{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE Trustworthy #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveTraversable #-}

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.Complex
-- Copyright   :  (c) The University of Glasgow 2001
-- License     :  BSD-style (see the file libraries/base/LICENSE)
--
-- Maintainer  :  libraries@haskell.org
-- Stability   :  provisional
-- Portability :  portable
--
-- Complex numbers.
--
-----------------------------------------------------------------------------

module Data.Complex
        (
        -- * Rectangular form
          Complex((:+))

        , realPart
        , imagPart
        -- * Polar form
        , mkPolar
        , cis
        , polar
        , magnitude
        , phase
        -- * Conjugate
        , conjugate

        )  where

import GHC.Base (Applicative (..))
import GHC.Generics (Generic, Generic1)
import GHC.Float (Floating(..))
import Data.Data (Data)
import Foreign (Storable, castPtr, peek, poke, pokeElemOff, peekElemOff, sizeOf,
                alignment)

infix  6  :+

-- -----------------------------------------------------------------------------
-- The Complex type

-- | Complex numbers are an algebraic type.
--
-- For a complex number @z@, @'abs' z@ is a number with the magnitude of @z@,
-- but oriented in the positive real direction, whereas @'signum' z@
-- has the phase of @z@, but unit magnitude.
--
-- The 'Foldable' and 'Traversable' instances traverse the real part first.
--
-- Note that `Complex`'s instances inherit the deficiencies from the type
-- parameter's. For example, @Complex Float@'s 'Ord' instance has similar
-- problems to `Float`'s.
data Complex a
  = !a :+ !a    -- ^ forms a complex number from its real and imaginary
                -- rectangular components.
        deriving ( Eq          -- ^ @since 2.01
                 , Show        -- ^ @since 2.01
                 , Read        -- ^ @since 2.01
                 , Data        -- ^ @since 2.01
                 , Generic     -- ^ @since 4.9.0.0
                 , Generic1    -- ^ @since 4.9.0.0
                 , Functor     -- ^ @since 4.9.0.0
                 , Foldable    -- ^ @since 4.9.0.0
                 , Traversable -- ^ @since 4.9.0.0
                 )

-- -----------------------------------------------------------------------------
-- Functions over Complex

-- | Extracts the real part of a complex number.
realPart :: Complex a -> a
realPart (x :+ _) =  x

-- | Extracts the imaginary part of a complex number.
imagPart :: Complex a -> a
imagPart (_ :+ y) =  y

-- | The conjugate of a complex number.
{-# SPECIALISE conjugate :: Complex Double -> Complex Double #-}
conjugate        :: Num a => Complex a -> Complex a
conjugate (x:+y) =  x :+ (-y)

-- | Form a complex number from polar components of magnitude and phase.
{-# SPECIALISE mkPolar :: Double -> Double -> Complex Double #-}
mkPolar          :: Floating a => a -> a -> Complex a
mkPolar r theta  =  r * cos theta :+ r * sin theta

-- | @'cis' t@ is a complex value with magnitude @1@
-- and phase @t@ (modulo @2*'pi'@).
{-# SPECIALISE cis :: Double -> Complex Double #-}
cis              :: Floating a => a -> Complex a
cis theta        =  cos theta :+ sin theta

-- | The function 'polar' takes a complex number and
-- returns a (magnitude, phase) pair in canonical form:
-- the magnitude is nonnegative, and the phase in the range @(-'pi', 'pi']@;
-- if the magnitude is zero, then so is the phase.
{-# SPECIALISE polar :: Complex Double -> (Double,Double) #-}
polar            :: (RealFloat a) => Complex a -> (a,a)
polar z          =  (magnitude z, phase z)

-- | The nonnegative magnitude of a complex number.
{-# SPECIALISE magnitude :: Complex Double -> Double #-}
magnitude :: (RealFloat a) => Complex a -> a
magnitude (x:+y) =  scaleFloat k
                     (sqrt (sqr (scaleFloat mk x) + sqr (scaleFloat mk y)))
                    where k  = max (exponent x) (exponent y)
                          mk = - k
                          sqr z = z * z

-- | The phase of a complex number, in the range @(-'pi', 'pi']@.
-- If the magnitude is zero, then so is the phase.
{-# SPECIALISE phase :: Complex Double -> Double #-}
phase :: (RealFloat a) => Complex a -> a
phase (0 :+ 0)   = 0            -- SLPJ July 97 from John Peterson
phase (x:+y)     = atan2 y x


-- -----------------------------------------------------------------------------
-- Instances of Complex

-- | @since 2.01
instance  (RealFloat a) => Num (Complex a)  where
    {-# SPECIALISE instance Num (Complex Float) #-}
    {-# SPECIALISE instance Num (Complex Double) #-}
    (x:+y) + (x':+y')   =  (x+x') :+ (y+y')
    (x:+y) - (x':+y')   =  (x-x') :+ (y-y')
    (x:+y) * (x':+y')   =  (x*x'-y*y') :+ (x*y'+y*x')
    negate (x:+y)       =  negate x :+ negate y
    abs z               =  magnitude z :+ 0
    signum (0:+0)       =  0
    signum z@(x:+y)     =  x/r :+ y/r  where r = magnitude z
    fromInteger n       =  fromInteger n :+ 0

-- | @since 2.01
instance  (RealFloat a) => Fractional (Complex a)  where
    {-# SPECIALISE instance Fractional (Complex Float) #-}
    {-# SPECIALISE instance Fractional (Complex Double) #-}
    (x:+y) / (x':+y')   =  (x*x''+y*y'') / d :+ (y*x''-x*y'') / d
                           where x'' = scaleFloat k x'
                                 y'' = scaleFloat k y'
                                 k   = - max (exponent x') (exponent y')
                                 d   = x'*x'' + y'*y''

    fromRational a      =  fromRational a :+ 0

-- | @since 2.01
instance  (RealFloat a) => Floating (Complex a) where
    {-# SPECIALISE instance Floating (Complex Float) #-}
    {-# SPECIALISE instance Floating (Complex Double) #-}
    pi             =  pi :+ 0
    exp (x:+y)     =  expx * cos y :+ expx * sin y
                      where expx = exp x
    log z          =  log (magnitude z) :+ phase z

    x ** y = case (x,y) of
      (_ , (0:+0))  -> 1 :+ 0
      ((0:+0), (exp_re:+_)) -> case compare exp_re 0 of
                 GT -> 0 :+ 0
                 LT -> inf :+ 0
                 EQ -> nan :+ nan
      ((re:+im), (exp_re:+_))
        | (isInfinite re || isInfinite im) -> case compare exp_re 0 of
                 GT -> inf :+ 0
                 LT -> 0 :+ 0
                 EQ -> nan :+ nan
        | otherwise -> exp (log x * y)
      where
        inf = 1/0
        nan = 0/0

    sqrt (0:+0)    =  0
    sqrt z@(x:+y)  =  u :+ (if y < 0 then -v else v)
                      where (u,v) = if x < 0 then (v',u') else (u',v')
                            v'    = abs y / (u'*2)
                            u'    = sqrt ((magnitude z + abs x) / 2)

    sin (x:+y)     =  sin x * cosh y :+ cos x * sinh y
    cos (x:+y)     =  cos x * cosh y :+ (- sin x * sinh y)
    tan (x:+y)     =  (sinx*coshy:+cosx*sinhy)/(cosx*coshy:+(-sinx*sinhy))
                      where sinx  = sin x
                            cosx  = cos x
                            sinhy = sinh y
                            coshy = cosh y

    sinh (x:+y)    =  cos y * sinh x :+ sin  y * cosh x
    cosh (x:+y)    =  cos y * cosh x :+ sin y * sinh x
    tanh (x:+y)    =  (cosy*sinhx:+siny*coshx)/(cosy*coshx:+siny*sinhx)
                      where siny  = sin y
                            cosy  = cos y
                            sinhx = sinh x
                            coshx = cosh x

    asin z@(x:+y)  =  y':+(-x')
                      where  (x':+y') = log (((-y):+x) + sqrt (1 - z*z))
    acos z         =  y'':+(-x'')
                      where (x'':+y'') = log (z + ((-y'):+x'))
                            (x':+y')   = sqrt (1 - z*z)
    atan z@(x:+y)  =  y':+(-x')
                      where (x':+y') = log (((1-y):+x) / sqrt (1+z*z))

    asinh z        =  log (z + sqrt (1+z*z))
    -- Take care to allow (-1)::Complex, fixing #8532
    acosh z        =  log (z + (sqrt $ z+1) * (sqrt $ z-1))
    atanh z        =  0.5 * log ((1.0+z) / (1.0-z))

    log1p x@(a :+ b)
      | abs a < 0.5 && abs b < 0.5
      , u <- 2*a + a*a + b*b = log1p (u/(1 + sqrt(u+1))) :+ atan2 (1 + a) b
      | otherwise = log (1 + x)
    {-# INLINE log1p #-}

    expm1 x@(a :+ b)
      | a*a + b*b < 1
      , u <- expm1 a
      , v <- sin (b/2)
      , w <- -2*v*v = (u*w + u + w) :+ (u+1)*sin b
      | otherwise = exp x - 1
    {-# INLINE expm1 #-}

-- | @since 4.8.0.0
instance Storable a => Storable (Complex a) where
    sizeOf a       = 2 * sizeOf (realPart a)
    alignment a    = alignment (realPart a)
    peek p           = do
                        q <- return $ castPtr p
                        r <- peek q
                        i <- peekElemOff q 1
                        return (r :+ i)
    poke p (r :+ i)  = do
                        q <-return $  (castPtr p)
                        poke q r
                        pokeElemOff q 1 i

-- | @since 4.9.0.0
instance Applicative Complex where
  pure a = a :+ a
  f :+ g <*> a :+ b = f a :+ g b
  liftA2 f (x :+ y) (a :+ b) = f x a :+ f y b

-- | @since 4.9.0.0
instance Monad Complex where
  a :+ b >>= f = realPart (f a) :+ imagPart (f b)

-- -----------------------------------------------------------------------------
-- Rules on Complex

{-# RULES

"realToFrac/a->Complex Double"
  realToFrac = \x -> realToFrac x :+ (0 :: Double)

"realToFrac/a->Complex Float"
  realToFrac = \x -> realToFrac x :+ (0 :: Float)

  #-}