module Data.Functor.Product (
Product(..),
) where
import Control.Applicative
import Control.Monad (MonadPlus(..))
import Control.Monad.Fix (MonadFix(..))
import Control.Monad.Zip (MonadZip(mzipWith))
import Data.Data (Data)
import Data.Foldable (Foldable(foldMap))
import Data.Functor.Classes
import Data.Monoid (mappend)
import Data.Traversable (Traversable(traverse))
import GHC.Generics (Generic, Generic1)
data Product f g a = Pair (f a) (g a)
deriving (Data, Generic, Generic1)
instance (Eq1 f, Eq1 g) => Eq1 (Product f g) where
liftEq eq (Pair x1 y1) (Pair x2 y2) = liftEq eq x1 x2 && liftEq eq y1 y2
instance (Ord1 f, Ord1 g) => Ord1 (Product f g) where
liftCompare comp (Pair x1 y1) (Pair x2 y2) =
liftCompare comp x1 x2 `mappend` liftCompare comp y1 y2
instance (Read1 f, Read1 g) => Read1 (Product f g) where
liftReadsPrec rp rl = readsData $
readsBinaryWith (liftReadsPrec rp rl) (liftReadsPrec rp rl) "Pair" Pair
instance (Show1 f, Show1 g) => Show1 (Product f g) where
liftShowsPrec sp sl d (Pair x y) =
showsBinaryWith (liftShowsPrec sp sl) (liftShowsPrec sp sl) "Pair" d x y
instance (Eq1 f, Eq1 g, Eq a) => Eq (Product f g a)
where (==) = eq1
instance (Ord1 f, Ord1 g, Ord a) => Ord (Product f g a) where
compare = compare1
instance (Read1 f, Read1 g, Read a) => Read (Product f g a) where
readsPrec = readsPrec1
instance (Show1 f, Show1 g, Show a) => Show (Product f g a) where
showsPrec = showsPrec1
instance (Functor f, Functor g) => Functor (Product f g) where
fmap f (Pair x y) = Pair (fmap f x) (fmap f y)
instance (Foldable f, Foldable g) => Foldable (Product f g) where
foldMap f (Pair x y) = foldMap f x `mappend` foldMap f y
instance (Traversable f, Traversable g) => Traversable (Product f g) where
traverse f (Pair x y) = Pair <$> traverse f x <*> traverse f y
instance (Applicative f, Applicative g) => Applicative (Product f g) where
pure x = Pair (pure x) (pure x)
Pair f g <*> Pair x y = Pair (f <*> x) (g <*> y)
instance (Alternative f, Alternative g) => Alternative (Product f g) where
empty = Pair empty empty
Pair x1 y1 <|> Pair x2 y2 = Pair (x1 <|> x2) (y1 <|> y2)
instance (Monad f, Monad g) => Monad (Product f g) where
Pair m n >>= f = Pair (m >>= fstP . f) (n >>= sndP . f)
where
fstP (Pair a _) = a
sndP (Pair _ b) = b
instance (MonadPlus f, MonadPlus g) => MonadPlus (Product f g) where
mzero = Pair mzero mzero
Pair x1 y1 `mplus` Pair x2 y2 = Pair (x1 `mplus` x2) (y1 `mplus` y2)
instance (MonadFix f, MonadFix g) => MonadFix (Product f g) where
mfix f = Pair (mfix (fstP . f)) (mfix (sndP . f))
where
fstP (Pair a _) = a
sndP (Pair _ b) = b
instance (MonadZip f, MonadZip g) => MonadZip (Product f g) where
mzipWith f (Pair x1 y1) (Pair x2 y2) = Pair (mzipWith f x1 x2) (mzipWith f y1 y2)