module Data.Functor.Compose (
Compose(..),
) where
import Data.Functor.Classes
import Control.Applicative
import Data.Data (Data)
import Data.Foldable (Foldable(foldMap))
import Data.Traversable (Traversable(traverse))
import GHC.Generics (Generic, Generic1)
infixr 9 `Compose`
newtype Compose f g a = Compose { getCompose :: f (g a) }
deriving (Data, Generic)
deriving instance Functor f => Generic1 (Compose f g)
instance (Eq1 f, Eq1 g) => Eq1 (Compose f g) where
liftEq eq (Compose x) (Compose y) = liftEq (liftEq eq) x y
instance (Ord1 f, Ord1 g) => Ord1 (Compose f g) where
liftCompare comp (Compose x) (Compose y) =
liftCompare (liftCompare comp) x y
instance (Read1 f, Read1 g) => Read1 (Compose f g) where
liftReadsPrec rp rl = readsData $
readsUnaryWith (liftReadsPrec rp' rl') "Compose" Compose
where
rp' = liftReadsPrec rp rl
rl' = liftReadList rp rl
instance (Show1 f, Show1 g) => Show1 (Compose f g) where
liftShowsPrec sp sl d (Compose x) =
showsUnaryWith (liftShowsPrec sp' sl') "Compose" d x
where
sp' = liftShowsPrec sp sl
sl' = liftShowList sp sl
instance (Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) where
(==) = eq1
instance (Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) where
compare = compare1
instance (Read1 f, Read1 g, Read a) => Read (Compose f g a) where
readsPrec = readsPrec1
instance (Show1 f, Show1 g, Show a) => Show (Compose f g a) where
showsPrec = showsPrec1
instance (Functor f, Functor g) => Functor (Compose f g) where
fmap f (Compose x) = Compose (fmap (fmap f) x)
instance (Foldable f, Foldable g) => Foldable (Compose f g) where
foldMap f (Compose t) = foldMap (foldMap f) t
instance (Traversable f, Traversable g) => Traversable (Compose f g) where
traverse f (Compose t) = Compose <$> traverse (traverse f) t
instance (Applicative f, Applicative g) => Applicative (Compose f g) where
pure x = Compose (pure (pure x))
Compose f <*> Compose x = Compose ((<*>) <$> f <*> x)
instance (Alternative f, Applicative g) => Alternative (Compose f g) where
empty = Compose empty
Compose x <|> Compose y = Compose (x <|> y)