Safe Haskell | None |
---|---|
Language | Haskell2010 |
Synopsis
- data CondTree v c a = CondNode {
- condTreeData :: a
- condTreeConstraints :: c
- condTreeComponents :: [CondBranch v c a]
- data CondBranch v c a = CondBranch {
- condBranchCondition :: Condition v
- condBranchIfTrue :: CondTree v c a
- condBranchIfFalse :: Maybe (CondTree v c a)
- condIfThen :: Condition v -> CondTree v c a -> CondBranch v c a
- condIfThenElse :: Condition v -> CondTree v c a -> CondTree v c a -> CondBranch v c a
- mapCondTree :: (a -> b) -> (c -> d) -> (Condition v -> Condition w) -> CondTree v c a -> CondTree w d b
- mapTreeConstrs :: (c -> d) -> CondTree v c a -> CondTree v d a
- mapTreeConds :: (Condition v -> Condition w) -> CondTree v c a -> CondTree w c a
- mapTreeData :: (a -> b) -> CondTree v c a -> CondTree v c b
- traverseCondTreeV :: Traversal (CondTree v c a) (CondTree w c a) v w
- traverseCondBranchV :: Traversal (CondBranch v c a) (CondBranch w c a) v w
- traverseCondTreeC :: Traversal (CondTree v c a) (CondTree v d a) c d
- traverseCondBranchC :: Traversal (CondBranch v c a) (CondBranch v d a) c d
- extractCondition :: Eq v => (a -> Bool) -> CondTree v c a -> Condition v
- simplifyCondTree :: (Monoid a, Monoid d) => (v -> Either v Bool) -> CondTree v d a -> (d, a)
- ignoreConditions :: (Monoid a, Monoid c) => CondTree v c a -> (a, c)
Documentation
A CondTree
is used to represent the conditional structure of
a Cabal file, reflecting a syntax element subject to constraints,
and then any number of sub-elements which may be enabled subject
to some condition. Both a
and c
are usually Monoid
s.
To be more concrete, consider the following fragment of a Cabal
file:
build-depends: base >= 4.0 if flag(extra) build-depends: base >= 4.2
One way to represent this is to have
. Here, CondTree
ConfVar
[Dependency
] BuildInfo
condTreeData
represents
the actual fields which are not behind any conditional, while
condTreeComponents
recursively records any further fields
which are behind a conditional. condTreeConstraints
records
the constraints (in this case, base >= 4.0
) which would
be applied if you use this syntax; in general, this is
derived off of targetBuildInfo
(perhaps a good refactoring
would be to convert this into an opaque type, with a smart
constructor that pre-computes the dependencies.)
CondNode | |
|
Instances
Functor (CondTree v c) # | |
Foldable (CondTree v c) # | |
Defined in Distribution.Types.CondTree fold :: Monoid m => CondTree v c m -> m # foldMap :: Monoid m => (a -> m) -> CondTree v c a -> m # foldr :: (a -> b -> b) -> b -> CondTree v c a -> b # foldr' :: (a -> b -> b) -> b -> CondTree v c a -> b # foldl :: (b -> a -> b) -> b -> CondTree v c a -> b # foldl' :: (b -> a -> b) -> b -> CondTree v c a -> b # foldr1 :: (a -> a -> a) -> CondTree v c a -> a # foldl1 :: (a -> a -> a) -> CondTree v c a -> a # toList :: CondTree v c a -> [a] # null :: CondTree v c a -> Bool # length :: CondTree v c a -> Int # elem :: Eq a => a -> CondTree v c a -> Bool # maximum :: Ord a => CondTree v c a -> a # minimum :: Ord a => CondTree v c a -> a # | |
Traversable (CondTree v c) # | |
Defined in Distribution.Types.CondTree | |
(Eq a, Eq c, Eq v) => Eq (CondTree v c a) # | |
(Data v, Data c, Data a) => Data (CondTree v c a) # | |
Defined in Distribution.Types.CondTree gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondTree v c a -> c0 (CondTree v c a) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondTree v c a) # toConstr :: CondTree v c a -> Constr # dataTypeOf :: CondTree v c a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondTree v c a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondTree v c a)) # gmapT :: (forall b. Data b => b -> b) -> CondTree v c a -> CondTree v c a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r # gmapQ :: (forall d. Data d => d -> u) -> CondTree v c a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CondTree v c a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondTree v c a -> m (CondTree v c a) # | |
(Show a, Show c, Show v) => Show (CondTree v c a) # | |
Generic (CondTree v c a) # | |
(Binary v, Binary c, Binary a) => Binary (CondTree v c a) # | |
(NFData v, NFData c, NFData a) => NFData (CondTree v c a) # | |
Defined in Distribution.Types.CondTree | |
type Rep (CondTree v c a) # | |
Defined in Distribution.Types.CondTree type Rep (CondTree v c a) = D1 (MetaData "CondTree" "Distribution.Types.CondTree" "Cabal-2.4.0.1-4dDrY0nmi936kgccwkOPil" False) (C1 (MetaCons "CondNode" PrefixI True) (S1 (MetaSel (Just "condTreeData") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 a) :*: (S1 (MetaSel (Just "condTreeConstraints") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 c) :*: S1 (MetaSel (Just "condTreeComponents") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 [CondBranch v c a])))) |
data CondBranch v c a #
A CondBranch
represents a conditional branch, e.g., if
flag(foo)
on some syntax a
. It also has an optional false
branch.
CondBranch | |
|
Instances
Functor (CondBranch v c) # | |
Defined in Distribution.Types.CondTree fmap :: (a -> b) -> CondBranch v c a -> CondBranch v c b # (<$) :: a -> CondBranch v c b -> CondBranch v c a # | |
Foldable (CondBranch v c) # | |
Defined in Distribution.Types.CondTree fold :: Monoid m => CondBranch v c m -> m # foldMap :: Monoid m => (a -> m) -> CondBranch v c a -> m # foldr :: (a -> b -> b) -> b -> CondBranch v c a -> b # foldr' :: (a -> b -> b) -> b -> CondBranch v c a -> b # foldl :: (b -> a -> b) -> b -> CondBranch v c a -> b # foldl' :: (b -> a -> b) -> b -> CondBranch v c a -> b # foldr1 :: (a -> a -> a) -> CondBranch v c a -> a # foldl1 :: (a -> a -> a) -> CondBranch v c a -> a # toList :: CondBranch v c a -> [a] # null :: CondBranch v c a -> Bool # length :: CondBranch v c a -> Int # elem :: Eq a => a -> CondBranch v c a -> Bool # maximum :: Ord a => CondBranch v c a -> a # minimum :: Ord a => CondBranch v c a -> a # sum :: Num a => CondBranch v c a -> a # product :: Num a => CondBranch v c a -> a # | |
Traversable (CondBranch v c) # | |
Defined in Distribution.Types.CondTree traverse :: Applicative f => (a -> f b) -> CondBranch v c a -> f (CondBranch v c b) # sequenceA :: Applicative f => CondBranch v c (f a) -> f (CondBranch v c a) # mapM :: Monad m => (a -> m b) -> CondBranch v c a -> m (CondBranch v c b) # sequence :: Monad m => CondBranch v c (m a) -> m (CondBranch v c a) # | |
(Eq v, Eq a, Eq c) => Eq (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree (==) :: CondBranch v c a -> CondBranch v c a -> Bool # (/=) :: CondBranch v c a -> CondBranch v c a -> Bool # | |
(Data v, Data c, Data a) => Data (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> CondBranch v c a -> c0 (CondBranch v c a) # gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (CondBranch v c a) # toConstr :: CondBranch v c a -> Constr # dataTypeOf :: CondBranch v c a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (CondBranch v c a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (CondBranch v c a)) # gmapT :: (forall b. Data b => b -> b) -> CondBranch v c a -> CondBranch v c a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r # gmapQ :: (forall d. Data d => d -> u) -> CondBranch v c a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> CondBranch v c a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> CondBranch v c a -> m (CondBranch v c a) # | |
(Show v, Show a, Show c) => Show (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree showsPrec :: Int -> CondBranch v c a -> ShowS # show :: CondBranch v c a -> String # showList :: [CondBranch v c a] -> ShowS # | |
Generic (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree type Rep (CondBranch v c a) :: * -> * # from :: CondBranch v c a -> Rep (CondBranch v c a) x # to :: Rep (CondBranch v c a) x -> CondBranch v c a # | |
(Binary v, Binary c, Binary a) => Binary (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree put :: CondBranch v c a -> Put # get :: Get (CondBranch v c a) # putList :: [CondBranch v c a] -> Put # | |
(NFData v, NFData c, NFData a) => NFData (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree rnf :: CondBranch v c a -> () # | |
type Rep (CondBranch v c a) # | |
Defined in Distribution.Types.CondTree type Rep (CondBranch v c a) = D1 (MetaData "CondBranch" "Distribution.Types.CondTree" "Cabal-2.4.0.1-4dDrY0nmi936kgccwkOPil" False) (C1 (MetaCons "CondBranch" PrefixI True) (S1 (MetaSel (Just "condBranchCondition") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Condition v)) :*: (S1 (MetaSel (Just "condBranchIfTrue") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (CondTree v c a)) :*: S1 (MetaSel (Just "condBranchIfFalse") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (Maybe (CondTree v c a)))))) |
condIfThen :: Condition v -> CondTree v c a -> CondBranch v c a #
condIfThenElse :: Condition v -> CondTree v c a -> CondTree v c a -> CondBranch v c a #
mapCondTree :: (a -> b) -> (c -> d) -> (Condition v -> Condition w) -> CondTree v c a -> CondTree w d b #
mapTreeConstrs :: (c -> d) -> CondTree v c a -> CondTree v d a #
mapTreeData :: (a -> b) -> CondTree v c a -> CondTree v c b #
traverseCondTreeV :: Traversal (CondTree v c a) (CondTree w c a) v w #
@Traversal
@ for the variables
traverseCondBranchV :: Traversal (CondBranch v c a) (CondBranch w c a) v w #
@Traversal
@ for the variables
traverseCondTreeC :: Traversal (CondTree v c a) (CondTree v d a) c d #
@Traversal
@ for the aggregated constraints
traverseCondBranchC :: Traversal (CondBranch v c a) (CondBranch v d a) c d #
@Traversal
@ for the aggregated constraints
extractCondition :: Eq v => (a -> Bool) -> CondTree v c a -> Condition v #
Extract the condition matched by the given predicate from a cond tree.
We use this mainly for extracting buildable conditions (see the Note above), but the function is in fact more general.
simplifyCondTree :: (Monoid a, Monoid d) => (v -> Either v Bool) -> CondTree v d a -> (d, a) #
Flattens a CondTree using a partial flag assignment. When a condition cannot be evaluated, both branches are ignored.
ignoreConditions :: (Monoid a, Monoid c) => CondTree v c a -> (a, c) #
Flatten a CondTree. This will resolve the CondTree by taking all possible paths into account. Note that since branches represent exclusive choices this may not result in a "sane" result.