{- (c) The University of Glasgow 2006 (c) The GRASP/AQUA Project, Glasgow University, 1992-1998 \section[TcMonoType]{Typechecking user-specified @MonoTypes@} -} {-# LANGUAGE CPP, TupleSections, MultiWayIf #-} module TcHsType ( -- Type signatures kcHsSigType, tcClassSigType, tcHsSigType, tcHsSigWcType, funsSigCtxt, addSigCtxt, tcHsClsInstType, tcHsDeriv, tcHsVectInst, tcHsTypeApp, UserTypeCtxt(..), tcImplicitTKBndrs, tcImplicitTKBndrsType, tcExplicitTKBndrs, -- Type checking type and class decls kcLookupTcTyCon, kcTyClTyVars, tcTyClTyVars, tcDataKindSig, -- Kind-checking types -- No kind generalisation, no checkValidType tcWildCardBinders, kcHsTyVarBndrs, tcHsLiftedType, tcHsOpenType, tcHsLiftedTypeNC, tcHsOpenTypeNC, tcLHsType, tcCheckLHsType, tcHsContext, tcLHsPredType, tcInferApps, tcInferArgs, solveEqualities, -- useful re-export kindGeneralize, -- Sort-checking kinds tcLHsKind, -- Pattern type signatures tcHsPatSigType, tcPatSig, funAppCtxt ) where #include "HsVersions.h" import HsSyn import TcRnMonad import TcEvidence import TcEnv import TcMType import TcValidity import TcUnify import TcIface import TcSimplify ( solveEqualities ) import TcType import Inst ( tcInstBinders, tcInstBindersX ) import Type import Kind import RdrName( lookupLocalRdrOcc ) import Var import VarSet import TyCon import ConLike import DataCon import TysPrim ( tYPE ) import Class import Name import NameEnv import NameSet import VarEnv import TysWiredIn import BasicTypes import SrcLoc import Constants ( mAX_CTUPLE_SIZE ) import ErrUtils( MsgDoc ) import Unique import Util import UniqSupply import Outputable import FastString import PrelNames hiding ( wildCardName ) import qualified GHC.LanguageExtensions as LangExt import Maybes import Data.List ( partition ) import Control.Monad {- ---------------------------- General notes ---------------------------- Unlike with expressions, type-checking types both does some checking and desugars at the same time. This is necessary because we often want to perform equality checks on the types right away, and it would be incredibly painful to do this on un-desugared types. Luckily, desugared types are close enough to HsTypes to make the error messages sane. During type-checking, we perform as little validity checking as possible. This is because some type-checking is done in a mutually-recursive knot, and if we look too closely at the tycons, we'll loop. This is why we always must use mkNakedTyConApp and mkNakedAppTys, etc., which never look at a tycon. The mkNamed... functions don't uphold Type invariants, but zonkTcTypeToType will repair this for us. Note that zonkTcType *is* safe within a knot, and can be done repeatedly with no ill effect: it just squeezes out metavariables. Generally, after type-checking, you will want to do validity checking, say with TcValidity.checkValidType. Validity checking ~~~~~~~~~~~~~~~~~ Some of the validity check could in principle be done by the kind checker, but not all: - During desugaring, we normalise by expanding type synonyms. Only after this step can we check things like type-synonym saturation e.g. type T k = k Int type S a = a Then (T S) is ok, because T is saturated; (T S) expands to (S Int); and then S is saturated. This is a GHC extension. - Similarly, also a GHC extension, we look through synonyms before complaining about the form of a class or instance declaration - Ambiguity checks involve functional dependencies, and it's easier to wait until knots have been resolved before poking into them Also, in a mutually recursive group of types, we can't look at the TyCon until we've finished building the loop. So to keep things simple, we postpone most validity checking until step (3). Knot tying ~~~~~~~~~~ During step (1) we might fault in a TyCon defined in another module, and it might (via a loop) refer back to a TyCon defined in this module. So when we tie a big knot around type declarations with ARecThing, so that the fault-in code can get the TyCon being defined. %************************************************************************ %* * Check types AND do validity checking * * ************************************************************************ -} funsSigCtxt :: [Located Name] -> UserTypeCtxt -- Returns FunSigCtxt, with no redundant-context-reporting, -- form a list of located names funsSigCtxt (L _ name1 : _) = FunSigCtxt name1 False funsSigCtxt [] = panic "funSigCtxt" addSigCtxt :: UserTypeCtxt -> LHsType Name -> TcM a -> TcM a addSigCtxt ctxt sig_ty thing_inside = setSrcSpan (getLoc sig_ty) $ addErrCtxt (pprSigCtxt ctxt empty (ppr sig_ty)) $ thing_inside tcHsSigWcType :: UserTypeCtxt -> LHsSigWcType Name -> TcM Type -- This one is used when we have a LHsSigWcType, but in -- a place where wildards aren't allowed. The renamer has -- alrady checked this, so we can simply ignore it. tcHsSigWcType ctxt sig_ty = tcHsSigType ctxt (dropWildCards sig_ty) kcHsSigType :: [Located Name] -> LHsSigType Name -> TcM () kcHsSigType names (HsIB { hsib_body = hs_ty , hsib_vars = sig_vars }) = addSigCtxt (funsSigCtxt names) hs_ty $ discardResult $ tcImplicitTKBndrsType sig_vars $ tc_lhs_type typeLevelMode hs_ty liftedTypeKind tcClassSigType :: [Located Name] -> LHsSigType Name -> TcM Type -- Does not do validity checking; this must be done outside -- the recursive class declaration "knot" tcClassSigType names sig_ty = addSigCtxt (funsSigCtxt names) (hsSigType sig_ty) $ do { ty <- tc_hs_sig_type sig_ty liftedTypeKind ; kindGeneralizeType ty } tcHsSigType :: UserTypeCtxt -> LHsSigType Name -> TcM Type -- Does validity checking tcHsSigType ctxt sig_ty = addSigCtxt ctxt (hsSigType sig_ty) $ do { kind <- case expectedKindInCtxt ctxt of AnythingKind -> newMetaKindVar TheKind k -> return k OpenKind -> do { rr <- newFlexiTyVarTy runtimeRepTy ; return $ tYPE rr } -- The kind is checked by checkValidType, and isn't necessarily -- of kind * in a Template Haskell quote eg [t| Maybe |] ; ty <- tc_hs_sig_type sig_ty kind -- Generalise here: see Note [Kind generalisation] ; do_kind_gen <- decideKindGeneralisationPlan ty ; ty <- if do_kind_gen then kindGeneralizeType ty else zonkTcType ty ; checkValidType ctxt ty ; return ty } tc_hs_sig_type :: LHsSigType Name -> Kind -> TcM Type -- Does not do validity checking or zonking tc_hs_sig_type (HsIB { hsib_body = hs_ty , hsib_vars = sig_vars }) kind = do { (tkvs, ty) <- solveEqualities $ tcImplicitTKBndrsType sig_vars $ tc_lhs_type typeLevelMode hs_ty kind ; return (mkSpecForAllTys tkvs ty) } ----------------- tcHsDeriv :: LHsSigType Name -> TcM ([TyVar], Class, [Type], [Kind]) -- Like tcHsSigType, but for the ...deriving( C t1 ty2 ) clause -- Returns the C, [ty1, ty2, and the kinds of C's remaining arguments -- E.g. class C (a::*) (b::k->k) -- data T a b = ... deriving( C Int ) -- returns ([k], C, [k, Int], [k->k]) tcHsDeriv hs_ty = do { cls_kind <- newMetaKindVar -- always safe to kind-generalize, because there -- can be no covars in an outer scope ; ty <- checkNoErrs $ -- avoid redundant error report with "illegal deriving", below tc_hs_sig_type hs_ty cls_kind ; ty <- kindGeneralizeType ty -- also zonks ; cls_kind <- zonkTcType cls_kind ; let (tvs, pred) = splitForAllTys ty ; let (args, _) = splitFunTys cls_kind ; case getClassPredTys_maybe pred of Just (cls, tys) -> return (tvs, cls, tys, args) Nothing -> failWithTc (text "Illegal deriving item" <+> quotes (ppr hs_ty)) } tcHsClsInstType :: UserTypeCtxt -- InstDeclCtxt or SpecInstCtxt -> LHsSigType Name -> TcM ([TyVar], ThetaType, Class, [Type]) -- Like tcHsSigType, but for a class instance declaration tcHsClsInstType user_ctxt hs_inst_ty = setSrcSpan (getLoc (hsSigType hs_inst_ty)) $ do { inst_ty <- tc_hs_sig_type hs_inst_ty constraintKind ; inst_ty <- kindGeneralizeType inst_ty ; checkValidInstance user_ctxt hs_inst_ty inst_ty } -- Used for 'VECTORISE [SCALAR] instance' declarations tcHsVectInst :: LHsSigType Name -> TcM (Class, [Type]) tcHsVectInst ty | Just (L _ cls_name, tys) <- hsTyGetAppHead_maybe (hsSigType ty) -- Ignoring the binders looks pretty dodgy to me = do { (cls, cls_kind) <- tcClass cls_name ; (applied_class, _res_kind) <- tcInferApps typeLevelMode cls_name (mkClassPred cls []) cls_kind tys ; case tcSplitTyConApp_maybe applied_class of Just (_tc, args) -> ASSERT( _tc == classTyCon cls ) return (cls, args) _ -> failWithTc (text "Too many arguments passed to" <+> ppr cls_name) } | otherwise = failWithTc $ text "Malformed instance type" ---------------------------------------------- -- | Type-check a visible type application tcHsTypeApp :: LHsWcType Name -> Kind -> TcM Type tcHsTypeApp wc_ty kind | HsWC { hswc_wcs = sig_wcs, hswc_ctx = extra, hswc_body = hs_ty } <- wc_ty = ASSERT( isNothing extra ) -- handled in RnTypes.rnExtraConstraintWildCard tcWildCardBinders sig_wcs $ \ _ -> do { ty <- tcCheckLHsType hs_ty kind ; ty <- zonkTcType ty ; checkValidType TypeAppCtxt ty ; return ty } -- NB: we don't call emitWildcardHoleConstraints here, because -- we want any holes in visible type applications to be used -- without fuss. No errors, warnings, extensions, etc. {- These functions are used during knot-tying in type and class declarations, when we have to separate kind-checking, desugaring, and validity checking ************************************************************************ * * The main kind checker: no validity checks here %* * %************************************************************************ First a couple of simple wrappers for kcHsType -} --------------------------- tcHsOpenType, tcHsLiftedType, tcHsOpenTypeNC, tcHsLiftedTypeNC :: LHsType Name -> TcM TcType -- Used for type signatures -- Do not do validity checking tcHsOpenType ty = addTypeCtxt ty $ tcHsOpenTypeNC ty tcHsLiftedType ty = addTypeCtxt ty $ tcHsLiftedTypeNC ty tcHsOpenTypeNC ty = do { ek <- ekOpen ; tc_lhs_type typeLevelMode ty ek } tcHsLiftedTypeNC ty = tc_lhs_type typeLevelMode ty liftedTypeKind -- Like tcHsType, but takes an expected kind tcCheckLHsType :: LHsType Name -> Kind -> TcM Type tcCheckLHsType hs_ty exp_kind = addTypeCtxt hs_ty $ tc_lhs_type typeLevelMode hs_ty exp_kind tcLHsType :: LHsType Name -> TcM (TcType, TcKind) -- Called from outside: set the context tcLHsType ty = addTypeCtxt ty (tc_infer_lhs_type typeLevelMode ty) --------------------------- -- | Should we generalise the kind of this type signature? -- We *should* generalise if the type is mentions no scoped type variables -- or if NoMonoLocalBinds is set. Otherwise, nope. decideKindGeneralisationPlan :: Type -> TcM Bool decideKindGeneralisationPlan ty = do { mono_locals <- xoptM LangExt.MonoLocalBinds ; in_scope <- getInLocalScope ; let fvs = tyCoVarsOfTypeList ty should_gen = not mono_locals || all (not . in_scope . getName) fvs ; traceTc "decideKindGeneralisationPlan" (vcat [ text "type:" <+> ppr ty , text "ftvs:" <+> ppr fvs , text "should gen?" <+> ppr should_gen ]) ; return should_gen } {- ************************************************************************ * * Type-checking modes * * ************************************************************************ The kind-checker is parameterised by a TcTyMode, which contains some information about where we're checking a type. The renamer issues errors about what it can. All errors issued here must concern things that the renamer can't handle. -} -- | Info about the context in which we're checking a type. Currently, -- differentiates only between types and kinds, but this will likely -- grow, at least to include the distinction between patterns and -- not-patterns. newtype TcTyMode = TcTyMode { mode_level :: TypeOrKind -- True <=> type, False <=> kind } typeLevelMode :: TcTyMode typeLevelMode = TcTyMode { mode_level = TypeLevel } kindLevelMode :: TcTyMode kindLevelMode = TcTyMode { mode_level = KindLevel } -- switch to kind level kindLevel :: TcTyMode -> TcTyMode kindLevel mode = mode { mode_level = KindLevel } instance Outputable TcTyMode where ppr = ppr . mode_level {- Note [Bidirectional type checking] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In expressions, whenever we see a polymorphic identifier, say `id`, we are free to instantiate it with metavariables, knowing that we can always re-generalize with type-lambdas when necessary. For example: rank2 :: (forall a. a -> a) -> () x = rank2 id When checking the body of `x`, we can instantiate `id` with a metavariable. Then, when we're checking the application of `rank2`, we notice that we really need a polymorphic `id`, and then re-generalize over the unconstrained metavariable. In types, however, we're not so lucky, because *we cannot re-generalize*! There is no lambda. So, we must be careful only to instantiate at the last possible moment, when we're sure we're never going to want the lost polymorphism again. This is done in calls to tcInstBinders and tcInstBindersX. To implement this behavior, we use bidirectional type checking, where we explicitly think about whether we know the kind of the type we're checking or not. Note that there is a difference between not knowing a kind and knowing a metavariable kind: the metavariables are TauTvs, and cannot become forall-quantified kinds. Previously (before dependent types), there were no higher-rank kinds, and so we could instantiate early and be sure that no types would have polymorphic kinds, and so we could always assume that the kind of a type was a fresh metavariable. Not so anymore, thus the need for two algorithms. For HsType forms that can never be kind-polymorphic, we implement only the "down" direction, where we safely assume a metavariable kind. For HsType forms that *can* be kind-polymorphic, we implement just the "up" (functions with "infer" in their name) version, as we gain nothing by also implementing the "down" version. Note [Future-proofing the type checker] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ As discussed in Note [Bidirectional type checking], each HsType form is handled in *either* tc_infer_hs_type *or* tc_hs_type. These functions are mutually recursive, so that either one can work for any type former. But, we want to make sure that our pattern-matches are complete. So, we have a bunch of repetitive code just so that we get warnings if we're missing any patterns. -} -- | Check and desugar a type, returning the core type and its -- possibly-polymorphic kind. Much like 'tcInferRho' at the expression -- level. tc_infer_lhs_type :: TcTyMode -> LHsType Name -> TcM (TcType, TcKind) tc_infer_lhs_type mode (L span ty) = setSrcSpan span $ do { traceTc "tc_infer_lhs_type:" (ppr ty) ; tc_infer_hs_type mode ty } -- | Infer the kind of a type and desugar. This is the "up" type-checker, -- as described in Note [Bidirectional type checking] tc_infer_hs_type :: TcTyMode -> HsType Name -> TcM (TcType, TcKind) tc_infer_hs_type mode (HsTyVar (L _ tv)) = tcTyVar mode tv tc_infer_hs_type mode (HsAppTy ty1 ty2) = do { let (fun_ty, arg_tys) = splitHsAppTys ty1 [ty2] ; (fun_ty', fun_kind) <- tc_infer_lhs_type mode fun_ty ; fun_kind' <- zonkTcType fun_kind ; tcInferApps mode fun_ty fun_ty' fun_kind' arg_tys } tc_infer_hs_type mode (HsParTy t) = tc_infer_lhs_type mode t tc_infer_hs_type mode (HsOpTy lhs (L _ op) rhs) | not (op `hasKey` funTyConKey) = do { (op', op_kind) <- tcTyVar mode op ; op_kind' <- zonkTcType op_kind ; tcInferApps mode op op' op_kind' [lhs, rhs] } tc_infer_hs_type mode (HsKindSig ty sig) = do { sig' <- tc_lhs_kind (kindLevel mode) sig ; ty' <- tc_lhs_type mode ty sig' ; return (ty', sig') } tc_infer_hs_type mode (HsDocTy ty _) = tc_infer_lhs_type mode ty tc_infer_hs_type _ (HsCoreTy ty) = return (ty, typeKind ty) tc_infer_hs_type mode other_ty = do { kv <- newMetaKindVar ; ty' <- tc_hs_type mode other_ty kv ; return (ty', kv) } tc_lhs_type :: TcTyMode -> LHsType Name -> TcKind -> TcM TcType tc_lhs_type mode (L span ty) exp_kind = setSrcSpan span $ do { traceTc "tc_lhs_type:" (ppr ty $$ ppr exp_kind) ; tc_hs_type mode ty exp_kind } ------------------------------------------ tc_fun_type :: TcTyMode -> LHsType Name -> LHsType Name -> TcKind -> TcM TcType tc_fun_type mode ty1 ty2 exp_kind = case mode_level mode of TypeLevel -> do { arg_rr <- newFlexiTyVarTy runtimeRepTy ; res_rr <- newFlexiTyVarTy runtimeRepTy ; ty1' <- tc_lhs_type mode ty1 (tYPE arg_rr) ; ty2' <- tc_lhs_type mode ty2 (tYPE res_rr) ; checkExpectedKind (mkFunTy ty1' ty2') liftedTypeKind exp_kind } KindLevel -> -- no representation polymorphism in kinds. yet. do { ty1' <- tc_lhs_type mode ty1 liftedTypeKind ; ty2' <- tc_lhs_type mode ty2 liftedTypeKind ; checkExpectedKind (mkFunTy ty1' ty2') liftedTypeKind exp_kind } ------------------------------------------ -- See also Note [Bidirectional type checking] tc_hs_type :: TcTyMode -> HsType Name -> TcKind -> TcM TcType tc_hs_type mode (HsParTy ty) exp_kind = tc_lhs_type mode ty exp_kind tc_hs_type mode (HsDocTy ty _) exp_kind = tc_lhs_type mode ty exp_kind tc_hs_type _ ty@(HsBangTy {}) _ -- While top-level bangs at this point are eliminated (eg !(Maybe Int)), -- other kinds of bangs are not (eg ((!Maybe) Int)). These kinds of -- bangs are invalid, so fail. (#7210) = failWithTc (text "Unexpected strictness annotation:" <+> ppr ty) tc_hs_type _ ty@(HsRecTy _) _ -- Record types (which only show up temporarily in constructor -- signatures) should have been removed by now = failWithTc (text "Record syntax is illegal here:" <+> ppr ty) -- HsSpliced is an annotation produced by 'RnSplice.rnSpliceType'. -- Here we get rid of it and add the finalizers to the global environment -- while capturing the local environment. -- -- See Note [Delaying modFinalizers in untyped splices]. tc_hs_type mode (HsSpliceTy (HsSpliced mod_finalizers (HsSplicedTy ty)) _ ) exp_kind = do addModFinalizersWithLclEnv mod_finalizers tc_hs_type mode ty exp_kind -- This should never happen; type splices are expanded by the renamer tc_hs_type _ ty@(HsSpliceTy {}) _exp_kind = failWithTc (text "Unexpected type splice:" <+> ppr ty) ---------- Functions and applications tc_hs_type mode (HsFunTy ty1 ty2) exp_kind = tc_fun_type mode ty1 ty2 exp_kind tc_hs_type mode (HsOpTy ty1 (L _ op) ty2) exp_kind | op `hasKey` funTyConKey = tc_fun_type mode ty1 ty2 exp_kind --------- Foralls tc_hs_type mode (HsForAllTy { hst_bndrs = hs_tvs, hst_body = ty }) exp_kind = fmap fst $ tcExplicitTKBndrs hs_tvs $ \ tvs' -> -- Do not kind-generalise here! See Note [Kind generalisation] -- Why exp_kind? See Note [Body kind of HsForAllTy] do { ty' <- tc_lhs_type mode ty exp_kind ; let bound_vars = allBoundVariables ty' bndrs = mkNamedBinders Specified tvs' ; return (mkForAllTys bndrs ty', bound_vars) } tc_hs_type mode (HsQualTy { hst_ctxt = ctxt, hst_body = ty }) exp_kind | null (unLoc ctxt) = tc_lhs_type mode ty exp_kind | otherwise = do { ctxt' <- tc_hs_context mode ctxt -- See Note [Body kind of a HsQualTy] ; ty' <- if isConstraintKind exp_kind then tc_lhs_type mode ty constraintKind else do { ek <- ekOpen -- The body kind (result of the -- function) can be * or #, hence ekOpen ; ty <- tc_lhs_type mode ty ek ; checkExpectedKind ty liftedTypeKind exp_kind } ; return (mkPhiTy ctxt' ty') } --------- Lists, arrays, and tuples tc_hs_type mode (HsListTy elt_ty) exp_kind = do { tau_ty <- tc_lhs_type mode elt_ty liftedTypeKind ; checkWiredInTyCon listTyCon ; checkExpectedKind (mkListTy tau_ty) liftedTypeKind exp_kind } tc_hs_type mode (HsPArrTy elt_ty) exp_kind = do { MASSERT( isTypeLevel (mode_level mode) ) ; tau_ty <- tc_lhs_type mode elt_ty liftedTypeKind ; checkWiredInTyCon parrTyCon ; checkExpectedKind (mkPArrTy tau_ty) liftedTypeKind exp_kind } -- See Note [Distinguishing tuple kinds] in HsTypes -- See Note [Inferring tuple kinds] tc_hs_type mode (HsTupleTy HsBoxedOrConstraintTuple hs_tys) exp_kind -- (NB: not zonking before looking at exp_k, to avoid left-right bias) | Just tup_sort <- tupKindSort_maybe exp_kind = traceTc "tc_hs_type tuple" (ppr hs_tys) >> tc_tuple mode tup_sort hs_tys exp_kind | otherwise = do { traceTc "tc_hs_type tuple 2" (ppr hs_tys) ; (tys, kinds) <- mapAndUnzipM (tc_infer_lhs_type mode) hs_tys ; kinds <- mapM zonkTcType kinds -- Infer each arg type separately, because errors can be -- confusing if we give them a shared kind. Eg Trac #7410 -- (Either Int, Int), we do not want to get an error saying -- "the second argument of a tuple should have kind *->*" ; let (arg_kind, tup_sort) = case [ (k,s) | k <- kinds , Just s <- [tupKindSort_maybe k] ] of ((k,s) : _) -> (k,s) [] -> (liftedTypeKind, BoxedTuple) -- In the [] case, it's not clear what the kind is, so guess * ; tys' <- sequence [ setSrcSpan loc $ checkExpectedKind ty kind arg_kind | ((L loc _),ty,kind) <- zip3 hs_tys tys kinds ] ; finish_tuple tup_sort tys' (map (const arg_kind) tys') exp_kind } tc_hs_type mode (HsTupleTy hs_tup_sort tys) exp_kind = tc_tuple mode tup_sort tys exp_kind where tup_sort = case hs_tup_sort of -- Fourth case dealt with above HsUnboxedTuple -> UnboxedTuple HsBoxedTuple -> BoxedTuple HsConstraintTuple -> ConstraintTuple _ -> panic "tc_hs_type HsTupleTy" --------- Promoted lists and tuples tc_hs_type mode (HsExplicitListTy _k tys) exp_kind = do { tks <- mapM (tc_infer_lhs_type mode) tys ; (taus', kind) <- unifyKinds tks ; let ty = (foldr (mk_cons kind) (mk_nil kind) taus') ; checkExpectedKind ty (mkListTy kind) exp_kind } where mk_cons k a b = mkTyConApp (promoteDataCon consDataCon) [k, a, b] mk_nil k = mkTyConApp (promoteDataCon nilDataCon) [k] tc_hs_type mode (HsExplicitTupleTy _ tys) exp_kind -- using newMetaKindVar means that we force instantiations of any polykinded -- types. At first, I just used tc_infer_lhs_type, but that led to #11255. = do { ks <- replicateM arity newMetaKindVar ; taus <- zipWithM (tc_lhs_type mode) tys ks ; let kind_con = tupleTyCon Boxed arity ty_con = promotedTupleDataCon Boxed arity tup_k = mkTyConApp kind_con ks ; checkExpectedKind (mkTyConApp ty_con (ks ++ taus)) tup_k exp_kind } where arity = length tys --------- Constraint types tc_hs_type mode (HsIParamTy n ty) exp_kind = do { MASSERT( isTypeLevel (mode_level mode) ) ; ty' <- tc_lhs_type mode ty liftedTypeKind ; let n' = mkStrLitTy $ hsIPNameFS n ; ipClass <- tcLookupClass ipClassName ; checkExpectedKind (mkClassPred ipClass [n',ty']) constraintKind exp_kind } tc_hs_type mode (HsEqTy ty1 ty2) exp_kind = do { (ty1', kind1) <- tc_infer_lhs_type mode ty1 ; (ty2', kind2) <- tc_infer_lhs_type mode ty2 ; ty2'' <- checkExpectedKind ty2' kind2 kind1 ; eq_tc <- tcLookupTyCon eqTyConName ; let ty' = mkNakedTyConApp eq_tc [kind1, ty1', ty2''] ; checkExpectedKind ty' constraintKind exp_kind } --------- Literals tc_hs_type _ (HsTyLit (HsNumTy _ n)) exp_kind = do { checkWiredInTyCon typeNatKindCon ; checkExpectedKind (mkNumLitTy n) typeNatKind exp_kind } tc_hs_type _ (HsTyLit (HsStrTy _ s)) exp_kind = do { checkWiredInTyCon typeSymbolKindCon ; checkExpectedKind (mkStrLitTy s) typeSymbolKind exp_kind } --------- Potentially kind-polymorphic types: call the "up" checker -- See Note [Future-proofing the type checker] tc_hs_type mode ty@(HsTyVar {}) ek = tc_infer_hs_type_ek mode ty ek tc_hs_type mode ty@(HsAppTy {}) ek = tc_infer_hs_type_ek mode ty ek tc_hs_type mode ty@(HsOpTy {}) ek = tc_infer_hs_type_ek mode ty ek tc_hs_type mode ty@(HsKindSig {}) ek = tc_infer_hs_type_ek mode ty ek tc_hs_type mode ty@(HsCoreTy {}) ek = tc_infer_hs_type_ek mode ty ek tc_hs_type _ (HsWildCardTy wc) exp_kind = do { let name = wildCardName wc ; tv <- tcLookupTyVar name ; checkExpectedKind (mkTyVarTy tv) (tyVarKind tv) exp_kind } -- disposed of by renamer tc_hs_type _ ty@(HsAppsTy {}) _ = pprPanic "tc_hs_tyep HsAppsTy" (ppr ty) --------------------------- -- | Call 'tc_infer_hs_type' and check its result against an expected kind. tc_infer_hs_type_ek :: TcTyMode -> HsType Name -> TcKind -> TcM TcType tc_infer_hs_type_ek mode ty ek = do { (ty', k) <- tc_infer_hs_type mode ty ; checkExpectedKind ty' k ek } --------------------------- tupKindSort_maybe :: TcKind -> Maybe TupleSort tupKindSort_maybe k | Just (k', _) <- splitCastTy_maybe k = tupKindSort_maybe k' | Just k' <- coreView k = tupKindSort_maybe k' | isConstraintKind k = Just ConstraintTuple | isLiftedTypeKind k = Just BoxedTuple | otherwise = Nothing tc_tuple :: TcTyMode -> TupleSort -> [LHsType Name] -> TcKind -> TcM TcType tc_tuple mode tup_sort tys exp_kind = do { arg_kinds <- case tup_sort of BoxedTuple -> return (nOfThem arity liftedTypeKind) UnboxedTuple -> do { rrs <- newFlexiTyVarTys arity runtimeRepTy ; return $ map tYPE rrs } ConstraintTuple -> return (nOfThem arity constraintKind) ; tau_tys <- zipWithM (tc_lhs_type mode) tys arg_kinds ; finish_tuple tup_sort tau_tys arg_kinds exp_kind } where arity = length tys finish_tuple :: TupleSort -> [TcType] -- ^ argument types -> [TcKind] -- ^ of these kinds -> TcKind -- ^ expected kind of the whole tuple -> TcM TcType finish_tuple tup_sort tau_tys tau_kinds exp_kind = do { traceTc "finish_tuple" (ppr res_kind $$ ppr tau_kinds $$ ppr exp_kind) ; let arg_tys = case tup_sort of -- See also Note [Unboxed tuple RuntimeRep vars] in TyCon UnboxedTuple -> map (getRuntimeRepFromKind "finish_tuple") tau_kinds ++ tau_tys BoxedTuple -> tau_tys ConstraintTuple -> tau_tys ; tycon <- case tup_sort of ConstraintTuple | arity > mAX_CTUPLE_SIZE -> failWith (bigConstraintTuple arity) | otherwise -> tcLookupTyCon (cTupleTyConName arity) BoxedTuple -> do { let tc = tupleTyCon Boxed arity ; checkWiredInTyCon tc ; return tc } UnboxedTuple -> return (tupleTyCon Unboxed arity) ; checkExpectedKind (mkTyConApp tycon arg_tys) res_kind exp_kind } where arity = length tau_tys res_kind = case tup_sort of UnboxedTuple -> unboxedTupleKind BoxedTuple -> liftedTypeKind ConstraintTuple -> constraintKind bigConstraintTuple :: Arity -> MsgDoc bigConstraintTuple arity = hang (text "Constraint tuple arity too large:" <+> int arity <+> parens (text "max arity =" <+> int mAX_CTUPLE_SIZE)) 2 (text "Instead, use a nested tuple") --------------------------- -- | Apply a type of a given kind to a list of arguments. This instantiates -- invisible parameters as necessary. However, it does *not* necessarily -- apply all the arguments, if the kind runs out of binders. -- This takes an optional @VarEnv Kind@ which maps kind variables to kinds. -- These kinds should be used to instantiate invisible kind variables; -- they come from an enclosing class for an associated type/data family. -- This version will instantiate all invisible arguments left over after -- the visible ones. tcInferArgs :: Outputable fun => fun -- ^ the function -> [TyBinder] -- ^ function kind's binders -> Maybe (VarEnv Kind) -- ^ possibly, kind info (see above) -> [LHsType Name] -- ^ args -> TcM (TCvSubst, [TyBinder], [TcType], [LHsType Name], Int) -- ^ (instantiating subst, un-insted leftover binders, -- typechecked args, untypechecked args, n) tcInferArgs fun binders mb_kind_info args = do { (subst, leftover_binders, args', leftovers, n) <- tc_infer_args typeLevelMode fun binders mb_kind_info args 1 -- now, we need to instantiate any remaining invisible arguments ; let (invis_bndrs, other_binders) = span isInvisibleBinder leftover_binders ; (subst', invis_args) <- tcInstBindersX subst mb_kind_info invis_bndrs ; return ( subst' , other_binders , args' `chkAppend` invis_args , leftovers, n ) } -- | See comments for 'tcInferArgs'. But this version does not instantiate -- any remaining invisible arguments. tc_infer_args :: Outputable fun => TcTyMode -> fun -- ^ the function -> [TyBinder] -- ^ function kind's binders (zonked) -> Maybe (VarEnv Kind) -- ^ possibly, kind info (see above) -> [LHsType Name] -- ^ args -> Int -- ^ number to start arg counter at -> TcM (TCvSubst, [TyBinder], [TcType], [LHsType Name], Int) tc_infer_args mode orig_ty binders mb_kind_info orig_args n0 = do { traceTc "tcInferApps" (ppr binders $$ ppr orig_args) ; go emptyTCvSubst binders orig_args n0 [] } where go subst binders [] n acc = return ( subst, binders, reverse acc, [], n ) -- when we call this when checking type family patterns, we really -- do want to instantiate all invisible arguments. During other -- typechecking, we don't. go subst binders all_args n acc | (inv_binders, other_binders) <- span isInvisibleBinder binders , not (null inv_binders) = do { (subst', args') <- tcInstBindersX subst mb_kind_info inv_binders ; go subst' other_binders all_args n (reverse args' ++ acc) } go subst (binder:binders) (arg:args) n acc = ASSERT( isVisibleBinder binder ) do { arg' <- addErrCtxt (funAppCtxt orig_ty arg n) $ tc_lhs_type mode arg (substTyUnchecked subst $ binderType binder) ; let subst' = case binderVar_maybe binder of Just tv -> extendTvSubst subst tv arg' Nothing -> subst ; go subst' binders args (n+1) (arg' : acc) } go subst [] all_args n acc = return (subst, [], reverse acc, all_args, n) -- | Applies a type to a list of arguments. Always consumes all the -- arguments. tcInferApps :: Outputable fun => TcTyMode -> fun -- ^ Function (for printing only) -> TcType -- ^ Function (could be knot-tied) -> TcKind -- ^ Function kind (zonked) -> [LHsType Name] -- ^ Args -> TcM (TcType, TcKind) -- ^ (f args, result kind) tcInferApps mode orig_ty ty ki args = go ty ki args 1 where go fun fun_kind [] _ = return (fun, fun_kind) go fun fun_kind args n | let (binders, res_kind) = splitPiTys fun_kind , not (null binders) = do { (subst, leftover_binders, args', leftover_args, n') <- tc_infer_args mode orig_ty binders Nothing args n ; let fun_kind' = substTyUnchecked subst $ mkForAllTys leftover_binders res_kind ; go (mkNakedAppTys fun args') fun_kind' leftover_args n' } go fun fun_kind all_args@(arg:args) n = do { (co, arg_k, res_k) <- matchExpectedFunKind (length all_args) fun fun_kind ; arg' <- addErrCtxt (funAppCtxt orig_ty arg n) $ tc_lhs_type mode arg arg_k ; go (mkNakedAppTy (fun `mkNakedCastTy` co) arg') res_k args (n+1) } -------------------------- checkExpectedKind :: TcType -- the type whose kind we're checking -> TcKind -- the known kind of that type, k -> TcKind -- the expected kind, exp_kind -> TcM TcType -- a possibly-inst'ed, casted type :: exp_kind -- Instantiate a kind (if necessary) and then call unifyType -- (checkExpectedKind ty act_kind exp_kind) -- checks that the actual kind act_kind is compatible -- with the expected kind exp_kind checkExpectedKind ty act_kind exp_kind = do { (ty', act_kind') <- instantiate ty act_kind exp_kind ; let origin = TypeEqOrigin { uo_actual = act_kind' , uo_expected = mkCheckExpType exp_kind , uo_thing = Just $ mkTypeErrorThing ty' } ; co_k <- uType origin KindLevel act_kind' exp_kind ; traceTc "checkExpectedKind" (vcat [ ppr act_kind , ppr exp_kind , ppr co_k ]) ; let result_ty = ty' `mkNakedCastTy` co_k ; return result_ty } where -- we need to make sure that both kinds have the same number of implicit -- foralls out front. If the actual kind has more, instantiate accordingly. -- Otherwise, just pass the type & kind through -- the errors are caught -- in unifyType. instantiate :: TcType -- the type -> TcKind -- of this kind -> TcKind -- but expected to be of this one -> TcM ( TcType -- the inst'ed type , TcKind ) -- its new kind instantiate ty act_ki exp_ki = let (exp_bndrs, _) = splitPiTysInvisible exp_ki in instantiateTyN (length exp_bndrs) ty act_ki -- | Instantiate a type to have at most @n@ invisible arguments. instantiateTyN :: Int -- ^ @n@ -> TcType -- ^ the type -> TcKind -- ^ its kind -> TcM (TcType, TcKind) -- ^ The inst'ed type with kind instantiateTyN n ty ki = let (bndrs, inner_ki) = splitPiTysInvisible ki num_to_inst = length bndrs - n -- NB: splitAt is forgiving with invalid numbers (inst_bndrs, leftover_bndrs) = splitAt num_to_inst bndrs in if num_to_inst <= 0 then return (ty, ki) else do { (subst, inst_args) <- tcInstBinders inst_bndrs ; let rebuilt_ki = mkForAllTys leftover_bndrs inner_ki ki' = substTy subst rebuilt_ki ; return (mkNakedAppTys ty inst_args, ki') } --------------------------- tcHsContext :: LHsContext Name -> TcM [PredType] tcHsContext = tc_hs_context typeLevelMode tcLHsPredType :: LHsType Name -> TcM PredType tcLHsPredType = tc_lhs_pred typeLevelMode tc_hs_context :: TcTyMode -> LHsContext Name -> TcM [PredType] tc_hs_context mode ctxt = mapM (tc_lhs_pred mode) (unLoc ctxt) tc_lhs_pred :: TcTyMode -> LHsType Name -> TcM PredType tc_lhs_pred mode pred = tc_lhs_type mode pred constraintKind --------------------------- tcTyVar :: TcTyMode -> Name -> TcM (TcType, TcKind) -- See Note [Type checking recursive type and class declarations] -- in TcTyClsDecls tcTyVar mode name -- Could be a tyvar, a tycon, or a datacon = do { traceTc "lk1" (ppr name) ; thing <- tcLookup name ; case thing of ATyVar _ tv -> return (mkTyVarTy tv, tyVarKind tv) ATcTyCon tc_tc -> do { -- See Note [GADT kind self-reference] unless (isTypeLevel (mode_level mode)) (promotionErr name TyConPE) ; check_tc tc_tc ; tc <- get_loopy_tc name tc_tc ; handle_tyfams tc tc_tc } -- mkNakedTyConApp: see Note [Type-checking inside the knot] -- NB: we really should check if we're at the kind level -- and if the tycon is promotable if -XNoTypeInType is set. -- But this is a terribly large amount of work! Not worth it. AGlobal (ATyCon tc) -> do { check_tc tc ; handle_tyfams tc tc } AGlobal (AConLike (RealDataCon dc)) -> do { data_kinds <- xoptM LangExt.DataKinds ; unless (data_kinds || specialPromotedDc dc) $ promotionErr name NoDataKindsDC ; type_in_type <- xoptM LangExt.TypeInType ; unless ( type_in_type || ( isTypeLevel (mode_level mode) && isLegacyPromotableDataCon dc ) || ( isKindLevel (mode_level mode) && specialPromotedDc dc ) ) $ promotionErr name NoTypeInTypeDC ; let tc = promoteDataCon dc ; return (mkNakedTyConApp tc [], tyConKind tc) } APromotionErr err -> promotionErr name err _ -> wrongThingErr "type" thing name } where check_tc :: TyCon -> TcM () check_tc tc = do { type_in_type <- xoptM LangExt.TypeInType ; data_kinds <- xoptM LangExt.DataKinds ; unless (isTypeLevel (mode_level mode) || data_kinds || isKindTyCon tc) $ promotionErr name NoDataKindsTC ; unless (isTypeLevel (mode_level mode) || type_in_type || isLegacyPromotableTyCon tc) $ promotionErr name NoTypeInTypeTC } -- if we are type-checking a type family tycon, we must instantiate -- any invisible arguments right away. Otherwise, we get #11246 handle_tyfams :: TyCon -- the tycon to instantiate (might be loopy) -> TyCon -- a non-loopy version of the tycon -> TcM (TcType, TcKind) handle_tyfams tc tc_tc | mightBeUnsaturatedTyCon tc_tc = do { traceTc "tcTyVar2a" (ppr tc_tc $$ ppr tc_kind) ; return (ty, tc_kind) } | otherwise = do { (tc_ty, kind) <- instantiateTyN 0 ty tc_kind -- tc and tc_ty must not be traced here, because that would -- force the evaluation of a potentially knot-tied variable (tc), -- and the typechecker would hang, as per #11708 ; traceTc "tcTyVar2b" (vcat [ ppr tc_tc <+> dcolon <+> ppr tc_kind , ppr kind ]) ; return (tc_ty, kind) } where ty = mkNakedTyConApp tc [] tc_kind = tyConKind tc_tc get_loopy_tc :: Name -> TyCon -> TcM TyCon -- Return the knot-tied global TyCon if there is one -- Otherwise the local TcTyCon; we must be doing kind checking -- but we still want to return a TyCon of some sort to use in -- error messages get_loopy_tc name tc_tc = do { env <- getGblEnv ; case lookupNameEnv (tcg_type_env env) name of Just (ATyCon tc) -> return tc _ -> do { traceTc "lk1 (loopy)" (ppr name) ; return tc_tc } } tcClass :: Name -> TcM (Class, TcKind) tcClass cls -- Must be a class = do { thing <- tcLookup cls ; case thing of ATcTyCon tc -> return (aThingErr "tcClass" cls, tyConKind tc) AGlobal (ATyCon tc) | Just cls <- tyConClass_maybe tc -> return (cls, tyConKind tc) _ -> wrongThingErr "class" thing cls } aThingErr :: String -> Name -> b -- The type checker for types is sometimes called simply to -- do *kind* checking; and in that case it ignores the type -- returned. Which is a good thing since it may not be available yet! aThingErr str x = pprPanic "AThing evaluated unexpectedly" (text str <+> ppr x) {- Note [Type-checking inside the knot] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Suppose we are checking the argument types of a data constructor. We must zonk the types before making the DataCon, because once built we can't change it. So we must traverse the type. BUT the parent TyCon is knot-tied, so we can't look at it yet. So we must be careful not to use "smart constructors" for types that look at the TyCon or Class involved. * Hence the use of mkNakedXXX functions. These do *not* enforce the invariants (for example that we use (ForAllTy (Anon s) t) rather than (TyConApp (->) [s,t])). * The zonking functions establish invariants (even zonkTcType, a change from previous behaviour). So we must never inspect the result of a zonk that might mention a knot-tied TyCon. This is generally OK because we zonk *kinds* while kind-checking types. And the TyCons in kinds shouldn't be knot-tied, because they come from a previous mutually recursive group. * TcHsSyn.zonkTcTypeToType also can safely check/establish invariants. This is horribly delicate. I hate it. A good example of how delicate it is can be seen in Trac #7903. Note [GADT kind self-reference] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ A promoted type cannot be used in the body of that type's declaration. Trac #11554 shows this example, which made GHC loop: import Data.Kind data P (x :: k) = Q data A :: Type where B :: forall (a :: A). P a -> A In order to check the constructor B, we need have the promoted type A, but in order to get that promoted type, B must first be checked. To prevent looping, a TyConPE promotion error is given when tcTyVar checks an ATcTyCon in kind mode. Any ATcTyCon is a TyCon being defined in the current recursive group (see data type decl for TcTyThing), and all such TyCons are illegal in kinds. Trac #11962 proposes checking the head of a data declaration separately from its constructors. This would allow the example above to pass. Note [Body kind of a HsForAllTy] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The body of a forall is usually a type, but in principle there's no reason to prohibit *unlifted* types. In fact, GHC can itself construct a function with an unboxed tuple inside a for-all (via CPR analyis; see typecheck/should_compile/tc170). Moreover in instance heads we get forall-types with kind Constraint. It's tempting to check that the body kind is either * or #. But this is wrong. For example: class C a b newtype N = Mk Foo deriving (C a) We're doing newtype-deriving for C. But notice how `a` isn't in scope in the predicate `C a`. So we quantify, yielding `forall a. C a` even though `C a` has kind `* -> Constraint`. The `forall a. C a` is a bit cheeky, but convenient. Bottom line: don't check for * or # here. Note [Body kind of a HsQualTy] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ If ctxt is non-empty, the HsQualTy really is a /function/, so the kind of the result really is '*', and in that case the kind of the body-type can be lifted or unlifted. However, consider instance Eq a => Eq [a] where ... or f :: (Eq a => Eq [a]) => blah Here both body-kind of the HsQualTy is Constraint rather than *. Rather crudely we tell the difference by looking at exp_kind. It's very convenient to typecheck instance types like any other HsSigType. Admittedly the '(Eq a => Eq [a]) => blah' case is erroneous, but it's better to reject in checkValidType. If we say that the body kind should be '*' we risk getting TWO error messages, one saying that Eq [a] doens't have kind '*', and one saying that we need a Constraint to the left of the outer (=>). How do we figure out the right body kind? Well, it's a bit of a kludge: I just look at the expected kind. If it's Constraint, we must be in this instance situation context. It's a kludge because it wouldn't work if any unification was involved to compute that result kind -- but it isn't. (The true way might be to use the 'mode' parameter, but that seemed like a sledgehammer to crack a nut.) Note [Inferring tuple kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Give a tuple type (a,b,c), which the parser labels as HsBoxedOrConstraintTuple, we try to figure out whether it's a tuple of kind * or Constraint. Step 1: look at the expected kind Step 2: infer argument kinds If after Step 2 it's not clear from the arguments that it's Constraint, then it must be *. Once having decided that we re-check the Check the arguments again to give good error messages in eg. `(Maybe, Maybe)` Note that we will still fail to infer the correct kind in this case: type T a = ((a,a), D a) type family D :: Constraint -> Constraint While kind checking T, we do not yet know the kind of D, so we will default the kind of T to * -> *. It works if we annotate `a` with kind `Constraint`. Note [Desugaring types] ~~~~~~~~~~~~~~~~~~~~~~~ The type desugarer is phase 2 of dealing with HsTypes. Specifically: * It transforms from HsType to Type * It zonks any kinds. The returned type should have no mutable kind or type variables (hence returning Type not TcType): - any unconstrained kind variables are defaulted to (Any *) just as in TcHsSyn. - there are no mutable type variables because we are kind-checking a type Reason: the returned type may be put in a TyCon or DataCon where it will never subsequently be zonked. You might worry about nested scopes: ..a:kappa in scope.. let f :: forall b. T '[a,b] -> Int In this case, f's type could have a mutable kind variable kappa in it; and we might then default it to (Any *) when dealing with f's type signature. But we don't expect this to happen because we can't get a lexically scoped type variable with a mutable kind variable in it. A delicate point, this. If it becomes an issue we might need to distinguish top-level from nested uses. Moreover * it cannot fail, * it does no unifications * it does no validity checking, except for structural matters, such as (a) spurious ! annotations. (b) a class used as a type Note [Kind of a type splice] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider these terms, each with TH type splice inside: [| e1 :: Maybe $(..blah..) |] [| e2 :: $(..blah..) |] When kind-checking the type signature, we'll kind-check the splice $(..blah..); we want to give it a kind that can fit in any context, as if $(..blah..) :: forall k. k. In the e1 example, the context of the splice fixes kappa to *. But in the e2 example, we'll desugar the type, zonking the kind unification variables as we go. When we encounter the unconstrained kappa, we want to default it to '*', not to (Any *). Help functions for type applications ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -} addTypeCtxt :: LHsType Name -> TcM a -> TcM a -- Wrap a context around only if we want to show that contexts. -- Omit invisble ones and ones user's won't grok addTypeCtxt (L _ ty) thing = addErrCtxt doc thing where doc = text "In the type" <+> quotes (ppr ty) {- ************************************************************************ * * Type-variable binders %* * %************************************************************************ Note [Scope-check inferred kinds] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data SameKind :: k -> k -> * foo :: forall a (b :: Proxy a) (c :: Proxy d). SameKind b c d has no binding site. So it gets bound implicitly, at the top. The problem is that d's kind mentions `a`. So it's all ill-scoped. The way we check for this is to gather all variables *bound* in a type variable's scope. The type variable's kind should not mention any of these variables. That is, d's kind can't mention a, b, or c. We can't just check to make sure that d's kind is in scope, because we might be about to kindGeneralize. A little messy, but it works. Note [Dependent LHsQTyVars] ~~~~~~~~~~~~~~~~~~~~~~~~~~~ We track (in the renamer) which explicitly bound variables in a LHsQTyVars are manifestly dependent; only precisely these variables may be used within the LHsQTyVars. We must do this so that kcHsTyVarBndrs can produce the right TcTyBinders, and tell Anon vs. Named. Earlier, I thought it would work simply to do a free-variable check during kcHsTyVarBndrs, but this is bogus, because there may be unsolved equalities about. And we don't want to eagerly solve the equalities, because we may get further information after kcHsTyVarBndrs is called. (Recall that kcHsTyVarBndrs is usually called from getInitialKind. The only other case is in kcConDecl.) This is what implements the rule that all variables intended to be dependent must be manifestly so. Sidenote: It's quite possible that later, we'll consider (t -> s) as a degenerate case of some (pi (x :: t) -> s) and then this will all get more permissive. -} tcWildCardBinders :: [Name] -> ([(Name, TcTyVar)] -> TcM a) -> TcM a -- Use the Unique form the specified Name; don't clone it. There is -- no need to clone, and not doing so avoids the need to return a list -- of pairs to bring into scope. tcWildCardBinders wcs thing_inside = do { wcs <- mapM new_wildcard wcs ; tcExtendTyVarEnv2 wcs $ thing_inside wcs } where new_wildcard :: Name -> TcM (Name, TcTyVar) new_wildcard name = do { kind <- newMetaKindVar ; tv <- newFlexiTyVar kind ; return (name, tv) } -- | Kind-check a 'LHsQTyVars'. If the decl under consideration has a complete, -- user-supplied kind signature (CUSK), generalise the result. -- Used in 'getInitialKind' (for tycon kinds and other kinds) -- and in kind-checking (but not for tycon kinds, which are checked with -- tcTyClDecls). See also Note [Complete user-supplied kind signatures] in -- HsDecls. -- -- This function does not do telescope checking. kcHsTyVarBndrs :: Name -- ^ of the thing being checked -> Bool -- ^ True <=> the decl being checked has a CUSK -> Bool -- ^ True <=> the decl is an open type/data family -> Bool -- ^ True <=> all the hsq_implicit are *kind* vars -- (will give these kind * if -XNoTypeInType) -> LHsQTyVars Name -> TcM (Kind, r) -- ^ the result kind, possibly with other info -> TcM (Bool -> TcTyCon, r) -- ^ a way to make a TcTyCon, with the other info. -- The Bool says whether the tycon can be unsaturated. kcHsTyVarBndrs name cusk open_fam all_kind_vars (HsQTvs { hsq_implicit = kv_ns, hsq_explicit = hs_tvs , hsq_dependent = dep_names }) thing_inside | cusk = do { kv_kinds <- mk_kv_kinds ; let scoped_kvs = zipWith new_skolem_tv kv_ns kv_kinds ; tcExtendTyVarEnv2 (kv_ns `zip` scoped_kvs) $ do { (tvs, binders, res_kind, stuff) <- solveEqualities $ bind_telescope hs_tvs thing_inside -- Now, because we're in a CUSK, quantify over the mentioned -- kind vars, in dependency order. ; binders <- mapM zonkTcTyBinder binders ; res_kind <- zonkTcType res_kind ; let qkvs = tyCoVarsOfTypeWellScoped (mkForAllTys binders res_kind) -- the visibility of tvs doesn't matter here; we just -- want the free variables not to include the tvs -- if there are any meta-tvs left, the user has lied about having -- a CUSK. Error. ; let (meta_tvs, good_tvs) = partition isMetaTyVar qkvs ; when (not (null meta_tvs)) $ report_non_cusk_tvs (qkvs ++ tvs) -- if any of the scoped_kvs aren't actually mentioned in a binder's -- kind (or the return kind), then we're in the CUSK case from -- Note [Free-floating kind vars] ; let tycon_tyvars = good_tvs ++ tvs all_mentioned_tvs = mapUnionVarSet (tyCoVarsOfType . tyVarKind) tycon_tyvars `unionVarSet` tyCoVarsOfType res_kind unmentioned_kvs = filterOut (`elemVarSet` all_mentioned_tvs) scoped_kvs ; reportFloatingKvs name tycon_tyvars unmentioned_kvs ; let final_binders = mkNamedBinders Specified good_tvs ++ binders mk_tctc unsat = mkTcTyCon name tycon_tyvars final_binders res_kind unsat (scoped_kvs ++ tvs) -- the tvs contain the binders already -- in scope from an enclosing class, but -- re-adding tvs to the env't doesn't cause -- harm ; return ( mk_tctc, stuff ) }} | otherwise = do { kv_kinds <- mk_kv_kinds ; scoped_kvs <- zipWithM newSigTyVar kv_ns kv_kinds -- the names must line up in splitTelescopeTvs ; (tvs, binders, res_kind, stuff) <- tcExtendTyVarEnv2 (kv_ns `zip` scoped_kvs) $ bind_telescope hs_tvs thing_inside ; let -- NB: Don't add scoped_kvs to tyConTyVars, because they -- must remain lined up with the binders mk_tctc unsat = mkTcTyCon name tvs binders res_kind unsat (scoped_kvs ++ tvs) ; return (mk_tctc, stuff) } where -- if -XNoTypeInType and we know all the implicits are kind vars, -- just give the kind *. This prevents test -- dependent/should_fail/KindLevelsB from compiling, as it should mk_kv_kinds :: TcM [Kind] mk_kv_kinds = do { typeintype <- xoptM LangExt.TypeInType ; if not typeintype && all_kind_vars then return (map (const liftedTypeKind) kv_ns) else mapM (const newMetaKindVar) kv_ns } -- there may be dependency between the explicit "ty" vars. So, we have -- to handle them one at a time. bind_telescope :: [LHsTyVarBndr Name] -> TcM (Kind, r) -> TcM ([TcTyVar], [TyBinder], TcKind, r) bind_telescope [] thing = do { (res_kind, stuff) <- thing ; return ([], [], res_kind, stuff) } bind_telescope (L _ hs_tv : hs_tvs) thing = do { tv_pair@(tv, _) <- kc_hs_tv hs_tv -- NB: Bring all tvs into scope, even non-dependent ones, -- as they're needed in type synonyms, data constructors, etc. ; (tvs, binders, res_kind, stuff) <- bind_unless_scoped tv_pair $ bind_telescope hs_tvs $ thing -- See Note [Dependent LHsQTyVars] ; let new_binder | hsTyVarName hs_tv `elemNameSet` dep_names = mkNamedBinder Visible tv | otherwise = mkAnonBinder (tyVarKind tv) ; return ( tv : tvs , new_binder : binders , res_kind, stuff ) } -- | Bind the tyvar in the env't unless the bool is True bind_unless_scoped :: (TcTyVar, Bool) -> TcM a -> TcM a bind_unless_scoped (_, True) thing_inside = thing_inside bind_unless_scoped (tv, False) thing_inside = tcExtendTyVarEnv [tv] thing_inside kc_hs_tv :: HsTyVarBndr Name -> TcM (TcTyVar, Bool) kc_hs_tv (UserTyVar (L _ name)) = do { tv_pair@(tv, scoped) <- tcHsTyVarName Nothing name -- Open type/data families default their variables to kind *. ; when (open_fam && not scoped) $ -- (don't default class tyvars) discardResult $ unifyKind (Just (mkTyVarTy tv)) liftedTypeKind (tyVarKind tv) ; return tv_pair } kc_hs_tv (KindedTyVar (L _ name) lhs_kind) = do { kind <- tcLHsKind lhs_kind ; tcHsTyVarName (Just kind) name } report_non_cusk_tvs all_tvs = do { all_tvs <- mapM zonkTyCoVarKind all_tvs ; let (_, tidy_tvs) = tidyOpenTyCoVars emptyTidyEnv all_tvs (meta_tvs, other_tvs) = partition isMetaTyVar tidy_tvs ; addErr $ vcat [ text "You have written a *complete user-suppled kind signature*," , hang (text "but the following variable" <> plural meta_tvs <+> isOrAre meta_tvs <+> text "undetermined:") 2 (vcat (map pp_tv meta_tvs)) , text "Perhaps add a kind signature." , hang (text "Inferred kinds of user-written variables:") 2 (vcat (map pp_tv other_tvs)) ] } where pp_tv tv = ppr tv <+> dcolon <+> ppr (tyVarKind tv) tcImplicitTKBndrs :: [Name] -> TcM (a, TyVarSet) -- vars are bound somewhere in the scope -- see Note [Scope-check inferred kinds] -> TcM ([TcTyVar], a) tcImplicitTKBndrs = tcImplicitTKBndrsX (tcHsTyVarName Nothing) -- | Convenient specialization tcImplicitTKBndrsType :: [Name] -> TcM Type -> TcM ([TcTyVar], Type) tcImplicitTKBndrsType var_ns thing_inside = tcImplicitTKBndrs var_ns $ do { res_ty <- thing_inside ; return (res_ty, allBoundVariables res_ty) } -- this more general variant is needed in tcHsPatSigType. -- See Note [Pattern signature binders] tcImplicitTKBndrsX :: (Name -> TcM (TcTyVar, Bool)) -- new_tv function -> [Name] -> TcM (a, TyVarSet) -> TcM ([TcTyVar], a) -- Returned TcTyVars have the supplied Names -- i.e. no cloning of fresh names tcImplicitTKBndrsX new_tv var_ns thing_inside = do { tkvs_pairs <- mapM new_tv var_ns ; let must_scope_tkvs = [ tkv | (tkv, False) <- tkvs_pairs ] tkvs = map fst tkvs_pairs ; (result, bound_tvs) <- tcExtendTyVarEnv must_scope_tkvs $ thing_inside -- it's possible that we guessed the ordering of variables -- wrongly. Adjust. ; tkvs <- mapM zonkTyCoVarKind tkvs ; let extra = text "NB: Implicitly-bound variables always come" <+> text "before other ones." ; checkValidInferredKinds tkvs bound_tvs extra ; let final_tvs = toposortTyVars tkvs ; traceTc "tcImplicitTKBndrs" (ppr var_ns $$ ppr final_tvs) ; return (final_tvs, result) } tcExplicitTKBndrs :: [LHsTyVarBndr Name] -> ([TyVar] -> TcM (a, TyVarSet)) -- ^ Thing inside returns the set of variables bound -- in the scope. See Note [Scope-check inferred kinds] -> TcM (a, TyVarSet) -- ^ returns augmented bound vars -- No cloning: returned TyVars have the same Name as the incoming LHsTyVarBndrs tcExplicitTKBndrs orig_hs_tvs thing_inside = go orig_hs_tvs $ \ tvs -> do { (result, bound_tvs) <- thing_inside tvs -- Issue an error if the ordering is bogus. -- See Note [Bad telescopes] in TcValidity. ; tvs <- checkZonkValidTelescope (interppSP orig_hs_tvs) tvs empty ; checkValidInferredKinds tvs bound_tvs empty ; traceTc "tcExplicitTKBndrs" $ vcat [ text "Hs vars:" <+> ppr orig_hs_tvs , text "tvs:" <+> sep (map pprTvBndr tvs) ] ; return (result, bound_tvs `unionVarSet` mkVarSet tvs) } where go [] thing = thing [] go (L _ hs_tv : hs_tvs) thing = do { tv <- tcHsTyVarBndr hs_tv ; tcExtendTyVarEnv [tv] $ go hs_tvs $ \ tvs -> thing (tv : tvs) } tcHsTyVarBndr :: HsTyVarBndr Name -> TcM TcTyVar -- Return a SkolemTv TcTyVar, initialised with a kind variable. -- Typically the Kind inside the HsTyVarBndr will be a tyvar -- with a mutable kind in it. -- NB: These variables must not be in scope. This function -- is not appropriate for use with associated types, for example. -- -- Returned TcTyVar has the same name; no cloning -- -- See also Note [Associated type tyvar names] in Class tcHsTyVarBndr (UserTyVar (L _ name)) = do { kind <- newMetaKindVar ; return (mkTcTyVar name kind (SkolemTv False)) } tcHsTyVarBndr (KindedTyVar (L _ name) kind) = do { kind <- tcLHsKind kind ; return (mkTcTyVar name kind (SkolemTv False)) } -- | Produce a tyvar of the given name (with the kind provided, or -- otherwise a meta-var kind). If -- the name is already in scope, return the scoped variable, checking -- to make sure the known kind matches any kind provided. The -- second return value says whether the variable is in scope (True) -- or not (False). (Use this for associated types, for example.) tcHsTyVarName :: Maybe Kind -> Name -> TcM (TcTyVar, Bool) tcHsTyVarName m_kind name = do { mb_tv <- tcLookupLcl_maybe name ; case mb_tv of Just (ATyVar _ tv) -> do { whenIsJust m_kind $ \ kind -> discardResult $ unifyKind (Just (mkTyVarTy tv)) kind (tyVarKind tv) ; return (tv, True) } _ -> do { kind <- maybe newMetaKindVar return m_kind ; return (mkTcTyVar name kind vanillaSkolemTv, False) }} -- makes a new skolem tv new_skolem_tv :: Name -> Kind -> TcTyVar new_skolem_tv n k = mkTcTyVar n k vanillaSkolemTv ------------------ kindGeneralizeType :: Type -> TcM Type -- Result is zonked kindGeneralizeType ty = do { kvs <- kindGeneralize ty ; zonkTcType (mkInvForAllTys kvs ty) } kindGeneralize :: TcType -> TcM [KindVar] -- Quantify the free kind variables of a kind or type -- In the latter case the type is closed, so it has no free -- type variables. So in both cases, all the free vars are kind vars kindGeneralize kind_or_type = do { kvs <- zonkTcTypeAndFV kind_or_type ; let dvs = DV { dv_kvs = kvs, dv_tvs = emptyDVarSet } ; gbl_tvs <- tcGetGlobalTyCoVars -- Already zonked ; quantifyZonkedTyVars gbl_tvs dvs } {- Note [Kind generalisation] ~~~~~~~~~~~~~~~~~~~~~~~~~~ We do kind generalisation only at the outer level of a type signature. For example, consider T :: forall k. k -> * f :: (forall a. T a -> Int) -> Int When kind-checking f's type signature we generalise the kind at the outermost level, thus: f1 :: forall k. (forall (a:k). T k a -> Int) -> Int -- YES! and *not* at the inner forall: f2 :: (forall k. forall (a:k). T k a -> Int) -> Int -- NO! Reason: same as for HM inference on value level declarations, we want to infer the most general type. The f2 type signature would be *less applicable* than f1, because it requires a more polymorphic argument. NB: There are no explicit kind variables written in f's signature. When there are, the renamer adds these kind variables to the list of variables bound by the forall, so you can indeed have a type that's higher-rank in its kind. But only by explicit request. Note [Kinds of quantified type variables] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ tcTyVarBndrsGen quantifies over a specified list of type variables, *and* over the kind variables mentioned in the kinds of those tyvars. Note that we must zonk those kinds (obviously) but less obviously, we must return type variables whose kinds are zonked too. Example (a :: k7) where k7 := k9 -> k9 We must return [k9, a:k9->k9] and NOT [k9, a:k7] Reason: we're going to turn this into a for-all type, forall k9. forall (a:k7). blah which the type checker will then instantiate, and instantiate does not look through unification variables! Hence using zonked_kinds when forming tvs'. Note [Free-floating kind vars] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data T = MkT (forall (a :: k). Proxy a) -- from test ghci/scripts/T7873 This is not an existential datatype, but a higher-rank one. Note that the forall to the right of MkT. Also consider data S a = MkS (Proxy (a :: k)) According to the rules around implicitly-bound kind variables, those k's scope over the whole declarations. The renamer grabs it and adds it to the hsq_implicits field of the HsQTyVars of the tycon. So it must be in scope during type-checking, but we want to reject T while accepting S. Why reject T? Because the kind variable isn't fixed by anything. For a variable like k to be implicit, it needs to be mentioned in the kind of a tycon tyvar. But it isn't. Why accept S? Because kind inference tells us that a has kind k, so it's all OK. Our approach depends on whether or not the datatype has a CUSK. Non-CUSK: In the first pass (kcTyClTyVars) we just bring k into scope. In the second pass (tcTyClTyVars), we check to make sure that k has been unified with some other variable (or generalized over, making k into a skolem). If it hasn't been, then it must be a free-floating kind var. Error. CUSK: When we determine the tycon's final, never-to-be-changed kind in kcHsTyVarBndrs, we check to make sure all implicitly-bound kind vars are indeed mentioned in a kind somewhere. If not, error. -} -------------------- -- getInitialKind has made a suitably-shaped kind for the type or class -- Look it up in the local environment. This is used only for tycons -- that we're currently type-checking, so we're sure to find a TcTyCon. kcLookupTcTyCon :: Name -> TcM TcTyCon kcLookupTcTyCon nm = do { tc_ty_thing <- tcLookup nm ; return $ case tc_ty_thing of ATcTyCon tc -> tc _ -> pprPanic "kcLookupTcTyCon" (ppr tc_ty_thing) } ----------------------- -- | Bring tycon tyvars into scope. This is used during the "kind-checking" -- pass in TcTyClsDecls. (Never in getInitialKind, never in the -- "type-checking"/desugaring pass.) -- Never emits constraints, though the thing_inside might. kcTyClTyVars :: Name -> TcM a -> TcM a kcTyClTyVars tycon_name thing_inside = do { tycon <- kcLookupTcTyCon tycon_name ; tcExtendTyVarEnv (tcTyConScopedTyVars tycon) $ thing_inside } tcTyClTyVars :: Name -> ([TyVar] -> [TyBinder] -> Kind -> TcM a) -> TcM a -- ^ Used for the type variables of a type or class decl -- on the second full pass (type-checking/desugaring) in TcTyClDecls. -- This is *not* used in the initial-kind run, nor in the "kind-checking" pass. -- Accordingly, everything passed to the continuation is fully zonked. -- -- (tcTyClTyVars T [a,b] thing_inside) -- where T : forall k1 k2 (a:k1 -> *) (b:k1). k2 -> * -- calls thing_inside with arguments -- [k1,k2,a,b] [k1:*, k2:*, Anon (k1 -> *), Anon k1] (k2 -> *) -- having also extended the type environment with bindings -- for k1,k2,a,b -- -- Never emits constraints. -- -- The LHsTyVarBndrs is always user-written, and the full, generalised -- kind of the tycon is available in the local env. tcTyClTyVars tycon_name thing_inside = do { tycon <- kcLookupTcTyCon tycon_name ; let scoped_tvs = tcTyConScopedTyVars tycon -- these are all zonked: tkvs = tyConTyVars tycon binders = tyConBinders tycon res_kind = tyConResKind tycon -- See Note [Free-floating kind vars] ; zonked_scoped_tvs <- mapM zonkTcTyVarToTyVar scoped_tvs ; let still_sig_tvs = filter isSigTyVar zonked_scoped_tvs ; checkNoErrs $ reportFloatingKvs tycon_name zonked_scoped_tvs still_sig_tvs -- Add the *unzonked* tyvars to the env't, because those -- are the ones mentioned in the source. ; tcExtendTyVarEnv scoped_tvs $ thing_inside tkvs binders res_kind } where ----------------------------------- tcDataKindSig :: Kind -> TcM ([TyVar], [TyBinder], Kind) -- GADT decls can have a (perhaps partial) kind signature -- e.g. data T :: * -> * -> * where ... -- This function makes up suitable (kinded) type variables for -- the argument kinds, and checks that the result kind is indeed *. -- We use it also to make up argument type variables for for data instances. -- Never emits constraints. -- Returns the new TyVars, the extracted TyBinders, and the new, reduced -- result kind (which should always be Type or a synonym thereof) tcDataKindSig kind = do { checkTc (isLiftedTypeKind res_kind) (badKindSig kind) ; span <- getSrcSpanM ; us <- newUniqueSupply ; rdr_env <- getLocalRdrEnv ; let uniqs = uniqsFromSupply us occs = [ occ | str <- allNameStrings , let occ = mkOccName tvName str , isNothing (lookupLocalRdrOcc rdr_env occ) ] -- Note [Avoid name clashes for associated data types] -- NB: Use the tv from a binder if there is one. Otherwise, -- we end up inventing a new Unique for it, and any other tv -- that mentions the first ends up with the wrong kind. ; return ( [ tv | ((bndr, occ), uniq) <- bndrs `zip` occs `zip` uniqs , let tv | Just bndr_tv <- binderVar_maybe bndr = bndr_tv | otherwise = mk_tv span uniq occ (binderType bndr) ] , bndrs, res_kind ) } where (bndrs, res_kind) = splitPiTys kind mk_tv loc uniq occ kind = mkTyVar (mkInternalName uniq occ loc) kind badKindSig :: Kind -> SDoc badKindSig kind = hang (text "Kind signature on data type declaration has non-* return kind") 2 (ppr kind) {- Note [Avoid name clashes for associated data types] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider class C a b where data D b :: * -> * When typechecking the decl for D, we'll invent an extra type variable for D, to fill out its kind. Ideally we don't want this type variable to be 'a', because when pretty printing we'll get class C a b where data D b a0 (NB: the tidying happens in the conversion to IfaceSyn, which happens as part of pretty-printing a TyThing.) That's why we look in the LocalRdrEnv to see what's in scope. This is important only to get nice-looking output when doing ":info C" in GHCi. It isn't essential for correctness. ************************************************************************ * * Scoped type variables * * ************************************************************************ tcAddScopedTyVars is used for scoped type variables added by pattern type signatures e.g. \ ((x::a), (y::a)) -> x+y They never have explicit kinds (because this is source-code only) They are mutable (because they can get bound to a more specific type). Usually we kind-infer and expand type splices, and then tupecheck/desugar the type. That doesn't work well for scoped type variables, because they scope left-right in patterns. (e.g. in the example above, the 'a' in (y::a) is bound by the 'a' in (x::a). The current not-very-good plan is to * find all the types in the patterns * find their free tyvars * do kind inference * bring the kinded type vars into scope * BUT throw away the kind-checked type (we'll kind-check it again when we type-check the pattern) This is bad because throwing away the kind checked type throws away its splices. But too bad for now. [July 03] Historical note: We no longer specify that these type variables must be universally quantified (lots of email on the subject). If you want to put that back in, you need to a) Do a checkSigTyVars after thing_inside b) More insidiously, don't pass in expected_ty, else we unify with it too early and checkSigTyVars barfs Instead you have to pass in a fresh ty var, and unify it with expected_ty afterwards -} tcHsPatSigType :: UserTypeCtxt -> LHsSigWcType Name -- The type signature -> TcM ( Type -- The signature , [TcTyVar] -- The new bit of type environment, binding -- the scoped type variables , [(Name, TcTyVar)] ) -- The wildcards -- Used for type-checking type signatures in -- (a) patterns e.g f (x::Int) = e -- (b) RULE forall bndrs e.g. forall (x::Int). f x = x -- -- This may emit constraints tcHsPatSigType ctxt sig_ty | HsIB { hsib_vars = sig_vars, hsib_body = wc_ty } <- sig_ty , HsWC { hswc_wcs = sig_wcs, hswc_ctx = extra, hswc_body = hs_ty } <- wc_ty = ASSERT( isNothing extra ) -- No extra-constraint wildcard in pattern sigs addSigCtxt ctxt hs_ty $ tcWildCardBinders sig_wcs $ \ wcs -> do { emitWildCardHoleConstraints wcs ; (vars, sig_ty) <- tcImplicitTKBndrsX new_tkv sig_vars $ do { ty <- tcHsLiftedType hs_ty ; return (ty, allBoundVariables ty) } ; sig_ty <- zonkTcType sig_ty -- don't use zonkTcTypeToType; it mistreats wildcards ; checkValidType ctxt sig_ty ; traceTc "tcHsPatSigType" (ppr sig_vars) ; return (sig_ty, vars, wcs) } where new_tkv name -- See Note [Pattern signature binders] = (, False) <$> -- "False" means that these tyvars aren't yet in scope do { kind <- newMetaKindVar ; case ctxt of RuleSigCtxt {} -> return $ new_skolem_tv name kind _ -> newSigTyVar name kind } -- See Note [Unifying SigTvs] tcPatSig :: Bool -- True <=> pattern binding -> LHsSigWcType Name -> ExpSigmaType -> TcM (TcType, -- The type to use for "inside" the signature [TcTyVar], -- The new bit of type environment, binding -- the scoped type variables [(Name, TcTyVar)], -- The wildcards HsWrapper) -- Coercion due to unification with actual ty -- Of shape: res_ty ~ sig_ty tcPatSig in_pat_bind sig res_ty = do { (sig_ty, sig_tvs, sig_wcs) <- tcHsPatSigType PatSigCtxt sig -- sig_tvs are the type variables free in 'sig', -- and not already in scope. These are the ones -- that should be brought into scope ; if null sig_tvs then do { -- Just do the subsumption check and return wrap <- addErrCtxtM (mk_msg sig_ty) $ tcSubTypeET_NC PatSigCtxt res_ty sig_ty ; return (sig_ty, [], sig_wcs, wrap) } else do -- Type signature binds at least one scoped type variable -- A pattern binding cannot bind scoped type variables -- It is more convenient to make the test here -- than in the renamer { when in_pat_bind (addErr (patBindSigErr sig_tvs)) -- Check that all newly-in-scope tyvars are in fact -- constrained by the pattern. This catches tiresome -- cases like -- type T a = Int -- f :: Int -> Int -- f (x :: T a) = ... -- Here 'a' doesn't get a binding. Sigh ; let bad_tvs = [ tv | tv <- sig_tvs , not (tv `elemVarSet` exactTyCoVarsOfType sig_ty) ] ; checkTc (null bad_tvs) (badPatSigTvs sig_ty bad_tvs) -- Now do a subsumption check of the pattern signature against res_ty ; wrap <- addErrCtxtM (mk_msg sig_ty) $ tcSubTypeET_NC PatSigCtxt res_ty sig_ty -- Phew! ; return (sig_ty, sig_tvs, sig_wcs, wrap) } } where mk_msg sig_ty tidy_env = do { (tidy_env, sig_ty) <- zonkTidyTcType tidy_env sig_ty ; res_ty <- readExpType res_ty -- should be filled in by now ; (tidy_env, res_ty) <- zonkTidyTcType tidy_env res_ty ; let msg = vcat [ hang (text "When checking that the pattern signature:") 4 (ppr sig_ty) , nest 2 (hang (text "fits the type of its context:") 2 (ppr res_ty)) ] ; return (tidy_env, msg) } patBindSigErr :: [TcTyVar] -> SDoc patBindSigErr sig_tvs = hang (text "You cannot bind scoped type variable" <> plural sig_tvs <+> pprQuotedList sig_tvs) 2 (text "in a pattern binding signature") {- Note [Pattern signature binders] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider data T = forall a. T a (a->Int) f (T x (f :: a->Int) = blah) Here * The pattern (T p1 p2) creates a *skolem* type variable 'a_sk', It must be a skolem so that that it retains its identity, and TcErrors.getSkolemInfo can thereby find the binding site for the skolem. * The type signature pattern (f :: a->Int) binds "a" -> a_sig in the envt * Then unification makes a_sig := a_sk That's why we must make a_sig a MetaTv (albeit a SigTv), not a SkolemTv, so that it can unify to a_sk. For RULE binders, though, things are a bit different (yuk). RULE "foo" forall (x::a) (y::[a]). f x y = ... Here this really is the binding site of the type variable so we'd like to use a skolem, so that we get a complaint if we unify two of them together. Note [Unifying SigTvs] ~~~~~~~~~~~~~~~~~~~~~~ ALAS we have no decent way of avoiding two SigTvs getting unified. Consider f (x::(a,b)) (y::c)) = [fst x, y] Here we'd really like to complain that 'a' and 'c' are unified. But for the reasons above we can't make a,b,c into skolems, so they are just SigTvs that can unify. And indeed, this would be ok, f x (y::c) = case x of (x1 :: a1, True) -> [x,y] (x1 :: a2, False) -> [x,y,y] Here the type of x's first component is called 'a1' in one branch and 'a2' in the other. We could try insisting on the same OccName, but they definitely won't have the sane lexical Name. I think we could solve this by recording in a SigTv a list of all the in-scope variables that it should not unify with, but it's fiddly. ************************************************************************ * * Checking kinds * * ************************************************************************ -} -- | Produce an 'TcKind' suitable for a checking a type that can be * or #. ekOpen :: TcM TcKind ekOpen = do { rr <- newFlexiTyVarTy runtimeRepTy ; return (tYPE rr) } unifyKinds :: [(TcType, TcKind)] -> TcM ([TcType], TcKind) unifyKinds act_kinds = do { kind <- newMetaKindVar ; let check (ty, act_kind) = checkExpectedKind ty act_kind kind ; tys' <- mapM check act_kinds ; return (tys', kind) } {- ************************************************************************ * * Sort checking kinds * * ************************************************************************ tcLHsKind converts a user-written kind to an internal, sort-checked kind. It does sort checking and desugaring at the same time, in one single pass. -} tcLHsKind :: LHsKind Name -> TcM Kind tcLHsKind = tc_lhs_kind kindLevelMode tc_lhs_kind :: TcTyMode -> LHsKind Name -> TcM Kind tc_lhs_kind mode k = addErrCtxt (text "In the kind" <+> quotes (ppr k)) $ tc_lhs_type (kindLevel mode) k liftedTypeKind promotionErr :: Name -> PromotionErr -> TcM a promotionErr name err = failWithTc (hang (pprPECategory err <+> quotes (ppr name) <+> text "cannot be used here") 2 (parens reason)) where reason = case err of FamDataConPE -> text "it comes from a data family instance" NoDataKindsTC -> text "Perhaps you intended to use DataKinds" NoDataKindsDC -> text "Perhaps you intended to use DataKinds" NoTypeInTypeTC -> text "Perhaps you intended to use TypeInType" NoTypeInTypeDC -> text "Perhaps you intended to use TypeInType" PatSynPE -> text "Pattern synonyms cannot be promoted" _ -> text "it is defined and used in the same recursive group" {- ************************************************************************ * * Scoped type variables * * ************************************************************************ -} badPatSigTvs :: TcType -> [TyVar] -> SDoc badPatSigTvs sig_ty bad_tvs = vcat [ fsep [text "The type variable" <> plural bad_tvs, quotes (pprWithCommas ppr bad_tvs), text "should be bound by the pattern signature" <+> quotes (ppr sig_ty), text "but are actually discarded by a type synonym" ] , text "To fix this, expand the type synonym" , text "[Note: I hope to lift this restriction in due course]" ] {- ************************************************************************ * * Error messages and such * * ************************************************************************ -} -- | Make an appropriate message for an error in a function argument. -- Used for both expressions and types. funAppCtxt :: (Outputable fun, Outputable arg) => fun -> arg -> Int -> SDoc funAppCtxt fun arg arg_no = hang (hsep [ text "In the", speakNth arg_no, ptext (sLit "argument of"), quotes (ppr fun) <> text ", namely"]) 2 (quotes (ppr arg)) -- See Note [Free-floating kind vars] reportFloatingKvs :: Name -- of the tycon -> [TcTyVar] -- all tyvars, not necessarily zonked -> [TcTyVar] -- floating tyvars -> TcM () reportFloatingKvs tycon_name all_tvs bad_tvs = unless (null bad_tvs) $ -- don't bother zonking if there's no error do { all_tvs <- mapM zonkTcTyVarToTyVar all_tvs ; bad_tvs <- mapM zonkTcTyVarToTyVar bad_tvs ; let (tidy_env, tidy_all_tvs) = tidyOpenTyCoVars emptyTidyEnv all_tvs tidy_bad_tvs = map (tidyTyVarOcc tidy_env) bad_tvs ; typeintype <- xoptM LangExt.TypeInType ; mapM_ (report typeintype tidy_all_tvs) tidy_bad_tvs } where report typeintype tidy_all_tvs tidy_bad_tv = addErr $ vcat [ text "Kind variable" <+> quotes (ppr tidy_bad_tv) <+> text "is implicitly bound in datatype" , quotes (ppr tycon_name) <> comma <+> text "but does not appear as the kind of any" , text "of its type variables. Perhaps you meant" , text "to bind it" <+> ppWhen (not typeintype) (text "(with TypeInType)") <+> text "explicitly somewhere?" , ppWhen (not (null tidy_all_tvs)) $ hang (text "Type variables with inferred kinds:") 2 (ppr_tv_bndrs tidy_all_tvs) ] ppr_tv_bndrs tvs = sep (map pp_tv tvs) pp_tv tv = parens (ppr tv <+> dcolon <+> ppr (tyVarKind tv))