{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


Pattern-matching literal patterns
-}

{-# LANGUAGE CPP, ScopedTypeVariables #-}
{-# LANGUAGE ViewPatterns #-}

module MatchLit ( dsLit, dsOverLit, hsLitKey
                , tidyLitPat, tidyNPat
                , matchLiterals, matchNPlusKPats, matchNPats
                , warnAboutIdentities
                , warnAboutOverflowedOverLit, warnAboutOverflowedLit
                , warnAboutEmptyEnumerations
                ) where

#include "HsVersions.h"

import GhcPrelude

import {-# SOURCE #-} Match  ( match )
import {-# SOURCE #-} DsExpr ( dsExpr, dsSyntaxExpr )

import DsMonad
import DsUtils

import GHC.Hs

import Id
import CoreSyn
import MkCore
import TyCon
import DataCon
import TcHsSyn ( shortCutLit )
import TcType
import Name
import Type
import PrelNames
import TysWiredIn
import TysPrim
import Literal
import SrcLoc
import Data.Ratio
import Outputable
import BasicTypes
import DynFlags
import Util
import FastString
import qualified GHC.LanguageExtensions as LangExt

import Control.Monad
import Data.Int
import Data.Word
import Data.Proxy

{-
************************************************************************
*                                                                      *
                Desugaring literals
        [used to be in DsExpr, but DsMeta needs it,
         and it's nice to avoid a loop]
*                                                                      *
************************************************************************

We give int/float literals type @Integer@ and @Rational@, respectively.
The typechecker will (presumably) have put \tr{from{Integer,Rational}s}
around them.

ToDo: put in range checks for when converting ``@i@''
(or should that be in the typechecker?)

For numeric literals, we try to detect there use at a standard type
(@Int@, @Float@, etc.) are directly put in the right constructor.
[NB: down with the @App@ conversion.]

See also below where we look for @DictApps@ for \tr{plusInt}, etc.
-}

dsLit :: HsLit GhcRn -> DsM CoreExpr
dsLit l = do
  dflags <- getDynFlags
  case l of
    HsStringPrim _ s -> return (Lit (LitString s))
    HsCharPrim   _ c -> return (Lit (LitChar c))
    HsIntPrim    _ i -> return (Lit (mkLitIntWrap dflags i))
    HsWordPrim   _ w -> return (Lit (mkLitWordWrap dflags w))
    HsInt64Prim  _ i -> return (Lit (mkLitInt64Wrap dflags i))
    HsWord64Prim _ w -> return (Lit (mkLitWord64Wrap dflags w))
    HsFloatPrim  _ f -> return (Lit (LitFloat (fl_value f)))
    HsDoublePrim _ d -> return (Lit (LitDouble (fl_value d)))
    HsChar _ c       -> return (mkCharExpr c)
    HsString _ str   -> mkStringExprFS str
    HsInteger _ i _  -> mkIntegerExpr i
    HsInt _ i        -> return (mkIntExpr dflags (il_value i))
    XLit nec         -> noExtCon nec
    HsRat _ (FL _ _ val) ty -> do
      num   <- mkIntegerExpr (numerator val)
      denom <- mkIntegerExpr (denominator val)
      return (mkCoreConApps ratio_data_con [Type integer_ty, num, denom])
      where
        (ratio_data_con, integer_ty)
            = case tcSplitTyConApp ty of
                    (tycon, [i_ty]) -> ASSERT(isIntegerTy i_ty && tycon `hasKey` ratioTyConKey)
                                       (head (tyConDataCons tycon), i_ty)
                    x -> pprPanic "dsLit" (ppr x)

dsOverLit :: HsOverLit GhcTc -> DsM CoreExpr
-- ^ Post-typechecker, the 'HsExpr' field of an 'OverLit' contains
-- (an expression for) the literal value itself.
dsOverLit (OverLit { ol_val = val, ol_ext = OverLitTc rebindable ty
                   , ol_witness = witness }) = do
  dflags <- getDynFlags
  case shortCutLit dflags val ty of
    Just expr | not rebindable -> dsExpr expr        -- Note [Literal short cut]
    _                          -> dsExpr witness
dsOverLit (XOverLit nec) = noExtCon nec
{-
Note [Literal short cut]
~~~~~~~~~~~~~~~~~~~~~~~~
The type checker tries to do this short-cutting as early as possible, but
because of unification etc, more information is available to the desugarer.
And where it's possible to generate the correct literal right away, it's
much better to do so.


************************************************************************
*                                                                      *
                 Warnings about overflowed literals
*                                                                      *
************************************************************************

Warn about functions like toInteger, fromIntegral, that convert
between one type and another when the to- and from- types are the
same.  Then it's probably (albeit not definitely) the identity
-}

warnAboutIdentities :: DynFlags -> CoreExpr -> Type -> DsM ()
warnAboutIdentities dflags (Var conv_fn) type_of_conv
  | wopt Opt_WarnIdentities dflags
  , idName conv_fn `elem` conversionNames
  , Just (arg_ty, res_ty) <- splitFunTy_maybe type_of_conv
  , arg_ty `eqType` res_ty  -- So we are converting  ty -> ty
  = warnDs (Reason Opt_WarnIdentities)
           (vcat [ text "Call of" <+> ppr conv_fn <+> dcolon <+> ppr type_of_conv
                 , nest 2 $ text "can probably be omitted"
           ])
warnAboutIdentities _ _ _ = return ()

conversionNames :: [Name]
conversionNames
  = [ toIntegerName, toRationalName
    , fromIntegralName, realToFracName ]
 -- We can't easily add fromIntegerName, fromRationalName,
 -- because they are generated by literals


-- | Emit warnings on overloaded integral literals which overflow the bounds
-- implied by their type.
warnAboutOverflowedOverLit :: HsOverLit GhcTc -> DsM ()
warnAboutOverflowedOverLit hsOverLit = do
  dflags <- getDynFlags
  warnAboutOverflowedLiterals dflags (getIntegralLit hsOverLit)

-- | Emit warnings on integral literals which overflow the boudns implied by
-- their type.
warnAboutOverflowedLit :: HsLit GhcTc -> DsM ()
warnAboutOverflowedLit hsLit = do
  dflags <- getDynFlags
  warnAboutOverflowedLiterals dflags (getSimpleIntegralLit hsLit)

-- | Emit warnings on integral literals which overflow the bounds implied by
-- their type.
warnAboutOverflowedLiterals
  :: DynFlags
  -> Maybe (Integer, Name)  -- ^ the literal value and name of its tycon
  -> DsM ()
warnAboutOverflowedLiterals dflags lit
 | wopt Opt_WarnOverflowedLiterals dflags
 , Just (i, tc) <- lit
 =  if      tc == intTyConName     then check i tc (Proxy :: Proxy Int)

    -- These only show up via the 'HsOverLit' route
    else if tc == int8TyConName    then check i tc (Proxy :: Proxy Int8)
    else if tc == int16TyConName   then check i tc (Proxy :: Proxy Int16)
    else if tc == int32TyConName   then check i tc (Proxy :: Proxy Int32)
    else if tc == int64TyConName   then check i tc (Proxy :: Proxy Int64)
    else if tc == wordTyConName    then check i tc (Proxy :: Proxy Word)
    else if tc == word8TyConName   then check i tc (Proxy :: Proxy Word8)
    else if tc == word16TyConName  then check i tc (Proxy :: Proxy Word16)
    else if tc == word32TyConName  then check i tc (Proxy :: Proxy Word32)
    else if tc == word64TyConName  then check i tc (Proxy :: Proxy Word64)
    else if tc == naturalTyConName then checkPositive i tc

    -- These only show up via the 'HsLit' route
    else if tc == intPrimTyConName    then check i tc (Proxy :: Proxy Int)
    else if tc == int8PrimTyConName   then check i tc (Proxy :: Proxy Int8)
    else if tc == int32PrimTyConName  then check i tc (Proxy :: Proxy Int32)
    else if tc == int64PrimTyConName  then check i tc (Proxy :: Proxy Int64)
    else if tc == wordPrimTyConName   then check i tc (Proxy :: Proxy Word)
    else if tc == word8PrimTyConName  then check i tc (Proxy :: Proxy Word8)
    else if tc == word32PrimTyConName then check i tc (Proxy :: Proxy Word32)
    else if tc == word64PrimTyConName then check i tc (Proxy :: Proxy Word64)

    else return ()

  | otherwise = return ()
  where

    checkPositive :: Integer -> Name -> DsM ()
    checkPositive i tc
      = when (i < 0) $ do
        warnDs (Reason Opt_WarnOverflowedLiterals)
               (vcat [ text "Literal" <+> integer i
                       <+> text "is negative but" <+> ppr tc
                       <+> ptext (sLit "only supports positive numbers")
                     ])

    check :: forall a. (Bounded a, Integral a) => Integer -> Name -> Proxy a -> DsM ()
    check i tc _proxy
      = when (i < minB || i > maxB) $ do
        warnDs (Reason Opt_WarnOverflowedLiterals)
               (vcat [ text "Literal" <+> integer i
                       <+> text "is out of the" <+> ppr tc <+> ptext (sLit "range")
                       <+> integer minB <> text ".." <> integer maxB
                     , sug ])
      where
        minB = toInteger (minBound :: a)
        maxB = toInteger (maxBound :: a)
        sug | minB == -i   -- Note [Suggest NegativeLiterals]
            , i > 0
            , not (xopt LangExt.NegativeLiterals dflags)
            = text "If you are trying to write a large negative literal, use NegativeLiterals"
            | otherwise = Outputable.empty

{-
Note [Suggest NegativeLiterals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you write
  x :: Int8
  x = -128
it'll parse as (negate 128), and overflow.  In this case, suggest NegativeLiterals.
We get an erroneous suggestion for
  x = 128
but perhaps that does not matter too much.
-}

warnAboutEmptyEnumerations :: DynFlags -> LHsExpr GhcTc -> Maybe (LHsExpr GhcTc)
                           -> LHsExpr GhcTc -> DsM ()
-- ^ Warns about @[2,3 .. 1]@ which returns the empty list.
-- Only works for integral types, not floating point.
warnAboutEmptyEnumerations dflags fromExpr mThnExpr toExpr
  | wopt Opt_WarnEmptyEnumerations dflags
  , Just (from,tc) <- getLHsIntegralLit fromExpr
  , Just mThn      <- traverse getLHsIntegralLit mThnExpr
  , Just (to,_)    <- getLHsIntegralLit toExpr
  , let check :: forall a. (Enum a, Num a) => Proxy a -> DsM ()
        check _proxy
          = when (null enumeration) $
            warnDs (Reason Opt_WarnEmptyEnumerations) (text "Enumeration is empty")
          where
            enumeration :: [a]
            enumeration = case mThn of
                            Nothing      -> [fromInteger from                    .. fromInteger to]
                            Just (thn,_) -> [fromInteger from, fromInteger thn   .. fromInteger to]

  = if      tc == intTyConName    then check (Proxy :: Proxy Int)
    else if tc == int8TyConName   then check (Proxy :: Proxy Int8)
    else if tc == int16TyConName  then check (Proxy :: Proxy Int16)
    else if tc == int32TyConName  then check (Proxy :: Proxy Int32)
    else if tc == int64TyConName  then check (Proxy :: Proxy Int64)
    else if tc == wordTyConName   then check (Proxy :: Proxy Word)
    else if tc == word8TyConName  then check (Proxy :: Proxy Word8)
    else if tc == word16TyConName then check (Proxy :: Proxy Word16)
    else if tc == word32TyConName then check (Proxy :: Proxy Word32)
    else if tc == word64TyConName then check (Proxy :: Proxy Word64)
    else if tc == integerTyConName then check (Proxy :: Proxy Integer)
    else if tc == naturalTyConName then check (Proxy :: Proxy Integer)
      -- We use 'Integer' because otherwise a negative 'Natural' literal
      -- could cause a compile time crash (instead of a runtime one).
      -- See the T10930b test case for an example of where this matters.
    else return ()

  | otherwise = return ()

getLHsIntegralLit :: LHsExpr GhcTc -> Maybe (Integer, Name)
-- ^ See if the expression is an 'Integral' literal.
-- Remember to look through automatically-added tick-boxes! (#8384)
getLHsIntegralLit (dL->L _ (HsPar _ e))            = getLHsIntegralLit e
getLHsIntegralLit (dL->L _ (HsTick _ _ e))         = getLHsIntegralLit e
getLHsIntegralLit (dL->L _ (HsBinTick _ _ _ e))    = getLHsIntegralLit e
getLHsIntegralLit (dL->L _ (HsOverLit _ over_lit)) = getIntegralLit over_lit
getLHsIntegralLit (dL->L _ (HsLit _ lit))          = getSimpleIntegralLit lit
getLHsIntegralLit _ = Nothing

-- | If 'Integral', extract the value and type name of the overloaded literal.
getIntegralLit :: HsOverLit GhcTc -> Maybe (Integer, Name)
getIntegralLit (OverLit { ol_val = HsIntegral i, ol_ext = OverLitTc _ ty })
  | Just tc <- tyConAppTyCon_maybe ty
  = Just (il_value i, tyConName tc)
getIntegralLit _ = Nothing

-- | If 'Integral', extract the value and type name of the non-overloaded
-- literal.
getSimpleIntegralLit :: HsLit GhcTc -> Maybe (Integer, Name)
getSimpleIntegralLit (HsInt _ IL{ il_value = i }) = Just (i, intTyConName)
getSimpleIntegralLit (HsIntPrim _ i) = Just (i, intPrimTyConName)
getSimpleIntegralLit (HsWordPrim _ i) = Just (i, wordPrimTyConName)
getSimpleIntegralLit (HsInt64Prim _ i) = Just (i, int64PrimTyConName)
getSimpleIntegralLit (HsWord64Prim _ i) = Just (i, word64PrimTyConName)
getSimpleIntegralLit (HsInteger _ i ty)
  | Just tc <- tyConAppTyCon_maybe ty
  = Just (i, tyConName tc)
getSimpleIntegralLit _ = Nothing

{-
************************************************************************
*                                                                      *
        Tidying lit pats
*                                                                      *
************************************************************************
-}

tidyLitPat :: HsLit GhcTc -> Pat GhcTc
-- Result has only the following HsLits:
--      HsIntPrim, HsWordPrim, HsCharPrim, HsFloatPrim
--      HsDoublePrim, HsStringPrim, HsString
--  * HsInteger, HsRat, HsInt can't show up in LitPats
--  * We get rid of HsChar right here
tidyLitPat (HsChar src c) = unLoc (mkCharLitPat src c)
tidyLitPat (HsString src s)
  | lengthFS s <= 1     -- Short string literals only
  = unLoc $ foldr (\c pat -> mkPrefixConPat consDataCon
                                             [mkCharLitPat src c, pat] [charTy])
                  (mkNilPat charTy) (unpackFS s)
        -- The stringTy is the type of the whole pattern, not
        -- the type to instantiate (:) or [] with!
tidyLitPat lit = LitPat noExtField lit

----------------
tidyNPat :: HsOverLit GhcTc -> Maybe (SyntaxExpr GhcTc) -> SyntaxExpr GhcTc
         -> Type
         -> Pat GhcTc
tidyNPat (OverLit (OverLitTc False ty) val _) mb_neg _eq outer_ty
        -- False: Take short cuts only if the literal is not using rebindable syntax
        --
        -- Once that is settled, look for cases where the type of the
        -- entire overloaded literal matches the type of the underlying literal,
        -- and in that case take the short cut
        -- NB: Watch out for weird cases like #3382
        --        f :: Int -> Int
        --        f "blah" = 4
        --     which might be ok if we have 'instance IsString Int'
        --
  | not type_change, isIntTy ty,    Just int_lit <- mb_int_lit
                 = mk_con_pat intDataCon    (HsIntPrim    NoSourceText int_lit)
  | not type_change, isWordTy ty,   Just int_lit <- mb_int_lit
                 = mk_con_pat wordDataCon   (HsWordPrim   NoSourceText int_lit)
  | not type_change, isStringTy ty, Just str_lit <- mb_str_lit
                 = tidyLitPat (HsString NoSourceText str_lit)
     -- NB: do /not/ convert Float or Double literals to F# 3.8 or D# 5.3
     -- If we do convert to the constructor form, we'll generate a case
     -- expression on a Float# or Double# and that's not allowed in Core; see
     -- #9238 and Note [Rules for floating-point comparisons] in PrelRules
  where
    -- Sometimes (like in test case
    -- overloadedlists/should_run/overloadedlistsrun04), the SyntaxExprs include
    -- type-changing wrappers (for example, from Id Int to Int, for the identity
    -- type family Id). In these cases, we can't do the short-cut.
    type_change = not (outer_ty `eqType` ty)

    mk_con_pat :: DataCon -> HsLit GhcTc -> Pat GhcTc
    mk_con_pat con lit
      = unLoc (mkPrefixConPat con [noLoc $ LitPat noExtField lit] [])

    mb_int_lit :: Maybe Integer
    mb_int_lit = case (mb_neg, val) of
                   (Nothing, HsIntegral i) -> Just (il_value i)
                   (Just _,  HsIntegral i) -> Just (-(il_value i))
                   _ -> Nothing

    mb_str_lit :: Maybe FastString
    mb_str_lit = case (mb_neg, val) of
                   (Nothing, HsIsString _ s) -> Just s
                   _ -> Nothing

tidyNPat over_lit mb_neg eq outer_ty
  = NPat outer_ty (noLoc over_lit) mb_neg eq

{-
************************************************************************
*                                                                      *
                Pattern matching on LitPat
*                                                                      *
************************************************************************
-}

matchLiterals :: [Id]
              -> Type                   -- Type of the whole case expression
              -> [[EquationInfo]]       -- All PgLits
              -> DsM MatchResult

matchLiterals (var:vars) ty sub_groups
  = ASSERT( notNull sub_groups && all notNull sub_groups )
    do  {       -- Deal with each group
        ; alts <- mapM match_group sub_groups

                -- Combine results.  For everything except String
                -- we can use a case expression; for String we need
                -- a chain of if-then-else
        ; if isStringTy (idType var) then
            do  { eq_str <- dsLookupGlobalId eqStringName
                ; mrs <- mapM (wrap_str_guard eq_str) alts
                ; return (foldr1 combineMatchResults mrs) }
          else
            return (mkCoPrimCaseMatchResult var ty alts)
        }
  where
    match_group :: [EquationInfo] -> DsM (Literal, MatchResult)
    match_group eqns
        = do { dflags <- getDynFlags
             ; let LitPat _ hs_lit = firstPat (head eqns)
             ; match_result <- match vars ty (shiftEqns eqns)
             ; return (hsLitKey dflags hs_lit, match_result) }

    wrap_str_guard :: Id -> (Literal,MatchResult) -> DsM MatchResult
        -- Equality check for string literals
    wrap_str_guard eq_str (LitString s, mr)
        = do { -- We now have to convert back to FastString. Perhaps there
               -- should be separate LitBytes and LitString constructors?
               let s'  = mkFastStringByteString s
             ; lit    <- mkStringExprFS s'
             ; let pred = mkApps (Var eq_str) [Var var, lit]
             ; return (mkGuardedMatchResult pred mr) }
    wrap_str_guard _ (l, _) = pprPanic "matchLiterals/wrap_str_guard" (ppr l)

matchLiterals [] _ _ = panic "matchLiterals []"

---------------------------
hsLitKey :: DynFlags -> HsLit GhcTc -> Literal
-- Get the Core literal corresponding to a HsLit.
-- It only works for primitive types and strings;
-- others have been removed by tidy
-- For HsString, it produces a LitString, which really represents an _unboxed_
-- string literal; and we deal with it in matchLiterals above. Otherwise, it
-- produces a primitive Literal of type matching the original HsLit.
-- In the case of the fixed-width numeric types, we need to wrap here
-- because Literal has an invariant that the literal is in range, while
-- HsLit does not.
hsLitKey dflags (HsIntPrim    _ i) = mkLitIntWrap  dflags i
hsLitKey dflags (HsWordPrim   _ w) = mkLitWordWrap dflags w
hsLitKey dflags (HsInt64Prim  _ i) = mkLitInt64Wrap  dflags i
hsLitKey dflags (HsWord64Prim _ w) = mkLitWord64Wrap dflags w
hsLitKey _      (HsCharPrim   _ c) = mkLitChar            c
hsLitKey _      (HsFloatPrim  _ f) = mkLitFloat           (fl_value f)
hsLitKey _      (HsDoublePrim _ d) = mkLitDouble          (fl_value d)
hsLitKey _      (HsString _ s)     = LitString (bytesFS s)
hsLitKey _      l                  = pprPanic "hsLitKey" (ppr l)

{-
************************************************************************
*                                                                      *
                Pattern matching on NPat
*                                                                      *
************************************************************************
-}

matchNPats :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
matchNPats (var:vars) ty (eqn1:eqns)    -- All for the same literal
  = do  { let NPat _ (dL->L _ lit) mb_neg eq_chk = firstPat eqn1
        ; lit_expr <- dsOverLit lit
        ; neg_lit <- case mb_neg of
                            Nothing  -> return lit_expr
                            Just neg -> dsSyntaxExpr neg [lit_expr]
        ; pred_expr <- dsSyntaxExpr eq_chk [Var var, neg_lit]
        ; match_result <- match vars ty (shiftEqns (eqn1:eqns))
        ; return (mkGuardedMatchResult pred_expr match_result) }
matchNPats vars _ eqns = pprPanic "matchOneNPat" (ppr (vars, eqns))

{-
************************************************************************
*                                                                      *
                Pattern matching on n+k patterns
*                                                                      *
************************************************************************

For an n+k pattern, we use the various magic expressions we've been given.
We generate:
\begin{verbatim}
    if ge var lit then
        let n = sub var lit
        in  <expr-for-a-successful-match>
    else
        <try-next-pattern-or-whatever>
\end{verbatim}
-}

matchNPlusKPats :: [Id] -> Type -> [EquationInfo] -> DsM MatchResult
-- All NPlusKPats, for the *same* literal k
matchNPlusKPats (var:vars) ty (eqn1:eqns)
  = do  { let NPlusKPat _ (dL->L _ n1) (dL->L _ lit1) lit2 ge minus
                = firstPat eqn1
        ; lit1_expr   <- dsOverLit lit1
        ; lit2_expr   <- dsOverLit lit2
        ; pred_expr   <- dsSyntaxExpr ge    [Var var, lit1_expr]
        ; minusk_expr <- dsSyntaxExpr minus [Var var, lit2_expr]
        ; let (wraps, eqns') = mapAndUnzip (shift n1) (eqn1:eqns)
        ; match_result <- match vars ty eqns'
        ; return  (mkGuardedMatchResult pred_expr               $
                   mkCoLetMatchResult (NonRec n1 minusk_expr)   $
                   adjustMatchResult (foldr1 (.) wraps)         $
                   match_result) }
  where
    shift n1 eqn@(EqnInfo { eqn_pats = NPlusKPat _ (dL->L _ n) _ _ _ _ : pats })
        = (wrapBind n n1, eqn { eqn_pats = pats })
        -- The wrapBind is a no-op for the first equation
    shift _ e = pprPanic "matchNPlusKPats/shift" (ppr e)

matchNPlusKPats vars _ eqns = pprPanic "matchNPlusKPats" (ppr (vars, eqns))