ghc-8.10.0.20191210: The GHC API
Safe HaskellNone
LanguageHaskell2010

BooleanFormula

Description

Boolean formulas without quantifiers and without negation. Such a formula consists of variables, conjunctions (and), and disjunctions (or).

This module is used to represent minimal complete definitions for classes.

Documentation

data BooleanFormula a Source #

Instances

Instances details
Functor BooleanFormula # 
Instance details

Defined in BooleanFormula

Methods

fmap :: (a -> b) -> BooleanFormula a -> BooleanFormula b Source #

(<$) :: a -> BooleanFormula b -> BooleanFormula a Source #

Foldable BooleanFormula # 
Instance details

Defined in BooleanFormula

Methods

fold :: Monoid m => BooleanFormula m -> m Source #

foldMap :: Monoid m => (a -> m) -> BooleanFormula a -> m Source #

foldMap' :: Monoid m => (a -> m) -> BooleanFormula a -> m Source #

foldr :: (a -> b -> b) -> b -> BooleanFormula a -> b Source #

foldr' :: (a -> b -> b) -> b -> BooleanFormula a -> b Source #

foldl :: (b -> a -> b) -> b -> BooleanFormula a -> b Source #

foldl' :: (b -> a -> b) -> b -> BooleanFormula a -> b Source #

foldr1 :: (a -> a -> a) -> BooleanFormula a -> a Source #

foldl1 :: (a -> a -> a) -> BooleanFormula a -> a Source #

toList :: BooleanFormula a -> [a] Source #

null :: BooleanFormula a -> Bool Source #

length :: BooleanFormula a -> Int Source #

elem :: Eq a => a -> BooleanFormula a -> Bool Source #

maximum :: Ord a => BooleanFormula a -> a Source #

minimum :: Ord a => BooleanFormula a -> a Source #

sum :: Num a => BooleanFormula a -> a Source #

product :: Num a => BooleanFormula a -> a Source #

Traversable BooleanFormula # 
Instance details

Defined in BooleanFormula

Methods

traverse :: Applicative f => (a -> f b) -> BooleanFormula a -> f (BooleanFormula b) Source #

sequenceA :: Applicative f => BooleanFormula (f a) -> f (BooleanFormula a) Source #

mapM :: Monad m => (a -> m b) -> BooleanFormula a -> m (BooleanFormula b) Source #

sequence :: Monad m => BooleanFormula (m a) -> m (BooleanFormula a) Source #

Eq a => Eq (BooleanFormula a) # 
Instance details

Defined in BooleanFormula

Data a => Data (BooleanFormula a) # 
Instance details

Defined in BooleanFormula

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> BooleanFormula a -> c (BooleanFormula a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (BooleanFormula a) Source #

toConstr :: BooleanFormula a -> Constr Source #

dataTypeOf :: BooleanFormula a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (BooleanFormula a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (BooleanFormula a)) Source #

gmapT :: (forall b. Data b => b -> b) -> BooleanFormula a -> BooleanFormula a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r Source #

gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> BooleanFormula a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> BooleanFormula a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> BooleanFormula a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> BooleanFormula a -> m (BooleanFormula a) Source #

OutputableBndr a => Outputable (BooleanFormula a) # 
Instance details

Defined in BooleanFormula

Binary a => Binary (BooleanFormula a) # 
Instance details

Defined in BooleanFormula

eval :: (a -> Bool) -> BooleanFormula a -> Bool Source #