base-4.7.0.0: Basic libraries

Copyright(c) The University of Glasgow 2001
LicenseBSD-style (see the file libraries/base/LICENSE)
Maintainerlibraries@haskell.org
Stabilitystable
Portabilityportable
Safe HaskellTrustworthy
LanguageHaskell2010

Data.Ix

Contents

Description

The Ix class is used to map a contiguous subrange of values in type onto integers. It is used primarily for array indexing (see the array package).

Synopsis

The Ix class

class Ord a => Ix a where Source

The Ix class is used to map a contiguous subrange of values in a type onto integers. It is used primarily for array indexing (see the array package).

The first argument (l,u) of each of these operations is a pair specifying the lower and upper bounds of a contiguous subrange of values.

An implementation is entitled to assume the following laws about these operations:

Minimal complete instance: range, index and inRange.

Methods

range :: (a, a) -> [a] Source

The list of values in the subrange defined by a bounding pair.

index :: (a, a) -> a -> Int Source

The position of a subscript in the subrange.

inRange :: (a, a) -> a -> Bool Source

Returns True the given subscript lies in the range defined the bounding pair.

rangeSize :: (a, a) -> Int Source

The size of the subrange defined by a bounding pair.

Instances

Ix Bool 
Ix Char 
Ix Int 
Ix Int8 
Ix Int16 
Ix Int32 
Ix Int64 
Ix Integer 
Ix Ordering 
Ix Word 
Ix Word8 
Ix Word16 
Ix Word32 
Ix Word64 
Ix () 
Ix GeneralCategory 
Ix SeekMode 
Ix IOMode 
(Ix a, Ix b) => Ix (a, b) 
Ix (Proxy k s) 
(Ix a1, Ix a2, Ix a3) => Ix (a1, a2, a3) 
(Ix a1, Ix a2, Ix a3, Ix a4) => Ix (a1, a2, a3, a4) 
(Ix a1, Ix a2, Ix a3, Ix a4, Ix a5) => Ix (a1, a2, a3, a4, a5) 

Deriving Instances of Ix

Derived instance declarations for the class Ix are only possible for enumerations (i.e. datatypes having only nullary constructors) and single-constructor datatypes, including arbitrarily large tuples, whose constituent types are instances of Ix.

  • For an enumeration, the nullary constructors are assumed to be numbered left-to-right with the indices being 0 to n-1 inclusive. This is the same numbering defined by the Enum class. For example, given the datatype:
       data Colour = Red | Orange | Yellow | Green | Blue | Indigo | Violet

we would have:

       range   (Yellow,Blue)        ==  [Yellow,Green,Blue]
       index   (Yellow,Blue) Green  ==  1
       inRange (Yellow,Blue) Red    ==  False