%
% (c) The University of Glasgow 2006
% (c) The GRASP/AQUA Project, Glasgow University, 1992-1998
%
The @TyCon@ datatype
\begin{code}
module TyCon(
TyCon, FieldLabel,
AlgTyConRhs(..), visibleDataCons,
TyConParent(..), isNoParent,
SynTyConRhs(..), Role(..),
mkAlgTyCon,
mkClassTyCon,
mkFunTyCon,
mkPrimTyCon,
mkKindTyCon,
mkLiftedPrimTyCon,
mkTupleTyCon,
mkSynTyCon,
mkForeignTyCon,
mkPromotedDataCon,
mkPromotedTyCon,
isAlgTyCon,
isClassTyCon, isFamInstTyCon,
isFunTyCon,
isPrimTyCon,
isTupleTyCon, isUnboxedTupleTyCon, isBoxedTupleTyCon,
isSynTyCon,
isDecomposableTyCon,
isForeignTyCon,
isPromotedDataCon, isPromotedTyCon,
isPromotedDataCon_maybe, isPromotedTyCon_maybe,
promotableTyCon_maybe, promoteTyCon,
isInjectiveTyCon,
isDataTyCon, isProductTyCon, isDataProductTyCon_maybe,
isEnumerationTyCon,
isNewTyCon, isAbstractTyCon,
isFamilyTyCon, isOpenFamilyTyCon,
isSynFamilyTyCon, isDataFamilyTyCon,
isOpenSynFamilyTyCon, isClosedSynFamilyTyCon_maybe,
isBuiltInSynFamTyCon_maybe,
isUnLiftedTyCon,
isGadtSyntaxTyCon, isDistinctTyCon, isDistinctAlgRhs,
isTyConAssoc, tyConAssoc_maybe,
isRecursiveTyCon,
isImplicitTyCon,
tyConName,
tyConKind,
tyConUnique,
tyConTyVars,
tyConCType, tyConCType_maybe,
tyConDataCons, tyConDataCons_maybe,
tyConSingleDataCon_maybe, tyConSingleAlgDataCon_maybe,
tyConFamilySize,
tyConStupidTheta,
tyConArity,
tyConRoles,
tyConParent,
tyConTuple_maybe, tyConClass_maybe,
tyConFamInst_maybe, tyConFamInstSig_maybe, tyConFamilyCoercion_maybe,
synTyConDefn_maybe, synTyConRhs_maybe,
tyConExtName,
algTyConRhs,
newTyConRhs, newTyConEtadArity, newTyConEtadRhs, unwrapNewTyCon_maybe,
tupleTyConBoxity, tupleTyConSort, tupleTyConArity,
tcExpandTyCon_maybe, coreExpandTyCon_maybe,
makeTyConAbstract,
newTyConCo, newTyConCo_maybe,
pprPromotionQuote,
PrimRep(..), PrimElemRep(..),
tyConPrimRep, isVoidRep, isGcPtrRep,
primRepSizeW, primElemRepSizeB,
RecTcChecker, initRecTc, checkRecTc
) where
#include "HsVersions.h"
import TypeRep ( Kind, Type, PredType )
import DataCon ( DataCon, isVanillaDataCon )
import Var
import Class
import BasicTypes
import DynFlags
import ForeignCall
import Name
import NameSet
import CoAxiom
import PrelNames
import Maybes
import Outputable
import FastString
import Constants
import Util
import qualified Data.Data as Data
import Data.Typeable (Typeable)
\end{code}
-----------------------------------------------
Notes about type families
-----------------------------------------------
Note [Type synonym families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
* Type synonym families, also known as "type functions", map directly
onto the type functions in FC:
type family F a :: *
type instance F Int = Bool
..etc...
* Reply "yes" to isSynFamilyTyCon, and isFamilyTyCon
* From the user's point of view (F Int) and Bool are simply
equivalent types.
* A Haskell 98 type synonym is a degenerate form of a type synonym
family.
* Type functions can't appear in the LHS of a type function:
type instance F (F Int) = ... -- BAD!
* Translation of type family decl:
type family F a :: *
translates to
a SynTyCon 'F', whose SynTyConRhs is OpenSynFamilyTyCon
type family G a :: * where
G Int = Bool
G Bool = Char
G a = ()
translates to
a SynTyCon 'G', whose SynTyConRhs is ClosedSynFamilyTyCon, with the
appropriate CoAxiom representing the equations
* In the future we might want to support
* injective type families (allow decomposition)
but we don't at the moment [2013]
Note [Data type families]
~~~~~~~~~~~~~~~~~~~~~~~~~
See also Note [Wrappers for data instance tycons] in MkId.lhs
* Data type families are declared thus
data family T a :: *
data instance T Int = T1 | T2 Bool
Here T is the "family TyCon".
* Reply "yes" to isDataFamilyTyCon, and isFamilyTyCon
* The user does not see any "equivalent types" as he did with type
synonym families. He just sees constructors with types
T1 :: T Int
T2 :: Bool -> T Int
* Here's the FC version of the above declarations:
data T a
data R:TInt = T1 | T2 Bool
axiom ax_ti : T Int ~ R:TInt
The R:TInt is the "representation TyCons".
It has an AlgTyConParent of
FamInstTyCon T [Int] ax_ti
* The data contructor T2 has a wrapper (which is what the
source-level "T2" invokes):
$WT2 :: Bool -> T Int
$WT2 b = T2 b `cast` sym ax_ti
* A data instance can declare a fully-fledged GADT:
data instance T (a,b) where
X1 :: T (Int,Bool)
X2 :: a -> b -> T (a,b)
Here's the FC version of the above declaration:
data R:TPair a where
X1 :: R:TPair Int Bool
X2 :: a -> b -> R:TPair a b
axiom ax_pr :: T (a,b) ~ R:TPair a b
$WX1 :: forall a b. a -> b -> T (a,b)
$WX1 a b (x::a) (y::b) = X2 a b x y `cast` sym (ax_pr a b)
The R:TPair are the "representation TyCons".
We have a bit of work to do, to unpick the result types of the
data instance declaration for T (a,b), to get the result type in the
representation; e.g. T (a,b) --> R:TPair a b
The representation TyCon R:TList, has an AlgTyConParent of
FamInstTyCon T [(a,b)] ax_pr
* Notice that T is NOT translated to a FC type function; it just
becomes a "data type" with no constructors, which can be coerced inot
into R:TInt, R:TPair by the axioms. These axioms
axioms come into play when (and *only* when) you
- use a data constructor
- do pattern matching
Rather like newtype, in fact
As a result
- T behaves just like a data type so far as decomposition is concerned
- (T Int) is not implicitly converted to R:TInt during type inference.
Indeed the latter type is unknown to the programmer.
- There *is* an instance for (T Int) in the type-family instance
environment, but it is only used for overlap checking
- It's fine to have T in the LHS of a type function:
type instance F (T a) = [a]
It was this last point that confused me! The big thing is that you
should not think of a data family T as a *type function* at all, not
even an injective one! We can't allow even injective type functions
on the LHS of a type function:
type family injective G a :: *
type instance F (G Int) = Bool
is no good, even if G is injective, because consider
type instance G Int = Bool
type instance F Bool = Char
So a data type family is not an injective type function. It's just a
data type with some axioms that connect it to other data types.
Note [Associated families and their parent class]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
*Associated* families are just like *non-associated* families, except
that they have a TyConParent of AssocFamilyTyCon, which identifies the
parent class.
However there is an important sharing relationship between
* the tyConTyVars of the parent Class
* the tyConTyvars of the associated TyCon
class C a b where
data T p a
type F a q b
Here the 'a' and 'b' are shared with the 'Class'; that is, they have
the same Unique.
This is important. In an instance declaration we expect
* all the shared variables to be instantiated the same way
* the non-shared variables of the associated type should not
be instantiated at all
instance C [x] (Tree y) where
data T p [x] = T1 x | T2 p
type F [x] q (Tree y) = (x,y,q)
Note [TyCon Role signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Every tycon has a role signature, assigning a role to each of the tyConTyVars
(or of equal length to the tyConArity, if there are no tyConTyVars). An
example demonstrates these best: say we have a tycon T, with parameters a at
nominal, b at representational, and c at phantom. Then, to prove
representational equality between T a1 b1 c1 and T a2 b2 c2, we need to have
nominal equality between a1 and a2, representational equality between b1 and
b2, and nothing in particular (i.e., phantom equality) between c1 and c2. This
might happen, say, with the following declaration:
data T a b c where
MkT :: b -> T Int b c
Data and class tycons have their roles inferred (see inferRoles in TcTyDecls),
as do vanilla synonym tycons. Family tycons have all parameters at role N,
though it is conceivable that we could relax this restriction. (->)'s and
tuples' parameters are at role R. Each primitive tycon declares its roles;
it's worth noting that (~#)'s parameters are at role N. Promoted data
constructors' type arguments are at role R. All kind arguments are at role
N.
%************************************************************************
%* *
\subsection{The data type}
%* *
%************************************************************************
\begin{code}
data TyCon
=
FunTyCon {
tyConUnique :: Unique,
tyConName :: Name,
tc_kind :: Kind,
tyConArity :: Arity
}
| AlgTyCon {
tyConUnique :: Unique,
tyConName :: Name,
tc_kind :: Kind,
tyConArity :: Arity,
tyConTyVars :: [TyVar],
tc_roles :: [Role],
tyConCType :: Maybe CType,
algTcGadtSyntax :: Bool,
algTcStupidTheta :: [PredType],
algTcRhs :: AlgTyConRhs,
algTcRec :: RecFlag,
algTcParent :: TyConParent,
tcPromoted :: Maybe TyCon
}
| TupleTyCon {
tyConUnique :: Unique,
tyConName :: Name,
tc_kind :: Kind,
tyConArity :: Arity,
tyConTupleSort :: TupleSort,
tyConTyVars :: [TyVar],
dataCon :: DataCon,
tcPromoted :: Maybe TyCon
}
| SynTyCon {
tyConUnique :: Unique,
tyConName :: Name,
tc_kind :: Kind,
tyConArity :: Arity,
tyConTyVars :: [TyVar],
tc_roles :: [Role],
synTcRhs :: SynTyConRhs,
synTcParent :: TyConParent
}
| PrimTyCon {
tyConUnique :: Unique,
tyConName :: Name,
tc_kind :: Kind,
tyConArity :: Arity,
tc_roles :: [Role],
primTyConRep :: PrimRep,
isUnLifted :: Bool,
tyConExtName :: Maybe FastString
}
| PromotedDataCon {
tyConUnique :: Unique,
tyConName :: Name,
tyConArity :: Arity,
tc_roles :: [Role],
tc_kind :: Kind,
dataCon :: DataCon
}
| PromotedTyCon {
tyConUnique :: Unique,
tyConName :: Name,
tyConArity :: Arity,
tc_kind :: Kind,
ty_con :: TyCon
}
deriving Typeable
type FieldLabel = Name
data AlgTyConRhs
= AbstractTyCon
Bool
| DataFamilyTyCon
| DataTyCon {
data_cons :: [DataCon],
is_enum :: Bool
}
| NewTyCon {
data_con :: DataCon,
nt_rhs :: Type,
nt_etad_rhs :: ([TyVar], Type),
nt_co :: CoAxiom Unbranched
}
\end{code}
Note [AbstractTyCon and type equality]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
TODO
\begin{code}
visibleDataCons :: AlgTyConRhs -> [DataCon]
visibleDataCons (AbstractTyCon {}) = []
visibleDataCons DataFamilyTyCon {} = []
visibleDataCons (DataTyCon{ data_cons = cs }) = cs
visibleDataCons (NewTyCon{ data_con = c }) = [c]
data TyConParent
=
NoParentTyCon
| ClassTyCon
Class
| AssocFamilyTyCon
Class
| FamInstTyCon
(CoAxiom Unbranched)
TyCon
[Type]
instance Outputable TyConParent where
ppr NoParentTyCon = text "No parent"
ppr (ClassTyCon cls) = text "Class parent" <+> ppr cls
ppr (AssocFamilyTyCon cls) = text "Class parent (assoc. family)" <+> ppr cls
ppr (FamInstTyCon _ tc tys) = text "Family parent (family instance)" <+> ppr tc <+> sep (map ppr tys)
okParent :: Name -> TyConParent -> Bool
okParent _ NoParentTyCon = True
okParent tc_name (AssocFamilyTyCon cls) = tc_name `elem` map tyConName (classATs cls)
okParent tc_name (ClassTyCon cls) = tc_name == tyConName (classTyCon cls)
okParent _ (FamInstTyCon _ fam_tc tys) = tyConArity fam_tc == length tys
isNoParent :: TyConParent -> Bool
isNoParent NoParentTyCon = True
isNoParent _ = False
data SynTyConRhs
=
SynonymTyCon
Type
| OpenSynFamilyTyCon
| ClosedSynFamilyTyCon
(CoAxiom Branched)
| AbstractClosedSynFamilyTyCon
| BuiltInSynFamTyCon BuiltInSynFamily
\end{code}
Note [Closed type families]
~~~~~~~~~~~~~~~~~~~~~~~~~
* In an open type family you can add new instances later. This is the
usual case.
* In a closed type family you can only put equations where the family
is defined.
Note [Promoted data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A data constructor can be promoted to become a type constructor,
via the PromotedTyCon alternative in TyCon.
* Only data constructors with
(a) no kind polymorphism
(b) no constraints in its type (eg GADTs)
are promoted. Existentials are ok; see Trac #7347.
* The TyCon promoted from a DataCon has the *same* Name and Unique as
the DataCon. Eg. If the data constructor Data.Maybe.Just(unique 78,
say) is promoted to a TyCon whose name is Data.Maybe.Just(unique 78)
* The *kind* of a promoted DataCon may be polymorphic. Example:
type of DataCon Just :: forall (a:*). a -> Maybe a
kind of (promoted) tycon Just :: forall (a:box). a -> Maybe a
The kind is not identical to the type, because of the */box
kind signature on the forall'd variable; so the tc_kind field of
PromotedTyCon is not identical to the dataConUserType of the
DataCon. But it's the same modulo changing the variable kinds,
done by DataCon.promoteType.
* Small note: We promote the *user* type of the DataCon. Eg
data T = MkT {-# UNPACK #-} !(Bool, Bool)
The promoted kind is
MkT :: (Bool,Bool) -> T
*not*
MkT :: Bool -> Bool -> T
Note [Enumeration types]
~~~~~~~~~~~~~~~~~~~~~~~~
We define datatypes with no constructors to *not* be
enumerations; this fixes trac #2578, Otherwise we
end up generating an empty table for
__closure_tbl
which is used by tagToEnum# to map Int# to constructors
in an enumeration. The empty table apparently upset
the linker.
Moreover, all the data constructor must be enumerations, meaning
they have type (forall abc. T a b c). GADTs are not enumerations.
For example consider
data T a where
T1 :: T Int
T2 :: T Bool
T3 :: T a
What would [T1 ..] be? [T1,T3] :: T Int? Easiest thing is to exclude them.
See Trac #4528.
Note [Newtype coercions]
~~~~~~~~~~~~~~~~~~~~~~~~
The NewTyCon field nt_co is a CoAxiom which is used for coercing from
the representation type of the newtype, to the newtype itself. For
example,
newtype T a = MkT (a -> a)
the NewTyCon for T will contain nt_co = CoT where CoT t : T t ~ t -> t.
In the case that the right hand side is a type application
ending with the same type variables as the left hand side, we
"eta-contract" the coercion. So if we had
newtype S a = MkT [a]
then we would generate the arity 0 axiom CoS : S ~ []. The
primary reason we do this is to make newtype deriving cleaner.
In the paper we'd write
axiom CoT : (forall t. T t) ~ (forall t. [t])
and then when we used CoT at a particular type, s, we'd say
CoT @ s
which encodes as (TyConApp instCoercionTyCon [TyConApp CoT [], s])
Note [Newtype eta]
~~~~~~~~~~~~~~~~~~
Consider
newtype Parser a = MkParser (IO a) derriving( Monad )
Are these two types equal (to Core)?
Monad Parser
Monad IO
which we need to make the derived instance for Monad Parser.
Well, yes. But to see that easily we eta-reduce the RHS type of
Parser, in this case to ([], Froogle), so that even unsaturated applications
of Parser will work right. This eta reduction is done when the type
constructor is built, and cached in NewTyCon. The cached field is
only used in coreExpandTyCon_maybe.
Here's an example that I think showed up in practice
Source code:
newtype T a = MkT [a]
newtype Foo m = MkFoo (forall a. m a -> Int)
w1 :: Foo []
w1 = ...
w2 :: Foo T
w2 = MkFoo (\(MkT x) -> case w1 of MkFoo f -> f x)
After desugaring, and discarding the data constructors for the newtypes,
we get:
w2 :: Foo T
w2 = w1
And now Lint complains unless Foo T == Foo [], and that requires T==[]
This point carries over to the newtype coercion, because we need to
say
w2 = w1 `cast` Foo CoT
so the coercion tycon CoT must have
kind: T ~ []
and arity: 0
%************************************************************************
%* *
\subsection{PrimRep}
%* *
%************************************************************************
Note [rep swamp]
GHC has a rich selection of types that represent "primitive types" of
one kind or another. Each of them makes a different set of
distinctions, and mostly the differences are for good reasons,
although it's probably true that we could merge some of these.
Roughly in order of "includes more information":
- A Width (cmm/CmmType) is simply a binary value with the specified
number of bits. It may represent a signed or unsigned integer, a
floating-point value, or an address.
data Width = W8 | W16 | W32 | W64 | W80 | W128
- Size, which is used in the native code generator, is Width +
floating point information.
data Size = II8 | II16 | II32 | II64 | FF32 | FF64 | FF80
it is necessary because e.g. the instruction to move a 64-bit float
on x86 (movsd) is different from the instruction to move a 64-bit
integer (movq), so the mov instruction is parameterised by Size.
- CmmType wraps Width with more information: GC ptr, float, or
other value.
data CmmType = CmmType CmmCat Width
data CmmCat -- "Category" (not exported)
= GcPtrCat -- GC pointer
| BitsCat -- Non-pointer
| FloatCat -- Float
It is important to have GcPtr information in Cmm, since we generate
info tables containing pointerhood for the GC from this. As for
why we have float (and not signed/unsigned) here, see Note [Signed
vs unsigned].
- ArgRep makes only the distinctions necessary for the call and
return conventions of the STG machine. It is essentially CmmType
+ void.
- PrimRep makes a few more distinctions than ArgRep: it divides
non-GC-pointers into signed/unsigned and addresses, information
that is necessary for passing these values to foreign functions.
There's another tension here: whether the type encodes its size in
bytes, or whether its size depends on the machine word size. Width
and CmmType have the size built-in, whereas ArgRep and PrimRep do not.
This means to turn an ArgRep/PrimRep into a CmmType requires DynFlags.
On the other hand, CmmType includes some "nonsense" values, such as
CmmType GcPtrCat W32 on a 64-bit machine.
\begin{code}
data PrimRep
= VoidRep
| PtrRep
| IntRep
| WordRep
| Int64Rep
| Word64Rep
| AddrRep
| FloatRep
| DoubleRep
| VecRep Int PrimElemRep
deriving( Eq, Show )
data PrimElemRep
= Int8ElemRep
| Int16ElemRep
| Int32ElemRep
| Int64ElemRep
| Word8ElemRep
| Word16ElemRep
| Word32ElemRep
| Word64ElemRep
| FloatElemRep
| DoubleElemRep
deriving( Eq, Show )
instance Outputable PrimRep where
ppr r = text (show r)
instance Outputable PrimElemRep where
ppr r = text (show r)
isVoidRep :: PrimRep -> Bool
isVoidRep VoidRep = True
isVoidRep _other = False
isGcPtrRep :: PrimRep -> Bool
isGcPtrRep PtrRep = True
isGcPtrRep _ = False
primRepSizeW :: DynFlags -> PrimRep -> Int
primRepSizeW _ IntRep = 1
primRepSizeW _ WordRep = 1
primRepSizeW dflags Int64Rep = wORD64_SIZE `quot` wORD_SIZE dflags
primRepSizeW dflags Word64Rep = wORD64_SIZE `quot` wORD_SIZE dflags
primRepSizeW _ FloatRep = 1
primRepSizeW dflags DoubleRep = dOUBLE_SIZE dflags `quot` wORD_SIZE dflags
primRepSizeW _ AddrRep = 1
primRepSizeW _ PtrRep = 1
primRepSizeW _ VoidRep = 0
primRepSizeW dflags (VecRep len rep) = len * primElemRepSizeB rep `quot` wORD_SIZE dflags
primElemRepSizeB :: PrimElemRep -> Int
primElemRepSizeB Int8ElemRep = 1
primElemRepSizeB Int16ElemRep = 2
primElemRepSizeB Int32ElemRep = 4
primElemRepSizeB Int64ElemRep = 8
primElemRepSizeB Word8ElemRep = 1
primElemRepSizeB Word16ElemRep = 2
primElemRepSizeB Word32ElemRep = 4
primElemRepSizeB Word64ElemRep = 8
primElemRepSizeB FloatElemRep = 4
primElemRepSizeB DoubleElemRep = 8
\end{code}
%************************************************************************
%* *
\subsection{TyCon Construction}
%* *
%************************************************************************
Note: the TyCon constructors all take a Kind as one argument, even though
they could, in principle, work out their Kind from their other arguments.
But to do so they need functions from Types, and that makes a nasty
module mutual-recursion. And they aren't called from many places.
So we compromise, and move their Kind calculation to the call site.
\begin{code}
mkFunTyCon :: Name -> Kind -> TyCon
mkFunTyCon name kind
= FunTyCon {
tyConUnique = nameUnique name,
tyConName = name,
tc_kind = kind,
tyConArity = 2
}
mkAlgTyCon :: Name
-> Kind
-> [TyVar]
-> [Role]
-> Maybe CType
-> [PredType]
-> AlgTyConRhs
-> TyConParent
-> RecFlag
-> Bool
-> Maybe TyCon
-> TyCon
mkAlgTyCon name kind tyvars roles cType stupid rhs parent is_rec gadt_syn prom_tc
= AlgTyCon {
tyConName = name,
tyConUnique = nameUnique name,
tc_kind = kind,
tyConArity = length tyvars,
tyConTyVars = tyvars,
tc_roles = roles,
tyConCType = cType,
algTcStupidTheta = stupid,
algTcRhs = rhs,
algTcParent = ASSERT2( okParent name parent, ppr name $$ ppr parent ) parent,
algTcRec = is_rec,
algTcGadtSyntax = gadt_syn,
tcPromoted = prom_tc
}
mkClassTyCon :: Name -> Kind -> [TyVar] -> [Role] -> AlgTyConRhs -> Class -> RecFlag -> TyCon
mkClassTyCon name kind tyvars roles rhs clas is_rec
= mkAlgTyCon name kind tyvars roles Nothing [] rhs (ClassTyCon clas)
is_rec False
Nothing
mkTupleTyCon :: Name
-> Kind
-> Arity
-> [TyVar]
-> DataCon
-> TupleSort
-> Maybe TyCon
-> TyCon
mkTupleTyCon name kind arity tyvars con sort prom_tc
= TupleTyCon {
tyConUnique = nameUnique name,
tyConName = name,
tc_kind = kind,
tyConArity = arity,
tyConTupleSort = sort,
tyConTyVars = tyvars,
dataCon = con,
tcPromoted = prom_tc
}
mkForeignTyCon :: Name
-> Maybe FastString
-> Kind
-> TyCon
mkForeignTyCon name ext_name kind
= PrimTyCon {
tyConName = name,
tyConUnique = nameUnique name,
tc_kind = kind,
tyConArity = 0,
tc_roles = [],
primTyConRep = PtrRep,
isUnLifted = False,
tyConExtName = ext_name
}
mkPrimTyCon :: Name -> Kind -> [Role] -> PrimRep -> TyCon
mkPrimTyCon name kind roles rep
= mkPrimTyCon' name kind roles rep True
mkKindTyCon :: Name -> Kind -> TyCon
mkKindTyCon name kind
= mkPrimTyCon' name kind [] VoidRep True
mkLiftedPrimTyCon :: Name -> Kind -> [Role] -> PrimRep -> TyCon
mkLiftedPrimTyCon name kind roles rep
= mkPrimTyCon' name kind roles rep False
mkPrimTyCon' :: Name -> Kind -> [Role] -> PrimRep -> Bool -> TyCon
mkPrimTyCon' name kind roles rep is_unlifted
= PrimTyCon {
tyConName = name,
tyConUnique = nameUnique name,
tc_kind = kind,
tyConArity = length roles,
tc_roles = roles,
primTyConRep = rep,
isUnLifted = is_unlifted,
tyConExtName = Nothing
}
mkSynTyCon :: Name -> Kind -> [TyVar] -> [Role] -> SynTyConRhs -> TyConParent -> TyCon
mkSynTyCon name kind tyvars roles rhs parent
= SynTyCon {
tyConName = name,
tyConUnique = nameUnique name,
tc_kind = kind,
tyConArity = length tyvars,
tyConTyVars = tyvars,
tc_roles = roles,
synTcRhs = rhs,
synTcParent = parent
}
mkPromotedDataCon :: DataCon -> Name -> Unique -> Kind -> [Role] -> TyCon
mkPromotedDataCon con name unique kind roles
= PromotedDataCon {
tyConName = name,
tyConUnique = unique,
tyConArity = arity,
tc_roles = roles,
tc_kind = kind,
dataCon = con
}
where
arity = length roles
mkPromotedTyCon :: TyCon -> Kind -> TyCon
mkPromotedTyCon tc kind
= PromotedTyCon {
tyConName = getName tc,
tyConUnique = getUnique tc,
tyConArity = tyConArity tc,
tc_kind = kind,
ty_con = tc
}
\end{code}
\begin{code}
isFunTyCon :: TyCon -> Bool
isFunTyCon (FunTyCon {}) = True
isFunTyCon _ = False
isAbstractTyCon :: TyCon -> Bool
isAbstractTyCon (AlgTyCon { algTcRhs = AbstractTyCon {} }) = True
isAbstractTyCon _ = False
makeTyConAbstract :: TyCon -> TyCon
makeTyConAbstract tc@(AlgTyCon { algTcRhs = rhs })
= tc { algTcRhs = AbstractTyCon (isDistinctAlgRhs rhs) }
makeTyConAbstract tc = pprPanic "makeTyConAbstract" (ppr tc)
isPrimTyCon :: TyCon -> Bool
isPrimTyCon (PrimTyCon {}) = True
isPrimTyCon _ = False
isUnLiftedTyCon :: TyCon -> Bool
isUnLiftedTyCon (PrimTyCon {isUnLifted = is_unlifted}) = is_unlifted
isUnLiftedTyCon (TupleTyCon {tyConTupleSort = sort}) = not (isBoxed (tupleSortBoxity sort))
isUnLiftedTyCon _ = False
isAlgTyCon :: TyCon -> Bool
isAlgTyCon (AlgTyCon {}) = True
isAlgTyCon (TupleTyCon {}) = True
isAlgTyCon _ = False
isDataTyCon :: TyCon -> Bool
isDataTyCon (AlgTyCon {algTcRhs = rhs})
= case rhs of
DataTyCon {} -> True
NewTyCon {} -> False
DataFamilyTyCon {} -> False
AbstractTyCon {} -> False
isDataTyCon (TupleTyCon {tyConTupleSort = sort}) = isBoxed (tupleSortBoxity sort)
isDataTyCon _ = False
isDistinctTyCon :: TyCon -> Bool
isDistinctTyCon (AlgTyCon {algTcRhs = rhs}) = isDistinctAlgRhs rhs
isDistinctTyCon (FunTyCon {}) = True
isDistinctTyCon (TupleTyCon {}) = True
isDistinctTyCon (PrimTyCon {}) = True
isDistinctTyCon (PromotedDataCon {}) = True
isDistinctTyCon _ = False
isDistinctAlgRhs :: AlgTyConRhs -> Bool
isDistinctAlgRhs (DataTyCon {}) = True
isDistinctAlgRhs (DataFamilyTyCon {}) = True
isDistinctAlgRhs (AbstractTyCon distinct) = distinct
isDistinctAlgRhs (NewTyCon {}) = False
isNewTyCon :: TyCon -> Bool
isNewTyCon (AlgTyCon {algTcRhs = NewTyCon {}}) = True
isNewTyCon _ = False
unwrapNewTyCon_maybe :: TyCon -> Maybe ([TyVar], Type, CoAxiom Unbranched)
unwrapNewTyCon_maybe (AlgTyCon { tyConTyVars = tvs,
algTcRhs = NewTyCon { nt_co = co,
nt_rhs = rhs }})
= Just (tvs, rhs, co)
unwrapNewTyCon_maybe _ = Nothing
isProductTyCon :: TyCon -> Bool
isProductTyCon tc@(AlgTyCon {}) = case algTcRhs tc of
DataTyCon{ data_cons = [data_con] }
-> isVanillaDataCon data_con
NewTyCon {} -> True
_ -> False
isProductTyCon (TupleTyCon {}) = True
isProductTyCon _ = False
isDataProductTyCon_maybe :: TyCon -> Maybe DataCon
isDataProductTyCon_maybe (AlgTyCon { algTcRhs = DataTyCon { data_cons = cons } })
| [con] <- cons
, isVanillaDataCon con
= Just con
isDataProductTyCon_maybe (TupleTyCon { dataCon = con })
= Just con
isDataProductTyCon_maybe _ = Nothing
isSynTyCon :: TyCon -> Bool
isSynTyCon (SynTyCon {}) = True
isSynTyCon _ = False
isDecomposableTyCon :: TyCon -> Bool
isDecomposableTyCon (SynTyCon {}) = False
isDecomposableTyCon _other = True
isGadtSyntaxTyCon :: TyCon -> Bool
isGadtSyntaxTyCon (AlgTyCon { algTcGadtSyntax = res }) = res
isGadtSyntaxTyCon _ = False
isEnumerationTyCon :: TyCon -> Bool
isEnumerationTyCon (AlgTyCon {algTcRhs = DataTyCon { is_enum = res }}) = res
isEnumerationTyCon (TupleTyCon {tyConArity = arity}) = arity == 0
isEnumerationTyCon _ = False
isFamilyTyCon :: TyCon -> Bool
isFamilyTyCon (SynTyCon {synTcRhs = OpenSynFamilyTyCon }) = True
isFamilyTyCon (SynTyCon {synTcRhs = ClosedSynFamilyTyCon {} }) = True
isFamilyTyCon (SynTyCon {synTcRhs = AbstractClosedSynFamilyTyCon {} }) = True
isFamilyTyCon (SynTyCon {synTcRhs = BuiltInSynFamTyCon {} }) = True
isFamilyTyCon (AlgTyCon {algTcRhs = DataFamilyTyCon {}}) = True
isFamilyTyCon _ = False
isOpenFamilyTyCon :: TyCon -> Bool
isOpenFamilyTyCon (SynTyCon {synTcRhs = OpenSynFamilyTyCon }) = True
isOpenFamilyTyCon (AlgTyCon {algTcRhs = DataFamilyTyCon }) = True
isOpenFamilyTyCon _ = False
isSynFamilyTyCon :: TyCon -> Bool
isSynFamilyTyCon (SynTyCon {synTcRhs = OpenSynFamilyTyCon {}}) = True
isSynFamilyTyCon (SynTyCon {synTcRhs = ClosedSynFamilyTyCon {}}) = True
isSynFamilyTyCon (SynTyCon {synTcRhs = AbstractClosedSynFamilyTyCon {}}) = True
isSynFamilyTyCon (SynTyCon {synTcRhs = BuiltInSynFamTyCon {}}) = True
isSynFamilyTyCon _ = False
isOpenSynFamilyTyCon :: TyCon -> Bool
isOpenSynFamilyTyCon (SynTyCon {synTcRhs = OpenSynFamilyTyCon }) = True
isOpenSynFamilyTyCon _ = False
isClosedSynFamilyTyCon_maybe :: TyCon -> Maybe (CoAxiom Branched)
isClosedSynFamilyTyCon_maybe
(SynTyCon {synTcRhs = ClosedSynFamilyTyCon ax}) = Just ax
isClosedSynFamilyTyCon_maybe _ = Nothing
isBuiltInSynFamTyCon_maybe :: TyCon -> Maybe BuiltInSynFamily
isBuiltInSynFamTyCon_maybe
SynTyCon {synTcRhs = BuiltInSynFamTyCon ops } = Just ops
isBuiltInSynFamTyCon_maybe _ = Nothing
isDataFamilyTyCon :: TyCon -> Bool
isDataFamilyTyCon (AlgTyCon {algTcRhs = DataFamilyTyCon {}}) = True
isDataFamilyTyCon _ = False
isInjectiveTyCon :: TyCon -> Bool
isInjectiveTyCon tc = not (isSynTyCon tc)
isTyConAssoc :: TyCon -> Bool
isTyConAssoc tc = isJust (tyConAssoc_maybe tc)
tyConAssoc_maybe :: TyCon -> Maybe Class
tyConAssoc_maybe tc = case tyConParent tc of
AssocFamilyTyCon cls -> Just cls
_ -> Nothing
isTupleTyCon :: TyCon -> Bool
isTupleTyCon (TupleTyCon {}) = True
isTupleTyCon _ = False
isUnboxedTupleTyCon :: TyCon -> Bool
isUnboxedTupleTyCon (TupleTyCon {tyConTupleSort = sort}) = not (isBoxed (tupleSortBoxity sort))
isUnboxedTupleTyCon _ = False
isBoxedTupleTyCon :: TyCon -> Bool
isBoxedTupleTyCon (TupleTyCon {tyConTupleSort = sort}) = isBoxed (tupleSortBoxity sort)
isBoxedTupleTyCon _ = False
tupleTyConBoxity :: TyCon -> Boxity
tupleTyConBoxity tc = tupleSortBoxity (tyConTupleSort tc)
tupleTyConSort :: TyCon -> TupleSort
tupleTyConSort tc = tyConTupleSort tc
tupleTyConArity :: TyCon -> Arity
tupleTyConArity tc = tyConArity tc
isRecursiveTyCon :: TyCon -> Bool
isRecursiveTyCon (AlgTyCon {algTcRec = Recursive}) = True
isRecursiveTyCon _ = False
promotableTyCon_maybe :: TyCon -> Maybe TyCon
promotableTyCon_maybe (AlgTyCon { tcPromoted = prom }) = prom
promotableTyCon_maybe (TupleTyCon { tcPromoted = prom }) = prom
promotableTyCon_maybe _ = Nothing
promoteTyCon :: TyCon -> TyCon
promoteTyCon tc = case promotableTyCon_maybe tc of
Just prom_tc -> prom_tc
Nothing -> pprPanic "promoteTyCon" (ppr tc)
isForeignTyCon :: TyCon -> Bool
isForeignTyCon (PrimTyCon {tyConExtName = Just _}) = True
isForeignTyCon _ = False
isPromotedTyCon :: TyCon -> Bool
isPromotedTyCon (PromotedTyCon {}) = True
isPromotedTyCon _ = False
isPromotedTyCon_maybe :: TyCon -> Maybe TyCon
isPromotedTyCon_maybe (PromotedTyCon { ty_con = tc }) = Just tc
isPromotedTyCon_maybe _ = Nothing
isPromotedDataCon :: TyCon -> Bool
isPromotedDataCon (PromotedDataCon {}) = True
isPromotedDataCon _ = False
isPromotedDataCon_maybe :: TyCon -> Maybe DataCon
isPromotedDataCon_maybe (PromotedDataCon { dataCon = dc }) = Just dc
isPromotedDataCon_maybe _ = Nothing
isImplicitTyCon :: TyCon -> Bool
isImplicitTyCon tycon
| isTyConAssoc tycon = True
| isSynTyCon tycon = False
| isAlgTyCon tycon = isTupleTyCon tycon
| otherwise = True
tyConCType_maybe :: TyCon -> Maybe CType
tyConCType_maybe tc@(AlgTyCon {}) = tyConCType tc
tyConCType_maybe _ = Nothing
\end{code}
-----------------------------------------------
-- Expand type-constructor applications
-----------------------------------------------
\begin{code}
tcExpandTyCon_maybe, coreExpandTyCon_maybe
:: TyCon
-> [tyco]
-> Maybe ([(TyVar,tyco)],
Type,
[tyco])
tcExpandTyCon_maybe (SynTyCon {tyConTyVars = tvs,
synTcRhs = SynonymTyCon rhs }) tys
= expand tvs rhs tys
tcExpandTyCon_maybe _ _ = Nothing
coreExpandTyCon_maybe tycon tys = tcExpandTyCon_maybe tycon tys
expand :: [TyVar] -> Type
-> [a]
-> Maybe ([(TyVar,a)], Type, [a])
expand tvs rhs tys
= case n_tvs `compare` length tys of
LT -> Just (tvs `zip` tys, rhs, drop n_tvs tys)
EQ -> Just (tvs `zip` tys, rhs, [])
GT -> Nothing
where
n_tvs = length tvs
\end{code}
\begin{code}
tyConKind :: TyCon -> Kind
tyConKind = tc_kind
tyConDataCons :: TyCon -> [DataCon]
tyConDataCons tycon = tyConDataCons_maybe tycon `orElse` []
tyConDataCons_maybe :: TyCon -> Maybe [DataCon]
tyConDataCons_maybe (AlgTyCon {algTcRhs = DataTyCon { data_cons = cons }}) = Just cons
tyConDataCons_maybe (AlgTyCon {algTcRhs = NewTyCon { data_con = con }}) = Just [con]
tyConDataCons_maybe (TupleTyCon {dataCon = con}) = Just [con]
tyConDataCons_maybe _ = Nothing
tyConFamilySize :: TyCon -> Int
tyConFamilySize (AlgTyCon {algTcRhs = DataTyCon {data_cons = cons}}) =
length cons
tyConFamilySize (AlgTyCon {algTcRhs = NewTyCon {}}) = 1
tyConFamilySize (AlgTyCon {algTcRhs = DataFamilyTyCon {}}) = 0
tyConFamilySize (TupleTyCon {}) = 1
tyConFamilySize other = pprPanic "tyConFamilySize:" (ppr other)
algTyConRhs :: TyCon -> AlgTyConRhs
algTyConRhs (AlgTyCon {algTcRhs = rhs}) = rhs
algTyConRhs (TupleTyCon {dataCon = con, tyConArity = arity})
= DataTyCon { data_cons = [con], is_enum = arity == 0 }
algTyConRhs other = pprPanic "algTyConRhs" (ppr other)
tyConRoles :: TyCon -> [Role]
tyConRoles tc
= case tc of
{ FunTyCon {} -> const_role Representational
; AlgTyCon { tc_roles = roles } -> roles
; TupleTyCon {} -> const_role Representational
; SynTyCon { tc_roles = roles } -> roles
; PrimTyCon { tc_roles = roles } -> roles
; PromotedDataCon { tc_roles = roles } -> roles
; PromotedTyCon {} -> const_role Nominal
}
where
const_role r = replicate (tyConArity tc) r
\end{code}
\begin{code}
newTyConRhs :: TyCon -> ([TyVar], Type)
newTyConRhs (AlgTyCon {tyConTyVars = tvs, algTcRhs = NewTyCon { nt_rhs = rhs }}) = (tvs, rhs)
newTyConRhs tycon = pprPanic "newTyConRhs" (ppr tycon)
newTyConEtadArity :: TyCon -> Int
newTyConEtadArity (AlgTyCon {algTcRhs = NewTyCon { nt_etad_rhs = tvs_rhs }})
= length (fst tvs_rhs)
newTyConEtadArity tycon = pprPanic "newTyConEtadArity" (ppr tycon)
newTyConEtadRhs :: TyCon -> ([TyVar], Type)
newTyConEtadRhs (AlgTyCon {algTcRhs = NewTyCon { nt_etad_rhs = tvs_rhs }}) = tvs_rhs
newTyConEtadRhs tycon = pprPanic "newTyConEtadRhs" (ppr tycon)
newTyConCo_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
newTyConCo_maybe (AlgTyCon {algTcRhs = NewTyCon { nt_co = co }}) = Just co
newTyConCo_maybe _ = Nothing
newTyConCo :: TyCon -> CoAxiom Unbranched
newTyConCo tc = case newTyConCo_maybe tc of
Just co -> co
Nothing -> pprPanic "newTyConCo" (ppr tc)
tyConPrimRep :: TyCon -> PrimRep
tyConPrimRep (PrimTyCon {primTyConRep = rep}) = rep
tyConPrimRep tc = ASSERT(not (isUnboxedTupleTyCon tc)) PtrRep
\end{code}
\begin{code}
tyConStupidTheta :: TyCon -> [PredType]
tyConStupidTheta (AlgTyCon {algTcStupidTheta = stupid}) = stupid
tyConStupidTheta (TupleTyCon {}) = []
tyConStupidTheta tycon = pprPanic "tyConStupidTheta" (ppr tycon)
\end{code}
\begin{code}
synTyConDefn_maybe :: TyCon -> Maybe ([TyVar], Type)
synTyConDefn_maybe (SynTyCon {tyConTyVars = tyvars, synTcRhs = SynonymTyCon ty})
= Just (tyvars, ty)
synTyConDefn_maybe _ = Nothing
synTyConRhs_maybe :: TyCon -> Maybe SynTyConRhs
synTyConRhs_maybe (SynTyCon {synTcRhs = rhs}) = Just rhs
synTyConRhs_maybe _ = Nothing
\end{code}
\begin{code}
tyConSingleDataCon_maybe :: TyCon -> Maybe DataCon
tyConSingleDataCon_maybe (TupleTyCon {dataCon = c}) = Just c
tyConSingleDataCon_maybe (AlgTyCon {algTcRhs = DataTyCon { data_cons = [c] }}) = Just c
tyConSingleDataCon_maybe (AlgTyCon {algTcRhs = NewTyCon { data_con = c }}) = Just c
tyConSingleDataCon_maybe _ = Nothing
tyConSingleAlgDataCon_maybe :: TyCon -> Maybe DataCon
tyConSingleAlgDataCon_maybe (TupleTyCon {dataCon = c}) = Just c
tyConSingleAlgDataCon_maybe (AlgTyCon {algTcRhs = DataTyCon { data_cons = [c] }}) = Just c
tyConSingleAlgDataCon_maybe _ = Nothing
\end{code}
\begin{code}
isClassTyCon :: TyCon -> Bool
isClassTyCon (AlgTyCon {algTcParent = ClassTyCon _}) = True
isClassTyCon _ = False
tyConClass_maybe :: TyCon -> Maybe Class
tyConClass_maybe (AlgTyCon {algTcParent = ClassTyCon clas}) = Just clas
tyConClass_maybe _ = Nothing
tyConTuple_maybe :: TyCon -> Maybe TupleSort
tyConTuple_maybe (TupleTyCon {tyConTupleSort = sort}) = Just sort
tyConTuple_maybe _ = Nothing
tyConParent :: TyCon -> TyConParent
tyConParent (AlgTyCon {algTcParent = parent}) = parent
tyConParent (SynTyCon {synTcParent = parent}) = parent
tyConParent _ = NoParentTyCon
isFamInstTyCon :: TyCon -> Bool
isFamInstTyCon tc = case tyConParent tc of
FamInstTyCon {} -> True
_ -> False
tyConFamInstSig_maybe :: TyCon -> Maybe (TyCon, [Type], CoAxiom Unbranched)
tyConFamInstSig_maybe tc
= case tyConParent tc of
FamInstTyCon ax f ts -> Just (f, ts, ax)
_ -> Nothing
tyConFamInst_maybe :: TyCon -> Maybe (TyCon, [Type])
tyConFamInst_maybe tc
= case tyConParent tc of
FamInstTyCon _ f ts -> Just (f, ts)
_ -> Nothing
tyConFamilyCoercion_maybe :: TyCon -> Maybe (CoAxiom Unbranched)
tyConFamilyCoercion_maybe tc
= case tyConParent tc of
FamInstTyCon co _ _ -> Just co
_ -> Nothing
\end{code}
%************************************************************************
%* *
\subsection[TyCon-instances]{Instance declarations for @TyCon@}
%* *
%************************************************************************
@TyCon@s are compared by comparing their @Unique@s.
The strictness analyser needs @Ord@. It is a lexicographic order with
the property @(a<=b) || (b<=a)@.
\begin{code}
instance Eq TyCon where
a == b = case (a `compare` b) of { EQ -> True; _ -> False }
a /= b = case (a `compare` b) of { EQ -> False; _ -> True }
instance Ord TyCon where
a <= b = case (a `compare` b) of { LT -> True; EQ -> True; GT -> False }
a < b = case (a `compare` b) of { LT -> True; EQ -> False; GT -> False }
a >= b = case (a `compare` b) of { LT -> False; EQ -> True; GT -> True }
a > b = case (a `compare` b) of { LT -> False; EQ -> False; GT -> True }
compare a b = getUnique a `compare` getUnique b
instance Uniquable TyCon where
getUnique tc = tyConUnique tc
instance Outputable TyCon where
ppr tc = pprPromotionQuote tc <> ppr (tyConName tc)
pprPromotionQuote :: TyCon -> SDoc
pprPromotionQuote (PromotedDataCon {}) = char '\''
pprPromotionQuote (PromotedTyCon {}) = ifPprDebug (char '\'')
pprPromotionQuote _ = empty
instance NamedThing TyCon where
getName = tyConName
instance Data.Data TyCon where
toConstr _ = abstractConstr "TyCon"
gunfold _ _ = error "gunfold"
dataTypeOf _ = mkNoRepType "TyCon"
\end{code}
%************************************************************************
%* *
Walking over recursive TyCons
%* *
%************************************************************************
Note [Expanding newtypes and products]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When expanding a type to expose a data-type constructor, we need to be
careful about newtypes, lest we fall into an infinite loop. Here are
the key examples:
newtype Id x = MkId x
newtype Fix f = MkFix (f (Fix f))
newtype T = MkT (T -> T)
Type Expansion
--------------------------
T T -> T
Fix Maybe Maybe (Fix Maybe)
Id (Id Int) Int
Fix Id NO NO NO
Notice that we can expand T, even though it's recursive.
And we can expand Id (Id Int), even though the Id shows up
twice at the outer level.
So, when expanding, we keep track of when we've seen a recursive
newtype at outermost level; and bale out if we see it again.
We sometimes want to do the same for product types, so that the
strictness analyser doesn't unbox infinitely deeply.
The function that manages this is checkRecTc.
\begin{code}
newtype RecTcChecker = RC NameSet
initRecTc :: RecTcChecker
initRecTc = RC emptyNameSet
checkRecTc :: RecTcChecker -> TyCon -> Maybe RecTcChecker
checkRecTc (RC rec_nts) tc
| not (isRecursiveTyCon tc) = Just (RC rec_nts)
| tc_name `elemNameSet` rec_nts = Nothing
| otherwise = Just (RC (addOneToNameSet rec_nts tc_name))
where
tc_name = tyConName tc
\end{code}