{- (c) The AQUA Project, Glasgow University, 1993-1998 \section[SimplMonad]{The simplifier Monad} -} {-# LANGUAGE CPP #-} module SimplEnv ( -- * The simplifier mode setMode, getMode, updMode, seDynFlags, -- * Environments SimplEnv(..), pprSimplEnv, -- Temp not abstract mkSimplEnv, extendIdSubst, SimplEnv.extendTvSubst, SimplEnv.extendCvSubst, zapSubstEnv, setSubstEnv, getInScope, setInScopeFromE, setInScopeFromF, setInScopeSet, modifyInScope, addNewInScopeIds, getSimplRules, -- * Substitution results SimplSR(..), mkContEx, substId, lookupRecBndr, refineFromInScope, -- * Simplifying 'Id' binders simplNonRecBndr, simplNonRecJoinBndr, simplRecBndrs, simplRecJoinBndrs, simplBinder, simplBinders, substTy, substTyVar, getTCvSubst, substCo, substCoVar, -- * Floats SimplFloats(..), emptyFloats, mkRecFloats, mkFloatBind, addLetFloats, addJoinFloats, addFloats, extendFloats, wrapFloats, doFloatFromRhs, getTopFloatBinds, -- * LetFloats LetFloats, letFloatBinds, emptyLetFloats, unitLetFloat, addLetFlts, mapLetFloats, -- * JoinFloats JoinFloat, JoinFloats, emptyJoinFloats, wrapJoinFloats, wrapJoinFloatsX, unitJoinFloat, addJoinFlts ) where #include "HsVersions.h" import GhcPrelude import SimplMonad import CoreMonad ( SimplMode(..) ) import CoreSyn import CoreUtils import Var import VarEnv import VarSet import OrdList import Id import MkCore ( mkWildValBinder ) import DynFlags ( DynFlags ) import TysWiredIn import qualified Type import Type hiding ( substTy, substTyVar, substTyVarBndr ) import qualified Coercion import Coercion hiding ( substCo, substCoVar, substCoVarBndr ) import BasicTypes import MonadUtils import Outputable import Util import UniqFM ( pprUniqFM ) import Data.List (mapAccumL) {- ************************************************************************ * * \subsubsection{The @SimplEnv@ type} * * ************************************************************************ -} data SimplEnv = SimplEnv { ----------- Static part of the environment ----------- -- Static in the sense of lexically scoped, -- wrt the original expression seMode :: SimplMode -- The current substitution , seTvSubst :: TvSubstEnv -- InTyVar |--> OutType , seCvSubst :: CvSubstEnv -- InCoVar |--> OutCoercion , seIdSubst :: SimplIdSubst -- InId |--> OutExpr ----------- Dynamic part of the environment ----------- -- Dynamic in the sense of describing the setup where -- the expression finally ends up -- The current set of in-scope variables -- They are all OutVars, and all bound in this module , seInScope :: InScopeSet -- OutVars only } data SimplFloats = SimplFloats { -- Ordinary let bindings sfLetFloats :: LetFloats -- See Note [LetFloats] -- Join points , sfJoinFloats :: JoinFloats -- Handled separately; they don't go very far -- We consider these to be /inside/ sfLetFloats -- because join points can refer to ordinary bindings, -- but not vice versa -- Includes all variables bound by sfLetFloats and -- sfJoinFloats, plus at least whatever is in scope where -- these bindings land up. , sfInScope :: InScopeSet -- All OutVars } instance Outputable SimplFloats where ppr (SimplFloats { sfLetFloats = lf, sfJoinFloats = jf, sfInScope = is }) = text "SimplFloats" <+> braces (vcat [ text "lets: " <+> ppr lf , text "joins:" <+> ppr jf , text "in_scope:" <+> ppr is ]) emptyFloats :: SimplEnv -> SimplFloats emptyFloats env = SimplFloats { sfLetFloats = emptyLetFloats , sfJoinFloats = emptyJoinFloats , sfInScope = seInScope env } pprSimplEnv :: SimplEnv -> SDoc -- Used for debugging; selective pprSimplEnv env = vcat [text "TvSubst:" <+> ppr (seTvSubst env), text "CvSubst:" <+> ppr (seCvSubst env), text "IdSubst:" <+> id_subst_doc, text "InScope:" <+> in_scope_vars_doc ] where id_subst_doc = pprUniqFM ppr (seIdSubst env) in_scope_vars_doc = pprVarSet (getInScopeVars (seInScope env)) (vcat . map ppr_one) ppr_one v | isId v = ppr v <+> ppr (idUnfolding v) | otherwise = ppr v type SimplIdSubst = IdEnv SimplSR -- IdId |--> OutExpr -- See Note [Extending the Subst] in CoreSubst -- | A substitution result. data SimplSR = DoneEx OutExpr (Maybe JoinArity) -- If x :-> DoneEx e ja is in the SimplIdSubst -- then replace occurrences of x by e -- and ja = Just a <=> x is a join-point of arity a -- See Note [Join arity in SimplIdSubst] | DoneId OutId -- If x :-> DoneId v is in the SimplIdSubst -- then replace occurrences of x by v -- and v is a join-point of arity a -- <=> x is a join-point of arity a | ContEx TvSubstEnv -- A suspended substitution CvSubstEnv SimplIdSubst InExpr -- If x :-> ContEx tv cv id e is in the SimplISubst -- then replace occurrences of x by (subst (tv,cv,id) e) instance Outputable SimplSR where ppr (DoneId v) = text "DoneId" <+> ppr v ppr (DoneEx e mj) = text "DoneEx" <> pp_mj <+> ppr e where pp_mj = case mj of Nothing -> empty Just n -> parens (int n) ppr (ContEx _tv _cv _id e) = vcat [text "ContEx" <+> ppr e {-, ppr (filter_env tv), ppr (filter_env id) -}] -- where -- fvs = exprFreeVars e -- filter_env env = filterVarEnv_Directly keep env -- keep uniq _ = uniq `elemUFM_Directly` fvs {- Note [SimplEnv invariants] ~~~~~~~~~~~~~~~~~~~~~~~~~~ seInScope: The in-scope part of Subst includes *all* in-scope TyVars and Ids The elements of the set may have better IdInfo than the occurrences of in-scope Ids, and (more important) they will have a correctly-substituted type. So we use a lookup in this set to replace occurrences The Ids in the InScopeSet are replete with their Rules, and as we gather info about the unfolding of an Id, we replace it in the in-scope set. The in-scope set is actually a mapping OutVar -> OutVar, and in case expressions we sometimes bind seIdSubst: The substitution is *apply-once* only, because InIds and OutIds can overlap. For example, we generally omit mappings a77 -> a77 from the substitution, when we decide not to clone a77, but it's quite legitimate to put the mapping in the substitution anyway. Furthermore, consider let x = case k of I# x77 -> ... in let y = case k of I# x77 -> ... in ... and suppose the body is strict in both x and y. Then the simplifier will pull the first (case k) to the top; so the second (case k) will cancel out, mapping x77 to, well, x77! But one is an in-Id and the other is an out-Id. Of course, the substitution *must* applied! Things in its domain simply aren't necessarily bound in the result. * substId adds a binding (DoneId new_id) to the substitution if the Id's unique has changed Note, though that the substitution isn't necessarily extended if the type of the Id changes. Why not? Because of the next point: * We *always, always* finish by looking up in the in-scope set any variable that doesn't get a DoneEx or DoneVar hit in the substitution. Reason: so that we never finish up with a "old" Id in the result. An old Id might point to an old unfolding and so on... which gives a space leak. [The DoneEx and DoneVar hits map to "new" stuff.] * It follows that substExpr must not do a no-op if the substitution is empty. substType is free to do so, however. * When we come to a let-binding (say) we generate new IdInfo, including an unfolding, attach it to the binder, and add this newly adorned binder to the in-scope set. So all subsequent occurrences of the binder will get mapped to the full-adorned binder, which is also the one put in the binding site. * The in-scope "set" usually maps x->x; we use it simply for its domain. But sometimes we have two in-scope Ids that are synomyms, and should map to the same target: x->x, y->x. Notably: case y of x { ... } That's why the "set" is actually a VarEnv Var Note [Join arity in SimplIdSubst] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We have to remember which incoming variables are join points: the occurrences may not be marked correctly yet, and we're in change of propagating the change if OccurAnal makes something a join point). Normally the in-scope set is where we keep the latest information, but the in-scope set tracks only OutVars; if a binding is unconditionally inlined (via DoneEx), it never makes it into the in-scope set, and we need to know at the occurrence site that the variable is a join point so that we know to drop the context. Thus we remember which join points we're substituting. -} mkSimplEnv :: SimplMode -> SimplEnv mkSimplEnv mode = SimplEnv { seMode = mode , seInScope = init_in_scope , seTvSubst = emptyVarEnv , seCvSubst = emptyVarEnv , seIdSubst = emptyVarEnv } -- The top level "enclosing CC" is "SUBSUMED". init_in_scope :: InScopeSet init_in_scope = mkInScopeSet (unitVarSet (mkWildValBinder unitTy)) -- See Note [WildCard binders] {- Note [WildCard binders] ~~~~~~~~~~~~~~~~~~~~~~~ The program to be simplified may have wild binders case e of wild { p -> ... } We want to *rename* them away, so that there are no occurrences of 'wild-id' (with wildCardKey). The easy way to do that is to start of with a representative Id in the in-scope set There can be *occurrences* of wild-id. For example, MkCore.mkCoreApp transforms e (a /# b) --> case (a /# b) of wild { DEFAULT -> e wild } This is ok provided 'wild' isn't free in 'e', and that's the delicate thing. Generally, you want to run the simplifier to get rid of the wild-ids before doing much else. It's a very dark corner of GHC. Maybe it should be cleaned up. -} getMode :: SimplEnv -> SimplMode getMode env = seMode env seDynFlags :: SimplEnv -> DynFlags seDynFlags env = sm_dflags (seMode env) setMode :: SimplMode -> SimplEnv -> SimplEnv setMode mode env = env { seMode = mode } updMode :: (SimplMode -> SimplMode) -> SimplEnv -> SimplEnv updMode upd env = env { seMode = upd (seMode env) } --------------------- extendIdSubst :: SimplEnv -> Id -> SimplSR -> SimplEnv extendIdSubst env@(SimplEnv {seIdSubst = subst}) var res = ASSERT2( isId var && not (isCoVar var), ppr var ) env { seIdSubst = extendVarEnv subst var res } extendTvSubst :: SimplEnv -> TyVar -> Type -> SimplEnv extendTvSubst env@(SimplEnv {seTvSubst = tsubst}) var res = ASSERT2( isTyVar var, ppr var $$ ppr res ) env {seTvSubst = extendVarEnv tsubst var res} extendCvSubst :: SimplEnv -> CoVar -> Coercion -> SimplEnv extendCvSubst env@(SimplEnv {seCvSubst = csubst}) var co = ASSERT( isCoVar var ) env {seCvSubst = extendVarEnv csubst var co} --------------------- getInScope :: SimplEnv -> InScopeSet getInScope env = seInScope env setInScopeSet :: SimplEnv -> InScopeSet -> SimplEnv setInScopeSet env in_scope = env {seInScope = in_scope} setInScopeFromE :: SimplEnv -> SimplEnv -> SimplEnv -- See Note [Setting the right in-scope set] setInScopeFromE rhs_env here_env = rhs_env { seInScope = seInScope here_env } setInScopeFromF :: SimplEnv -> SimplFloats -> SimplEnv setInScopeFromF env floats = env { seInScope = sfInScope floats } addNewInScopeIds :: SimplEnv -> [CoreBndr] -> SimplEnv -- The new Ids are guaranteed to be freshly allocated addNewInScopeIds env@(SimplEnv { seInScope = in_scope, seIdSubst = id_subst }) vs = env { seInScope = in_scope `extendInScopeSetList` vs, seIdSubst = id_subst `delVarEnvList` vs } -- Why delete? Consider -- let x = a*b in (x, \x -> x+3) -- We add [x |-> a*b] to the substitution, but we must -- _delete_ it from the substitution when going inside -- the (\x -> ...)! modifyInScope :: SimplEnv -> CoreBndr -> SimplEnv -- The variable should already be in scope, but -- replace the existing version with this new one -- which has more information modifyInScope env@(SimplEnv {seInScope = in_scope}) v = env {seInScope = extendInScopeSet in_scope v} {- Note [Setting the right in-scope set] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider \x. (let x = e in b) arg[x] where the let shadows the lambda. Really this means something like \x1. (let x2 = e in b) arg[x1] - When we capture the 'arg' in an ApplyToVal continuation, we capture the environment, which says what 'x' is bound to, namely x1 - Then that continuation gets pushed under the let - Finally we simplify 'arg'. We want - the static, lexical environment bindig x :-> x1 - the in-scopeset from "here", under the 'let' which includes both x1 and x2 It's important to have the right in-scope set, else we may rename a variable to one that is already in scope. So we must pick up the in-scope set from "here", but otherwise use the environment we captured along with 'arg'. This transfer of in-scope set is done by setInScopeFromE. -} --------------------- zapSubstEnv :: SimplEnv -> SimplEnv zapSubstEnv env = env {seTvSubst = emptyVarEnv, seCvSubst = emptyVarEnv, seIdSubst = emptyVarEnv} setSubstEnv :: SimplEnv -> TvSubstEnv -> CvSubstEnv -> SimplIdSubst -> SimplEnv setSubstEnv env tvs cvs ids = env { seTvSubst = tvs, seCvSubst = cvs, seIdSubst = ids } mkContEx :: SimplEnv -> InExpr -> SimplSR mkContEx (SimplEnv { seTvSubst = tvs, seCvSubst = cvs, seIdSubst = ids }) e = ContEx tvs cvs ids e {- ************************************************************************ * * \subsection{LetFloats} * * ************************************************************************ Note [LetFloats] ~~~~~~~~~~~~~~~~ The LetFloats is a bunch of bindings, classified by a FloatFlag. * All of them satisfy the let/app invariant Examples NonRec x (y:ys) FltLifted Rec [(x,rhs)] FltLifted NonRec x* (p:q) FltOKSpec -- RHS is WHNF. Question: why not FltLifted? NonRec x# (y +# 3) FltOkSpec -- Unboxed, but ok-for-spec'n NonRec x* (f y) FltCareful -- Strict binding; might fail or diverge Can't happen: NonRec x# (a /# b) -- Might fail; does not satisfy let/app NonRec x# (f y) -- Might diverge; does not satisfy let/app -} data LetFloats = LetFloats (OrdList OutBind) FloatFlag -- See Note [LetFloats] type JoinFloat = OutBind type JoinFloats = OrdList JoinFloat data FloatFlag = FltLifted -- All bindings are lifted and lazy *or* -- consist of a single primitive string literal -- Hence ok to float to top level, or recursive | FltOkSpec -- All bindings are FltLifted *or* -- strict (perhaps because unlifted, -- perhaps because of a strict binder), -- *and* ok-for-speculation -- Hence ok to float out of the RHS -- of a lazy non-recursive let binding -- (but not to top level, or into a rec group) | FltCareful -- At least one binding is strict (or unlifted) -- and not guaranteed cheap -- Do not float these bindings out of a lazy let instance Outputable LetFloats where ppr (LetFloats binds ff) = ppr ff $$ ppr (fromOL binds) instance Outputable FloatFlag where ppr FltLifted = text "FltLifted" ppr FltOkSpec = text "FltOkSpec" ppr FltCareful = text "FltCareful" andFF :: FloatFlag -> FloatFlag -> FloatFlag andFF FltCareful _ = FltCareful andFF FltOkSpec FltCareful = FltCareful andFF FltOkSpec _ = FltOkSpec andFF FltLifted flt = flt doFloatFromRhs :: TopLevelFlag -> RecFlag -> Bool -> SimplFloats -> OutExpr -> Bool -- If you change this function look also at FloatIn.noFloatFromRhs doFloatFromRhs lvl rec str (SimplFloats { sfLetFloats = LetFloats fs ff }) rhs = not (isNilOL fs) && want_to_float && can_float where want_to_float = isTopLevel lvl || exprIsCheap rhs || exprIsExpandable rhs -- See Note [Float when cheap or expandable] can_float = case ff of FltLifted -> True FltOkSpec -> isNotTopLevel lvl && isNonRec rec FltCareful -> isNotTopLevel lvl && isNonRec rec && str {- Note [Float when cheap or expandable] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We want to float a let from a let if the residual RHS is a) cheap, such as (\x. blah) b) expandable, such as (f b) if f is CONLIKE But there are - cheap things that are not expandable (eg \x. expensive) - expandable things that are not cheap (eg (f b) where b is CONLIKE) so we must take the 'or' of the two. -} emptyLetFloats :: LetFloats emptyLetFloats = LetFloats nilOL FltLifted emptyJoinFloats :: JoinFloats emptyJoinFloats = nilOL unitLetFloat :: OutBind -> LetFloats -- This key function constructs a singleton float with the right form unitLetFloat bind = ASSERT(all (not . isJoinId) (bindersOf bind)) LetFloats (unitOL bind) (flag bind) where flag (Rec {}) = FltLifted flag (NonRec bndr rhs) | not (isStrictId bndr) = FltLifted | exprIsTickedString rhs = FltLifted -- String literals can be floated freely. -- See Note [CoreSyn top-level string literals] in CoreSyn. | exprOkForSpeculation rhs = FltOkSpec -- Unlifted, and lifted but ok-for-spec (eg HNF) | otherwise = ASSERT2( not (isUnliftedType (idType bndr)), ppr bndr ) FltCareful -- Unlifted binders can only be let-bound if exprOkForSpeculation holds unitJoinFloat :: OutBind -> JoinFloats unitJoinFloat bind = ASSERT(all isJoinId (bindersOf bind)) unitOL bind mkFloatBind :: SimplEnv -> OutBind -> (SimplFloats, SimplEnv) -- Make a singleton SimplFloats, and -- extend the incoming SimplEnv's in-scope set with its binders -- These binders may already be in the in-scope set, -- but may have by now been augmented with more IdInfo mkFloatBind env bind = (floats, env { seInScope = in_scope' }) where floats | isJoinBind bind = SimplFloats { sfLetFloats = emptyLetFloats , sfJoinFloats = unitJoinFloat bind , sfInScope = in_scope' } | otherwise = SimplFloats { sfLetFloats = unitLetFloat bind , sfJoinFloats = emptyJoinFloats , sfInScope = in_scope' } in_scope' = seInScope env `extendInScopeSetBind` bind extendFloats :: SimplFloats -> OutBind -> SimplFloats -- Add this binding to the floats, and extend the in-scope env too extendFloats (SimplFloats { sfLetFloats = floats , sfJoinFloats = jfloats , sfInScope = in_scope }) bind | isJoinBind bind = SimplFloats { sfInScope = in_scope' , sfLetFloats = floats , sfJoinFloats = jfloats' } | otherwise = SimplFloats { sfInScope = in_scope' , sfLetFloats = floats' , sfJoinFloats = jfloats } where in_scope' = in_scope `extendInScopeSetBind` bind floats' = floats `addLetFlts` unitLetFloat bind jfloats' = jfloats `addJoinFlts` unitJoinFloat bind addLetFloats :: SimplFloats -> LetFloats -> SimplFloats -- Add the let-floats for env2 to env1; -- *plus* the in-scope set for env2, which is bigger -- than that for env1 addLetFloats floats let_floats@(LetFloats binds _) = floats { sfLetFloats = sfLetFloats floats `addLetFlts` let_floats , sfInScope = foldlOL extendInScopeSetBind (sfInScope floats) binds } addJoinFloats :: SimplFloats -> JoinFloats -> SimplFloats addJoinFloats floats join_floats = floats { sfJoinFloats = sfJoinFloats floats `addJoinFlts` join_floats , sfInScope = foldlOL extendInScopeSetBind (sfInScope floats) join_floats } extendInScopeSetBind :: InScopeSet -> CoreBind -> InScopeSet extendInScopeSetBind in_scope bind = extendInScopeSetList in_scope (bindersOf bind) addFloats :: SimplFloats -> SimplFloats -> SimplFloats -- Add both let-floats and join-floats for env2 to env1; -- *plus* the in-scope set for env2, which is bigger -- than that for env1 addFloats (SimplFloats { sfLetFloats = lf1, sfJoinFloats = jf1 }) (SimplFloats { sfLetFloats = lf2, sfJoinFloats = jf2, sfInScope = in_scope }) = SimplFloats { sfLetFloats = lf1 `addLetFlts` lf2 , sfJoinFloats = jf1 `addJoinFlts` jf2 , sfInScope = in_scope } addLetFlts :: LetFloats -> LetFloats -> LetFloats addLetFlts (LetFloats bs1 l1) (LetFloats bs2 l2) = LetFloats (bs1 `appOL` bs2) (l1 `andFF` l2) letFloatBinds :: LetFloats -> [CoreBind] letFloatBinds (LetFloats bs _) = fromOL bs addJoinFlts :: JoinFloats -> JoinFloats -> JoinFloats addJoinFlts = appOL mkRecFloats :: SimplFloats -> SimplFloats -- Flattens the floats from env2 into a single Rec group, -- They must either all be lifted LetFloats or all JoinFloats mkRecFloats floats@(SimplFloats { sfLetFloats = LetFloats bs ff , sfJoinFloats = jbs , sfInScope = in_scope }) = ASSERT2( case ff of { FltLifted -> True; _ -> False }, ppr (fromOL bs) ) ASSERT2( isNilOL bs || isNilOL jbs, ppr floats ) SimplFloats { sfLetFloats = floats' , sfJoinFloats = jfloats' , sfInScope = in_scope } where floats' | isNilOL bs = emptyLetFloats | otherwise = unitLetFloat (Rec (flattenBinds (fromOL bs))) jfloats' | isNilOL jbs = emptyJoinFloats | otherwise = unitJoinFloat (Rec (flattenBinds (fromOL jbs))) wrapFloats :: SimplFloats -> OutExpr -> OutExpr -- Wrap the floats around the expression; they should all -- satisfy the let/app invariant, so mkLets should do the job just fine wrapFloats (SimplFloats { sfLetFloats = LetFloats bs _ , sfJoinFloats = jbs }) body = foldrOL Let (wrapJoinFloats jbs body) bs -- Note: Always safe to put the joins on the inside -- since the values can't refer to them wrapJoinFloatsX :: SimplFloats -> OutExpr -> (SimplFloats, OutExpr) -- Wrap the sfJoinFloats of the env around the expression, -- and take them out of the SimplEnv wrapJoinFloatsX floats body = ( floats { sfJoinFloats = emptyJoinFloats } , wrapJoinFloats (sfJoinFloats floats) body ) wrapJoinFloats :: JoinFloats -> OutExpr -> OutExpr -- Wrap the sfJoinFloats of the env around the expression, -- and take them out of the SimplEnv wrapJoinFloats join_floats body = foldrOL Let body join_floats getTopFloatBinds :: SimplFloats -> [CoreBind] getTopFloatBinds (SimplFloats { sfLetFloats = lbs , sfJoinFloats = jbs}) = ASSERT( isNilOL jbs ) -- Can't be any top-level join bindings letFloatBinds lbs mapLetFloats :: LetFloats -> ((Id,CoreExpr) -> (Id,CoreExpr)) -> LetFloats mapLetFloats (LetFloats fs ff) fun = LetFloats (mapOL app fs) ff where app (NonRec b e) = case fun (b,e) of (b',e') -> NonRec b' e' app (Rec bs) = Rec (map fun bs) {- ************************************************************************ * * Substitution of Vars * * ************************************************************************ Note [Global Ids in the substitution] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We look up even a global (eg imported) Id in the substitution. Consider case X.g_34 of b { (a,b) -> ... case X.g_34 of { (p,q) -> ...} ... } The binder-swap in the occurrence analyser will add a binding for a LocalId version of g (with the same unique though): case X.g_34 of b { (a,b) -> let g_34 = b in ... case X.g_34 of { (p,q) -> ...} ... } So we want to look up the inner X.g_34 in the substitution, where we'll find that it has been substituted by b. (Or conceivably cloned.) -} substId :: SimplEnv -> InId -> SimplSR -- Returns DoneEx only on a non-Var expression substId (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v = case lookupVarEnv ids v of -- Note [Global Ids in the substitution] Nothing -> DoneId (refineFromInScope in_scope v) Just (DoneId v) -> DoneId (refineFromInScope in_scope v) Just res -> res -- DoneEx non-var, or ContEx -- Get the most up-to-date thing from the in-scope set -- Even though it isn't in the substitution, it may be in -- the in-scope set with better IdInfo. -- -- See also Note [In-scope set as a substitution] in Simplify. refineFromInScope :: InScopeSet -> Var -> Var refineFromInScope in_scope v | isLocalId v = case lookupInScope in_scope v of Just v' -> v' Nothing -> WARN( True, ppr v ) v -- This is an error! | otherwise = v lookupRecBndr :: SimplEnv -> InId -> OutId -- Look up an Id which has been put into the envt by simplRecBndrs, -- but where we have not yet done its RHS lookupRecBndr (SimplEnv { seInScope = in_scope, seIdSubst = ids }) v = case lookupVarEnv ids v of Just (DoneId v) -> v Just _ -> pprPanic "lookupRecBndr" (ppr v) Nothing -> refineFromInScope in_scope v {- ************************************************************************ * * \section{Substituting an Id binder} * * ************************************************************************ These functions are in the monad only so that they can be made strict via seq. Note [Return type for join points] ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Consider (join j :: Char -> Int -> Int) 77 ( j x = \y. y + ord x ) (in case v of ) ( A -> j 'x' ) ( B -> j 'y' ) ( C -> <blah> ) The simplifier pushes the "apply to 77" continuation inwards to give join j :: Char -> Int j x = (\y. y + ord x) 77 in case v of A -> j 'x' B -> j 'y' C -> <blah> 77 Notice that the "apply to 77" continuation went into the RHS of the join point. And that meant that the return type of the join point changed!! That's why we pass res_ty into simplNonRecJoinBndr, and substIdBndr takes a (Just res_ty) argument so that it knows to do the type-changing thing. -} simplBinders :: SimplEnv -> [InBndr] -> SimplM (SimplEnv, [OutBndr]) simplBinders env bndrs = mapAccumLM simplBinder env bndrs ------------- simplBinder :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr) -- Used for lambda and case-bound variables -- Clone Id if necessary, substitute type -- Return with IdInfo already substituted, but (fragile) occurrence info zapped -- The substitution is extended only if the variable is cloned, because -- we *don't* need to use it to track occurrence info. simplBinder env bndr | isTyVar bndr = do { let (env', tv) = substTyVarBndr env bndr ; seqTyVar tv `seq` return (env', tv) } | otherwise = do { let (env', id) = substIdBndr Nothing env bndr ; seqId id `seq` return (env', id) } --------------- simplNonRecBndr :: SimplEnv -> InBndr -> SimplM (SimplEnv, OutBndr) -- A non-recursive let binder simplNonRecBndr env id = do { let (env1, id1) = substIdBndr Nothing env id ; seqId id1 `seq` return (env1, id1) } --------------- simplNonRecJoinBndr :: SimplEnv -> OutType -> InBndr -> SimplM (SimplEnv, OutBndr) -- A non-recursive let binder for a join point; -- context being pushed inward may change the type -- See Note [Return type for join points] simplNonRecJoinBndr env res_ty id = do { let (env1, id1) = substIdBndr (Just res_ty) env id ; seqId id1 `seq` return (env1, id1) } --------------- simplRecBndrs :: SimplEnv -> [InBndr] -> SimplM SimplEnv -- Recursive let binders simplRecBndrs env@(SimplEnv {}) ids = ASSERT(all (not . isJoinId) ids) do { let (env1, ids1) = mapAccumL (substIdBndr Nothing) env ids ; seqIds ids1 `seq` return env1 } --------------- simplRecJoinBndrs :: SimplEnv -> OutType -> [InBndr] -> SimplM SimplEnv -- Recursive let binders for join points; -- context being pushed inward may change types -- See Note [Return type for join points] simplRecJoinBndrs env@(SimplEnv {}) res_ty ids = ASSERT(all isJoinId ids) do { let (env1, ids1) = mapAccumL (substIdBndr (Just res_ty)) env ids ; seqIds ids1 `seq` return env1 } --------------- substIdBndr :: Maybe OutType -> SimplEnv -> InBndr -> (SimplEnv, OutBndr) -- Might be a coercion variable substIdBndr new_res_ty env bndr | isCoVar bndr = substCoVarBndr env bndr | otherwise = substNonCoVarIdBndr new_res_ty env bndr --------------- substNonCoVarIdBndr :: Maybe OutType -- New result type, if a join binder -- See Note [Return type for join points] -> SimplEnv -> InBndr -- Env and binder to transform -> (SimplEnv, OutBndr) -- Clone Id if necessary, substitute its type -- Return an Id with its -- * Type substituted -- * UnfoldingInfo, Rules, WorkerInfo zapped -- * Fragile OccInfo (only) zapped: Note [Robust OccInfo] -- * Robust info, retained especially arity and demand info, -- so that they are available to occurrences that occur in an -- earlier binding of a letrec -- -- For the robust info, see Note [Arity robustness] -- -- Augment the substitution if the unique changed -- Extend the in-scope set with the new Id -- -- Similar to CoreSubst.substIdBndr, except that -- the type of id_subst differs -- all fragile info is zapped substNonCoVarIdBndr new_res_ty env@(SimplEnv { seInScope = in_scope , seIdSubst = id_subst }) old_id = ASSERT2( not (isCoVar old_id), ppr old_id ) (env { seInScope = in_scope `extendInScopeSet` new_id, seIdSubst = new_subst }, new_id) where id1 = uniqAway in_scope old_id id2 = substIdType env id1 id3 | Just res_ty <- new_res_ty = id2 `setIdType` setJoinResTy (idJoinArity id2) res_ty (idType id2) -- See Note [Return type for join points] | otherwise = id2 new_id = zapFragileIdInfo id3 -- Zaps rules, worker-info, unfolding -- and fragile OccInfo -- Extend the substitution if the unique has changed, -- or there's some useful occurrence information -- See the notes with substTyVarBndr for the delSubstEnv new_subst | new_id /= old_id = extendVarEnv id_subst old_id (DoneId new_id) | otherwise = delVarEnv id_subst old_id ------------------------------------ seqTyVar :: TyVar -> () seqTyVar b = b `seq` () seqId :: Id -> () seqId id = seqType (idType id) `seq` idInfo id `seq` () seqIds :: [Id] -> () seqIds [] = () seqIds (id:ids) = seqId id `seq` seqIds ids {- Note [Arity robustness] ~~~~~~~~~~~~~~~~~~~~~~~ We *do* transfer the arity from from the in_id of a let binding to the out_id. This is important, so that the arity of an Id is visible in its own RHS. For example: f = \x. ....g (\y. f y).... We can eta-reduce the arg to g, because f is a value. But that needs to be visible. This interacts with the 'state hack' too: f :: Bool -> IO Int f = \x. case x of True -> f y False -> \s -> ... Can we eta-expand f? Only if we see that f has arity 1, and then we take advantage of the 'state hack' on the result of (f y) :: State# -> (State#, Int) to expand the arity one more. There is a disadvantage though. Making the arity visible in the RHS allows us to eta-reduce f = \x -> f x to f = f which technically is not sound. This is very much a corner case, so I'm not worried about it. Another idea is to ensure that f's arity never decreases; its arity started as 1, and we should never eta-reduce below that. Note [Robust OccInfo] ~~~~~~~~~~~~~~~~~~~~~ It's important that we *do* retain the loop-breaker OccInfo, because that's what stops the Id getting inlined infinitely, in the body of the letrec. -} {- ************************************************************************ * * Impedance matching to type substitution * * ************************************************************************ -} getTCvSubst :: SimplEnv -> TCvSubst getTCvSubst (SimplEnv { seInScope = in_scope, seTvSubst = tv_env , seCvSubst = cv_env }) = mkTCvSubst in_scope (tv_env, cv_env) substTy :: SimplEnv -> Type -> Type substTy env ty = Type.substTy (getTCvSubst env) ty substTyVar :: SimplEnv -> TyVar -> Type substTyVar env tv = Type.substTyVar (getTCvSubst env) tv substTyVarBndr :: SimplEnv -> TyVar -> (SimplEnv, TyVar) substTyVarBndr env tv = case Type.substTyVarBndr (getTCvSubst env) tv of (TCvSubst in_scope' tv_env' cv_env', tv') -> (env { seInScope = in_scope', seTvSubst = tv_env', seCvSubst = cv_env' }, tv') substCoVar :: SimplEnv -> CoVar -> Coercion substCoVar env tv = Coercion.substCoVar (getTCvSubst env) tv substCoVarBndr :: SimplEnv -> CoVar -> (SimplEnv, CoVar) substCoVarBndr env cv = case Coercion.substCoVarBndr (getTCvSubst env) cv of (TCvSubst in_scope' tv_env' cv_env', cv') -> (env { seInScope = in_scope', seTvSubst = tv_env', seCvSubst = cv_env' }, cv') substCo :: SimplEnv -> Coercion -> Coercion substCo env co = Coercion.substCo (getTCvSubst env) co ------------------ substIdType :: SimplEnv -> Id -> Id substIdType (SimplEnv { seInScope = in_scope, seTvSubst = tv_env, seCvSubst = cv_env }) id | (isEmptyVarEnv tv_env && isEmptyVarEnv cv_env) || noFreeVarsOfType old_ty = id | otherwise = Id.setIdType id (Type.substTy (TCvSubst in_scope tv_env cv_env) old_ty) -- The tyCoVarsOfType is cheaper than it looks -- because we cache the free tyvars of the type -- in a Note in the id's type itself where old_ty = idType id