -- no need to maintain a global invariant. Note [Expanding synonyms during unification] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We expand synonyms during unification, but: * We expand *after* the variable case so that we tend to unify variables with un-expanded type synonym. This just makes it more likely that the inferred types will mention type synonyms understandable to the user * We expand *before* the TyConApp case. For example, if we have type Phantom a = Int and are unifying Phantom Int ~ Phantom Char it is *wrong* to unify Int and Char. Note [Deferred Unification] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ We may encounter a unification ty1 ~ ty2 that cannot be performed syntactically, and yet its consistency is undetermined. Previously, there was no way to still make it consistent. So a mismatch error was issued. Now these unfications are deferred until constraint simplification, where type family instances and given equations may (or may not) establish the consistency. Deferred unifications are of the form F ... ~ ... or x ~ ... where F is a type function and x is a type variable. E.g. id :: x ~ y => x -> y id e = e involves the unfication x = y. It is deferred until we bring into account the context x ~ y to establish that it holds. If available, we defer original types (rather than those where closed type synonyms have already been expanded via tcCoreView). This is, as usual, to improve error messages. %************************************************************************ %* * uVar and friends %* * %************************************************************************ @uVar@ is called when at least one of the types being unified is a variable. It does {\em not} assume that the variable is a fixed point of the substitution; rather, notice that @uVar@ (defined below) nips back into @uTys@ if it turns out that the variable is already bound. \begin{code}
uUnfilledVar :: CtOrigin
             -> SwapFlag
             -> TcTyVar -> TcTyVarDetails       -- Tyvar 1
             -> TcTauType  			-- Type 2
             -> TcM TcCoercion
-- "Unfilled" means that the variable is definitely not a filled-in meta tyvar
--            It might be a skolem, or untouchable, or meta

uUnfilledVar origin swapped tv1 details1 (TyVarTy tv2)
  | tv1 == tv2  -- Same type variable => no-op
  = return (mkTcNomReflCo (mkTyVarTy tv1))

  | otherwise  -- Distinct type variables
  = do  { lookup2 <- lookupTcTyVar tv2
        ; case lookup2 of
            Filled ty2'       -> uUnfilledVar origin swapped tv1 details1 ty2' 
            Unfilled details2 -> uUnfilledVars origin swapped tv1 details1 tv2 details2
        }

uUnfilledVar origin swapped tv1 details1 non_var_ty2  -- ty2 is not a type variable
  = case details1 of
      MetaTv { mtv_ref = ref1 }
        -> do { dflags <- getDynFlags
              ; mb_ty2' <- checkTauTvUpdate dflags tv1 non_var_ty2
              ; case mb_ty2' of
                  Just ty2' -> updateMeta tv1 ref1 ty2'
                  Nothing   -> do { traceTc "Occ/kind defer" 
                                        (ppr tv1 <+> dcolon <+> ppr (tyVarKind tv1)
                                         $$ ppr non_var_ty2 $$ ppr (typeKind non_var_ty2))
                                  ; defer }
              }

      _other -> do { traceTc "Skolem defer" (ppr tv1); defer }	-- Skolems of all sorts
  where
    defer = unSwap swapped (uType_defer origin) (mkTyVarTy tv1) non_var_ty2
               -- Occurs check or an untouchable: just defer
	       -- NB: occurs check isn't necessarily fatal: 
	       --     eg tv1 occured in type family parameter

----------------
uUnfilledVars :: CtOrigin
              -> SwapFlag
              -> TcTyVar -> TcTyVarDetails      -- Tyvar 1
              -> TcTyVar -> TcTyVarDetails      -- Tyvar 2
              -> TcM TcCoercion
-- Invarant: The type variables are distinct,
--           Neither is filled in yet

uUnfilledVars origin swapped tv1 details1 tv2 details2
  = do { traceTc "uUnfilledVars" (    text "trying to unify" <+> ppr k1
                                  <+> text "with"            <+> ppr k2)
       ; mb_sub_kind <- unifyKindX k1 k2
       ; case mb_sub_kind of {
           Nothing -> unSwap swapped (uType_defer origin) (mkTyVarTy tv1) ty2 ;
           Just sub_kind -> 

         case (sub_kind, details1, details2) of
           -- k1 < k2, so update tv2
           (LT, _, MetaTv { mtv_ref = ref2 }) -> updateMeta tv2 ref2 ty1

           -- k2 < k1, so update tv1
           (GT, MetaTv { mtv_ref = ref1 }, _) -> updateMeta tv1 ref1 ty2

	   -- k1 = k2, so we are free to update either way
           (EQ, MetaTv { mtv_info = i1, mtv_ref = ref1 }, 
                MetaTv { mtv_info = i2, mtv_ref = ref2 })
                | nicer_to_update_tv1 i1 i2 -> updateMeta tv1 ref1 ty2
                | otherwise                 -> updateMeta tv2 ref2 ty1
           (EQ, MetaTv { mtv_ref = ref1 }, _) -> updateMeta tv1 ref1 ty2
           (EQ, _, MetaTv { mtv_ref = ref2 }) -> updateMeta tv2 ref2 ty1

	   -- Can't do it in-place, so defer
	   -- This happens for skolems of all sorts
           (_, _, _) -> unSwap swapped (uType_defer origin) ty1 ty2 } }
  where
    k1  = tyVarKind tv1
    k2  = tyVarKind tv2
    ty1 = mkTyVarTy tv1
    ty2 = mkTyVarTy tv2

    nicer_to_update_tv1 _     SigTv = True
    nicer_to_update_tv1 SigTv _     = False
    nicer_to_update_tv1 _         _ = isSystemName (Var.varName tv1)
        -- Try not to update SigTvs; and try to update sys-y type
        -- variables in preference to ones gotten (say) by
        -- instantiating a polymorphic function with a user-written
        -- type sig

----------------
checkTauTvUpdate :: DynFlags -> TcTyVar -> TcType -> TcM (Maybe TcType)
--    (checkTauTvUpdate tv ty)
-- We are about to update the TauTv/PolyTv tv with ty.
-- Check (a) that tv doesn't occur in ty (occurs check)
--       (b) that kind(ty) is a sub-kind of kind(tv)
-- 
-- We have two possible outcomes:
-- (1) Return the type to update the type variable with, 
--        [we know the update is ok]
-- (2) Return Nothing,
--        [the update might be dodgy]
--
-- Note that "Nothing" does not mean "definite error".  For example
--   type family F a
--   type instance F Int = Int
-- consider
--   a ~ F a
-- This is perfectly reasonable, if we later get a ~ Int.  For now, though,
-- we return Nothing, leaving it to the later constraint simplifier to
-- sort matters out.

checkTauTvUpdate dflags tv ty
  | SigTv <- info
  = ASSERT( not (isTyVarTy ty) )
    return Nothing
  | otherwise
  = do { ty1   <- zonkTcType ty
       ; sub_k <- unifyKindX (tyVarKind tv) (typeKind ty1)
       ; case sub_k of
           Nothing           -> return Nothing
           Just LT           -> return Nothing
           _  | defer_me ty1   -- Quick test
              -> -- Failed quick test so try harder
                 case occurCheckExpand dflags tv ty1 of 
                   OC_OK ty2 | defer_me ty2 -> return Nothing
                             | otherwise    -> return (Just ty2)
                   _ -> return Nothing
              | otherwise   -> return (Just ty1) }
  where 
    info = ASSERT2( isMetaTyVar tv, ppr tv ) metaTyVarInfo tv

    impredicative = xopt Opt_ImpredicativeTypes dflags
                 || isOpenTypeKind (tyVarKind tv)  
                       -- Note [OpenTypeKind accepts foralls]
                 || case info of { PolyTv -> True;  _ -> False }

    defer_me :: TcType -> Bool
    -- Checks for (a) occurrence of tv
    --            (b) type family applications
    -- See Note [Conservative unification check]
    defer_me (LitTy {})        = False
    defer_me (TyVarTy tv')     = tv == tv'
    defer_me (TyConApp tc tys) = isSynFamilyTyCon tc || any defer_me tys
    defer_me (FunTy arg res)   = defer_me arg || defer_me res
    defer_me (AppTy fun arg)   = defer_me fun || defer_me arg
    defer_me (ForAllTy _ ty)   = not impredicative || defer_me ty
\end{code} Note [OpenTypeKind accepts foralls] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Here is a common paradigm: foo :: (forall a. a -> a) -> Int foo = error "urk" To make this work we need to instantiate 'error' with a polytype. A similar case is bar :: Bool -> (forall a. a->a) -> Int bar True = \x. (x 3) bar False = error "urk" Here we need to instantiate 'error' with a polytype. But 'error' has an OpenTypeKind type variable, precisely so that we can instantiate it with Int#. So we also allow such type variables to be instantiate with foralls. It's a bit of a hack, but seems straightforward. Note [Conservative unification check] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ When unifying (tv ~ rhs), w try to avoid creating deferred constraints only for efficiency. However, we do not unify (the defer_me check) if a) There's an occurs check (tv is in fvs(rhs)) b) There's a type-function call in 'rhs' If we fail defer_me we use occurCheckExpand to try to make it pass, (see Note [Type synonyms and the occur check]) and then use defer_me again to check. Example: Trac #4917) a ~ Const a b where type Const a b = a. We can solve this immediately, even when 'a' is a skolem, just by expanding the synonym. We always defer type-function calls, even if it's be perfectly safe to unify, eg (a ~ F [b]). Reason: this ensures that the constraint solver gets to see, and hence simplify the type-function call, which in turn might simplify the type of an inferred function. Test ghci046 is a case in point. More mysteriously, test T7010 gave a horrible error T7010.hs:29:21: Couldn't match type `Serial (ValueTuple Float)' with `IO Float' Expected type: (ValueTuple Vector, ValueTuple Vector) Actual type: (ValueTuple Vector, ValueTuple Vector) because an insoluble type function constraint got mixed up with a soluble one when flattening. I never fully understood this, but deferring type-function applications made it go away :-(. T5853 also got a less-good error message with more aggressive unification of type functions. Moreover the Note [Type family sharing] gives another reason, but again I'm not sure if it's really valid. Note [Type synonyms and the occur check] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Generally speaking we try to update a variable with type synonyms not expanded, which improves later error messages, unless looking inside a type synonym may help resolve a spurious occurs check error. Consider: type A a = () f :: (A a -> a -> ()) -> () f = \ _ -> () x :: () x = f (\ x p -> p x) We will eventually get a constraint of the form t ~ A t. The ok function above will properly expand the type (A t) to just (), which is ok to be unified with t. If we had unified with the original type A t, we would lead the type checker into an infinite loop. Hence, if the occurs check fails for a type synonym application, then (and *only* then), the ok function expands the synonym to detect opportunities for occurs check success using the underlying definition of the type synonym. The same applies later on in the constraint interaction code; see TcInteract, function @occ_check_ok@. Note [Type family sharing] ~~~~~~~~~~~~~~~~~~~~~~~~~~ We must avoid eagerly unifying type variables to types that contain function symbols, because this may lead to loss of sharing, and in turn, in very poor performance of the constraint simplifier. Assume that we have a wanted constraint: { m1 ~ [F m2], m2 ~ [F m3], m3 ~ [F m4], D m1, D m2, D m3 } where D is some type class. If we eagerly unify m1 := [F m2], m2 := [F m3], m3 := [F m4], then, after zonking, our constraint simplifier will be faced with the following wanted constraint: { D [F [F [F m4]]], D [F [F m4]], D [F m4] } which has to be flattened by the constraint solver. In the absence of a flat-cache, this may generate a polynomially larger number of flatten skolems and the constraint sets we are working with will be polynomially larger. Instead, if we defer the unifications m1 := [F m2], etc. we will only be generating three flatten skolems, which is the maximum possible sharing arising from the original constraint. That's why we used to use a local "ok" function, a variant of TcType.occurCheckExpand. HOWEVER, we *do* now have a flat-cache, which effectively recovers the sharing, so there's no great harm in losing it -- and it's generally more efficient to do the unification up-front. \begin{code}
data LookupTyVarResult	-- The result of a lookupTcTyVar call
  = Unfilled TcTyVarDetails	-- SkolemTv or virgin MetaTv
  | Filled   TcType

lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar tyvar 
  | MetaTv { mtv_ref = ref } <- details
  = do { meta_details <- readMutVar ref
       ; case meta_details of
           Indirect ty -> return (Filled ty)
           Flexi -> do { is_touchable <- isTouchableTcM tyvar
                             -- Note [Unifying untouchables]
                       ; if is_touchable then
                            return (Unfilled details)
                         else
                            return (Unfilled vanillaSkolemTv) } }
  | otherwise
  = return (Unfilled details)
  where
    details = ASSERT2( isTcTyVar tyvar, ppr tyvar )
              tcTyVarDetails tyvar

updateMeta :: TcTyVar -> TcRef MetaDetails -> TcType -> TcM TcCoercion
updateMeta tv1 ref1 ty2
  = do { writeMetaTyVarRef tv1 ref1 ty2
       ; return (mkTcNomReflCo ty2) }
\end{code} Note [Unifying untouchables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We treat an untouchable type variable as if it was a skolem. That ensures it won't unify with anything. It's a slight had, because we return a made-up TcTyVarDetails, but I think it works smoothly. %************************************************************************ %* * Kind unification %* * %************************************************************************ Unifying kinds is much, much simpler than unifying types. One small wrinkle is that as far as the user is concerned, types of kind Constraint should only be allowed to occur where we expect *exactly* that kind. We SHOULD NOT allow a type of kind fact to appear in a position expecting one of argTypeKind or openTypeKind. The situation is different in the core of the compiler, where we are perfectly happy to have types of kind Constraint on either end of an arrow. \begin{code}
matchExpectedFunKind :: TcKind -> TcM (Maybe (TcKind, TcKind))
-- Like unifyFunTy, but does not fail; instead just returns Nothing

matchExpectedFunKind (FunTy arg_kind res_kind) 
  = return (Just (arg_kind,res_kind))

matchExpectedFunKind (TyVarTy kvar) 
  | isTcTyVar kvar, isMetaTyVar kvar
  = do { maybe_kind <- readMetaTyVar kvar
       ; case maybe_kind of
            Indirect fun_kind -> matchExpectedFunKind fun_kind
            Flexi ->
                do { arg_kind <- newMetaKindVar
                   ; res_kind <- newMetaKindVar
                   ; writeMetaTyVar kvar (mkArrowKind arg_kind res_kind)
                   ; return (Just (arg_kind,res_kind)) } }

matchExpectedFunKind _ = return Nothing

-----------------  
unifyKindX :: TcKind           -- k1 (actual)
           -> TcKind           -- k2 (expected)
           -> TcM (Maybe Ordering)     
                              -- Returns the relation between the kinds
                              -- Just LT <=> k1 is a sub-kind of k2
                              -- Nothing <=> incomparable

-- unifyKindX deals with the top-level sub-kinding story
-- but recurses into the simpler unifyKindEq for any sub-terms
-- The sub-kinding stuff only applies at top level

unifyKindX (TyVarTy kv1) k2 = uKVar NotSwapped unifyKindX kv1 k2
unifyKindX k1 (TyVarTy kv2) = uKVar IsSwapped  unifyKindX kv2 k1

unifyKindX k1 k2       -- See Note [Expanding synonyms during unification]
  | Just k1' <- tcView k1 = unifyKindX k1' k2
  | Just k2' <- tcView k2 = unifyKindX k1  k2'

unifyKindX (TyConApp kc1 []) (TyConApp kc2 [])
  | kc1 == kc2               = return (Just EQ)
  | kc1 `tcIsSubKindCon` kc2 = return (Just LT)
  | kc2 `tcIsSubKindCon` kc1 = return (Just GT)
  | otherwise                = return Nothing

unifyKindX k1 k2 = unifyKindEq k1 k2
  -- In all other cases, let unifyKindEq do the work

uKVar :: SwapFlag -> (TcKind -> TcKind -> TcM (Maybe Ordering))
      -> MetaKindVar -> TcKind -> TcM (Maybe Ordering)
uKVar swapped unify_kind kv1 k2
  | isTcTyVar kv1, isMetaTyVar kv1       -- See Note [Unifying kind variables]
  = do  { mb_k1 <- readMetaTyVar kv1
        ; case mb_k1 of
            Flexi -> uUnboundKVar kv1 k2
            Indirect k1 -> unSwap swapped unify_kind k1 k2 }
  | TyVarTy kv2 <- k2, kv1 == kv2 
  = return (Just EQ)

  | TyVarTy kv2 <- k2, isTcTyVar kv2, isMetaTyVar kv2
  = uKVar (flipSwap swapped) unify_kind kv2 (TyVarTy kv1)

  | otherwise 
  = return Nothing

{- Note [Unifying kind variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rather hackily, kind variables can be TyVars not just TcTyVars.
Main reason is in 
   data instance T (D (x :: k)) = ...con-decls...
Here we bring into scope a kind variable 'k', and use it in the 
con-decls.  BUT the con-decls will be finished and frozen, and
are not amenable to subsequent substitution, so it makes sense
to have the *final* kind-variable (a KindVar, not a TcKindVar) in 
scope.  So at least during kind unification we can encounter a
KindVar. 

Hence the isTcTyVar tests before using isMetaTyVar.
-}

---------------------------
unifyKindEq :: TcKind -> TcKind -> TcM (Maybe Ordering)
-- Unify two kinds looking for equality not sub-kinding
-- So it returns Nothing or (Just EQ) only
unifyKindEq (TyVarTy kv1) k2 = uKVar NotSwapped unifyKindEq kv1 k2
unifyKindEq k1 (TyVarTy kv2) = uKVar IsSwapped  unifyKindEq kv2 k1

unifyKindEq (FunTy a1 r1) (FunTy a2 r2)
  = do { mb1 <- unifyKindEq a1 a2; mb2 <- unifyKindEq r1 r2
       ; return (if isJust mb1 && isJust mb2 then Just EQ else Nothing) }
  
unifyKindEq (TyConApp kc1 k1s) (TyConApp kc2 k2s)
  | kc1 == kc2
  = ASSERT(length k1s == length k2s)
       -- Should succeed since the kind constructors are the same, 
       -- and the kinds are sort-checked, thus fully applied
    do { mb_eqs <- zipWithM unifyKindEq k1s k2s
       ; return (if all isJust mb_eqs 
                 then Just EQ 
                 else Nothing) }

unifyKindEq _ _ = return Nothing

----------------
uUnboundKVar :: MetaKindVar -> TcKind -> TcM (Maybe Ordering)
uUnboundKVar kv1 k2@(TyVarTy kv2)
  | kv1 == kv2 = return (Just EQ)
  | isTcTyVar kv2, isMetaTyVar kv2   -- Distinct kind variables
  = do  { mb_k2 <- readMetaTyVar kv2
        ; case mb_k2 of
            Indirect k2 -> uUnboundKVar kv1 k2
            Flexi       -> do { writeMetaTyVar kv1 k2; return (Just EQ) } }
  | otherwise 
  = do { writeMetaTyVar kv1 k2; return (Just EQ) }

uUnboundKVar kv1 non_var_k2
  | isSigTyVar kv1
  = return Nothing
  | otherwise
  = do { k2a <- zonkTcKind non_var_k2
       ; let k2b = defaultKind k2a
                -- MetaKindVars must be bound only to simple kinds

       ; dflags <- getDynFlags 
       ; case occurCheckExpand dflags kv1 k2b of
           OC_OK k2c -> do { writeMetaTyVar kv1 k2c; return (Just EQ) }
           _         -> return Nothing }
\end{code}