base-4.11.0.0: Basic libraries

Copyright(c) The University of Glasgow 2002
Licensesee libraries/base/LICENSE
Maintainercvs-ghc@haskell.org
Stabilityinternal
Portabilitynon-portable (GHC Extensions)
Safe HaskellUnsafe
LanguageHaskell2010

GHC.Exts

Contents

Description

GHC Extensions: this is the Approved Way to get at GHC-specific extensions.

Note: no other base module should import this module.

Synopsis

Representations of some basic types

data Int Source #

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Constructors

I# Int# 
Instances
Bounded Int Source #

Since: 2.1

Instance details
Enum Int Source #

Since: 2.1

Instance details
Eq Int 
Instance details

Methods

(==) :: Int -> Int -> Bool Source #

(/=) :: Int -> Int -> Bool Source #

Integral Int Source #

Since: 2.0.1

Instance details

Methods

quot :: Int -> Int -> Int Source #

rem :: Int -> Int -> Int Source #

div :: Int -> Int -> Int Source #

mod :: Int -> Int -> Int Source #

quotRem :: Int -> Int -> (Int, Int) Source #

divMod :: Int -> Int -> (Int, Int) Source #

toInteger :: Int -> Integer Source #

Data Int Source #

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int Source #

toConstr :: Int -> Constr Source #

dataTypeOf :: Int -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) Source #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

Num Int Source #

Since: 2.1

Instance details
Ord Int 
Instance details

Methods

compare :: Int -> Int -> Ordering Source #

(<) :: Int -> Int -> Bool Source #

(<=) :: Int -> Int -> Bool Source #

(>) :: Int -> Int -> Bool Source #

(>=) :: Int -> Int -> Bool Source #

max :: Int -> Int -> Int Source #

min :: Int -> Int -> Int Source #

Read Int Source #

Since: 2.1

Instance details
Real Int Source #

Since: 2.0.1

Instance details
Show Int Source #

Since: 2.1

Instance details
Ix Int Source #

Since: 2.1

Instance details

Methods

range :: (Int, Int) -> [Int] Source #

index :: (Int, Int) -> Int -> Int Source #

unsafeIndex :: (Int, Int) -> Int -> Int

inRange :: (Int, Int) -> Int -> Bool Source #

rangeSize :: (Int, Int) -> Int Source #

unsafeRangeSize :: (Int, Int) -> Int

FiniteBits Int Source #

Since: 4.6.0.0

Instance details
Bits Int Source #

Since: 2.1

Instance details
Storable Int Source #

Since: 2.1

Instance details
PrintfArg Int Source #

Since: 2.1

Instance details
Generic1 (URec Int :: k -> *) Source # 
Instance details

Associated Types

type Rep1 (URec Int) :: k -> * Source #

Methods

from1 :: URec Int a -> Rep1 (URec Int) a Source #

to1 :: Rep1 (URec Int) a -> URec Int a Source #

Functor (URec Int :: * -> *) Source # 
Instance details

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Foldable (URec Int :: * -> *) Source # 
Instance details

Methods

fold :: Monoid m => URec Int m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Int a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Int a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Int a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Int a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Int a -> b Source #

foldr1 :: (a -> a -> a) -> URec Int a -> a Source #

foldl1 :: (a -> a -> a) -> URec Int a -> a Source #

toList :: URec Int a -> [a] Source #

null :: URec Int a -> Bool Source #

length :: URec Int a -> Int Source #

elem :: Eq a => a -> URec Int a -> Bool Source #

maximum :: Ord a => URec Int a -> a Source #

minimum :: Ord a => URec Int a -> a Source #

sum :: Num a => URec Int a -> a Source #

product :: Num a => URec Int a -> a Source #

Traversable (URec Int :: * -> *) Source # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec Int a -> f (URec Int b) Source #

sequenceA :: Applicative f => URec Int (f a) -> f (URec Int a) Source #

mapM :: Monad m => (a -> m b) -> URec Int a -> m (URec Int b) Source #

sequence :: Monad m => URec Int (m a) -> m (URec Int a) Source #

Eq (URec Int p) # 
Instance details

Methods

(==) :: URec Int p -> URec Int p -> Bool Source #

(/=) :: URec Int p -> URec Int p -> Bool Source #

Ord (URec Int p) # 
Instance details

Methods

compare :: URec Int p -> URec Int p -> Ordering Source #

(<) :: URec Int p -> URec Int p -> Bool Source #

(<=) :: URec Int p -> URec Int p -> Bool Source #

(>) :: URec Int p -> URec Int p -> Bool Source #

(>=) :: URec Int p -> URec Int p -> Bool Source #

max :: URec Int p -> URec Int p -> URec Int p Source #

min :: URec Int p -> URec Int p -> URec Int p Source #

Show (URec Int p) Source # 
Instance details
Generic (URec Int p) Source # 
Instance details

Associated Types

type Rep (URec Int p) :: * -> * Source #

Methods

from :: URec Int p -> Rep (URec Int p) x Source #

to :: Rep (URec Int p) x -> URec Int p Source #

data URec Int (p :: k) Source #

Used for marking occurrences of Int#

Since: 4.9.0.0

Instance details
data URec Int (p :: k) = UInt {}
type Rep1 (URec Int :: k -> *) Source # 
Instance details
type Rep1 (URec Int :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt :: k -> *)))
type Rep (URec Int p) Source # 
Instance details
type Rep (URec Int p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt :: * -> *)))

data Word Source #

A Word is an unsigned integral type, with the same size as Int.

Constructors

W# Word# 
Instances
Bounded Word Source #

Since: 2.1

Instance details
Enum Word Source #

Since: 2.1

Instance details
Eq Word 
Instance details

Methods

(==) :: Word -> Word -> Bool Source #

(/=) :: Word -> Word -> Bool Source #

Integral Word Source #

Since: 2.1

Instance details
Data Word Source #

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word Source #

toConstr :: Word -> Constr Source #

dataTypeOf :: Word -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) Source #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

Num Word Source #

Since: 2.1

Instance details
Ord Word 
Instance details
Read Word Source #

Since: 4.5.0.0

Instance details
Real Word Source #

Since: 2.1

Instance details
Show Word Source #

Since: 2.1

Instance details
Ix Word Source #

Since: 4.6.0.0

Instance details
FiniteBits Word Source #

Since: 4.6.0.0

Instance details
Bits Word Source #

Since: 2.1

Instance details
Storable Word Source #

Since: 2.1

Instance details
PrintfArg Word Source #

Since: 2.1

Instance details
Generic1 (URec Word :: k -> *) Source # 
Instance details

Associated Types

type Rep1 (URec Word) :: k -> * Source #

Methods

from1 :: URec Word a -> Rep1 (URec Word) a Source #

to1 :: Rep1 (URec Word) a -> URec Word a Source #

Functor (URec Word :: * -> *) Source # 
Instance details

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

Foldable (URec Word :: * -> *) Source # 
Instance details

Methods

fold :: Monoid m => URec Word m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Word a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Word a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Word a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Word a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Word a -> b Source #

foldr1 :: (a -> a -> a) -> URec Word a -> a Source #

foldl1 :: (a -> a -> a) -> URec Word a -> a Source #

toList :: URec Word a -> [a] Source #

null :: URec Word a -> Bool Source #

length :: URec Word a -> Int Source #

elem :: Eq a => a -> URec Word a -> Bool Source #

maximum :: Ord a => URec Word a -> a Source #

minimum :: Ord a => URec Word a -> a Source #

sum :: Num a => URec Word a -> a Source #

product :: Num a => URec Word a -> a Source #

Traversable (URec Word :: * -> *) Source # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec Word a -> f (URec Word b) Source #

sequenceA :: Applicative f => URec Word (f a) -> f (URec Word a) Source #

mapM :: Monad m => (a -> m b) -> URec Word a -> m (URec Word b) Source #

sequence :: Monad m => URec Word (m a) -> m (URec Word a) Source #

Eq (URec Word p) # 
Instance details

Methods

(==) :: URec Word p -> URec Word p -> Bool Source #

(/=) :: URec Word p -> URec Word p -> Bool Source #

Ord (URec Word p) # 
Instance details

Methods

compare :: URec Word p -> URec Word p -> Ordering Source #

(<) :: URec Word p -> URec Word p -> Bool Source #

(<=) :: URec Word p -> URec Word p -> Bool Source #

(>) :: URec Word p -> URec Word p -> Bool Source #

(>=) :: URec Word p -> URec Word p -> Bool Source #

max :: URec Word p -> URec Word p -> URec Word p Source #

min :: URec Word p -> URec Word p -> URec Word p Source #

Show (URec Word p) Source # 
Instance details
Generic (URec Word p) Source # 
Instance details

Associated Types

type Rep (URec Word p) :: * -> * Source #

Methods

from :: URec Word p -> Rep (URec Word p) x Source #

to :: Rep (URec Word p) x -> URec Word p Source #

data URec Word (p :: k) Source #

Used for marking occurrences of Word#

Since: 4.9.0.0

Instance details
data URec Word (p :: k) = UWord {}
type Rep1 (URec Word :: k -> *) Source # 
Instance details
type Rep1 (URec Word :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord :: k -> *)))
type Rep (URec Word p) Source # 
Instance details
type Rep (URec Word p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord :: * -> *)))

data Float Source #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Constructors

F# Float# 
Instances
Enum Float Source #

Since: 2.1

Instance details
Eq Float 
Instance details

Methods

(==) :: Float -> Float -> Bool Source #

(/=) :: Float -> Float -> Bool Source #

Floating Float Source #

Since: 2.1

Instance details
Fractional Float Source #

Since: 2.1

Instance details
Data Float Source #

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float Source #

toConstr :: Float -> Constr Source #

dataTypeOf :: Float -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) Source #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

Num Float Source #

Since: 2.1

Instance details
Ord Float 
Instance details
Read Float Source #

Since: 2.1

Instance details
Real Float Source #

Since: 2.1

Instance details
RealFloat Float Source #

Since: 2.1

Instance details
RealFrac Float Source #

Since: 2.1

Instance details

Methods

properFraction :: Integral b => Float -> (b, Float) Source #

truncate :: Integral b => Float -> b Source #

round :: Integral b => Float -> b Source #

ceiling :: Integral b => Float -> b Source #

floor :: Integral b => Float -> b Source #

Show Float Source #

Since: 2.1

Instance details
Storable Float Source #

Since: 2.1

Instance details
PrintfArg Float Source #

Since: 2.1

Instance details
Generic1 (URec Float :: k -> *) Source # 
Instance details

Associated Types

type Rep1 (URec Float) :: k -> * Source #

Methods

from1 :: URec Float a -> Rep1 (URec Float) a Source #

to1 :: Rep1 (URec Float) a -> URec Float a Source #

Functor (URec Float :: * -> *) Source # 
Instance details

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Foldable (URec Float :: * -> *) Source # 
Instance details

Methods

fold :: Monoid m => URec Float m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Float a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Float a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Float a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Float a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Float a -> b Source #

foldr1 :: (a -> a -> a) -> URec Float a -> a Source #

foldl1 :: (a -> a -> a) -> URec Float a -> a Source #

toList :: URec Float a -> [a] Source #

null :: URec Float a -> Bool Source #

length :: URec Float a -> Int Source #

elem :: Eq a => a -> URec Float a -> Bool Source #

maximum :: Ord a => URec Float a -> a Source #

minimum :: Ord a => URec Float a -> a Source #

sum :: Num a => URec Float a -> a Source #

product :: Num a => URec Float a -> a Source #

Traversable (URec Float :: * -> *) Source # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec Float a -> f (URec Float b) Source #

sequenceA :: Applicative f => URec Float (f a) -> f (URec Float a) Source #

mapM :: Monad m => (a -> m b) -> URec Float a -> m (URec Float b) Source #

sequence :: Monad m => URec Float (m a) -> m (URec Float a) Source #

Eq (URec Float p) # 
Instance details

Methods

(==) :: URec Float p -> URec Float p -> Bool Source #

(/=) :: URec Float p -> URec Float p -> Bool Source #

Ord (URec Float p) # 
Instance details
Show (URec Float p) Source # 
Instance details
Generic (URec Float p) Source # 
Instance details

Associated Types

type Rep (URec Float p) :: * -> * Source #

Methods

from :: URec Float p -> Rep (URec Float p) x Source #

to :: Rep (URec Float p) x -> URec Float p Source #

data URec Float (p :: k) Source #

Used for marking occurrences of Float#

Since: 4.9.0.0

Instance details
data URec Float (p :: k) = UFloat {}
type Rep1 (URec Float :: k -> *) Source # 
Instance details
type Rep1 (URec Float :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UFloat" PrefixI True) (S1 (MetaSel (Just "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UFloat :: k -> *)))
type Rep (URec Float p) Source # 
Instance details
type Rep (URec Float p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UFloat" PrefixI True) (S1 (MetaSel (Just "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UFloat :: * -> *)))

data Double Source #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Constructors

D# Double# 
Instances
Enum Double Source #

Since: 2.1

Instance details
Eq Double 
Instance details
Floating Double Source #

Since: 2.1

Instance details
Fractional Double Source #

Since: 2.1

Instance details
Data Double Source #

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double Source #

toConstr :: Double -> Constr Source #

dataTypeOf :: Double -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) Source #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

Num Double Source #

Since: 2.1

Instance details
Ord Double 
Instance details
Read Double Source #

Since: 2.1

Instance details
Real Double Source #

Since: 2.1

Instance details
RealFloat Double Source #

Since: 2.1

Instance details
RealFrac Double Source #

Since: 2.1

Instance details
Show Double Source #

Since: 2.1

Instance details
Storable Double Source #

Since: 2.1

Instance details
PrintfArg Double Source #

Since: 2.1

Instance details
Generic1 (URec Double :: k -> *) Source # 
Instance details

Associated Types

type Rep1 (URec Double) :: k -> * Source #

Functor (URec Double :: * -> *) Source # 
Instance details

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Foldable (URec Double :: * -> *) Source # 
Instance details

Methods

fold :: Monoid m => URec Double m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Double a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Double a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Double a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Double a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Double a -> b Source #

foldr1 :: (a -> a -> a) -> URec Double a -> a Source #

foldl1 :: (a -> a -> a) -> URec Double a -> a Source #

toList :: URec Double a -> [a] Source #

null :: URec Double a -> Bool Source #

length :: URec Double a -> Int Source #

elem :: Eq a => a -> URec Double a -> Bool Source #

maximum :: Ord a => URec Double a -> a Source #

minimum :: Ord a => URec Double a -> a Source #

sum :: Num a => URec Double a -> a Source #

product :: Num a => URec Double a -> a Source #

Traversable (URec Double :: * -> *) Source # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec Double a -> f (URec Double b) Source #

sequenceA :: Applicative f => URec Double (f a) -> f (URec Double a) Source #

mapM :: Monad m => (a -> m b) -> URec Double a -> m (URec Double b) Source #

sequence :: Monad m => URec Double (m a) -> m (URec Double a) Source #

Eq (URec Double p) # 
Instance details

Methods

(==) :: URec Double p -> URec Double p -> Bool Source #

(/=) :: URec Double p -> URec Double p -> Bool Source #

Ord (URec Double p) # 
Instance details
Show (URec Double p) Source # 
Instance details
Generic (URec Double p) Source # 
Instance details

Associated Types

type Rep (URec Double p) :: * -> * Source #

Methods

from :: URec Double p -> Rep (URec Double p) x Source #

to :: Rep (URec Double p) x -> URec Double p Source #

data URec Double (p :: k) Source #

Used for marking occurrences of Double#

Since: 4.9.0.0

Instance details
data URec Double (p :: k) = UDouble {}
type Rep1 (URec Double :: k -> *) Source # 
Instance details
type Rep1 (URec Double :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UDouble" PrefixI True) (S1 (MetaSel (Just "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UDouble :: k -> *)))
type Rep (URec Double p) Source # 
Instance details
type Rep (URec Double p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UDouble" PrefixI True) (S1 (MetaSel (Just "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UDouble :: * -> *)))

data Char Source #

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).

Constructors

C# Char# 
Instances
Bounded Char Source #

Since: 2.1

Instance details
Enum Char Source #

Since: 2.1

Instance details
Eq Char 
Instance details

Methods

(==) :: Char -> Char -> Bool Source #

(/=) :: Char -> Char -> Bool Source #

Data Char Source #

Since: 4.0.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char Source #

toConstr :: Char -> Constr Source #

dataTypeOf :: Char -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) Source #

gmapT :: (forall b. Data b => b -> b) -> Char -> Char Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

Ord Char 
Instance details
Read Char Source #

Since: 2.1

Instance details
Show Char Source #

Since: 2.1

Instance details
Ix Char Source #

Since: 2.1

Instance details
Storable Char Source #

Since: 2.1

Instance details
IsChar Char Source #

Since: 2.1

Instance details
PrintfArg Char Source #

Since: 2.1

Instance details
Generic1 (URec Char :: k -> *) Source # 
Instance details

Associated Types

type Rep1 (URec Char) :: k -> * Source #

Methods

from1 :: URec Char a -> Rep1 (URec Char) a Source #

to1 :: Rep1 (URec Char) a -> URec Char a Source #

Functor (URec Char :: * -> *) Source # 
Instance details

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Foldable (URec Char :: * -> *) Source # 
Instance details

Methods

fold :: Monoid m => URec Char m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Char a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Char a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Char a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Char a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Char a -> b Source #

foldr1 :: (a -> a -> a) -> URec Char a -> a Source #

foldl1 :: (a -> a -> a) -> URec Char a -> a Source #

toList :: URec Char a -> [a] Source #

null :: URec Char a -> Bool Source #

length :: URec Char a -> Int Source #

elem :: Eq a => a -> URec Char a -> Bool Source #

maximum :: Ord a => URec Char a -> a Source #

minimum :: Ord a => URec Char a -> a Source #

sum :: Num a => URec Char a -> a Source #

product :: Num a => URec Char a -> a Source #

Traversable (URec Char :: * -> *) Source # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec Char a -> f (URec Char b) Source #

sequenceA :: Applicative f => URec Char (f a) -> f (URec Char a) Source #

mapM :: Monad m => (a -> m b) -> URec Char a -> m (URec Char b) Source #

sequence :: Monad m => URec Char (m a) -> m (URec Char a) Source #

Eq (URec Char p) # 
Instance details

Methods

(==) :: URec Char p -> URec Char p -> Bool Source #

(/=) :: URec Char p -> URec Char p -> Bool Source #

Ord (URec Char p) # 
Instance details

Methods

compare :: URec Char p -> URec Char p -> Ordering Source #

(<) :: URec Char p -> URec Char p -> Bool Source #

(<=) :: URec Char p -> URec Char p -> Bool Source #

(>) :: URec Char p -> URec Char p -> Bool Source #

(>=) :: URec Char p -> URec Char p -> Bool Source #

max :: URec Char p -> URec Char p -> URec Char p Source #

min :: URec Char p -> URec Char p -> URec Char p Source #

Show (URec Char p) Source # 
Instance details
Generic (URec Char p) Source # 
Instance details

Associated Types

type Rep (URec Char p) :: * -> * Source #

Methods

from :: URec Char p -> Rep (URec Char p) x Source #

to :: Rep (URec Char p) x -> URec Char p Source #

data URec Char (p :: k) Source #

Used for marking occurrences of Char#

Since: 4.9.0.0

Instance details
data URec Char (p :: k) = UChar {}
type Rep1 (URec Char :: k -> *) Source # 
Instance details
type Rep1 (URec Char :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UChar" PrefixI True) (S1 (MetaSel (Just "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar :: k -> *)))
type Rep (URec Char p) Source # 
Instance details
type Rep (URec Char p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UChar" PrefixI True) (S1 (MetaSel (Just "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar :: * -> *)))

data Ptr a Source #

A value of type Ptr a represents a pointer to an object, or an array of objects, which may be marshalled to or from Haskell values of type a.

The type a will often be an instance of class Storable which provides the marshalling operations. However this is not essential, and you can provide your own operations to access the pointer. For example you might write small foreign functions to get or set the fields of a C struct.

Constructors

Ptr Addr# 
Instances
Generic1 (URec (Ptr ()) :: k -> *) Source # 
Instance details

Associated Types

type Rep1 (URec (Ptr ())) :: k -> * Source #

Methods

from1 :: URec (Ptr ()) a -> Rep1 (URec (Ptr ())) a Source #

to1 :: Rep1 (URec (Ptr ())) a -> URec (Ptr ()) a Source #

Eq (Ptr a) Source # 
Instance details

Methods

(==) :: Ptr a -> Ptr a -> Bool Source #

(/=) :: Ptr a -> Ptr a -> Bool Source #

Data a => Data (Ptr a) Source #

Since: 4.8.0.0

Instance details

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) Source #

toConstr :: Ptr a -> Constr Source #

dataTypeOf :: Ptr a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

Ord (Ptr a) Source # 
Instance details

Methods

compare :: Ptr a -> Ptr a -> Ordering Source #

(<) :: Ptr a -> Ptr a -> Bool Source #

(<=) :: Ptr a -> Ptr a -> Bool Source #

(>) :: Ptr a -> Ptr a -> Bool Source #

(>=) :: Ptr a -> Ptr a -> Bool Source #

max :: Ptr a -> Ptr a -> Ptr a Source #

min :: Ptr a -> Ptr a -> Ptr a Source #

Show (Ptr a) Source #

Since: 2.1

Instance details

Methods

showsPrec :: Int -> Ptr a -> ShowS Source #

show :: Ptr a -> String Source #

showList :: [Ptr a] -> ShowS Source #

Storable (Ptr a) Source #

Since: 2.1

Instance details

Methods

sizeOf :: Ptr a -> Int Source #

alignment :: Ptr a -> Int Source #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) Source #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) Source #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () Source #

peek :: Ptr (Ptr a) -> IO (Ptr a) Source #

poke :: Ptr (Ptr a) -> Ptr a -> IO () Source #

Functor (URec (Ptr ()) :: * -> *) Source # 
Instance details

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Foldable (URec (Ptr ()) :: * -> *) Source # 
Instance details

Methods

fold :: Monoid m => URec (Ptr ()) m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m Source #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b Source #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b Source #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a Source #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a Source #

toList :: URec (Ptr ()) a -> [a] Source #

null :: URec (Ptr ()) a -> Bool Source #

length :: URec (Ptr ()) a -> Int Source #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool Source #

maximum :: Ord a => URec (Ptr ()) a -> a Source #

minimum :: Ord a => URec (Ptr ()) a -> a Source #

sum :: Num a => URec (Ptr ()) a -> a Source #

product :: Num a => URec (Ptr ()) a -> a Source #

Traversable (URec (Ptr ()) :: * -> *) Source # 
Instance details

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) Source #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) Source #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) Source #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) Source #

Eq (URec (Ptr ()) p) # 
Instance details

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

Ord (URec (Ptr ()) p) # 
Instance details

Methods

compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering Source #

(<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p Source #

min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p Source #

Generic (URec (Ptr ()) p) Source # 
Instance details

Associated Types

type Rep (URec (Ptr ()) p) :: * -> * Source #

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x Source #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p Source #

data URec (Ptr ()) (p :: k) Source #

Used for marking occurrences of Addr#

Since: 4.9.0.0

Instance details
data URec (Ptr ()) (p :: k) = UAddr {}
type Rep1 (URec (Ptr ()) :: k -> *) Source # 
Instance details
type Rep1 (URec (Ptr ()) :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UAddr :: k -> *)))
type Rep (URec (Ptr ()) p) Source # 
Instance details
type Rep (URec (Ptr ()) p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UAddr :: * -> *)))

data FunPtr a Source #

A value of type FunPtr a is a pointer to a function callable from foreign code. The type a will normally be a foreign type, a function type with zero or more arguments where

A value of type FunPtr a may be a pointer to a foreign function, either returned by another foreign function or imported with a a static address import like

foreign import ccall "stdlib.h &free"
  p_free :: FunPtr (Ptr a -> IO ())

or a pointer to a Haskell function created using a wrapper stub declared to produce a FunPtr of the correct type. For example:

type Compare = Int -> Int -> Bool
foreign import ccall "wrapper"
  mkCompare :: Compare -> IO (FunPtr Compare)

Calls to wrapper stubs like mkCompare allocate storage, which should be released with freeHaskellFunPtr when no longer required.

To convert FunPtr values to corresponding Haskell functions, one can define a dynamic stub for the specific foreign type, e.g.

type IntFunction = CInt -> IO ()
foreign import ccall "dynamic"
  mkFun :: FunPtr IntFunction -> IntFunction

Constructors

FunPtr Addr# 
Instances
Eq (FunPtr a) Source # 
Instance details

Methods

(==) :: FunPtr a -> FunPtr a -> Bool Source #

(/=) :: FunPtr a -> FunPtr a -> Bool Source #

Ord (FunPtr a) Source # 
Instance details

Methods

compare :: FunPtr a -> FunPtr a -> Ordering Source #

(<) :: FunPtr a -> FunPtr a -> Bool Source #

(<=) :: FunPtr a -> FunPtr a -> Bool Source #

(>) :: FunPtr a -> FunPtr a -> Bool Source #

(>=) :: FunPtr a -> FunPtr a -> Bool Source #

max :: FunPtr a -> FunPtr a -> FunPtr a Source #

min :: FunPtr a -> FunPtr a -> FunPtr a Source #

Show (FunPtr a) Source #

Since: 2.1

Instance details
Storable (FunPtr a) Source #

Since: 2.1

Instance details

Methods

sizeOf :: FunPtr a -> Int Source #

alignment :: FunPtr a -> Int Source #

peekElemOff :: Ptr (FunPtr a) -> Int -> IO (FunPtr a) Source #

pokeElemOff :: Ptr (FunPtr a) -> Int -> FunPtr a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (FunPtr a) Source #

pokeByteOff :: Ptr b -> Int -> FunPtr a -> IO () Source #

peek :: Ptr (FunPtr a) -> IO (FunPtr a) Source #

poke :: Ptr (FunPtr a) -> FunPtr a -> IO () Source #

The maximum tuple size

Primitive operations

seq :: a -> b -> b Source #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. In other words, it evaluates the first argument a to weak head normal form (WHNF). seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

unsafeCoerce# :: a -> b Source #

The function unsafeCoerce# allows you to side-step the typechecker entirely. That is, it allows you to coerce any type into any other type. If you use this function, you had better get it right, otherwise segmentation faults await. It is generally used when you want to write a program that you know is well-typed, but where Haskell's type system is not expressive enough to prove that it is well typed.

The following uses of unsafeCoerce# are supposed to work (i.e. not lead to spurious compile-time or run-time crashes):

  • Casting any lifted type to Any
  • Casting Any back to the real type
  • Casting an unboxed type to another unboxed type of the same size. (Casting between floating-point and integral types does not work. See the GHC.Float module for functions to do work.)
  • Casting between two types that have the same runtime representation. One case is when the two types differ only in "phantom" type parameters, for example Ptr Int to Ptr Float, or [Int] to [Float] when the list is known to be empty. Also, a newtype of a type T has the same representation at runtime as T.

Other uses of unsafeCoerce# are undefined. In particular, you should not use unsafeCoerce# to cast a T to an algebraic data type D, unless T is also an algebraic data type. For example, do not cast Int->Int to Bool, even if you later cast that Bool back to Int->Int before applying it. The reasons have to do with GHC's internal representation details (for the cognoscenti, data values can be entered but function closures cannot). If you want a safe type to cast things to, use Any, which is not an algebraic data type.

nullAddr# :: Addr# Source #

The null address.

proxy# :: Proxy# a Source #

Witness for an unboxed Proxy# value, which has no runtime representation.

data Addr# :: TYPE AddrRep Source #

An arbitrary machine address assumed to point outside the garbage-collected heap.

data Array# (a :: *) :: TYPE UnliftedRep Source #

data Weak# (a :: *) :: TYPE UnliftedRep Source #

data MutableArray# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

data MVar# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

A shared mutable variable (not the same as a MutVar#!). (Note: in a non-concurrent implementation, (MVar# a) can be represented by (MutVar# (Maybe a)).)

data RealWorld Source #

RealWorld is deeply magical. It is primitive, but it is not unlifted (hence ptrArg). We never manipulate values of type RealWorld; it's only used in the type system, to parameterise State#.

data StablePtr# (a :: *) :: TYPE AddrRep Source #

data State# (a :: *) :: TYPE (TupleRep ([] :: [RuntimeRep])) Source #

State# is the primitive, unlifted type of states. It has one type parameter, thus State# RealWorld, or State# s, where s is a type variable. The only purpose of the type parameter is to keep different state threads separate. It is represented by nothing at all.

data (~#) :: forall k0 k1. k0 -> k1 -> TYPE (TupleRep ([] :: [RuntimeRep])) Source #

data MutVar# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

A MutVar# behaves like a single-element mutable array.

data Void# :: TYPE (TupleRep ([] :: [RuntimeRep])) Source #

data ThreadId# :: TYPE UnliftedRep Source #

(In a non-concurrent implementation, this can be a singleton type, whose (unique) value is returned by myThreadId#. The other operations can be omitted.)

data BCO# :: TYPE UnliftedRep Source #

Primitive bytecode type.

data TVar# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

data Proxy# :: forall k0. k0 -> TYPE (TupleRep ([] :: [RuntimeRep])) Source #

The type constructor Proxy# is used to bear witness to some type variable. It's used when you want to pass around proxy values for doing things like modelling type applications. A Proxy# is not only unboxed, it also has a polymorphic kind, and has no runtime representation, being totally free.

data SmallMutableArray# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

(+#) :: Int# -> Int# -> Int# infixl 6 Source #

(-#) :: Int# -> Int# -> Int# infixl 6 Source #

(*#) :: Int# -> Int# -> Int# infixl 7 Source #

Low word of signed integer multiply.

mulIntMayOflo# :: Int# -> Int# -> Int# Source #

Return non-zero if there is any possibility that the upper word of a signed integer multiply might contain useful information. Return zero only if you are completely sure that no overflow can occur. On a 32-bit platform, the recommended implementation is to do a 32 x 32 -> 64 signed multiply, and subtract result[63:32] from (result[31] >>signed 31). If this is zero, meaning that the upper word is merely a sign extension of the lower one, no overflow can occur.

On a 64-bit platform it is not always possible to acquire the top 64 bits of the result. Therefore, a recommended implementation is to take the absolute value of both operands, and return 0 iff bits[63:31] of them are zero, since that means that their magnitudes fit within 31 bits, so the magnitude of the product must fit into 62 bits.

If in doubt, return non-zero, but do make an effort to create the correct answer for small args, since otherwise the performance of (*) :: Integer -> Integer -> Integer will be poor.

quotInt# :: Int# -> Int# -> Int# Source #

Rounds towards zero. The behavior is undefined if the second argument is zero.

remInt# :: Int# -> Int# -> Int# Source #

Satisfies (quotInt# x y) *# y +# (remInt# x y) == x. The behavior is undefined if the second argument is zero.

quotRemInt# :: Int# -> Int# -> (#Int#, Int##) Source #

Rounds towards zero.

addIntC# :: Int# -> Int# -> (#Int#, Int##) Source #

Add signed integers reporting overflow. First member of result is the sum truncated to an Int#; second member is zero if the true sum fits in an Int#, nonzero if overflow occurred (the sum is either too large or too small to fit in an Int#).

subIntC# :: Int# -> Int# -> (#Int#, Int##) Source #

Subtract signed integers reporting overflow. First member of result is the difference truncated to an Int#; second member is zero if the true difference fits in an Int#, nonzero if overflow occurred (the difference is either too large or too small to fit in an Int#).

(>#) :: Int# -> Int# -> Int# infix 4 Source #

(>=#) :: Int# -> Int# -> Int# infix 4 Source #

(==#) :: Int# -> Int# -> Int# infix 4 Source #

(/=#) :: Int# -> Int# -> Int# infix 4 Source #

(<#) :: Int# -> Int# -> Int# infix 4 Source #

(<=#) :: Int# -> Int# -> Int# infix 4 Source #

uncheckedIShiftL# :: Int# -> Int# -> Int# Source #

Shift left. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedIShiftRA# :: Int# -> Int# -> Int# Source #

Shift right arithmetic. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedIShiftRL# :: Int# -> Int# -> Int# Source #

Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

subWordC# :: Word# -> Word# -> (#Word#, Int##) Source #

Subtract unsigned integers reporting overflow. The first element of the pair is the result. The second element is the carry flag, which is nonzero on overflow.

uncheckedShiftL# :: Word# -> Int# -> Word# Source #

Shift left logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedShiftRL# :: Word# -> Int# -> Word# Source #

Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

popCnt8# :: Word# -> Word# Source #

Count the number of set bits in the lower 8 bits of a word.

popCnt16# :: Word# -> Word# Source #

Count the number of set bits in the lower 16 bits of a word.

popCnt32# :: Word# -> Word# Source #

Count the number of set bits in the lower 32 bits of a word.

popCnt64# :: Word# -> Word# Source #

Count the number of set bits in a 64-bit word.

popCnt# :: Word# -> Word# Source #

Count the number of set bits in a word.

pdep8# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 8 bits of a word at locations specified by a mask.

pdep16# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 16 bits of a word at locations specified by a mask.

pdep32# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 32 bits of a word at locations specified by a mask.

pdep64# :: Word# -> Word# -> Word# Source #

Deposit bits to a word at locations specified by a mask.

pdep# :: Word# -> Word# -> Word# Source #

Deposit bits to a word at locations specified by a mask.

pext8# :: Word# -> Word# -> Word# Source #

Extract bits from lower 8 bits of a word at locations specified by a mask.

pext16# :: Word# -> Word# -> Word# Source #

Extract bits from lower 16 bits of a word at locations specified by a mask.

pext32# :: Word# -> Word# -> Word# Source #

Extract bits from lower 32 bits of a word at locations specified by a mask.

pext64# :: Word# -> Word# -> Word# Source #

Extract bits from a word at locations specified by a mask.

pext# :: Word# -> Word# -> Word# Source #

Extract bits from a word at locations specified by a mask.

clz8# :: Word# -> Word# Source #

Count leading zeros in the lower 8 bits of a word.

clz16# :: Word# -> Word# Source #

Count leading zeros in the lower 16 bits of a word.

clz32# :: Word# -> Word# Source #

Count leading zeros in the lower 32 bits of a word.

clz64# :: Word# -> Word# Source #

Count leading zeros in a 64-bit word.

clz# :: Word# -> Word# Source #

Count leading zeros in a word.

ctz8# :: Word# -> Word# Source #

Count trailing zeros in the lower 8 bits of a word.

ctz16# :: Word# -> Word# Source #

Count trailing zeros in the lower 16 bits of a word.

ctz32# :: Word# -> Word# Source #

Count trailing zeros in the lower 32 bits of a word.

ctz64# :: Word# -> Word# Source #

Count trailing zeros in a 64-bit word.

ctz# :: Word# -> Word# Source #

Count trailing zeros in a word.

byteSwap16# :: Word# -> Word# Source #

Swap bytes in the lower 16 bits of a word. The higher bytes are undefined.

byteSwap32# :: Word# -> Word# Source #

Swap bytes in the lower 32 bits of a word. The higher bytes are undefined.

byteSwap64# :: Word# -> Word# Source #

Swap bytes in a 64 bits of a word.

byteSwap# :: Word# -> Word# Source #

Swap bytes in a word.

(>##) :: Double# -> Double# -> Int# infix 4 Source #

(>=##) :: Double# -> Double# -> Int# infix 4 Source #

(==##) :: Double# -> Double# -> Int# infix 4 Source #

(/=##) :: Double# -> Double# -> Int# infix 4 Source #

(<##) :: Double# -> Double# -> Int# infix 4 Source #

(<=##) :: Double# -> Double# -> Int# infix 4 Source #

(+##) :: Double# -> Double# -> Double# infixl 6 Source #

(-##) :: Double# -> Double# -> Double# infixl 6 Source #

(*##) :: Double# -> Double# -> Double# infixl 7 Source #

(/##) :: Double# -> Double# -> Double# infixl 7 Source #

double2Int# :: Double# -> Int# Source #

Truncates a Double# value to the nearest Int#. Results are undefined if the truncation if truncation yields a value outside the range of Int#.

(**##) :: Double# -> Double# -> Double# Source #

Exponentiation.

decodeDouble_2Int# :: Double# -> (#Int#, Word#, Word#, Int##) Source #

Convert to integer. First component of the result is -1 or 1, indicating the sign of the mantissa. The next two are the high and low 32 bits of the mantissa respectively, and the last is the exponent.

decodeDouble_Int64# :: Double# -> (#Int#, Int##) Source #

Decode Double# into mantissa and base-2 exponent.

float2Int# :: Float# -> Int# Source #

Truncates a Float# value to the nearest Int#. Results are undefined if the truncation if truncation yields a value outside the range of Int#.

decodeFloat_Int# :: Float# -> (#Int#, Int##) Source #

Convert to integers. First Int# in result is the mantissa; second is the exponent.

newArray# :: Int# -> a -> State# d -> (#State# d, MutableArray# d a#) Source #

Create a new mutable array with the specified number of elements, in the specified state thread, with each element containing the specified initial value.

readArray# :: MutableArray# d a -> Int# -> State# d -> (#State# d, a#) Source #

Read from specified index of mutable array. Result is not yet evaluated.

writeArray# :: MutableArray# d a -> Int# -> a -> State# d -> State# d Source #

Write to specified index of mutable array.

sizeofArray# :: Array# a -> Int# Source #

Return the number of elements in the array.

sizeofMutableArray# :: MutableArray# d a -> Int# Source #

Return the number of elements in the array.

indexArray# :: Array# a -> Int# -> (#a#) Source #

Read from specified index of immutable array. Result is packaged into an unboxed singleton; the result itself is not yet evaluated.

unsafeFreezeArray# :: MutableArray# d a -> State# d -> (#State# d, Array# a#) Source #

Make a mutable array immutable, without copying.

unsafeThawArray# :: Array# a -> State# d -> (#State# d, MutableArray# d a#) Source #

Make an immutable array mutable, without copying.

copyArray# :: Array# a -> Int# -> MutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

copyMutableArray# :: MutableArray# d a -> Int# -> MutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. In the case where the source and destination are the same array the source and destination regions may overlap.

cloneArray# :: Array# a -> Int# -> Int# -> Array# a Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

cloneMutableArray# :: MutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, MutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

freezeArray# :: MutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, Array# a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

thawArray# :: Array# a -> Int# -> Int# -> State# d -> (#State# d, MutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

casArray# :: MutableArray# d a -> Int# -> a -> a -> State# d -> (#State# d, Int#, a#) Source #

Unsafe, machine-level atomic compare and swap on an element within an Array.

newSmallArray# :: Int# -> a -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Create a new mutable array with the specified number of elements, in the specified state thread, with each element containing the specified initial value.

readSmallArray# :: SmallMutableArray# d a -> Int# -> State# d -> (#State# d, a#) Source #

Read from specified index of mutable array. Result is not yet evaluated.

writeSmallArray# :: SmallMutableArray# d a -> Int# -> a -> State# d -> State# d Source #

Write to specified index of mutable array.

sizeofSmallArray# :: SmallArray# a -> Int# Source #

Return the number of elements in the array.

sizeofSmallMutableArray# :: SmallMutableArray# d a -> Int# Source #

Return the number of elements in the array.

indexSmallArray# :: SmallArray# a -> Int# -> (#a#) Source #

Read from specified index of immutable array. Result is packaged into an unboxed singleton; the result itself is not yet evaluated.

unsafeFreezeSmallArray# :: SmallMutableArray# d a -> State# d -> (#State# d, SmallArray# a#) Source #

Make a mutable array immutable, without copying.

unsafeThawSmallArray# :: SmallArray# a -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Make an immutable array mutable, without copying.

copySmallArray# :: SmallArray# a -> Int# -> SmallMutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

copySmallMutableArray# :: SmallMutableArray# d a -> Int# -> SmallMutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. The source and destination arrays can refer to the same array. Both arrays must fully contain the specified ranges, but this is not checked. The regions are allowed to overlap, although this is only possible when the same array is provided as both the source and the destination.

cloneSmallArray# :: SmallArray# a -> Int# -> Int# -> SmallArray# a Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

cloneSmallMutableArray# :: SmallMutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

freezeSmallArray# :: SmallMutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, SmallArray# a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

thawSmallArray# :: SmallArray# a -> Int# -> Int# -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

casSmallArray# :: SmallMutableArray# d a -> Int# -> a -> a -> State# d -> (#State# d, Int#, a#) Source #

Unsafe, machine-level atomic compare and swap on an element within an array.

newByteArray# :: Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Create a new mutable byte array of specified size (in bytes), in the specified state thread.

newPinnedByteArray# :: Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Create a mutable byte array that the GC guarantees not to move.

newAlignedPinnedByteArray# :: Int# -> Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Create a mutable byte array, aligned by the specified amount, that the GC guarantees not to move.

isMutableByteArrayPinned# :: MutableByteArray# d -> Int# Source #

Determine whether a MutableByteArray# is guaranteed not to move during GC.

isByteArrayPinned# :: ByteArray# -> Int# Source #

Determine whether a ByteArray# is guaranteed not to move during GC.

byteArrayContents# :: ByteArray# -> Addr# Source #

Intended for use with pinned arrays; otherwise very unsafe!

shrinkMutableByteArray# :: MutableByteArray# d -> Int# -> State# d -> State# d Source #

Shrink mutable byte array to new specified size (in bytes), in the specified state thread. The new size argument must be less than or equal to the current size as reported by sizeofMutableArray#.

resizeMutableByteArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Resize (unpinned) mutable byte array to new specified size (in bytes). The returned MutableByteArray# is either the original MutableByteArray# resized in-place or, if not possible, a newly allocated (unpinned) MutableByteArray# (with the original content copied over).

To avoid undefined behaviour, the original MutableByteArray# shall not be accessed anymore after a resizeMutableByteArray# has been performed. Moreover, no reference to the old one should be kept in order to allow garbage collection of the original MutableByteArray# in case a new MutableByteArray# had to be allocated.

unsafeFreezeByteArray# :: MutableByteArray# d -> State# d -> (#State# d, ByteArray##) Source #

Make a mutable byte array immutable, without copying.

sizeofByteArray# :: ByteArray# -> Int# Source #

Return the size of the array in bytes.

sizeofMutableByteArray# :: MutableByteArray# d -> Int# Source #

Return the size of the array in bytes. Note that this is deprecated as it is unsafe in the presence of concurrent resize operations on the same byte array. See getSizeofMutableByteArray.

getSizeofMutableByteArray# :: MutableByteArray# d -> State# d -> (#State# d, Int##) Source #

Return the number of elements in the array.

indexCharArray# :: ByteArray# -> Int# -> Char# Source #

Read 8-bit character; offset in bytes.

indexWideCharArray# :: ByteArray# -> Int# -> Char# Source #

Read 31-bit character; offset in 4-byte words.

indexInt8Array# :: ByteArray# -> Int# -> Int# Source #

Read 8-bit integer; offset in bytes.

indexInt16Array# :: ByteArray# -> Int# -> Int# Source #

Read 16-bit integer; offset in 16-bit words.

indexInt32Array# :: ByteArray# -> Int# -> Int# Source #

Read 32-bit integer; offset in 32-bit words.

indexInt64Array# :: ByteArray# -> Int# -> Int# Source #

Read 64-bit integer; offset in 64-bit words.

indexWord8Array# :: ByteArray# -> Int# -> Word# Source #

Read 8-bit word; offset in bytes.

indexWord16Array# :: ByteArray# -> Int# -> Word# Source #

Read 16-bit word; offset in 16-bit words.

indexWord32Array# :: ByteArray# -> Int# -> Word# Source #

Read 32-bit word; offset in 32-bit words.

indexWord64Array# :: ByteArray# -> Int# -> Word# Source #

Read 64-bit word; offset in 64-bit words.

readCharArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Char##) Source #

Read 8-bit character; offset in bytes.

readWideCharArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Char##) Source #

Read 31-bit character; offset in 4-byte words.

readIntArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int##) Source #

Read integer; offset in words.

readWordArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word##) Source #

Read word; offset in words.

writeCharArray# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write 8-bit character; offset in bytes.

writeWideCharArray# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write 31-bit character; offset in 4-byte words.

compareByteArrays# :: ByteArray# -> Int# -> ByteArray# -> Int# -> Int# -> Int# Source #

compareByteArrays# src1 src1_ofs src2 src2_ofs n compares n bytes starting at offset src1_ofs in the first ByteArray# src1 to the range of n bytes (i.e. same length) starting at offset src2_ofs of the second ByteArray# src2. Both arrays must fully contain the specified ranges, but this is not checked. Returns an Int# less than, equal to, or greater than zero if the range is found, respectively, to be byte-wise lexicographically less than, to match, or be greater than the second range.

copyByteArray# :: ByteArray# -> Int# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

copyByteArray# src src_ofs dst dst_ofs n copies the range starting at offset src_ofs of length n from the ByteArray# src to the MutableByteArray# dst starting at offset dst_ofs. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

copyMutableByteArray# :: MutableByteArray# d -> Int# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Copy a range of the first MutableByteArray. Both arrays must fully contain the specified ranges, but this is not checked. The regions are allowed to overlap, although this is only possible when the same array is provided as both the source and the destination.

copyByteArrayToAddr# :: ByteArray# -> Int# -> Addr# -> Int# -> State# d -> State# d Source #

Copy a range of the ByteArray. The ByteArray must fully contain the specified ranges, but this is not checked. The Addr# must not point into the ByteArray were pinned), but this is not checked either.

copyMutableByteArrayToAddr# :: MutableByteArray# d -> Int# -> Addr# -> Int# -> State# d -> State# d Source #

Copy a range of the MutableByteArray# to the memory range starting at the Addr and the memory region at Addr# must fully contain the specified ranges, but this is not checked. The Addr# must not point into the MutableByteArray were pinned), but this is not checked either.

copyAddrToByteArray# :: Addr# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Copy a memory range starting at the Addr# to the specified range in the MutableByteArray and the ByteArray# must fully contain the specified ranges, but this is not checked. The Addr# must not point into the MutableByteArray were pinned), but this is not checked either.

setByteArray# :: MutableByteArray# d -> Int# -> Int# -> Int# -> State# d -> State# d Source #

setByteArray# ba off len c sets the byte range [off, off+len] of the MutableByteArray# to the byte c.

atomicReadIntArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array and an offset in Int units, read an element. The index is assumed to be in bounds. Implies a full memory barrier.

atomicWriteIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Given an array and an offset in Int units, write an element. The index is assumed to be in bounds. Implies a full memory barrier.

casIntArray# :: MutableByteArray# d -> Int# -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, an offset in Int units, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. Implies a full memory barrier.

fetchAddIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to add, atomically add the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchSubIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to subtract, atomically substract the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchAndIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to AND, atomically AND the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchNandIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to NAND, atomically NAND the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchOrIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to OR, atomically OR the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchXorIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to XOR, atomically XOR the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

newArrayArray# :: Int# -> State# d -> (#State# d, MutableArrayArray# d#) Source #

Create a new mutable array of arrays with the specified number of elements, in the specified state thread, with each element recursively referring to the newly created array.

unsafeFreezeArrayArray# :: MutableArrayArray# d -> State# d -> (#State# d, ArrayArray##) Source #

Make a mutable array of arrays immutable, without copying.

sizeofArrayArray# :: ArrayArray# -> Int# Source #

Return the number of elements in the array.

sizeofMutableArrayArray# :: MutableArrayArray# d -> Int# Source #

Return the number of elements in the array.