{-# LANGUAGE CPP #-} {-# LANGUAGE BangPatterns #-} {-# LANGUAGE PatternGuards #-} #include "containers.h" ----------------------------------------------------------------------------- -- | -- Module : Data.IntMap.Strict.Internal -- Copyright : (c) Daan Leijen 2002 -- (c) Andriy Palamarchuk 2008 -- License : BSD-style -- Maintainer : libraries@haskell.org -- Portability : portable -- -- -- = Finite Int Maps (strict interface) -- -- The @'IntMap' v@ type represents a finite map (sometimes called a dictionary) -- from key of type @Int@ to values of type @v@. -- -- Each function in this module is careful to force values before installing -- them in an 'IntMap'. This is usually more efficient when laziness is not -- necessary. When laziness /is/ required, use the functions in -- "Data.IntMap.Lazy". -- -- In particular, the functions in this module obey the following law: -- -- - If all values stored in all maps in the arguments are in WHNF, then all -- values stored in all maps in the results will be in WHNF once those maps -- are evaluated. -- -- For a walkthrough of the most commonly used functions see the -- <https://haskell-containers.readthedocs.io/en/latest/map.html maps introduction>. -- -- This module is intended to be imported qualified, to avoid name clashes with -- Prelude functions: -- -- > import Data.IntMap.Strict (IntMap) -- > import qualified Data.IntMap.Strict as IntMap -- -- Note that the implementation is generally /left-biased/. Functions that take -- two maps as arguments and combine them, such as `union` and `intersection`, -- prefer the values in the first argument to those in the second. -- -- -- == Detailed performance information -- -- The amortized running time is given for each operation, with /n/ referring to -- the number of entries in the map and /W/ referring to the number of bits in -- an 'Int' (32 or 64). -- -- Benchmarks comparing "Data.IntMap.Strict" with other dictionary -- implementations can be found at https://github.com/haskell-perf/dictionaries. -- -- -- == Warning -- -- The 'IntMap' type is shared between the lazy and strict modules, meaning that -- the same 'IntMap' value can be passed to functions in both modules. This -- means that the 'Functor', 'Traversable' and 'Data.Data.Data' instances are -- the same as for the "Data.IntMap.Lazy" module, so if they are used the -- resulting map may contain suspended values (thunks). -- -- -- == Implementation -- -- The implementation is based on /big-endian patricia trees/. This data -- structure performs especially well on binary operations like 'union' and -- 'intersection'. Additionally, benchmarks show that it is also (much) faster -- on insertions and deletions when compared to a generic size-balanced map -- implementation (see "Data.Map"). -- -- * Chris Okasaki and Andy Gill, \"/Fast Mergeable Integer Maps/\", -- Workshop on ML, September 1998, pages 77-86, -- <http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5452> -- -- * D.R. Morrison, \"/PATRICIA -- Practical Algorithm To Retrieve -- Information Coded In Alphanumeric/\", Journal of the ACM, 15(4), -- October 1968, pages 514-534. -- ----------------------------------------------------------------------------- -- See the notes at the beginning of Data.IntMap.Internal. module Data.IntMap.Strict.Internal ( -- * Map type #if !defined(TESTING) IntMap, Key -- instance Eq,Show #else IntMap(..), Key -- instance Eq,Show #endif -- * Construction , empty , singleton , fromSet -- ** From Unordered Lists , fromList , fromListWith , fromListWithKey -- ** From Ascending Lists , fromAscList , fromAscListWith , fromAscListWithKey , fromDistinctAscList -- * Insertion , insert , insertWith , insertWithKey , insertLookupWithKey -- * Deletion\/Update , delete , adjust , adjustWithKey , update , updateWithKey , updateLookupWithKey , alter , alterF -- * Query -- ** Lookup , lookup , (!?) , (!) , findWithDefault , member , notMember , lookupLT , lookupGT , lookupLE , lookupGE -- ** Size , null , size -- * Combine -- ** Union , union , unionWith , unionWithKey , unions , unionsWith -- ** Difference , difference , (\\) , differenceWith , differenceWithKey -- ** Intersection , intersection , intersectionWith , intersectionWithKey -- ** Disjoint , disjoint -- ** Compose , compose -- ** Universal combining function , mergeWithKey -- * Traversal -- ** Map , map , mapWithKey , traverseWithKey , traverseMaybeWithKey , mapAccum , mapAccumWithKey , mapAccumRWithKey , mapKeys , mapKeysWith , mapKeysMonotonic -- * Folds , foldr , foldl , foldrWithKey , foldlWithKey , foldMapWithKey -- ** Strict folds , foldr' , foldl' , foldrWithKey' , foldlWithKey' -- * Conversion , elems , keys , assocs , keysSet -- ** Lists , toList -- ** Ordered lists , toAscList , toDescList -- * Filter , filter , filterWithKey , restrictKeys , withoutKeys , partition , partitionWithKey , mapMaybe , mapMaybeWithKey , mapEither , mapEitherWithKey , split , splitLookup , splitRoot -- * Submap , isSubmapOf, isSubmapOfBy , isProperSubmapOf, isProperSubmapOfBy -- * Min\/Max , lookupMin , lookupMax , findMin , findMax , deleteMin , deleteMax , deleteFindMin , deleteFindMax , updateMin , updateMax , updateMinWithKey , updateMaxWithKey , minView , maxView , minViewWithKey , maxViewWithKey #ifdef __GLASGOW_HASKELL__ -- * Debugging , showTree , showTreeWith #endif ) where import Prelude hiding (lookup,map,filter,foldr,foldl,null) import Data.Bits import qualified Data.IntMap.Internal as L import Data.IntMap.Internal ( IntMap (..) , Key , mask , branchMask , nomatch , zero , natFromInt , intFromNat , bin , binCheckLeft , binCheckRight , link , linkWithMask , (\\) , (!) , (!?) , empty , assocs , filter , filterWithKey , findMin , findMax , foldMapWithKey , foldr , foldl , foldr' , foldl' , foldlWithKey , foldrWithKey , foldlWithKey' , foldrWithKey' , keysSet , mergeWithKey' , compose , delete , deleteMin , deleteMax , deleteFindMax , deleteFindMin , difference , elems , intersection , disjoint , isProperSubmapOf , isProperSubmapOfBy , isSubmapOf , isSubmapOfBy , lookup , lookupLE , lookupGE , lookupLT , lookupGT , lookupMin , lookupMax , minView , maxView , minViewWithKey , maxViewWithKey , keys , mapKeys , mapKeysMonotonic , member , notMember , null , partition , partitionWithKey , restrictKeys , size , split , splitLookup , splitRoot , toAscList , toDescList , toList , union , unions , withoutKeys ) #ifdef __GLASGOW_HASKELL__ import Data.IntMap.Internal.DeprecatedDebug (showTree, showTreeWith) #endif import qualified Data.IntSet.Internal as IntSet import Utils.Containers.Internal.BitUtil import Utils.Containers.Internal.StrictPair #if !MIN_VERSION_base(4,8,0) import Data.Functor((<$>)) #endif import Control.Applicative (Applicative (..), liftA2) import qualified Data.Foldable as Foldable #if !MIN_VERSION_base(4,8,0) import Data.Foldable (Foldable()) #endif {-------------------------------------------------------------------- Query --------------------------------------------------------------------} -- | /O(min(n,W))/. The expression @('findWithDefault' def k map)@ -- returns the value at key @k@ or returns @def@ when the key is not an -- element of the map. -- -- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x' -- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a' -- See IntMap.Internal.Note: Local 'go' functions and capturing] findWithDefault :: a -> Key -> IntMap a -> a findWithDefault def !k = go where go (Bin p m l r) | nomatch k p m = def | zero k m = go l | otherwise = go r go (Tip kx x) | k == kx = x | otherwise = def go Nil = def {-------------------------------------------------------------------- Construction --------------------------------------------------------------------} -- | /O(1)/. A map of one element. -- -- > singleton 1 'a' == fromList [(1, 'a')] -- > size (singleton 1 'a') == 1 singleton :: Key -> a -> IntMap a singleton k !x = Tip k x {-# INLINE singleton #-} {-------------------------------------------------------------------- Insert --------------------------------------------------------------------} -- | /O(min(n,W))/. Insert a new key\/value pair in the map. -- If the key is already present in the map, the associated value is -- replaced with the supplied value, i.e. 'insert' is equivalent to -- @'insertWith' 'const'@. -- -- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')] -- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')] -- > insert 5 'x' empty == singleton 5 'x' insert :: Key -> a -> IntMap a -> IntMap a insert !k !x t = case t of Bin p m l r | nomatch k p m -> link k (Tip k x) p t | zero k m -> Bin p m (insert k x l) r | otherwise -> Bin p m l (insert k x r) Tip ky _ | k==ky -> Tip k x | otherwise -> link k (Tip k x) ky t Nil -> Tip k x -- right-biased insertion, used by 'union' -- | /O(min(n,W))/. Insert with a combining function. -- @'insertWith' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert @f new_value old_value@. -- -- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")] -- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWith (++) 5 "xxx" empty == singleton 5 "xxx" insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a insertWith f k x t = insertWithKey (\_ x' y' -> f x' y') k x t -- | /O(min(n,W))/. Insert with a combining function. -- @'insertWithKey' f key value mp@ -- will insert the pair (key, value) into @mp@ if key does -- not exist in the map. If the key does exist, the function will -- insert @f key new_value old_value@. -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")] -- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")] -- > insertWithKey f 5 "xxx" empty == singleton 5 "xxx" -- -- If the key exists in the map, this function is lazy in @value@ but strict -- in the result of @f@. insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a insertWithKey f !k x t = case t of Bin p m l r | nomatch k p m -> link k (singleton k x) p t | zero k m -> Bin p m (insertWithKey f k x l) r | otherwise -> Bin p m l (insertWithKey f k x r) Tip ky y | k==ky -> Tip k $! f k x y | otherwise -> link k (singleton k x) ky t Nil -> singleton k x -- | /O(min(n,W))/. The expression (@'insertLookupWithKey' f k x map@) -- is a pair where the first element is equal to (@'lookup' k map@) -- and the second element equal to (@'insertWithKey' f k x map@). -- -- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value -- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")]) -- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "xxx")]) -- > insertLookupWithKey f 5 "xxx" empty == (Nothing, singleton 5 "xxx") -- -- This is how to define @insertLookup@ using @insertLookupWithKey@: -- -- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t -- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")]) -- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a"), (7, "x")]) insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a) insertLookupWithKey f0 !k0 x0 t0 = toPair $ go f0 k0 x0 t0 where go f k x t = case t of Bin p m l r | nomatch k p m -> Nothing :*: link k (singleton k x) p t | zero k m -> let (found :*: l') = go f k x l in (found :*: Bin p m l' r) | otherwise -> let (found :*: r') = go f k x r in (found :*: Bin p m l r') Tip ky y | k==ky -> (Just y :*: (Tip k $! f k x y)) | otherwise -> (Nothing :*: link k (singleton k x) ky t) Nil -> Nothing :*: (singleton k x) {-------------------------------------------------------------------- Deletion --------------------------------------------------------------------} -- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. -- -- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjust ("new " ++) 7 empty == empty adjust :: (a -> a) -> Key -> IntMap a -> IntMap a adjust f k m = adjustWithKey (\_ x -> f x) k m -- | /O(min(n,W))/. Adjust a value at a specific key. When the key is not -- a member of the map, the original map is returned. -- -- > let f key x = (show key) ++ ":new " ++ x -- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > adjustWithKey f 7 empty == empty adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a adjustWithKey f !k t = case t of Bin p m l r | nomatch k p m -> t | zero k m -> Bin p m (adjustWithKey f k l) r | otherwise -> Bin p m l (adjustWithKey f k r) Tip ky y | k==ky -> Tip ky $! f k y | otherwise -> t Nil -> Nil -- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")] -- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a update f = updateWithKey (\_ x -> f x) -- | /O(min(n,W))/. The expression (@'update' f k map@) updates the value @x@ -- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is -- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")] -- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")] -- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a updateWithKey f !k t = case t of Bin p m l r | nomatch k p m -> t | zero k m -> binCheckLeft p m (updateWithKey f k l) r | otherwise -> binCheckRight p m l (updateWithKey f k r) Tip ky y | k==ky -> case f k y of Just !y' -> Tip ky y' Nothing -> Nil | otherwise -> t Nil -> Nil -- | /O(min(n,W))/. Lookup and update. -- The function returns original value, if it is updated. -- This is different behavior than 'Data.Map.updateLookupWithKey'. -- Returns the original key value if the map entry is deleted. -- -- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing -- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")]) -- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing, fromList [(3, "b"), (5, "a")]) -- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a") updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a) updateLookupWithKey f0 !k0 t0 = toPair $ go f0 k0 t0 where go f k t = case t of Bin p m l r | nomatch k p m -> (Nothing :*: t) | zero k m -> let (found :*: l') = go f k l in (found :*: binCheckLeft p m l' r) | otherwise -> let (found :*: r') = go f k r in (found :*: binCheckRight p m l r') Tip ky y | k==ky -> case f k y of Just !y' -> (Just y :*: Tip ky y') Nothing -> (Just y :*: Nil) | otherwise -> (Nothing :*: t) Nil -> (Nothing :*: Nil) -- | /O(min(n,W))/. The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof. -- 'alter' can be used to insert, delete, or update a value in an 'IntMap'. -- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@. alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a alter f !k t = case t of Bin p m l r | nomatch k p m -> case f Nothing of Nothing -> t Just !x -> link k (Tip k x) p t | zero k m -> binCheckLeft p m (alter f k l) r | otherwise -> binCheckRight p m l (alter f k r) Tip ky y | k==ky -> case f (Just y) of Just !x -> Tip ky x Nothing -> Nil | otherwise -> case f Nothing of Just !x -> link k (Tip k x) ky t Nothing -> t Nil -> case f Nothing of Just !x -> Tip k x Nothing -> Nil -- | /O(log n)/. The expression (@'alterF' f k map@) alters the value @x@ at -- @k@, or absence thereof. 'alterF' can be used to inspect, insert, delete, -- or update a value in an 'IntMap'. In short : @'lookup' k <$> 'alterF' f k m = f -- ('lookup' k m)@. -- -- Example: -- -- @ -- interactiveAlter :: Int -> IntMap String -> IO (IntMap String) -- interactiveAlter k m = alterF f k m where -- f Nothing = do -- putStrLn $ show k ++ -- " was not found in the map. Would you like to add it?" -- getUserResponse1 :: IO (Maybe String) -- f (Just old) = do -- putStrLn $ "The key is currently bound to " ++ show old ++ -- ". Would you like to change or delete it?" -- getUserResponse2 :: IO (Maybe String) -- @ -- -- 'alterF' is the most general operation for working with an individual -- key that may or may not be in a given map. -- Note: 'alterF' is a flipped version of the 'at' combinator from -- 'Control.Lens.At'. -- -- @since 0.5.8 alterF :: Functor f => (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a) -- This implementation was modified from 'Control.Lens.At'. alterF f k m = (<$> f mv) $ \fres -> case fres of Nothing -> maybe m (const (delete k m)) mv Just !v' -> insert k v' m where mv = lookup k m {-------------------------------------------------------------------- Union --------------------------------------------------------------------} -- | The union of a list of maps, with a combining operation. -- -- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])] -- > == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")] unionsWith :: Foldable f => (a->a->a) -> f (IntMap a) -> IntMap a unionsWith f ts = Foldable.foldl' (unionWith f) empty ts -- | /O(n+m)/. The union with a combining function. -- -- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")] unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a unionWith f m1 m2 = unionWithKey (\_ x y -> f x y) m1 m2 -- | /O(n+m)/. The union with a combining function. -- -- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value -- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")] unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a unionWithKey f m1 m2 = mergeWithKey' Bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 $! f k1 x1 x2) id id m1 m2 {-------------------------------------------------------------------- Difference --------------------------------------------------------------------} -- | /O(n+m)/. Difference with a combining function. -- -- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing -- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")]) -- > == singleton 3 "b:B" differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a differenceWith f m1 m2 = differenceWithKey (\_ x y -> f x y) m1 m2 -- | /O(n+m)/. Difference with a combining function. When two equal keys are -- encountered, the combining function is applied to the key and both values. -- If it returns 'Nothing', the element is discarded (proper set difference). -- If it returns (@'Just' y@), the element is updated with a new value @y@. -- -- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing -- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")]) -- > == singleton 3 "3:b|B" differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a differenceWithKey f m1 m2 = mergeWithKey f id (const Nil) m1 m2 {-------------------------------------------------------------------- Intersection --------------------------------------------------------------------} -- | /O(n+m)/. The intersection with a combining function. -- -- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA" intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c intersectionWith f m1 m2 = intersectionWithKey (\_ x y -> f x y) m1 m2 -- | /O(n+m)/. The intersection with a combining function. -- -- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar -- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A" intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c intersectionWithKey f m1 m2 = mergeWithKey' bin (\(Tip k1 x1) (Tip _k2 x2) -> Tip k1 $! f k1 x1 x2) (const Nil) (const Nil) m1 m2 {-------------------------------------------------------------------- MergeWithKey --------------------------------------------------------------------} -- | /O(n+m)/. A high-performance universal combining function. Using -- 'mergeWithKey', all combining functions can be defined without any loss of -- efficiency (with exception of 'union', 'difference' and 'intersection', -- where sharing of some nodes is lost with 'mergeWithKey'). -- -- Please make sure you know what is going on when using 'mergeWithKey', -- otherwise you can be surprised by unexpected code growth or even -- corruption of the data structure. -- -- When 'mergeWithKey' is given three arguments, it is inlined to the call -- site. You should therefore use 'mergeWithKey' only to define your custom -- combining functions. For example, you could define 'unionWithKey', -- 'differenceWithKey' and 'intersectionWithKey' as -- -- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2 -- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2 -- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2 -- -- When calling @'mergeWithKey' combine only1 only2@, a function combining two -- 'IntMap's is created, such that -- -- * if a key is present in both maps, it is passed with both corresponding -- values to the @combine@ function. Depending on the result, the key is either -- present in the result with specified value, or is left out; -- -- * a nonempty subtree present only in the first map is passed to @only1@ and -- the output is added to the result; -- -- * a nonempty subtree present only in the second map is passed to @only2@ and -- the output is added to the result. -- -- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/. -- The values can be modified arbitrarily. Most common variants of @only1@ and -- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or -- @'filterWithKey' f@ could be used for any @f@. mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c) -> IntMap a -> IntMap b -> IntMap c mergeWithKey f g1 g2 = mergeWithKey' bin combine g1 g2 where -- We use the lambda form to avoid non-exhaustive pattern matches warning. combine = \(Tip k1 x1) (Tip _k2 x2) -> case f k1 x1 x2 of Nothing -> Nil Just !x -> Tip k1 x {-# INLINE combine #-} {-# INLINE mergeWithKey #-} {-------------------------------------------------------------------- Min\/Max --------------------------------------------------------------------} -- | /O(log n)/. Update the value at the minimal key. -- -- > updateMinWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"3:b"), (5,"a")] -- > updateMinWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a updateMinWithKey f t = case t of Bin p m l r | m < 0 -> binCheckRight p m l (go f r) _ -> go f t where go f' (Bin p m l r) = binCheckLeft p m (go f' l) r go f' (Tip k y) = case f' k y of Just !y' -> Tip k y' Nothing -> Nil go _ Nil = error "updateMinWithKey Nil" -- | /O(log n)/. Update the value at the maximal key. -- -- > updateMaxWithKey (\ k a -> Just ((show k) ++ ":" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3,"b"), (5,"5:a")] -- > updateMaxWithKey (\ _ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a updateMaxWithKey f t = case t of Bin p m l r | m < 0 -> binCheckLeft p m (go f l) r _ -> go f t where go f' (Bin p m l r) = binCheckRight p m l (go f' r) go f' (Tip k y) = case f' k y of Just !y' -> Tip k y' Nothing -> Nil go _ Nil = error "updateMaxWithKey Nil" -- | /O(log n)/. Update the value at the maximal key. -- -- > updateMax (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "Xa")] -- > updateMax (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 3 "b" updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a updateMax f = updateMaxWithKey (const f) -- | /O(log n)/. Update the value at the minimal key. -- -- > updateMin (\ a -> Just ("X" ++ a)) (fromList [(5,"a"), (3,"b")]) == fromList [(3, "Xb"), (5, "a")] -- > updateMin (\ _ -> Nothing) (fromList [(5,"a"), (3,"b")]) == singleton 5 "a" updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a updateMin f = updateMinWithKey (const f) {-------------------------------------------------------------------- Mapping --------------------------------------------------------------------} -- | /O(n)/. Map a function over all values in the map. -- -- > map (++ "x") (fromList [(5,"a"), (3,"b")]) == fromList [(3, "bx"), (5, "ax")] map :: (a -> b) -> IntMap a -> IntMap b map f = go where go (Bin p m l r) = Bin p m (go l) (go r) go (Tip k x) = Tip k $! f x go Nil = Nil #ifdef __GLASGOW_HASKELL__ {-# NOINLINE [1] map #-} {-# RULES "map/map" forall f g xs . map f (map g xs) = map (\x -> f $! g x) xs "map/mapL" forall f g xs . map f (L.map g xs) = map (\x -> f (g x)) xs #-} #endif -- | /O(n)/. Map a function over all values in the map. -- -- > let f key x = (show key) ++ ":" ++ x -- > mapWithKey f (fromList [(5,"a"), (3,"b")]) == fromList [(3, "3:b"), (5, "5:a")] mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b mapWithKey f t = case t of Bin p m l r -> Bin p m (mapWithKey f l) (mapWithKey f r) Tip k x -> Tip k $! f k x Nil -> Nil #ifdef __GLASGOW_HASKELL__ -- Pay close attention to strictness here. We need to force the -- intermediate result for map f . map g, and we need to refrain -- from forcing it for map f . L.map g, etc. -- -- TODO Consider moving map and mapWithKey to IntMap.Internal so we can write -- non-orphan RULES for things like L.map f (map g xs). We'd need a new function -- for this, and we'd have to pay attention to simplifier phases. Something like -- -- lsmap :: (b -> c) -> (a -> b) -> IntMap a -> IntMap c -- lsmap _ _ Nil = Nil -- lsmap f g (Tip k x) = let !gx = g x in Tip k (f gx) -- lsmap f g (Bin p m l r) = Bin p m (lsmap f g l) (lsmap f g r) {-# NOINLINE [1] mapWithKey #-} {-# RULES "mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) = mapWithKey (\k a -> f k $! g k a) xs "mapWithKey/mapWithKeyL" forall f g xs . mapWithKey f (L.mapWithKey g xs) = mapWithKey (\k a -> f k (g k a)) xs "mapWithKey/map" forall f g xs . mapWithKey f (map g xs) = mapWithKey (\k a -> f k $! g a) xs "mapWithKey/mapL" forall f g xs . mapWithKey f (L.map g xs) = mapWithKey (\k a -> f k (g a)) xs "map/mapWithKey" forall f g xs . map f (mapWithKey g xs) = mapWithKey (\k a -> f $! g k a) xs "map/mapWithKeyL" forall f g xs . map f (L.mapWithKey g xs) = mapWithKey (\k a -> f (g k a)) xs #-} #endif -- | /O(n)/. -- @'traverseWithKey' f s == 'fromList' <$> 'traverse' (\(k, v) -> (,) k <$> f k v) ('toList' m)@ -- That is, behaves exactly like a regular 'traverse' except that the traversing -- function also has access to the key associated with a value. -- -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(1, 'a'), (5, 'e')]) == Just (fromList [(1, 'b'), (5, 'f')]) -- > traverseWithKey (\k v -> if odd k then Just (succ v) else Nothing) (fromList [(2, 'c')]) == Nothing traverseWithKey :: Applicative t => (Key -> a -> t b) -> IntMap a -> t (IntMap b) traverseWithKey f = go where go Nil = pure Nil go (Tip k v) = (\ !v' -> Tip k v') <$> f k v go (Bin p m l r) | m < 0 = liftA2 (flip (Bin p m)) (go r) (go l) | otherwise = liftA2 (Bin p m) (go l) (go r) {-# INLINE traverseWithKey #-} -- | /O(n)/. Traverse keys\/values and collect the 'Just' results. -- -- @since 0.6.4 traverseMaybeWithKey :: Applicative f => (Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b) traverseMaybeWithKey f = go where go Nil = pure Nil go (Tip k x) = maybe Nil (Tip k $!) <$> f k x go (Bin p m l r) | m < 0 = liftA2 (flip (bin p m)) (go r) (go l) | otherwise = liftA2 (bin p m) (go l) (go r) -- | /O(n)/. The function @'mapAccum'@ threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a b = (a ++ b, b ++ "X") -- > mapAccum f "Everything: " (fromList [(5,"a"), (3,"b")]) == ("Everything: ba", fromList [(3, "bX"), (5, "aX")]) mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccum f = mapAccumWithKey (\a' _ x -> f a' x) -- | /O(n)/. The function @'mapAccumWithKey'@ threads an accumulating -- argument through the map in ascending order of keys. -- -- > let f a k b = (a ++ " " ++ (show k) ++ "-" ++ b, b ++ "X") -- > mapAccumWithKey f "Everything:" (fromList [(5,"a"), (3,"b")]) == ("Everything: 3-b 5-a", fromList [(3, "bX"), (5, "aX")]) mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccumWithKey f a t = mapAccumL f a t -- | /O(n)/. The function @'mapAccumL'@ threads an accumulating -- argument through the map in ascending order of keys. Strict in -- the accumulating argument and the both elements of the -- result of the function. mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccumL f0 a0 t0 = toPair $ go f0 a0 t0 where go f a t = case t of Bin p m l r | m < 0 -> let (a1 :*: r') = go f a r (a2 :*: l') = go f a1 l in (a2 :*: Bin p m l' r') | otherwise -> let (a1 :*: l') = go f a l (a2 :*: r') = go f a1 r in (a2 :*: Bin p m l' r') Tip k x -> let !(a',!x') = f a k x in (a' :*: Tip k x') Nil -> (a :*: Nil) -- | /O(n)/. The function @'mapAccumRWithKey'@ threads an accumulating -- argument through the map in descending order of keys. mapAccumRWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c) mapAccumRWithKey f0 a0 t0 = toPair $ go f0 a0 t0 where go f a t = case t of Bin p m l r | m < 0 -> let (a1 :*: l') = go f a l (a2 :*: r') = go f a1 r in (a2 :*: Bin p m l' r') | otherwise -> let (a1 :*: r') = go f a r (a2 :*: l') = go f a1 l in (a2 :*: Bin p m l' r') Tip k x -> let !(a',!x') = f a k x in (a' :*: Tip k x') Nil -> (a :*: Nil) -- | /O(n*log n)/. -- @'mapKeysWith' c f s@ is the map obtained by applying @f@ to each key of @s@. -- -- The size of the result may be smaller if @f@ maps two or more distinct -- keys to the same new key. In this case the associated values will be -- combined using @c@. -- -- > mapKeysWith (++) (\ _ -> 1) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 1 "cdab" -- > mapKeysWith (++) (\ _ -> 3) (fromList [(1,"b"), (2,"a"), (3,"d"), (4,"c")]) == singleton 3 "cdab" mapKeysWith :: (a -> a -> a) -> (Key->Key) -> IntMap a -> IntMap a mapKeysWith c f = fromListWith c . foldrWithKey (\k x xs -> (f k, x) : xs) [] {-------------------------------------------------------------------- Filter --------------------------------------------------------------------} -- | /O(n)/. Map values and collect the 'Just' results. -- -- > let f x = if x == "a" then Just "new a" else Nothing -- > mapMaybe f (fromList [(5,"a"), (3,"b")]) == singleton 5 "new a" mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b mapMaybe f = mapMaybeWithKey (\_ x -> f x) -- | /O(n)/. Map keys\/values and collect the 'Just' results. -- -- > let f k _ = if k < 5 then Just ("key : " ++ (show k)) else Nothing -- > mapMaybeWithKey f (fromList [(5,"a"), (3,"b")]) == singleton 3 "key : 3" mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b mapMaybeWithKey f (Bin p m l r) = bin p m (mapMaybeWithKey f l) (mapMaybeWithKey f r) mapMaybeWithKey f (Tip k x) = case f k x of Just !y -> Tip k y Nothing -> Nil mapMaybeWithKey _ Nil = Nil -- | /O(n)/. Map values and separate the 'Left' and 'Right' results. -- -- > let f a = if a < "c" then Left a else Right a -- > mapEither f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(3,"b"), (5,"a")], fromList [(1,"x"), (7,"z")]) -- > -- > mapEither (\ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c) mapEither f m = mapEitherWithKey (\_ x -> f x) m -- | /O(n)/. Map keys\/values and separate the 'Left' and 'Right' results. -- -- > let f k a = if k < 5 then Left (k * 2) else Right (a ++ a) -- > mapEitherWithKey f (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (fromList [(1,2), (3,6)], fromList [(5,"aa"), (7,"zz")]) -- > -- > mapEitherWithKey (\_ a -> Right a) (fromList [(5,"a"), (3,"b"), (1,"x"), (7,"z")]) -- > == (empty, fromList [(1,"x"), (3,"b"), (5,"a"), (7,"z")]) mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c) mapEitherWithKey f0 t0 = toPair $ go f0 t0 where go f (Bin p m l r) = bin p m l1 r1 :*: bin p m l2 r2 where (l1 :*: l2) = go f l (r1 :*: r2) = go f r go f (Tip k x) = case f k x of Left !y -> (Tip k y :*: Nil) Right !z -> (Nil :*: Tip k z) go _ Nil = (Nil :*: Nil) {-------------------------------------------------------------------- Conversions --------------------------------------------------------------------} -- | /O(n)/. Build a map from a set of keys and a function which for each key -- computes its value. -- -- > fromSet (\k -> replicate k 'a') (Data.IntSet.fromList [3, 5]) == fromList [(5,"aaaaa"), (3,"aaa")] -- > fromSet undefined Data.IntSet.empty == empty fromSet :: (Key -> a) -> IntSet.IntSet -> IntMap a fromSet _ IntSet.Nil = Nil fromSet f (IntSet.Bin p m l r) = Bin p m (fromSet f l) (fromSet f r) fromSet f (IntSet.Tip kx bm) = buildTree f kx bm (IntSet.suffixBitMask + 1) where -- This is slightly complicated, as we to convert the dense -- representation of IntSet into tree representation of IntMap. -- -- We are given a nonzero bit mask 'bmask' of 'bits' bits with prefix 'prefix'. -- We split bmask into halves corresponding to left and right subtree. -- If they are both nonempty, we create a Bin node, otherwise exactly -- one of them is nonempty and we construct the IntMap from that half. buildTree g !prefix !bmask bits = case bits of 0 -> Tip prefix $! g prefix _ -> case intFromNat ((natFromInt bits) `shiftRL` 1) of bits2 | bmask .&. ((1 `shiftLL` bits2) - 1) == 0 -> buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2 | (bmask `shiftRL` bits2) .&. ((1 `shiftLL` bits2) - 1) == 0 -> buildTree g prefix bmask bits2 | otherwise -> Bin prefix bits2 (buildTree g prefix bmask bits2) (buildTree g (prefix + bits2) (bmask `shiftRL` bits2) bits2) {-------------------------------------------------------------------- Lists --------------------------------------------------------------------} -- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs. -- -- > fromList [] == empty -- > fromList [(5,"a"), (3,"b"), (5, "c")] == fromList [(5,"c"), (3,"b")] -- > fromList [(5,"c"), (3,"b"), (5, "a")] == fromList [(5,"a"), (3,"b")] fromList :: [(Key,a)] -> IntMap a fromList xs = Foldable.foldl' ins empty xs where ins t (k,x) = insert k x t -- | /O(n*min(n,W))/. Create a map from a list of key\/value pairs with a combining function. See also 'fromAscListWith'. -- -- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")] -- > fromListWith (++) [] == empty fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a fromListWith f xs = fromListWithKey (\_ x y -> f x y) xs -- | /O(n*min(n,W))/. Build a map from a list of key\/value pairs with a combining function. See also fromAscListWithKey'. -- -- > fromListWith (++) [(5,"a"), (5,"b"), (3,"b"), (3,"a"), (5,"a")] == fromList [(3, "ab"), (5, "aba")] -- > fromListWith (++) [] == empty fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a fromListWithKey f xs = Foldable.foldl' ins empty xs where ins t (k,x) = insertWithKey f k x t -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order. -- -- > fromAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] -- > fromAscList [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "b")] fromAscList :: [(Key,a)] -> IntMap a fromAscList = fromMonoListWithKey Nondistinct (\_ x _ -> x) {-# NOINLINE fromAscList #-} -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order, with a combining function on equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")] fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a fromAscListWith f = fromMonoListWithKey Nondistinct (\_ x y -> f x y) {-# NOINLINE fromAscListWith #-} -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order, with a combining function on equal keys. -- /The precondition (input list is ascending) is not checked./ -- -- > fromAscListWith (++) [(3,"b"), (5,"a"), (5,"b")] == fromList [(3, "b"), (5, "ba")] fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a fromAscListWithKey f = fromMonoListWithKey Nondistinct f {-# NOINLINE fromAscListWithKey #-} -- | /O(n)/. Build a map from a list of key\/value pairs where -- the keys are in ascending order and all distinct. -- /The precondition (input list is strictly ascending) is not checked./ -- -- > fromDistinctAscList [(3,"b"), (5,"a")] == fromList [(3, "b"), (5, "a")] fromDistinctAscList :: [(Key,a)] -> IntMap a fromDistinctAscList = fromMonoListWithKey Distinct (\_ x _ -> x) {-# NOINLINE fromDistinctAscList #-} -- | /O(n)/. Build a map from a list of key\/value pairs with monotonic keys -- and a combining function. -- -- The precise conditions under which this function works are subtle: -- For any branch mask, keys with the same prefix w.r.t. the branch -- mask must occur consecutively in the list. fromMonoListWithKey :: Distinct -> (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a fromMonoListWithKey distinct f = go where go [] = Nil go ((kx,vx) : zs1) = addAll' kx vx zs1 -- `addAll'` collects all keys equal to `kx` into a single value, -- and then proceeds with `addAll`. addAll' !kx vx [] = Tip kx $! vx addAll' !kx vx ((ky,vy) : zs) | Nondistinct <- distinct, kx == ky = let !v = f kx vy vx in addAll' ky v zs -- inlined: | otherwise = addAll kx (Tip kx $! vx) (ky : zs) | m <- branchMask kx ky , Inserted ty zs' <- addMany' m ky vy zs = addAll kx (linkWithMask m ky ty {-kx-} (Tip kx $! vx)) zs' -- for `addAll` and `addMany`, kx is /a/ key inside the tree `tx` -- `addAll` consumes the rest of the list, adding to the tree `tx` addAll !_kx !tx [] = tx addAll !kx !tx ((ky,vy) : zs) | m <- branchMask kx ky , Inserted ty zs' <- addMany' m ky vy zs = addAll kx (linkWithMask m ky ty {-kx-} tx) zs' -- `addMany'` is similar to `addAll'`, but proceeds with `addMany'`. addMany' !_m !kx vx [] = Inserted (Tip kx $! vx) [] addMany' !m !kx vx zs0@((ky,vy) : zs) | Nondistinct <- distinct, kx == ky = let !v = f kx vy vx in addMany' m ky v zs -- inlined: | otherwise = addMany m kx (Tip kx $! vx) (ky : zs) | mask kx m /= mask ky m = Inserted (Tip kx $! vx) zs0 | mxy <- branchMask kx ky , Inserted ty zs' <- addMany' mxy ky vy zs = addMany m kx (linkWithMask mxy ky ty {-kx-} (Tip kx $! vx)) zs' -- `addAll` adds to `tx` all keys whose prefix w.r.t. `m` agrees with `kx`. addMany !_m !_kx tx [] = Inserted tx [] addMany !m !kx tx zs0@((ky,vy) : zs) | mask kx m /= mask ky m = Inserted tx zs0 | mxy <- branchMask kx ky , Inserted ty zs' <- addMany' mxy ky vy zs = addMany m kx (linkWithMask mxy ky ty {-kx-} tx) zs' {-# INLINE fromMonoListWithKey #-} data Inserted a = Inserted !(IntMap a) ![(Key,a)] data Distinct = Distinct | Nondistinct