containers-0.5.7.1: Assorted concrete container types

Copyright(c) The University of Glasgow 2002
LicenseBSD-style (see the file libraries/base/LICENSE)
Maintainerlibraries@haskell.org
Stabilityexperimental
Portabilityportable
Safe HaskellTrustworthy
LanguageHaskell98

Data.Tree

Contents

Description

Multi-way trees (aka rose trees) and forests.

Synopsis

Documentation

data Tree a Source

Multi-way trees, also known as rose trees.

Constructors

Node 

Fields

Instances

Monad Tree 

Methods

(>>=) :: Tree a -> (a -> Tree b) -> Tree b Source

(>>) :: Tree a -> Tree b -> Tree b Source

return :: a -> Tree a Source

fail :: String -> Tree a Source

Functor Tree 

Methods

fmap :: (a -> b) -> Tree a -> Tree b Source

(<$) :: a -> Tree b -> Tree a Source

Applicative Tree 

Methods

pure :: a -> Tree a Source

(<*>) :: Tree (a -> b) -> Tree a -> Tree b Source

(*>) :: Tree a -> Tree b -> Tree b Source

(<*) :: Tree a -> Tree b -> Tree a Source

Foldable Tree 

Methods

fold :: Monoid m => Tree m -> m Source

foldMap :: Monoid m => (a -> m) -> Tree a -> m Source

foldr :: (a -> b -> b) -> b -> Tree a -> b Source

foldr' :: (a -> b -> b) -> b -> Tree a -> b Source

foldl :: (b -> a -> b) -> b -> Tree a -> b Source

foldl' :: (b -> a -> b) -> b -> Tree a -> b Source

foldr1 :: (a -> a -> a) -> Tree a -> a Source

foldl1 :: (a -> a -> a) -> Tree a -> a Source

toList :: Tree a -> [a] Source

null :: Tree a -> Bool Source

length :: Tree a -> Int Source

elem :: Eq a => a -> Tree a -> Bool Source

maximum :: Ord a => Tree a -> a Source

minimum :: Ord a => Tree a -> a Source

sum :: Num a => Tree a -> a Source

product :: Num a => Tree a -> a Source

Traversable Tree 

Methods

traverse :: Applicative f => (a -> f b) -> Tree a -> f (Tree b) Source

sequenceA :: Applicative f => Tree (f a) -> f (Tree a) Source

mapM :: Monad m => (a -> m b) -> Tree a -> m (Tree b) Source

sequence :: Monad m => Tree (m a) -> m (Tree a) Source

Eq a => Eq (Tree a) 

Methods

(==) :: Tree a -> Tree a -> Bool Source

(/=) :: Tree a -> Tree a -> Bool Source

Data a => Data (Tree a) 

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Tree a -> c (Tree a) Source

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Tree a) Source

toConstr :: Tree a -> Constr Source

dataTypeOf :: Tree a -> DataType Source

dataCast1 :: Typeable (TYPE Lifted -> TYPE Lifted) t => (forall d. Data d => c (t d)) -> Maybe (c (Tree a)) Source

dataCast2 :: Typeable (TYPE Lifted -> TYPE Lifted -> TYPE Lifted) t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Tree a)) Source

gmapT :: (forall b. Data b => b -> b) -> Tree a -> Tree a Source

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r Source

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Tree a -> r Source

gmapQ :: (forall d. Data d => d -> u) -> Tree a -> [u] Source

gmapQi :: Int -> (forall d. Data d => d -> u) -> Tree a -> u Source

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) Source

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) Source

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Tree a -> m (Tree a) Source

Read a => Read (Tree a) 
Show a => Show (Tree a) 
NFData a => NFData (Tree a) 

Methods

rnf :: Tree a -> () Source

type Forest a = [Tree a] Source

Two-dimensional drawing

drawTree :: Tree String -> String Source

Neat 2-dimensional drawing of a tree.

drawForest :: Forest String -> String Source

Neat 2-dimensional drawing of a forest.

Extraction

flatten :: Tree a -> [a] Source

The elements of a tree in pre-order.

levels :: Tree a -> [[a]] Source

Lists of nodes at each level of the tree.

Building trees

unfoldTree :: (b -> (a, [b])) -> b -> Tree a Source

Build a tree from a seed value

unfoldForest :: (b -> (a, [b])) -> [b] -> Forest a Source

Build a forest from a list of seed values

unfoldTreeM :: Monad m => (b -> m (a, [b])) -> b -> m (Tree a) Source

Monadic tree builder, in depth-first order

unfoldForestM :: Monad m => (b -> m (a, [b])) -> [b] -> m (Forest a) Source

Monadic forest builder, in depth-first order

unfoldTreeM_BF :: Monad m => (b -> m (a, [b])) -> b -> m (Tree a) Source

Monadic tree builder, in breadth-first order, using an algorithm adapted from Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design, by Chris Okasaki, ICFP'00.

unfoldForestM_BF :: Monad m => (b -> m (a, [b])) -> [b] -> m (Forest a) Source

Monadic forest builder, in breadth-first order, using an algorithm adapted from Breadth-First Numbering: Lessons from a Small Exercise in Algorithm Design, by Chris Okasaki, ICFP'00.