{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}

{-# LANGUAGE DeriveDataTypeable, DeriveFunctor, DeriveFoldable,
             DeriveTraversable #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
                                      -- in module GHC.Hs.Extension
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}

-- | Abstract syntax of global declarations.
--
-- Definitions for: @SynDecl@ and @ConDecl@, @ClassDecl@,
-- @InstDecl@, @DefaultDecl@ and @ForeignDecl@.
module GHC.Hs.Decls (
  -- * Toplevel declarations
  HsDecl(..), LHsDecl, HsDataDefn(..), HsDeriving, LHsFunDep,
  HsDerivingClause(..), LHsDerivingClause, NewOrData(..), newOrDataToFlavour,
  StandaloneKindSig(..), LStandaloneKindSig, standaloneKindSigName,

  -- ** Class or type declarations
  TyClDecl(..), LTyClDecl, DataDeclRn(..),
  TyClGroup(..),
  tyClGroupTyClDecls, tyClGroupInstDecls, tyClGroupRoleDecls,
  tyClGroupKindSigs,
  isClassDecl, isDataDecl, isSynDecl, tcdName,
  isFamilyDecl, isTypeFamilyDecl, isDataFamilyDecl,
  isOpenTypeFamilyInfo, isClosedTypeFamilyInfo,
  tyFamInstDeclName, tyFamInstDeclLName,
  countTyClDecls, pprTyClDeclFlavour,
  tyClDeclLName, tyClDeclTyVars,
  hsDeclHasCusk, famResultKindSignature,
  FamilyDecl(..), LFamilyDecl,

  -- ** Instance declarations
  InstDecl(..), LInstDecl, FamilyInfo(..),
  TyFamInstDecl(..), LTyFamInstDecl, instDeclDataFamInsts,
  TyFamDefltDecl, LTyFamDefltDecl,
  DataFamInstDecl(..), LDataFamInstDecl,
  pprDataFamInstFlavour, pprTyFamInstDecl, pprHsFamInstLHS,
  FamInstEqn, LFamInstEqn, FamEqn(..),
  TyFamInstEqn, LTyFamInstEqn, HsTyPats,
  LClsInstDecl, ClsInstDecl(..),

  -- ** Standalone deriving declarations
  DerivDecl(..), LDerivDecl,
  -- ** Deriving strategies
  DerivStrategy(..), LDerivStrategy,
  derivStrategyName, foldDerivStrategy, mapDerivStrategy,
  -- ** @RULE@ declarations
  LRuleDecls,RuleDecls(..),RuleDecl(..),LRuleDecl,HsRuleRn(..),
  RuleBndr(..),LRuleBndr,
  collectRuleBndrSigTys,
  flattenRuleDecls, pprFullRuleName,
  -- ** @default@ declarations
  DefaultDecl(..), LDefaultDecl,
  -- ** Template haskell declaration splice
  SpliceExplicitFlag(..),
  SpliceDecl(..), LSpliceDecl,
  -- ** Foreign function interface declarations
  ForeignDecl(..), LForeignDecl, ForeignImport(..), ForeignExport(..),
  CImportSpec(..),
  -- ** Data-constructor declarations
  ConDecl(..), LConDecl,
  HsConDeclDetails, hsConDeclArgTys, hsConDeclTheta,
  getConNames, getConArgs,
  -- ** Document comments
  DocDecl(..), LDocDecl, docDeclDoc,
  -- ** Deprecations
  WarnDecl(..),  LWarnDecl,
  WarnDecls(..), LWarnDecls,
  -- ** Annotations
  AnnDecl(..), LAnnDecl,
  AnnProvenance(..), annProvenanceName_maybe,
  -- ** Role annotations
  RoleAnnotDecl(..), LRoleAnnotDecl, roleAnnotDeclName,
  -- ** Injective type families
  FamilyResultSig(..), LFamilyResultSig, InjectivityAnn(..), LInjectivityAnn,
  resultVariableName, familyDeclLName, familyDeclName,

  -- * Grouping
  HsGroup(..),  emptyRdrGroup, emptyRnGroup, appendGroups, hsGroupInstDecls,
  hsGroupTopLevelFixitySigs,

  partitionBindsAndSigs,
    ) where

-- friends:
import GHC.Prelude

import {-# SOURCE #-} GHC.Hs.Expr( HsExpr, HsSplice, pprExpr,
                                   pprSpliceDecl )
        -- Because Expr imports Decls via HsBracket

import GHC.Hs.Binds
import GHC.Hs.Type
import GHC.Hs.Doc
import GHC.Core.TyCon
import GHC.Types.Basic
import GHC.Core.Coercion
import GHC.Types.ForeignCall
import GHC.Hs.Extension
import GHC.Types.Name
import GHC.Types.Name.Set

-- others:
import GHC.Core.Class
import GHC.Utils.Outputable
import GHC.Utils.Misc
import GHC.Types.SrcLoc
import GHC.Core.Type

import GHC.Data.Bag
import GHC.Data.Maybe
import Data.Data        hiding (TyCon,Fixity, Infix)

{-
************************************************************************
*                                                                      *
\subsection[HsDecl]{Declarations}
*                                                                      *
************************************************************************
-}

type LHsDecl p = Located (HsDecl p)
        -- ^ When in a list this may have
        --
        --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi'
        --

-- For details on above see note [Api annotations] in GHC.Parser.Annotation

-- | A Haskell Declaration
data HsDecl p
  = TyClD      (XTyClD p)      (TyClDecl p)      -- ^ Type or Class Declaration
  | InstD      (XInstD p)      (InstDecl  p)     -- ^ Instance declaration
  | DerivD     (XDerivD p)     (DerivDecl p)     -- ^ Deriving declaration
  | ValD       (XValD p)       (HsBind p)        -- ^ Value declaration
  | SigD       (XSigD p)       (Sig p)           -- ^ Signature declaration
  | KindSigD   (XKindSigD p)   (StandaloneKindSig p) -- ^ Standalone kind signature
  | DefD       (XDefD p)       (DefaultDecl p)   -- ^ 'default' declaration
  | ForD       (XForD p)       (ForeignDecl p)   -- ^ Foreign declaration
  | WarningD   (XWarningD p)   (WarnDecls p)     -- ^ Warning declaration
  | AnnD       (XAnnD p)       (AnnDecl p)       -- ^ Annotation declaration
  | RuleD      (XRuleD p)      (RuleDecls p)     -- ^ Rule declaration
  | SpliceD    (XSpliceD p)    (SpliceDecl p)    -- ^ Splice declaration
                                                 -- (Includes quasi-quotes)
  | DocD       (XDocD p)       (DocDecl)  -- ^ Documentation comment declaration
  | RoleAnnotD (XRoleAnnotD p) (RoleAnnotDecl p) -- ^Role annotation declaration
  | XHsDecl    !(XXHsDecl p)

type instance XTyClD      (GhcPass _) = NoExtField
type instance XInstD      (GhcPass _) = NoExtField
type instance XDerivD     (GhcPass _) = NoExtField
type instance XValD       (GhcPass _) = NoExtField
type instance XSigD       (GhcPass _) = NoExtField
type instance XKindSigD   (GhcPass _) = NoExtField
type instance XDefD       (GhcPass _) = NoExtField
type instance XForD       (GhcPass _) = NoExtField
type instance XWarningD   (GhcPass _) = NoExtField
type instance XAnnD       (GhcPass _) = NoExtField
type instance XRuleD      (GhcPass _) = NoExtField
type instance XSpliceD    (GhcPass _) = NoExtField
type instance XDocD       (GhcPass _) = NoExtField
type instance XRoleAnnotD (GhcPass _) = NoExtField
type instance XXHsDecl    (GhcPass _) = NoExtCon

{-
Note [Top-level fixity signatures in an HsGroup]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
An `HsGroup p` stores every top-level fixity declarations in one of two places:

1. hs_fixds :: [LFixitySig p]

   This stores fixity signatures for top-level declarations (e.g., functions,
   data constructors, classes, type families, etc.) as well as fixity
   signatures for class methods written outside of the class, as in this
   example:

     infixl 4 `m1`
     class C1 a where
       m1 :: a -> a -> a

2. hs_tyclds :: [TyClGroup p]

   Each type class can be found in a TyClDecl inside a TyClGroup, and that
   TyClDecl stores the fixity signatures for its methods written inside of the
   class, as in this example:

     class C2 a where
       infixl 4 `m2`
       m2 :: a -> a -> a

The story for fixity signatures for class methods is made slightly complicated
by the fact that they can appear both inside and outside of the class itself,
and both forms of fixity signatures are considered top-level. This matters
in `GHC.Rename.Module.rnSrcDecls`, which must create a fixity environment out
of all top-level fixity signatures before doing anything else. Therefore,
`rnSrcDecls` must be aware of both (1) and (2) above. The
`hsGroupTopLevelFixitySigs` function is responsible for collecting this
information from an `HsGroup`.

One might wonder why we even bother separating top-level fixity signatures
into two places at all. That is, why not just take the fixity signatures
from `hs_tyclds` and put them into `hs_fixds` so that they are all in one
location? This ends up causing problems for `GHC.HsToCore.Quote.repTopDs`,
which translates each fixity signature in `hs_fixds` and `hs_tyclds` into a
Template Haskell `Dec`. If there are any duplicate signatures between the two
fields, this will result in an error (#17608).
-}

-- | Partition a list of HsDecls into function/pattern bindings, signatures,
-- type family declarations, type family instances, and documentation comments.
--
-- Panics when given a declaration that cannot be put into any of the output
-- groups.
--
-- The primary use of this function is to implement
-- 'GHC.Parser.PostProcess.cvBindsAndSigs'.
partitionBindsAndSigs
  :: [LHsDecl GhcPs]
  -> (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs],
      [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl])
partitionBindsAndSigs :: [LHsDecl GhcPs]
-> (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs],
    [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl])
partitionBindsAndSigs = [LHsDecl GhcPs]
-> (LHsBinds GhcPs, [LSig GhcPs], [LFamilyDecl GhcPs],
    [LTyFamInstDecl GhcPs], [LDataFamInstDecl GhcPs], [LDocDecl])
forall {p} {l}.
Outputable (HsDecl p) =>
[GenLocated l (HsDecl p)]
-> (Bag (GenLocated l (HsBind p)), [GenLocated l (Sig p)],
    [GenLocated l (FamilyDecl p)], [GenLocated l (TyFamInstDecl p)],
    [GenLocated l (DataFamInstDecl p)], [GenLocated l DocDecl])
go
  where
    go :: [GenLocated l (HsDecl p)]
-> (Bag (GenLocated l (HsBind p)), [GenLocated l (Sig p)],
    [GenLocated l (FamilyDecl p)], [GenLocated l (TyFamInstDecl p)],
    [GenLocated l (DataFamInstDecl p)], [GenLocated l DocDecl])
go [] = (Bag (GenLocated l (HsBind p))
forall a. Bag a
emptyBag, [], [], [], [], [])
    go ((L l
l HsDecl p
decl) : [GenLocated l (HsDecl p)]
ds) =
      let (Bag (GenLocated l (HsBind p))
bs, [GenLocated l (Sig p)]
ss, [GenLocated l (FamilyDecl p)]
ts, [GenLocated l (TyFamInstDecl p)]
tfis, [GenLocated l (DataFamInstDecl p)]
dfis, [GenLocated l DocDecl]
docs) = [GenLocated l (HsDecl p)]
-> (Bag (GenLocated l (HsBind p)), [GenLocated l (Sig p)],
    [GenLocated l (FamilyDecl p)], [GenLocated l (TyFamInstDecl p)],
    [GenLocated l (DataFamInstDecl p)], [GenLocated l DocDecl])
go [GenLocated l (HsDecl p)]
ds in
      case HsDecl p
decl of
        ValD XValD p
_ HsBind p
b
          -> (l -> HsBind p -> GenLocated l (HsBind p)
forall l e. l -> e -> GenLocated l e
L l
l HsBind p
b GenLocated l (HsBind p)
-> Bag (GenLocated l (HsBind p)) -> Bag (GenLocated l (HsBind p))
forall a. a -> Bag a -> Bag a
`consBag` Bag (GenLocated l (HsBind p))
bs, [GenLocated l (Sig p)]
ss, [GenLocated l (FamilyDecl p)]
ts, [GenLocated l (TyFamInstDecl p)]
tfis, [GenLocated l (DataFamInstDecl p)]
dfis, [GenLocated l DocDecl]
docs)
        SigD XSigD p
_ Sig p
s
          -> (Bag (GenLocated l (HsBind p))
bs, l -> Sig p -> GenLocated l (Sig p)
forall l e. l -> e -> GenLocated l e
L l
l Sig p
s GenLocated l (Sig p)
-> [GenLocated l (Sig p)] -> [GenLocated l (Sig p)]
forall a. a -> [a] -> [a]
: [GenLocated l (Sig p)]
ss, [GenLocated l (FamilyDecl p)]
ts, [GenLocated l (TyFamInstDecl p)]
tfis, [GenLocated l (DataFamInstDecl p)]
dfis, [GenLocated l DocDecl]
docs)
        TyClD XTyClD p
_ (FamDecl XFamDecl p
_ FamilyDecl p
t)
          -> (Bag (GenLocated l (HsBind p))
bs, [GenLocated l (Sig p)]
ss, l -> FamilyDecl p -> GenLocated l (FamilyDecl p)
forall l e. l -> e -> GenLocated l e
L l
l FamilyDecl p
t GenLocated l (FamilyDecl p)
-> [GenLocated l (FamilyDecl p)] -> [GenLocated l (FamilyDecl p)]
forall a. a -> [a] -> [a]
: [GenLocated l (FamilyDecl p)]
ts, [GenLocated l (TyFamInstDecl p)]
tfis, [GenLocated l (DataFamInstDecl p)]
dfis, [GenLocated l DocDecl]
docs)
        InstD XInstD p
_ (TyFamInstD { tfid_inst :: forall pass. InstDecl pass -> TyFamInstDecl pass
tfid_inst = TyFamInstDecl p
tfi })
          -> (Bag (GenLocated l (HsBind p))
bs, [GenLocated l (Sig p)]
ss, [GenLocated l (FamilyDecl p)]
ts, l -> TyFamInstDecl p -> GenLocated l (TyFamInstDecl p)
forall l e. l -> e -> GenLocated l e
L l
l TyFamInstDecl p
tfi GenLocated l (TyFamInstDecl p)
-> [GenLocated l (TyFamInstDecl p)]
-> [GenLocated l (TyFamInstDecl p)]
forall a. a -> [a] -> [a]
: [GenLocated l (TyFamInstDecl p)]
tfis, [GenLocated l (DataFamInstDecl p)]
dfis, [GenLocated l DocDecl]
docs)
        InstD XInstD p
_ (DataFamInstD { dfid_inst :: forall pass. InstDecl pass -> DataFamInstDecl pass
dfid_inst = DataFamInstDecl p
dfi })
          -> (Bag (GenLocated l (HsBind p))
bs, [GenLocated l (Sig p)]
ss, [GenLocated l (FamilyDecl p)]
ts, [GenLocated l (TyFamInstDecl p)]
tfis, l -> DataFamInstDecl p -> GenLocated l (DataFamInstDecl p)
forall l e. l -> e -> GenLocated l e
L l
l DataFamInstDecl p
dfi GenLocated l (DataFamInstDecl p)
-> [GenLocated l (DataFamInstDecl p)]
-> [GenLocated l (DataFamInstDecl p)]
forall a. a -> [a] -> [a]
: [GenLocated l (DataFamInstDecl p)]
dfis, [GenLocated l DocDecl]
docs)
        DocD XDocD p
_ DocDecl
d
          -> (Bag (GenLocated l (HsBind p))
bs, [GenLocated l (Sig p)]
ss, [GenLocated l (FamilyDecl p)]
ts, [GenLocated l (TyFamInstDecl p)]
tfis, [GenLocated l (DataFamInstDecl p)]
dfis, l -> DocDecl -> GenLocated l DocDecl
forall l e. l -> e -> GenLocated l e
L l
l DocDecl
d GenLocated l DocDecl
-> [GenLocated l DocDecl] -> [GenLocated l DocDecl]
forall a. a -> [a] -> [a]
: [GenLocated l DocDecl]
docs)
        HsDecl p
_ -> String
-> SDoc
-> (Bag (GenLocated l (HsBind p)), [GenLocated l (Sig p)],
    [GenLocated l (FamilyDecl p)], [GenLocated l (TyFamInstDecl p)],
    [GenLocated l (DataFamInstDecl p)], [GenLocated l DocDecl])
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"partitionBindsAndSigs" (HsDecl p -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsDecl p
decl)

-- | Haskell Group
--
-- A 'HsDecl' is categorised into a 'HsGroup' before being
-- fed to the renamer.
data HsGroup p
  = HsGroup {
        forall p. HsGroup p -> XCHsGroup p
hs_ext    :: XCHsGroup p,
        forall p. HsGroup p -> HsValBinds p
hs_valds  :: HsValBinds p,
        forall p. HsGroup p -> [LSpliceDecl p]
hs_splcds :: [LSpliceDecl p],

        forall p. HsGroup p -> [TyClGroup p]
hs_tyclds :: [TyClGroup p],
                -- A list of mutually-recursive groups;
                -- This includes `InstDecl`s as well;
                -- Parser generates a singleton list;
                -- renamer does dependency analysis

        forall p. HsGroup p -> [LDerivDecl p]
hs_derivds :: [LDerivDecl p],

        forall p. HsGroup p -> [LFixitySig p]
hs_fixds  :: [LFixitySig p],
                -- A list of fixity signatures defined for top-level
                -- declarations and class methods (defined outside of the class
                -- itself).
                -- See Note [Top-level fixity signatures in an HsGroup]

        forall p. HsGroup p -> [LDefaultDecl p]
hs_defds  :: [LDefaultDecl p],
        forall p. HsGroup p -> [LForeignDecl p]
hs_fords  :: [LForeignDecl p],
        forall p. HsGroup p -> [LWarnDecls p]
hs_warnds :: [LWarnDecls p],
        forall p. HsGroup p -> [LAnnDecl p]
hs_annds  :: [LAnnDecl p],
        forall p. HsGroup p -> [LRuleDecls p]
hs_ruleds :: [LRuleDecls p],

        forall p. HsGroup p -> [LDocDecl]
hs_docs   :: [LDocDecl]
    }
  | XHsGroup !(XXHsGroup p)

type instance XCHsGroup (GhcPass _) = NoExtField
type instance XXHsGroup (GhcPass _) = NoExtCon


emptyGroup, emptyRdrGroup, emptyRnGroup :: HsGroup (GhcPass p)
emptyRdrGroup :: forall (p :: Pass). HsGroup (GhcPass p)
emptyRdrGroup = HsGroup (GhcPass p)
forall (p :: Pass). HsGroup (GhcPass p)
emptyGroup { hs_valds :: HsValBinds (GhcPass p)
hs_valds = HsValBinds (GhcPass p)
forall (a :: Pass) (b :: Pass).
HsValBindsLR (GhcPass a) (GhcPass b)
emptyValBindsIn }
emptyRnGroup :: forall (p :: Pass). HsGroup (GhcPass p)
emptyRnGroup  = HsGroup (GhcPass p)
forall (p :: Pass). HsGroup (GhcPass p)
emptyGroup { hs_valds :: HsValBinds (GhcPass p)
hs_valds = HsValBinds (GhcPass p)
forall (a :: Pass) (b :: Pass).
HsValBindsLR (GhcPass a) (GhcPass b)
emptyValBindsOut }

hsGroupInstDecls :: HsGroup id -> [LInstDecl id]
hsGroupInstDecls :: forall id. HsGroup id -> [LInstDecl id]
hsGroupInstDecls = (TyClGroup id -> [LInstDecl id])
-> [TyClGroup id] -> [LInstDecl id]
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
(=<<) TyClGroup id -> [LInstDecl id]
forall pass. TyClGroup pass -> [LInstDecl pass]
group_instds ([TyClGroup id] -> [LInstDecl id])
-> (HsGroup id -> [TyClGroup id]) -> HsGroup id -> [LInstDecl id]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HsGroup id -> [TyClGroup id]
forall p. HsGroup p -> [TyClGroup p]
hs_tyclds

emptyGroup :: forall (p :: Pass). HsGroup (GhcPass p)
emptyGroup = HsGroup :: forall p.
XCHsGroup p
-> HsValBinds p
-> [LSpliceDecl p]
-> [TyClGroup p]
-> [LDerivDecl p]
-> [LFixitySig p]
-> [LDefaultDecl p]
-> [LForeignDecl p]
-> [LWarnDecls p]
-> [LAnnDecl p]
-> [LRuleDecls p]
-> [LDocDecl]
-> HsGroup p
HsGroup { hs_ext :: XCHsGroup (GhcPass p)
hs_ext = NoExtField
XCHsGroup (GhcPass p)
noExtField,
                       hs_tyclds :: [TyClGroup (GhcPass p)]
hs_tyclds = [],
                       hs_derivds :: [LDerivDecl (GhcPass p)]
hs_derivds = [],
                       hs_fixds :: [LFixitySig (GhcPass p)]
hs_fixds = [], hs_defds :: [LDefaultDecl (GhcPass p)]
hs_defds = [], hs_annds :: [LAnnDecl (GhcPass p)]
hs_annds = [],
                       hs_fords :: [LForeignDecl (GhcPass p)]
hs_fords = [], hs_warnds :: [LWarnDecls (GhcPass p)]
hs_warnds = [], hs_ruleds :: [LRuleDecls (GhcPass p)]
hs_ruleds = [],
                       hs_valds :: HsValBinds (GhcPass p)
hs_valds = String -> HsValBinds (GhcPass p)
forall a. HasCallStack => String -> a
error String
"emptyGroup hs_valds: Can't happen",
                       hs_splcds :: [LSpliceDecl (GhcPass p)]
hs_splcds = [],
                       hs_docs :: [LDocDecl]
hs_docs = [] }

-- | The fixity signatures for each top-level declaration and class method
-- in an 'HsGroup'.
-- See Note [Top-level fixity signatures in an HsGroup]
hsGroupTopLevelFixitySigs :: HsGroup (GhcPass p) -> [LFixitySig (GhcPass p)]
hsGroupTopLevelFixitySigs :: forall (p :: Pass). HsGroup (GhcPass p) -> [LFixitySig (GhcPass p)]
hsGroupTopLevelFixitySigs (HsGroup{ hs_fixds :: forall p. HsGroup p -> [LFixitySig p]
hs_fixds = [LFixitySig (GhcPass p)]
fixds, hs_tyclds :: forall p. HsGroup p -> [TyClGroup p]
hs_tyclds = [TyClGroup (GhcPass p)]
tyclds }) =
    [LFixitySig (GhcPass p)]
fixds [LFixitySig (GhcPass p)]
-> [LFixitySig (GhcPass p)] -> [LFixitySig (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LFixitySig (GhcPass p)]
cls_fixds
  where
    cls_fixds :: [LFixitySig (GhcPass p)]
cls_fixds = [ SrcSpan -> FixitySig (GhcPass p) -> LFixitySig (GhcPass p)
forall l e. l -> e -> GenLocated l e
L SrcSpan
loc FixitySig (GhcPass p)
sig
                | L SrcSpan
_ ClassDecl{tcdSigs :: forall pass. TyClDecl pass -> [LSig pass]
tcdSigs = [LSig (GhcPass p)]
sigs} <- [TyClGroup (GhcPass p)]
-> [GenLocated SrcSpan (TyClDecl (GhcPass p))]
forall pass. [TyClGroup pass] -> [LTyClDecl pass]
tyClGroupTyClDecls [TyClGroup (GhcPass p)]
tyclds
                , L SrcSpan
loc (FixSig XFixSig (GhcPass p)
_ FixitySig (GhcPass p)
sig) <- [LSig (GhcPass p)]
sigs
                ]

appendGroups :: HsGroup (GhcPass p) -> HsGroup (GhcPass p)
             -> HsGroup (GhcPass p)
appendGroups :: forall (p :: Pass).
HsGroup (GhcPass p) -> HsGroup (GhcPass p) -> HsGroup (GhcPass p)
appendGroups
    HsGroup {
        hs_valds :: forall p. HsGroup p -> HsValBinds p
hs_valds  = HsValBinds (GhcPass p)
val_groups1,
        hs_splcds :: forall p. HsGroup p -> [LSpliceDecl p]
hs_splcds = [LSpliceDecl (GhcPass p)]
spliceds1,
        hs_tyclds :: forall p. HsGroup p -> [TyClGroup p]
hs_tyclds = [TyClGroup (GhcPass p)]
tyclds1,
        hs_derivds :: forall p. HsGroup p -> [LDerivDecl p]
hs_derivds = [LDerivDecl (GhcPass p)]
derivds1,
        hs_fixds :: forall p. HsGroup p -> [LFixitySig p]
hs_fixds  = [LFixitySig (GhcPass p)]
fixds1,
        hs_defds :: forall p. HsGroup p -> [LDefaultDecl p]
hs_defds  = [LDefaultDecl (GhcPass p)]
defds1,
        hs_annds :: forall p. HsGroup p -> [LAnnDecl p]
hs_annds  = [LAnnDecl (GhcPass p)]
annds1,
        hs_fords :: forall p. HsGroup p -> [LForeignDecl p]
hs_fords  = [LForeignDecl (GhcPass p)]
fords1,
        hs_warnds :: forall p. HsGroup p -> [LWarnDecls p]
hs_warnds = [LWarnDecls (GhcPass p)]
warnds1,
        hs_ruleds :: forall p. HsGroup p -> [LRuleDecls p]
hs_ruleds = [LRuleDecls (GhcPass p)]
rulds1,
        hs_docs :: forall p. HsGroup p -> [LDocDecl]
hs_docs   = [LDocDecl]
docs1 }
    HsGroup {
        hs_valds :: forall p. HsGroup p -> HsValBinds p
hs_valds  = HsValBinds (GhcPass p)
val_groups2,
        hs_splcds :: forall p. HsGroup p -> [LSpliceDecl p]
hs_splcds = [LSpliceDecl (GhcPass p)]
spliceds2,
        hs_tyclds :: forall p. HsGroup p -> [TyClGroup p]
hs_tyclds = [TyClGroup (GhcPass p)]
tyclds2,
        hs_derivds :: forall p. HsGroup p -> [LDerivDecl p]
hs_derivds = [LDerivDecl (GhcPass p)]
derivds2,
        hs_fixds :: forall p. HsGroup p -> [LFixitySig p]
hs_fixds  = [LFixitySig (GhcPass p)]
fixds2,
        hs_defds :: forall p. HsGroup p -> [LDefaultDecl p]
hs_defds  = [LDefaultDecl (GhcPass p)]
defds2,
        hs_annds :: forall p. HsGroup p -> [LAnnDecl p]
hs_annds  = [LAnnDecl (GhcPass p)]
annds2,
        hs_fords :: forall p. HsGroup p -> [LForeignDecl p]
hs_fords  = [LForeignDecl (GhcPass p)]
fords2,
        hs_warnds :: forall p. HsGroup p -> [LWarnDecls p]
hs_warnds = [LWarnDecls (GhcPass p)]
warnds2,
        hs_ruleds :: forall p. HsGroup p -> [LRuleDecls p]
hs_ruleds = [LRuleDecls (GhcPass p)]
rulds2,
        hs_docs :: forall p. HsGroup p -> [LDocDecl]
hs_docs   = [LDocDecl]
docs2 }
  =
    HsGroup :: forall p.
XCHsGroup p
-> HsValBinds p
-> [LSpliceDecl p]
-> [TyClGroup p]
-> [LDerivDecl p]
-> [LFixitySig p]
-> [LDefaultDecl p]
-> [LForeignDecl p]
-> [LWarnDecls p]
-> [LAnnDecl p]
-> [LRuleDecls p]
-> [LDocDecl]
-> HsGroup p
HsGroup {
        hs_ext :: XCHsGroup (GhcPass p)
hs_ext    = NoExtField
XCHsGroup (GhcPass p)
noExtField,
        hs_valds :: HsValBinds (GhcPass p)
hs_valds  = HsValBinds (GhcPass p)
val_groups1 HsValBinds (GhcPass p)
-> HsValBinds (GhcPass p) -> HsValBinds (GhcPass p)
forall (a :: Pass).
HsValBinds (GhcPass a)
-> HsValBinds (GhcPass a) -> HsValBinds (GhcPass a)
`plusHsValBinds` HsValBinds (GhcPass p)
val_groups2,
        hs_splcds :: [LSpliceDecl (GhcPass p)]
hs_splcds = [LSpliceDecl (GhcPass p)]
spliceds1 [LSpliceDecl (GhcPass p)]
-> [LSpliceDecl (GhcPass p)] -> [LSpliceDecl (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LSpliceDecl (GhcPass p)]
spliceds2,
        hs_tyclds :: [TyClGroup (GhcPass p)]
hs_tyclds = [TyClGroup (GhcPass p)]
tyclds1 [TyClGroup (GhcPass p)]
-> [TyClGroup (GhcPass p)] -> [TyClGroup (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [TyClGroup (GhcPass p)]
tyclds2,
        hs_derivds :: [LDerivDecl (GhcPass p)]
hs_derivds = [LDerivDecl (GhcPass p)]
derivds1 [LDerivDecl (GhcPass p)]
-> [LDerivDecl (GhcPass p)] -> [LDerivDecl (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LDerivDecl (GhcPass p)]
derivds2,
        hs_fixds :: [LFixitySig (GhcPass p)]
hs_fixds  = [LFixitySig (GhcPass p)]
fixds1 [LFixitySig (GhcPass p)]
-> [LFixitySig (GhcPass p)] -> [LFixitySig (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LFixitySig (GhcPass p)]
fixds2,
        hs_annds :: [LAnnDecl (GhcPass p)]
hs_annds  = [LAnnDecl (GhcPass p)]
annds1 [LAnnDecl (GhcPass p)]
-> [LAnnDecl (GhcPass p)] -> [LAnnDecl (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LAnnDecl (GhcPass p)]
annds2,
        hs_defds :: [LDefaultDecl (GhcPass p)]
hs_defds  = [LDefaultDecl (GhcPass p)]
defds1 [LDefaultDecl (GhcPass p)]
-> [LDefaultDecl (GhcPass p)] -> [LDefaultDecl (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LDefaultDecl (GhcPass p)]
defds2,
        hs_fords :: [LForeignDecl (GhcPass p)]
hs_fords  = [LForeignDecl (GhcPass p)]
fords1 [LForeignDecl (GhcPass p)]
-> [LForeignDecl (GhcPass p)] -> [LForeignDecl (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LForeignDecl (GhcPass p)]
fords2,
        hs_warnds :: [LWarnDecls (GhcPass p)]
hs_warnds = [LWarnDecls (GhcPass p)]
warnds1 [LWarnDecls (GhcPass p)]
-> [LWarnDecls (GhcPass p)] -> [LWarnDecls (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LWarnDecls (GhcPass p)]
warnds2,
        hs_ruleds :: [LRuleDecls (GhcPass p)]
hs_ruleds = [LRuleDecls (GhcPass p)]
rulds1 [LRuleDecls (GhcPass p)]
-> [LRuleDecls (GhcPass p)] -> [LRuleDecls (GhcPass p)]
forall a. [a] -> [a] -> [a]
++ [LRuleDecls (GhcPass p)]
rulds2,
        hs_docs :: [LDocDecl]
hs_docs   = [LDocDecl]
docs1  [LDocDecl] -> [LDocDecl] -> [LDocDecl]
forall a. [a] -> [a] -> [a]
++ [LDocDecl]
docs2 }

instance (OutputableBndrId p) => Outputable (HsDecl (GhcPass p)) where
    ppr :: HsDecl (GhcPass p) -> SDoc
ppr (TyClD XTyClD (GhcPass p)
_ TyClDecl (GhcPass p)
dcl)             = TyClDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyClDecl (GhcPass p)
dcl
    ppr (ValD XValD (GhcPass p)
_ HsBind (GhcPass p)
binds)            = HsBind (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsBind (GhcPass p)
binds
    ppr (DefD XDefD (GhcPass p)
_ DefaultDecl (GhcPass p)
def)              = DefaultDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr DefaultDecl (GhcPass p)
def
    ppr (InstD XInstD (GhcPass p)
_ InstDecl (GhcPass p)
inst)            = InstDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr InstDecl (GhcPass p)
inst
    ppr (DerivD XDerivD (GhcPass p)
_ DerivDecl (GhcPass p)
deriv)          = DerivDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr DerivDecl (GhcPass p)
deriv
    ppr (ForD XForD (GhcPass p)
_ ForeignDecl (GhcPass p)
fd)               = ForeignDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr ForeignDecl (GhcPass p)
fd
    ppr (SigD XSigD (GhcPass p)
_ Sig (GhcPass p)
sd)               = Sig (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Sig (GhcPass p)
sd
    ppr (KindSigD XKindSigD (GhcPass p)
_ StandaloneKindSig (GhcPass p)
ksd)          = StandaloneKindSig (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr StandaloneKindSig (GhcPass p)
ksd
    ppr (RuleD XRuleD (GhcPass p)
_ RuleDecls (GhcPass p)
rd)              = RuleDecls (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr RuleDecls (GhcPass p)
rd
    ppr (WarningD XWarningD (GhcPass p)
_ WarnDecls (GhcPass p)
wd)           = WarnDecls (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr WarnDecls (GhcPass p)
wd
    ppr (AnnD XAnnD (GhcPass p)
_ AnnDecl (GhcPass p)
ad)               = AnnDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr AnnDecl (GhcPass p)
ad
    ppr (SpliceD XSpliceD (GhcPass p)
_ SpliceDecl (GhcPass p)
dd)            = SpliceDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr SpliceDecl (GhcPass p)
dd
    ppr (DocD XDocD (GhcPass p)
_ DocDecl
doc)              = DocDecl -> SDoc
forall a. Outputable a => a -> SDoc
ppr DocDecl
doc
    ppr (RoleAnnotD XRoleAnnotD (GhcPass p)
_ RoleAnnotDecl (GhcPass p)
ra)         = RoleAnnotDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr RoleAnnotDecl (GhcPass p)
ra

instance (OutputableBndrId p) => Outputable (HsGroup (GhcPass p)) where
    ppr :: HsGroup (GhcPass p) -> SDoc
ppr (HsGroup { hs_valds :: forall p. HsGroup p -> HsValBinds p
hs_valds  = HsValBinds (GhcPass p)
val_decls,
                   hs_tyclds :: forall p. HsGroup p -> [TyClGroup p]
hs_tyclds = [TyClGroup (GhcPass p)]
tycl_decls,
                   hs_derivds :: forall p. HsGroup p -> [LDerivDecl p]
hs_derivds = [LDerivDecl (GhcPass p)]
deriv_decls,
                   hs_fixds :: forall p. HsGroup p -> [LFixitySig p]
hs_fixds  = [LFixitySig (GhcPass p)]
fix_decls,
                   hs_warnds :: forall p. HsGroup p -> [LWarnDecls p]
hs_warnds = [LWarnDecls (GhcPass p)]
deprec_decls,
                   hs_annds :: forall p. HsGroup p -> [LAnnDecl p]
hs_annds  = [LAnnDecl (GhcPass p)]
ann_decls,
                   hs_fords :: forall p. HsGroup p -> [LForeignDecl p]
hs_fords  = [LForeignDecl (GhcPass p)]
foreign_decls,
                   hs_defds :: forall p. HsGroup p -> [LDefaultDecl p]
hs_defds  = [LDefaultDecl (GhcPass p)]
default_decls,
                   hs_ruleds :: forall p. HsGroup p -> [LRuleDecls p]
hs_ruleds = [LRuleDecls (GhcPass p)]
rule_decls })
        = SDoc -> [Maybe SDoc] -> SDoc
vcat_mb SDoc
empty
            [[LFixitySig (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [LFixitySig (GhcPass p)]
fix_decls, [LDefaultDecl (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [LDefaultDecl (GhcPass p)]
default_decls,
             [LWarnDecls (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [LWarnDecls (GhcPass p)]
deprec_decls, [LAnnDecl (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [LAnnDecl (GhcPass p)]
ann_decls,
             [LRuleDecls (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [LRuleDecls (GhcPass p)]
rule_decls,
             if HsValBinds (GhcPass p) -> Bool
forall (a :: Pass) (b :: Pass).
HsValBindsLR (GhcPass a) (GhcPass b) -> Bool
isEmptyValBinds HsValBinds (GhcPass p)
val_decls
                then Maybe SDoc
forall a. Maybe a
Nothing
                else SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (HsValBinds (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsValBinds (GhcPass p)
val_decls),
             [LRoleAnnotDecl (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds ([TyClGroup (GhcPass p)] -> [LRoleAnnotDecl (GhcPass p)]
forall pass. [TyClGroup pass] -> [LRoleAnnotDecl pass]
tyClGroupRoleDecls [TyClGroup (GhcPass p)]
tycl_decls),
             [LStandaloneKindSig (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds ([TyClGroup (GhcPass p)] -> [LStandaloneKindSig (GhcPass p)]
forall pass. [TyClGroup pass] -> [LStandaloneKindSig pass]
tyClGroupKindSigs  [TyClGroup (GhcPass p)]
tycl_decls),
             [LTyClDecl (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds ([TyClGroup (GhcPass p)] -> [LTyClDecl (GhcPass p)]
forall pass. [TyClGroup pass] -> [LTyClDecl pass]
tyClGroupTyClDecls [TyClGroup (GhcPass p)]
tycl_decls),
             [LInstDecl (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds ([TyClGroup (GhcPass p)] -> [LInstDecl (GhcPass p)]
forall pass. [TyClGroup pass] -> [LInstDecl pass]
tyClGroupInstDecls [TyClGroup (GhcPass p)]
tycl_decls),
             [LDerivDecl (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [LDerivDecl (GhcPass p)]
deriv_decls,
             [LForeignDecl (GhcPass p)] -> Maybe SDoc
forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [LForeignDecl (GhcPass p)]
foreign_decls]
        where
          ppr_ds :: Outputable a => [a] -> Maybe SDoc
          ppr_ds :: forall a. Outputable a => [a] -> Maybe SDoc
ppr_ds [] = Maybe SDoc
forall a. Maybe a
Nothing
          ppr_ds [a]
ds = SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just ([SDoc] -> SDoc
vcat ((a -> SDoc) -> [a] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map a -> SDoc
forall a. Outputable a => a -> SDoc
ppr [a]
ds))

          vcat_mb :: SDoc -> [Maybe SDoc] -> SDoc
          -- Concatenate vertically with white-space between non-blanks
          vcat_mb :: SDoc -> [Maybe SDoc] -> SDoc
vcat_mb SDoc
_    []             = SDoc
empty
          vcat_mb SDoc
gap (Maybe SDoc
Nothing : [Maybe SDoc]
ds) = SDoc -> [Maybe SDoc] -> SDoc
vcat_mb SDoc
gap [Maybe SDoc]
ds
          vcat_mb SDoc
gap (Just SDoc
d  : [Maybe SDoc]
ds) = SDoc
gap SDoc -> SDoc -> SDoc
$$ SDoc
d SDoc -> SDoc -> SDoc
$$ SDoc -> [Maybe SDoc] -> SDoc
vcat_mb SDoc
blankLine [Maybe SDoc]
ds

-- | Located Splice Declaration
type LSpliceDecl pass = Located (SpliceDecl pass)

-- | Splice Declaration
data SpliceDecl p
  = SpliceDecl                  -- Top level splice
        (XSpliceDecl p)
        (Located (HsSplice p))
        SpliceExplicitFlag
  | XSpliceDecl !(XXSpliceDecl p)

type instance XSpliceDecl      (GhcPass _) = NoExtField
type instance XXSpliceDecl     (GhcPass _) = NoExtCon

instance OutputableBndrId p
       => Outputable (SpliceDecl (GhcPass p)) where
   ppr :: SpliceDecl (GhcPass p) -> SDoc
ppr (SpliceDecl XSpliceDecl (GhcPass p)
_ (L SrcSpan
_ HsSplice (GhcPass p)
e) SpliceExplicitFlag
f) = HsSplice (GhcPass p) -> SpliceExplicitFlag -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsSplice (GhcPass p) -> SpliceExplicitFlag -> SDoc
pprSpliceDecl HsSplice (GhcPass p)
e SpliceExplicitFlag
f

{-
************************************************************************
*                                                                      *
            Type and class declarations
*                                                                      *
************************************************************************

Note [The Naming story]
~~~~~~~~~~~~~~~~~~~~~~~
Here is the story about the implicit names that go with type, class,
and instance decls.  It's a bit tricky, so pay attention!

"Implicit" (or "system") binders
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  Each data type decl defines
        a worker name for each constructor
        to-T and from-T convertors
  Each class decl defines
        a tycon for the class
        a data constructor for that tycon
        the worker for that constructor
        a selector for each superclass

All have occurrence names that are derived uniquely from their parent
declaration.

None of these get separate definitions in an interface file; they are
fully defined by the data or class decl.  But they may *occur* in
interface files, of course.  Any such occurrence must haul in the
relevant type or class decl.

Plan of attack:
 - Ensure they "point to" the parent data/class decl
   when loading that decl from an interface file
   (See RnHiFiles.getSysBinders)

 - When typechecking the decl, we build the implicit TyCons and Ids.
   When doing so we look them up in the name cache (GHC.Rename.Env.lookupSysName),
   to ensure correct module and provenance is set

These are the two places that we have to conjure up the magic derived
names.  (The actual magic is in GHC.Types.Name.Occurrence.mkWorkerOcc, etc.)

Default methods
~~~~~~~~~~~~~~~
 - Occurrence name is derived uniquely from the method name
   E.g. $dmmax

 - If there is a default method name at all, it's recorded in
   the ClassOpSig (in GHC.Hs.Binds), in the DefMethInfo field.
   (DefMethInfo is defined in GHC.Core.Class)

Source-code class decls and interface-code class decls are treated subtly
differently, which has given me a great deal of confusion over the years.
Here's the deal.  (We distinguish the two cases because source-code decls
have (Just binds) in the tcdMeths field, whereas interface decls have Nothing.

In *source-code* class declarations:

 - When parsing, every ClassOpSig gets a DefMeth with a suitable RdrName
   This is done by GHC.Parser.PostProcess.mkClassOpSigDM

 - The renamer renames it to a Name

 - During typechecking, we generate a binding for each $dm for
   which there's a programmer-supplied default method:
        class Foo a where
          op1 :: <type>
          op2 :: <type>
          op1 = ...
   We generate a binding for $dmop1 but not for $dmop2.
   The Class for Foo has a Nothing for op2 and
                         a Just ($dm_op1, VanillaDM) for op1.
   The Name for $dmop2 is simply discarded.

In *interface-file* class declarations:
  - When parsing, we see if there's an explicit programmer-supplied default method
    because there's an '=' sign to indicate it:
        class Foo a where
          op1 = :: <type>       -- NB the '='
          op2   :: <type>
    We use this info to generate a DefMeth with a suitable RdrName for op1,
    and a NoDefMeth for op2
  - The interface file has a separate definition for $dmop1, with unfolding etc.
  - The renamer renames it to a Name.
  - The renamer treats $dmop1 as a free variable of the declaration, so that
    the binding for $dmop1 will be sucked in.  (See RnHsSyn.tyClDeclFVs)
    This doesn't happen for source code class decls, because they *bind* the default method.

Dictionary functions
~~~~~~~~~~~~~~~~~~~~
Each instance declaration gives rise to one dictionary function binding.

The type checker makes up new source-code instance declarations
(e.g. from 'deriving' or generic default methods --- see
GHC.Tc.TyCl.Instance.tcInstDecls1).  So we can't generate the names for
dictionary functions in advance (we don't know how many we need).

On the other hand for interface-file instance declarations, the decl
specifies the name of the dictionary function, and it has a binding elsewhere
in the interface file:
        instance {Eq Int} = dEqInt
        dEqInt :: {Eq Int} <pragma info>

So again we treat source code and interface file code slightly differently.

Source code:
  - Source code instance decls have a Nothing in the (Maybe name) field
    (see data InstDecl below)

  - The typechecker makes up a Local name for the dict fun for any source-code
    instance decl, whether it comes from a source-code instance decl, or whether
    the instance decl is derived from some other construct (e.g. 'deriving').

  - The occurrence name it chooses is derived from the instance decl (just for
    documentation really) --- e.g. dNumInt.  Two dict funs may share a common
    occurrence name, but will have different uniques.  E.g.
        instance Foo [Int]  where ...
        instance Foo [Bool] where ...
    These might both be dFooList

  - The CoreTidy phase externalises the name, and ensures the occurrence name is
    unique (this isn't special to dict funs).  So we'd get dFooList and dFooList1.

  - We can take this relaxed approach (changing the occurrence name later)
    because dict fun Ids are not captured in a TyCon or Class (unlike default
    methods, say).  Instead, they are kept separately in the InstEnv.  This
    makes it easy to adjust them after compiling a module.  (Once we've finished
    compiling that module, they don't change any more.)


Interface file code:
  - The instance decl gives the dict fun name, so the InstDecl has a (Just name)
    in the (Maybe name) field.

  - RnHsSyn.instDeclFVs treats the dict fun name as free in the decl, so that we
    suck in the dfun binding
-}

-- | Located Declaration of a Type or Class
type LTyClDecl pass = Located (TyClDecl pass)

-- | A type or class declaration.
data TyClDecl pass
  = -- | @type/data family T :: *->*@
    --
    --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
    --             'GHC.Parser.Annotation.AnnData',
    --             'GHC.Parser.Annotation.AnnFamily','GHC.Parser.Annotation.AnnDcolon',
    --             'GHC.Parser.Annotation.AnnWhere','GHC.Parser.Annotation.AnnOpenP',
    --             'GHC.Parser.Annotation.AnnDcolon','GHC.Parser.Annotation.AnnCloseP',
    --             'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnRarrow',
    --             'GHC.Parser.Annotation.AnnVbar'

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation
    FamDecl { forall pass. TyClDecl pass -> XFamDecl pass
tcdFExt :: XFamDecl pass, forall pass. TyClDecl pass -> FamilyDecl pass
tcdFam :: FamilyDecl pass }

  | -- | @type@ declaration
    --
    --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
    --             'GHC.Parser.Annotation.AnnEqual',

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation
    SynDecl { forall pass. TyClDecl pass -> XSynDecl pass
tcdSExt   :: XSynDecl pass          -- ^ Post renameer, FVs
            , forall pass. TyClDecl pass -> Located (IdP pass)
tcdLName  :: Located (IdP pass)     -- ^ Type constructor
            , forall pass. TyClDecl pass -> LHsQTyVars pass
tcdTyVars :: LHsQTyVars pass        -- ^ Type variables; for an
                                                  -- associated type these
                                                  -- include outer binders
            , forall pass. TyClDecl pass -> LexicalFixity
tcdFixity :: LexicalFixity          -- ^ Fixity used in the declaration
            , forall pass. TyClDecl pass -> LHsType pass
tcdRhs    :: LHsType pass }         -- ^ RHS of type declaration

  | -- | @data@ declaration
    --
    --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnData',
    --              'GHC.Parser.Annotation.AnnFamily',
    --              'GHC.Parser.Annotation.AnnNewType',
    --              'GHC.Parser.Annotation.AnnNewType','GHC.Parser.Annotation.AnnDcolon'
    --              'GHC.Parser.Annotation.AnnWhere',

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation
    DataDecl { forall pass. TyClDecl pass -> XDataDecl pass
tcdDExt     :: XDataDecl pass       -- ^ Post renamer, CUSK flag, FVs
             , tcdLName    :: Located (IdP pass)   -- ^ Type constructor
             , tcdTyVars   :: LHsQTyVars pass      -- ^ Type variables
                              -- See Note [TyVar binders for associated declarations]
             , tcdFixity   :: LexicalFixity        -- ^ Fixity used in the declaration
             , forall pass. TyClDecl pass -> HsDataDefn pass
tcdDataDefn :: HsDataDefn pass }

  | ClassDecl { forall pass. TyClDecl pass -> XClassDecl pass
tcdCExt    :: XClassDecl pass,          -- ^ Post renamer, FVs
                forall pass. TyClDecl pass -> LHsContext pass
tcdCtxt    :: LHsContext pass,          -- ^ Context...
                tcdLName   :: Located (IdP pass),       -- ^ Name of the class
                tcdTyVars  :: LHsQTyVars pass,          -- ^ Class type variables
                tcdFixity  :: LexicalFixity, -- ^ Fixity used in the declaration
                forall pass. TyClDecl pass -> [LHsFunDep pass]
tcdFDs     :: [LHsFunDep pass],         -- ^ Functional deps
                forall pass. TyClDecl pass -> [LSig pass]
tcdSigs    :: [LSig pass],              -- ^ Methods' signatures
                forall pass. TyClDecl pass -> LHsBinds pass
tcdMeths   :: LHsBinds pass,            -- ^ Default methods
                forall pass. TyClDecl pass -> [LFamilyDecl pass]
tcdATs     :: [LFamilyDecl pass],       -- ^ Associated types;
                forall pass. TyClDecl pass -> [LTyFamDefltDecl pass]
tcdATDefs  :: [LTyFamDefltDecl pass],   -- ^ Associated type defaults
                forall pass. TyClDecl pass -> [LDocDecl]
tcdDocs    :: [LDocDecl]                -- ^ Haddock docs
    }
        -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnClass',
        --           'GHC.Parser.Annotation.AnnWhere','GHC.Parser.Annotation.AnnOpen',
        --           'GHC.Parser.Annotation.AnnClose'
        --   - The tcdFDs will have 'GHC.Parser.Annotation.AnnVbar',
        --                          'GHC.Parser.Annotation.AnnComma'
        --                          'GHC.Parser.Annotation.AnnRarrow'

        -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | XTyClDecl !(XXTyClDecl pass)

type LHsFunDep pass = Located (FunDep (Located (IdP pass)))

data DataDeclRn = DataDeclRn
             { DataDeclRn -> Bool
tcdDataCusk :: Bool    -- ^ does this have a CUSK?
                 -- See Note [CUSKs: complete user-supplied kind signatures]
             , DataDeclRn -> NameSet
tcdFVs      :: NameSet }
  deriving Typeable DataDeclRn
Typeable DataDeclRn
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> DataDeclRn -> c DataDeclRn)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c DataDeclRn)
-> (DataDeclRn -> Constr)
-> (DataDeclRn -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c DataDeclRn))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c DataDeclRn))
-> ((forall b. Data b => b -> b) -> DataDeclRn -> DataDeclRn)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r)
-> (forall u. (forall d. Data d => d -> u) -> DataDeclRn -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> DataDeclRn -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn)
-> Data DataDeclRn
DataDeclRn -> DataType
DataDeclRn -> Constr
(forall b. Data b => b -> b) -> DataDeclRn -> DataDeclRn
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> DataDeclRn -> u
forall u. (forall d. Data d => d -> u) -> DataDeclRn -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DataDeclRn
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DataDeclRn -> c DataDeclRn
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DataDeclRn)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DataDeclRn)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DataDeclRn -> m DataDeclRn
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DataDeclRn -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DataDeclRn -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> DataDeclRn -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> DataDeclRn -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DataDeclRn -> r
gmapT :: (forall b. Data b => b -> b) -> DataDeclRn -> DataDeclRn
$cgmapT :: (forall b. Data b => b -> b) -> DataDeclRn -> DataDeclRn
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DataDeclRn)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DataDeclRn)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DataDeclRn)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DataDeclRn)
dataTypeOf :: DataDeclRn -> DataType
$cdataTypeOf :: DataDeclRn -> DataType
toConstr :: DataDeclRn -> Constr
$ctoConstr :: DataDeclRn -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DataDeclRn
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DataDeclRn
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DataDeclRn -> c DataDeclRn
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DataDeclRn -> c DataDeclRn
Data

{- Note [TyVar binders for associated decls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For an /associated/ data, newtype, or type-family decl, the LHsQTyVars
/includes/ outer binders.  For example
    class T a where
       data D a c
       type F a b :: *
       type F a b = a -> a
Here the data decl for 'D', and type-family decl for 'F', both include 'a'
in their LHsQTyVars (tcdTyVars and fdTyVars resp).

Ditto any implicit binders in the hsq_implicit field of the LHSQTyVars.

The idea is that the associated type is really a top-level decl in its
own right.  However we are careful to use the same name 'a', so that
we can match things up.

c.f. Note [Associated type tyvar names] in GHC.Core.Class
     Note [Family instance declaration binders]
-}

type instance XFamDecl      (GhcPass _) = NoExtField

type instance XSynDecl      GhcPs = NoExtField
type instance XSynDecl      GhcRn = NameSet -- FVs
type instance XSynDecl      GhcTc = NameSet -- FVs

type instance XDataDecl     GhcPs = NoExtField
type instance XDataDecl     GhcRn = DataDeclRn
type instance XDataDecl     GhcTc = DataDeclRn

type instance XClassDecl    GhcPs = LayoutInfo  -- See Note [Class LayoutInfo]
type instance XClassDecl    GhcRn = NameSet -- FVs
type instance XClassDecl    GhcTc = NameSet -- FVs

{- Note [Class LayoutInfo]
~~~~~~~~~~~~~~~~~~~~~~~~~~
The LayoutInfo is used to associate Haddock comments with parts of the declaration.
Compare the following examples:

    class C a where
      f :: a -> Int
      -- ^ comment on f

    class C a where
      f :: a -> Int
    -- ^ comment on C

Notice how "comment on f" and "comment on C" differ only by indentation level.
Thus we have to record the indentation level of the class declarations.

See also Note [Adding Haddock comments to the syntax tree] in GHC.Parser.PostProcess.Haddock
-}

type instance XXTyClDecl    (GhcPass _) = NoExtCon

-- Simple classifiers for TyClDecl
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

-- | @True@ <=> argument is a @data@\/@newtype@
-- declaration.
isDataDecl :: TyClDecl pass -> Bool
isDataDecl :: forall pass. TyClDecl pass -> Bool
isDataDecl (DataDecl {}) = Bool
True
isDataDecl TyClDecl pass
_other        = Bool
False

-- | type or type instance declaration
isSynDecl :: TyClDecl pass -> Bool
isSynDecl :: forall pass. TyClDecl pass -> Bool
isSynDecl (SynDecl {})   = Bool
True
isSynDecl TyClDecl pass
_other        = Bool
False

-- | type class
isClassDecl :: TyClDecl pass -> Bool
isClassDecl :: forall pass. TyClDecl pass -> Bool
isClassDecl (ClassDecl {}) = Bool
True
isClassDecl TyClDecl pass
_              = Bool
False

-- | type/data family declaration
isFamilyDecl :: TyClDecl pass -> Bool
isFamilyDecl :: forall pass. TyClDecl pass -> Bool
isFamilyDecl (FamDecl {})  = Bool
True
isFamilyDecl TyClDecl pass
_other        = Bool
False

-- | type family declaration
isTypeFamilyDecl :: TyClDecl pass -> Bool
isTypeFamilyDecl :: forall pass. TyClDecl pass -> Bool
isTypeFamilyDecl (FamDecl XFamDecl pass
_ (FamilyDecl { fdInfo :: forall pass. FamilyDecl pass -> FamilyInfo pass
fdInfo = FamilyInfo pass
info })) = case FamilyInfo pass
info of
  FamilyInfo pass
OpenTypeFamily      -> Bool
True
  ClosedTypeFamily {} -> Bool
True
  FamilyInfo pass
_                   -> Bool
False
isTypeFamilyDecl TyClDecl pass
_ = Bool
False

-- | open type family info
isOpenTypeFamilyInfo :: FamilyInfo pass -> Bool
isOpenTypeFamilyInfo :: forall pass. FamilyInfo pass -> Bool
isOpenTypeFamilyInfo FamilyInfo pass
OpenTypeFamily = Bool
True
isOpenTypeFamilyInfo FamilyInfo pass
_              = Bool
False

-- | closed type family info
isClosedTypeFamilyInfo :: FamilyInfo pass -> Bool
isClosedTypeFamilyInfo :: forall pass. FamilyInfo pass -> Bool
isClosedTypeFamilyInfo (ClosedTypeFamily {}) = Bool
True
isClosedTypeFamilyInfo FamilyInfo pass
_                     = Bool
False

-- | data family declaration
isDataFamilyDecl :: TyClDecl pass -> Bool
isDataFamilyDecl :: forall pass. TyClDecl pass -> Bool
isDataFamilyDecl (FamDecl XFamDecl pass
_ (FamilyDecl { fdInfo :: forall pass. FamilyDecl pass -> FamilyInfo pass
fdInfo = FamilyInfo pass
DataFamily })) = Bool
True
isDataFamilyDecl TyClDecl pass
_other      = Bool
False

-- Dealing with names

tyFamInstDeclName :: TyFamInstDecl (GhcPass p) -> IdP (GhcPass p)
tyFamInstDeclName :: forall (p :: Pass). TyFamInstDecl (GhcPass p) -> IdP (GhcPass p)
tyFamInstDeclName = GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p)
-> (TyFamInstDecl (GhcPass p) -> GenLocated SrcSpan (IdGhcP p))
-> TyFamInstDecl (GhcPass p)
-> IdGhcP p
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyFamInstDecl (GhcPass p) -> GenLocated SrcSpan (IdGhcP p)
forall (p :: Pass).
TyFamInstDecl (GhcPass p) -> Located (IdP (GhcPass p))
tyFamInstDeclLName

tyFamInstDeclLName :: TyFamInstDecl (GhcPass p) -> Located (IdP (GhcPass p))
tyFamInstDeclLName :: forall (p :: Pass).
TyFamInstDecl (GhcPass p) -> Located (IdP (GhcPass p))
tyFamInstDeclLName (TyFamInstDecl { tfid_eqn :: forall pass. TyFamInstDecl pass -> TyFamInstEqn pass
tfid_eqn =
                     (HsIB { hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = FamEqn { feqn_tycon :: forall pass rhs. FamEqn pass rhs -> Located (IdP pass)
feqn_tycon = Located (IdP (GhcPass p))
ln }}) })
  = Located (IdP (GhcPass p))
ln

tyClDeclLName :: TyClDecl (GhcPass p) -> Located (IdP (GhcPass p))
tyClDeclLName :: forall (p :: Pass).
TyClDecl (GhcPass p) -> Located (IdP (GhcPass p))
tyClDeclLName (FamDecl { tcdFam :: forall pass. TyClDecl pass -> FamilyDecl pass
tcdFam = FamilyDecl (GhcPass p)
fd })     = FamilyDecl (GhcPass p) -> Located (IdP (GhcPass p))
forall (p :: Pass).
FamilyDecl (GhcPass p) -> Located (IdP (GhcPass p))
familyDeclLName FamilyDecl (GhcPass p)
fd
tyClDeclLName (SynDecl { tcdLName :: forall pass. TyClDecl pass -> Located (IdP pass)
tcdLName = Located (IdP (GhcPass p))
ln })   = Located (IdP (GhcPass p))
ln
tyClDeclLName (DataDecl { tcdLName :: forall pass. TyClDecl pass -> Located (IdP pass)
tcdLName = Located (IdP (GhcPass p))
ln })  = Located (IdP (GhcPass p))
ln
tyClDeclLName (ClassDecl { tcdLName :: forall pass. TyClDecl pass -> Located (IdP pass)
tcdLName = Located (IdP (GhcPass p))
ln }) = Located (IdP (GhcPass p))
ln

tcdName :: TyClDecl (GhcPass p) -> IdP (GhcPass p)
tcdName :: forall (p :: Pass). TyClDecl (GhcPass p) -> IdP (GhcPass p)
tcdName = GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p)
-> (TyClDecl (GhcPass p) -> GenLocated SrcSpan (IdGhcP p))
-> TyClDecl (GhcPass p)
-> IdGhcP p
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyClDecl (GhcPass p) -> GenLocated SrcSpan (IdGhcP p)
forall (p :: Pass).
TyClDecl (GhcPass p) -> Located (IdP (GhcPass p))
tyClDeclLName

tyClDeclTyVars :: TyClDecl pass -> LHsQTyVars pass
tyClDeclTyVars :: forall pass. TyClDecl pass -> LHsQTyVars pass
tyClDeclTyVars (FamDecl { tcdFam :: forall pass. TyClDecl pass -> FamilyDecl pass
tcdFam = FamilyDecl { fdTyVars :: forall pass. FamilyDecl pass -> LHsQTyVars pass
fdTyVars = LHsQTyVars pass
tvs } }) = LHsQTyVars pass
tvs
tyClDeclTyVars TyClDecl pass
d = TyClDecl pass -> LHsQTyVars pass
forall pass. TyClDecl pass -> LHsQTyVars pass
tcdTyVars TyClDecl pass
d

countTyClDecls :: [TyClDecl pass] -> (Int, Int, Int, Int, Int)
        -- class, synonym decls, data, newtype, family decls
countTyClDecls :: forall pass. [TyClDecl pass] -> (Int, Int, Int, Int, Int)
countTyClDecls [TyClDecl pass]
decls
 = ((TyClDecl pass -> Bool) -> [TyClDecl pass] -> Int
forall a. (a -> Bool) -> [a] -> Int
count TyClDecl pass -> Bool
forall pass. TyClDecl pass -> Bool
isClassDecl    [TyClDecl pass]
decls,
    (TyClDecl pass -> Bool) -> [TyClDecl pass] -> Int
forall a. (a -> Bool) -> [a] -> Int
count TyClDecl pass -> Bool
forall pass. TyClDecl pass -> Bool
isSynDecl      [TyClDecl pass]
decls,  -- excluding...
    (TyClDecl pass -> Bool) -> [TyClDecl pass] -> Int
forall a. (a -> Bool) -> [a] -> Int
count TyClDecl pass -> Bool
forall pass. TyClDecl pass -> Bool
isDataTy       [TyClDecl pass]
decls,  -- ...family...
    (TyClDecl pass -> Bool) -> [TyClDecl pass] -> Int
forall a. (a -> Bool) -> [a] -> Int
count TyClDecl pass -> Bool
forall pass. TyClDecl pass -> Bool
isNewTy        [TyClDecl pass]
decls,  -- ...instances
    (TyClDecl pass -> Bool) -> [TyClDecl pass] -> Int
forall a. (a -> Bool) -> [a] -> Int
count TyClDecl pass -> Bool
forall pass. TyClDecl pass -> Bool
isFamilyDecl   [TyClDecl pass]
decls)
 where
   isDataTy :: TyClDecl pass -> Bool
isDataTy DataDecl{ tcdDataDefn :: forall pass. TyClDecl pass -> HsDataDefn pass
tcdDataDefn = HsDataDefn { dd_ND :: forall pass. HsDataDefn pass -> NewOrData
dd_ND = NewOrData
DataType } } = Bool
True
   isDataTy TyClDecl pass
_                                                       = Bool
False

   isNewTy :: TyClDecl pass -> Bool
isNewTy DataDecl{ tcdDataDefn :: forall pass. TyClDecl pass -> HsDataDefn pass
tcdDataDefn = HsDataDefn { dd_ND :: forall pass. HsDataDefn pass -> NewOrData
dd_ND = NewOrData
NewType } } = Bool
True
   isNewTy TyClDecl pass
_                                                      = Bool
False

-- | Does this declaration have a complete, user-supplied kind signature?
-- See Note [CUSKs: complete user-supplied kind signatures]
hsDeclHasCusk :: TyClDecl GhcRn -> Bool
hsDeclHasCusk :: TyClDecl GhcRn -> Bool
hsDeclHasCusk (FamDecl { tcdFam :: forall pass. TyClDecl pass -> FamilyDecl pass
tcdFam =
    FamilyDecl { fdInfo :: forall pass. FamilyDecl pass -> FamilyInfo pass
fdInfo      = FamilyInfo GhcRn
fam_info
               , fdTyVars :: forall pass. FamilyDecl pass -> LHsQTyVars pass
fdTyVars    = LHsQTyVars GhcRn
tyvars
               , fdResultSig :: forall pass. FamilyDecl pass -> LFamilyResultSig pass
fdResultSig = L SrcSpan
_ FamilyResultSig GhcRn
resultSig } }) =
    case FamilyInfo GhcRn
fam_info of
      ClosedTypeFamily {} -> LHsQTyVars GhcRn -> Bool
forall pass. LHsQTyVars pass -> Bool
hsTvbAllKinded LHsQTyVars GhcRn
tyvars
                          Bool -> Bool -> Bool
&& Maybe (LHsKind GhcRn) -> Bool
forall a. Maybe a -> Bool
isJust (FamilyResultSig GhcRn -> Maybe (LHsKind GhcRn)
forall (p :: Pass).
FamilyResultSig (GhcPass p) -> Maybe (LHsKind (GhcPass p))
famResultKindSignature FamilyResultSig GhcRn
resultSig)
      FamilyInfo GhcRn
_ -> Bool
True -- Un-associated open type/data families have CUSKs
hsDeclHasCusk (SynDecl { tcdTyVars :: forall pass. TyClDecl pass -> LHsQTyVars pass
tcdTyVars = LHsQTyVars GhcRn
tyvars, tcdRhs :: forall pass. TyClDecl pass -> LHsType pass
tcdRhs = LHsKind GhcRn
rhs })
  = LHsQTyVars GhcRn -> Bool
forall pass. LHsQTyVars pass -> Bool
hsTvbAllKinded LHsQTyVars GhcRn
tyvars Bool -> Bool -> Bool
&& Maybe (LHsKind GhcRn) -> Bool
forall a. Maybe a -> Bool
isJust (LHsKind GhcRn -> Maybe (LHsKind GhcRn)
forall pass. LHsType pass -> Maybe (LHsType pass)
hsTyKindSig LHsKind GhcRn
rhs)
hsDeclHasCusk (DataDecl { tcdDExt :: forall pass. TyClDecl pass -> XDataDecl pass
tcdDExt = DataDeclRn { tcdDataCusk :: DataDeclRn -> Bool
tcdDataCusk = Bool
cusk }}) = Bool
cusk
hsDeclHasCusk (ClassDecl { tcdTyVars :: forall pass. TyClDecl pass -> LHsQTyVars pass
tcdTyVars = LHsQTyVars GhcRn
tyvars }) = LHsQTyVars GhcRn -> Bool
forall pass. LHsQTyVars pass -> Bool
hsTvbAllKinded LHsQTyVars GhcRn
tyvars

-- Pretty-printing TyClDecl
-- ~~~~~~~~~~~~~~~~~~~~~~~~

instance (OutputableBndrId p) => Outputable (TyClDecl (GhcPass p)) where

    ppr :: TyClDecl (GhcPass p) -> SDoc
ppr (FamDecl { tcdFam :: forall pass. TyClDecl pass -> FamilyDecl pass
tcdFam = FamilyDecl (GhcPass p)
decl }) = FamilyDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr FamilyDecl (GhcPass p)
decl
    ppr (SynDecl { tcdLName :: forall pass. TyClDecl pass -> Located (IdP pass)
tcdLName = Located (IdP (GhcPass p))
ltycon, tcdTyVars :: forall pass. TyClDecl pass -> LHsQTyVars pass
tcdTyVars = LHsQTyVars (GhcPass p)
tyvars, tcdFixity :: forall pass. TyClDecl pass -> LexicalFixity
tcdFixity = LexicalFixity
fixity
                 , tcdRhs :: forall pass. TyClDecl pass -> LHsType pass
tcdRhs = LHsType (GhcPass p)
rhs })
      = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"type" SDoc -> SDoc -> SDoc
<+>
              Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pp_vanilla_decl_head Located (IdP (GhcPass p))
ltycon LHsQTyVars (GhcPass p)
tyvars LexicalFixity
fixity LHsContext (GhcPass p)
forall pass. LHsContext pass
noLHsContext SDoc -> SDoc -> SDoc
<+> SDoc
equals)
          Int
4 (LHsType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsType (GhcPass p)
rhs)

    ppr (DataDecl { tcdLName :: forall pass. TyClDecl pass -> Located (IdP pass)
tcdLName = Located (IdP (GhcPass p))
ltycon, tcdTyVars :: forall pass. TyClDecl pass -> LHsQTyVars pass
tcdTyVars = LHsQTyVars (GhcPass p)
tyvars, tcdFixity :: forall pass. TyClDecl pass -> LexicalFixity
tcdFixity = LexicalFixity
fixity
                  , tcdDataDefn :: forall pass. TyClDecl pass -> HsDataDefn pass
tcdDataDefn = HsDataDefn (GhcPass p)
defn })
      = (LHsContext (GhcPass p) -> SDoc) -> HsDataDefn (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
(LHsContext (GhcPass p) -> SDoc) -> HsDataDefn (GhcPass p) -> SDoc
pp_data_defn (Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pp_vanilla_decl_head Located (IdP (GhcPass p))
ltycon LHsQTyVars (GhcPass p)
tyvars LexicalFixity
fixity) HsDataDefn (GhcPass p)
defn

    ppr (ClassDecl {tcdCtxt :: forall pass. TyClDecl pass -> LHsContext pass
tcdCtxt = LHsContext (GhcPass p)
context, tcdLName :: forall pass. TyClDecl pass -> Located (IdP pass)
tcdLName = Located (IdP (GhcPass p))
lclas, tcdTyVars :: forall pass. TyClDecl pass -> LHsQTyVars pass
tcdTyVars = LHsQTyVars (GhcPass p)
tyvars,
                    tcdFixity :: forall pass. TyClDecl pass -> LexicalFixity
tcdFixity = LexicalFixity
fixity,
                    tcdFDs :: forall pass. TyClDecl pass -> [LHsFunDep pass]
tcdFDs  = [LHsFunDep (GhcPass p)]
fds,
                    tcdSigs :: forall pass. TyClDecl pass -> [LSig pass]
tcdSigs = [LSig (GhcPass p)]
sigs, tcdMeths :: forall pass. TyClDecl pass -> LHsBinds pass
tcdMeths = LHsBinds (GhcPass p)
methods,
                    tcdATs :: forall pass. TyClDecl pass -> [LFamilyDecl pass]
tcdATs = [LFamilyDecl (GhcPass p)]
ats, tcdATDefs :: forall pass. TyClDecl pass -> [LTyFamDefltDecl pass]
tcdATDefs = [LTyFamDefltDecl (GhcPass p)]
at_defs})
      | [LSig (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LSig (GhcPass p)]
sigs Bool -> Bool -> Bool
&& LHsBinds (GhcPass p) -> Bool
forall a. Bag a -> Bool
isEmptyBag LHsBinds (GhcPass p)
methods Bool -> Bool -> Bool
&& [LFamilyDecl (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LFamilyDecl (GhcPass p)]
ats Bool -> Bool -> Bool
&& [LTyFamDefltDecl (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LTyFamDefltDecl (GhcPass p)]
at_defs -- No "where" part
      = SDoc
top_matter

      | Bool
otherwise       -- Laid out
      = [SDoc] -> SDoc
vcat [ SDoc
top_matter SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"where"
             , Int -> SDoc -> SDoc
nest Int
2 (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
pprDeclList ((LFamilyDecl (GhcPass p) -> SDoc)
-> [LFamilyDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (TopLevelFlag -> FamilyDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> FamilyDecl (GhcPass p) -> SDoc
pprFamilyDecl TopLevelFlag
NotTopLevel (FamilyDecl (GhcPass p) -> SDoc)
-> (LFamilyDecl (GhcPass p) -> FamilyDecl (GhcPass p))
-> LFamilyDecl (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LFamilyDecl (GhcPass p) -> FamilyDecl (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) [LFamilyDecl (GhcPass p)]
ats [SDoc] -> [SDoc] -> [SDoc]
forall a. [a] -> [a] -> [a]
++
                                     (LTyFamDefltDecl (GhcPass p) -> SDoc)
-> [LTyFamDefltDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (TyFamDefltDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TyFamDefltDecl (GhcPass p) -> SDoc
pprTyFamDefltDecl (TyFamDefltDecl (GhcPass p) -> SDoc)
-> (LTyFamDefltDecl (GhcPass p) -> TyFamDefltDecl (GhcPass p))
-> LTyFamDefltDecl (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LTyFamDefltDecl (GhcPass p) -> TyFamDefltDecl (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) [LTyFamDefltDecl (GhcPass p)]
at_defs [SDoc] -> [SDoc] -> [SDoc]
forall a. [a] -> [a] -> [a]
++
                                     LHsBinds (GhcPass p) -> [LSig (GhcPass p)] -> [SDoc]
forall (idL :: Pass) (idR :: Pass) (id2 :: Pass).
(OutputableBndrId idL, OutputableBndrId idR,
 OutputableBndrId id2) =>
LHsBindsLR (GhcPass idL) (GhcPass idR)
-> [LSig (GhcPass id2)] -> [SDoc]
pprLHsBindsForUser LHsBinds (GhcPass p)
methods [LSig (GhcPass p)]
sigs) ]
      where
        top_matter :: SDoc
top_matter = String -> SDoc
text String
"class"
                    SDoc -> SDoc -> SDoc
<+> Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pp_vanilla_decl_head Located (IdP (GhcPass p))
lclas LHsQTyVars (GhcPass p)
tyvars LexicalFixity
fixity LHsContext (GhcPass p)
context
                    SDoc -> SDoc -> SDoc
<+> [FunDep (Located (IdGhcP p))] -> SDoc
forall a. Outputable a => [FunDep a] -> SDoc
pprFundeps ((GenLocated SrcSpan (FunDep (Located (IdGhcP p)))
 -> FunDep (Located (IdGhcP p)))
-> [GenLocated SrcSpan (FunDep (Located (IdGhcP p)))]
-> [FunDep (Located (IdGhcP p))]
forall a b. (a -> b) -> [a] -> [b]
map GenLocated SrcSpan (FunDep (Located (IdGhcP p)))
-> FunDep (Located (IdGhcP p))
forall l e. GenLocated l e -> e
unLoc [GenLocated SrcSpan (FunDep (Located (IdGhcP p)))]
[LHsFunDep (GhcPass p)]
fds)

instance OutputableBndrId p
       => Outputable (TyClGroup (GhcPass p)) where
  ppr :: TyClGroup (GhcPass p) -> SDoc
ppr (TyClGroup { group_tyclds :: forall pass. TyClGroup pass -> [LTyClDecl pass]
group_tyclds = [LTyClDecl (GhcPass p)]
tyclds
                 , group_roles :: forall pass. TyClGroup pass -> [LRoleAnnotDecl pass]
group_roles = [LRoleAnnotDecl (GhcPass p)]
roles
                 , group_kisigs :: forall pass. TyClGroup pass -> [LStandaloneKindSig pass]
group_kisigs = [LStandaloneKindSig (GhcPass p)]
kisigs
                 , group_instds :: forall pass. TyClGroup pass -> [LInstDecl pass]
group_instds = [LInstDecl (GhcPass p)]
instds
                 }
      )
    = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"TyClGroup") Int
2 (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
      [LStandaloneKindSig (GhcPass p)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LStandaloneKindSig (GhcPass p)]
kisigs SDoc -> SDoc -> SDoc
$$
      [LTyClDecl (GhcPass p)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LTyClDecl (GhcPass p)]
tyclds SDoc -> SDoc -> SDoc
$$
      [LRoleAnnotDecl (GhcPass p)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LRoleAnnotDecl (GhcPass p)]
roles SDoc -> SDoc -> SDoc
$$
      [LInstDecl (GhcPass p)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LInstDecl (GhcPass p)]
instds

pp_vanilla_decl_head :: (OutputableBndrId p)
   => Located (IdP (GhcPass p))
   -> LHsQTyVars (GhcPass p)
   -> LexicalFixity
   -> LHsContext (GhcPass p)
   -> SDoc
pp_vanilla_decl_head :: forall (p :: Pass).
OutputableBndrId p =>
Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pp_vanilla_decl_head Located (IdP (GhcPass p))
thing (HsQTvs { hsq_explicit :: forall pass. LHsQTyVars pass -> [LHsTyVarBndr () pass]
hsq_explicit = [LHsTyVarBndr () (GhcPass p)]
tyvars }) LexicalFixity
fixity LHsContext (GhcPass p)
context
 = [SDoc] -> SDoc
hsep [LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsContext (GhcPass p) -> SDoc
pprLHsContext LHsContext (GhcPass p)
context, [LHsTyVarBndr () (GhcPass p)] -> SDoc
pp_tyvars [LHsTyVarBndr () (GhcPass p)]
tyvars]
  where
    pp_tyvars :: [LHsTyVarBndr () (GhcPass p)] -> SDoc
pp_tyvars (LHsTyVarBndr () (GhcPass p)
varl:[LHsTyVarBndr () (GhcPass p)]
varsr)
      | LexicalFixity
fixity LexicalFixity -> LexicalFixity -> Bool
forall a. Eq a => a -> a -> Bool
== LexicalFixity
Infix Bool -> Bool -> Bool
&& [LHsTyVarBndr () (GhcPass p)] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LHsTyVarBndr () (GhcPass p)]
varsr Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
1
         = [SDoc] -> SDoc
hsep [Char -> SDoc
char Char
'(',HsTyVarBndr () (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsTyVarBndr () (GhcPass p)
varl), IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (IdGhcP p)
Located (IdP (GhcPass p))
thing)
                , (HsTyVarBndr () (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr(HsTyVarBndr () (GhcPass p) -> SDoc)
-> (LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p))
-> LHsTyVarBndr () (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
.LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) ([LHsTyVarBndr () (GhcPass p)] -> LHsTyVarBndr () (GhcPass p)
forall a. [a] -> a
head [LHsTyVarBndr () (GhcPass p)]
varsr), Char -> SDoc
char Char
')'
                , [SDoc] -> SDoc
hsep ((LHsTyVarBndr () (GhcPass p) -> SDoc)
-> [LHsTyVarBndr () (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (HsTyVarBndr () (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr(HsTyVarBndr () (GhcPass p) -> SDoc)
-> (LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p))
-> LHsTyVarBndr () (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
.LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) ([LHsTyVarBndr () (GhcPass p)] -> [LHsTyVarBndr () (GhcPass p)]
forall a. [a] -> [a]
tail [LHsTyVarBndr () (GhcPass p)]
varsr))]
      | LexicalFixity
fixity LexicalFixity -> LexicalFixity -> Bool
forall a. Eq a => a -> a -> Bool
== LexicalFixity
Infix
         = [SDoc] -> SDoc
hsep [HsTyVarBndr () (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsTyVarBndr () (GhcPass p)
varl), IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (IdGhcP p)
Located (IdP (GhcPass p))
thing)
         , [SDoc] -> SDoc
hsep ((LHsTyVarBndr () (GhcPass p) -> SDoc)
-> [LHsTyVarBndr () (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (HsTyVarBndr () (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr(HsTyVarBndr () (GhcPass p) -> SDoc)
-> (LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p))
-> LHsTyVarBndr () (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
.LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) [LHsTyVarBndr () (GhcPass p)]
varsr)]
      | Bool
otherwise = [SDoc] -> SDoc
hsep [ IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (IdGhcP p)
Located (IdP (GhcPass p))
thing)
                  , [SDoc] -> SDoc
hsep ((LHsTyVarBndr () (GhcPass p) -> SDoc)
-> [LHsTyVarBndr () (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (HsTyVarBndr () (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr(HsTyVarBndr () (GhcPass p) -> SDoc)
-> (LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p))
-> LHsTyVarBndr () (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
.LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) (LHsTyVarBndr () (GhcPass p)
varlLHsTyVarBndr () (GhcPass p)
-> [LHsTyVarBndr () (GhcPass p)] -> [LHsTyVarBndr () (GhcPass p)]
forall a. a -> [a] -> [a]
:[LHsTyVarBndr () (GhcPass p)]
varsr))]
    pp_tyvars [] = IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (IdGhcP p)
Located (IdP (GhcPass p))
thing)

pprTyClDeclFlavour :: TyClDecl (GhcPass p) -> SDoc
pprTyClDeclFlavour :: forall (p :: Pass). TyClDecl (GhcPass p) -> SDoc
pprTyClDeclFlavour (ClassDecl {})   = String -> SDoc
text String
"class"
pprTyClDeclFlavour (SynDecl {})     = String -> SDoc
text String
"type"
pprTyClDeclFlavour (FamDecl { tcdFam :: forall pass. TyClDecl pass -> FamilyDecl pass
tcdFam = FamilyDecl { fdInfo :: forall pass. FamilyDecl pass -> FamilyInfo pass
fdInfo = FamilyInfo (GhcPass p)
info }})
  = FamilyInfo (GhcPass p) -> SDoc
forall pass. FamilyInfo pass -> SDoc
pprFlavour FamilyInfo (GhcPass p)
info SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"family"
pprTyClDeclFlavour (DataDecl { tcdDataDefn :: forall pass. TyClDecl pass -> HsDataDefn pass
tcdDataDefn = HsDataDefn { dd_ND :: forall pass. HsDataDefn pass -> NewOrData
dd_ND = NewOrData
nd } })
  = NewOrData -> SDoc
forall a. Outputable a => a -> SDoc
ppr NewOrData
nd


{- Note [CUSKs: complete user-supplied kind signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We kind-check declarations differently if they have a complete, user-supplied
kind signature (CUSK). This is because we can safely generalise a CUSKed
declaration before checking all of the others, supporting polymorphic recursion.
See https://gitlab.haskell.org/ghc/ghc/wikis/ghc-kinds/kind-inference#proposed-new-strategy
and #9200 for lots of discussion of how we got here.

The detection of CUSKs is enabled by the -XCUSKs extension, switched on by default.
Under -XNoCUSKs, all declarations are treated as if they have no CUSK.
See https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0036-kind-signatures.rst

PRINCIPLE:
  a type declaration has a CUSK iff we could produce a separate kind signature
  for it, just like a type signature for a function,
  looking only at the header of the declaration.

Examples:
  * data T1 (a :: *->*) (b :: *) = ....
    -- Has CUSK; equivalant to   T1 :: (*->*) -> * -> *

 * data T2 a b = ...
   -- No CUSK; we do not want to guess T2 :: * -> * -> *
   -- because the full decl might be   data T a b = MkT (a b)

  * data T3 (a :: k -> *) (b :: *) = ...
    -- CUSK; equivalent to   T3 :: (k -> *) -> * -> *
    -- We lexically generalise over k to get
    --    T3 :: forall k. (k -> *) -> * -> *
    -- The generalisation is here is purely lexical, just like
    --    f3 :: a -> a
    -- means
    --    f3 :: forall a. a -> a

  * data T4 (a :: j k) = ...
     -- CUSK; equivalent to   T4 :: j k -> *
     -- which we lexically generalise to  T4 :: forall j k. j k -> *
     -- and then, if PolyKinds is on, we further generalise to
     --   T4 :: forall kk (j :: kk -> *) (k :: kk). j k -> *
     -- Again this is exactly like what happens as the term level
     -- when you write
     --    f4 :: forall a b. a b -> Int

NOTE THAT
  * A CUSK does /not/ mean that everything about the kind signature is
    fully specified by the user.  Look at T4 and f4: we had to do kind
    inference to figure out the kind-quantification.  But in both cases
    (T4 and f4) that inference is done looking /only/ at the header of T4
    (or signature for f4), not at the definition thereof.

  * The CUSK completely fixes the kind of the type constructor, forever.

  * The precise rules, for each declaration form, for whether a declaration
    has a CUSK are given in the user manual section "Complete user-supplied
    kind signatures and polymorphic recursion".  But they simply implement
    PRINCIPLE above.

  * Open type families are interesting:
      type family T5 a b :: *
    There simply /is/ no accompanying declaration, so that info is all
    we'll ever get.  So we it has a CUSK by definition, and we default
    any un-fixed kind variables to *.

  * Associated types are a bit tricker:
      class C6 a where
         type family T6 a b :: *
         op :: a Int -> Int
    Here C6 does not have a CUSK (in fact we ultimately discover that
    a :: * -> *).  And hence neither does T6, the associated family,
    because we can't fix its kind until we have settled C6.  Another
    way to say it: unlike a top-level, we /may/ discover more about
    a's kind from C6's definition.

  * A data definition with a top-level :: must explicitly bind all
    kind variables to the right of the ::. See test
    dependent/should_compile/KindLevels, which requires this
    case. (Naturally, any kind variable mentioned before the :: should
    not be bound after it.)

    This last point is much more debatable than the others; see
    #15142 comment:22

    Because this is fiddly to check, there is a field in the DataDeclRn
    structure (included in a DataDecl after the renamer) that stores whether
    or not the declaration has a CUSK.
-}


{- *********************************************************************
*                                                                      *
                         TyClGroup
        Strongly connected components of
      type, class, instance, and role declarations
*                                                                      *
********************************************************************* -}

{- Note [TyClGroups and dependency analysis]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A TyClGroup represents a strongly connected components of type/class/instance
decls, together with the role annotations for the type/class declarations.

The hs_tyclds :: [TyClGroup] field of a HsGroup is a dependency-order
sequence of strongly-connected components.

Invariants
 * The type and class declarations, group_tyclds, may depend on each
   other, or earlier TyClGroups, but not on later ones

 * The role annotations, group_roles, are role-annotations for some or
   all of the types and classes in group_tyclds (only).

 * The instance declarations, group_instds, may (and usually will)
   depend on group_tyclds, or on earlier TyClGroups, but not on later
   ones.

See Note [Dependency analysis of type, class, and instance decls]
in GHC.Rename.Module for more info.
-}

-- | Type or Class Group
data TyClGroup pass  -- See Note [TyClGroups and dependency analysis]
  = TyClGroup { forall pass. TyClGroup pass -> XCTyClGroup pass
group_ext    :: XCTyClGroup pass
              , forall pass. TyClGroup pass -> [LTyClDecl pass]
group_tyclds :: [LTyClDecl pass]
              , forall pass. TyClGroup pass -> [LRoleAnnotDecl pass]
group_roles  :: [LRoleAnnotDecl pass]
              , forall pass. TyClGroup pass -> [LStandaloneKindSig pass]
group_kisigs :: [LStandaloneKindSig pass]
              , forall pass. TyClGroup pass -> [LInstDecl pass]
group_instds :: [LInstDecl pass] }
  | XTyClGroup !(XXTyClGroup pass)

type instance XCTyClGroup (GhcPass _) = NoExtField
type instance XXTyClGroup (GhcPass _) = NoExtCon


tyClGroupTyClDecls :: [TyClGroup pass] -> [LTyClDecl pass]
tyClGroupTyClDecls :: forall pass. [TyClGroup pass] -> [LTyClDecl pass]
tyClGroupTyClDecls = (TyClGroup pass -> [LTyClDecl pass])
-> [TyClGroup pass] -> [LTyClDecl pass]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap TyClGroup pass -> [LTyClDecl pass]
forall pass. TyClGroup pass -> [LTyClDecl pass]
group_tyclds

tyClGroupInstDecls :: [TyClGroup pass] -> [LInstDecl pass]
tyClGroupInstDecls :: forall pass. [TyClGroup pass] -> [LInstDecl pass]
tyClGroupInstDecls = (TyClGroup pass -> [LInstDecl pass])
-> [TyClGroup pass] -> [LInstDecl pass]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap TyClGroup pass -> [LInstDecl pass]
forall pass. TyClGroup pass -> [LInstDecl pass]
group_instds

tyClGroupRoleDecls :: [TyClGroup pass] -> [LRoleAnnotDecl pass]
tyClGroupRoleDecls :: forall pass. [TyClGroup pass] -> [LRoleAnnotDecl pass]
tyClGroupRoleDecls = (TyClGroup pass -> [LRoleAnnotDecl pass])
-> [TyClGroup pass] -> [LRoleAnnotDecl pass]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap TyClGroup pass -> [LRoleAnnotDecl pass]
forall pass. TyClGroup pass -> [LRoleAnnotDecl pass]
group_roles

tyClGroupKindSigs :: [TyClGroup pass] -> [LStandaloneKindSig pass]
tyClGroupKindSigs :: forall pass. [TyClGroup pass] -> [LStandaloneKindSig pass]
tyClGroupKindSigs = (TyClGroup pass -> [LStandaloneKindSig pass])
-> [TyClGroup pass] -> [LStandaloneKindSig pass]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap TyClGroup pass -> [LStandaloneKindSig pass]
forall pass. TyClGroup pass -> [LStandaloneKindSig pass]
group_kisigs


{- *********************************************************************
*                                                                      *
               Data and type family declarations
*                                                                      *
********************************************************************* -}

{- Note [FamilyResultSig]
~~~~~~~~~~~~~~~~~~~~~~~~~

This data type represents the return signature of a type family.  Possible
values are:

 * NoSig - the user supplied no return signature:
      type family Id a where ...

 * KindSig - the user supplied the return kind:
      type family Id a :: * where ...

 * TyVarSig - user named the result with a type variable and possibly
   provided a kind signature for that variable:
      type family Id a = r where ...
      type family Id a = (r :: *) where ...

   Naming result of a type family is required if we want to provide
   injectivity annotation for a type family:
      type family Id a = r | r -> a where ...

See also: Note [Injectivity annotation]

Note [Injectivity annotation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

A user can declare a type family to be injective:

   type family Id a = r | r -> a where ...

 * The part after the "|" is called "injectivity annotation".
 * "r -> a" part is called "injectivity condition"; at the moment terms
   "injectivity annotation" and "injectivity condition" are synonymous
   because we only allow a single injectivity condition.
 * "r" is the "LHS of injectivity condition". LHS can only contain the
   variable naming the result of a type family.

 * "a" is the "RHS of injectivity condition". RHS contains space-separated
   type and kind variables representing the arguments of a type
   family. Variables can be omitted if a type family is not injective in
   these arguments. Example:
         type family Foo a b c = d | d -> a c where ...

Note that:
 (a) naming of type family result is required to provide injectivity
     annotation
 (b) for associated types if the result was named then injectivity annotation
     is mandatory. Otherwise result type variable is indistinguishable from
     associated type default.

It is possible that in the future this syntax will be extended to support
more complicated injectivity annotations. For example we could declare that
if we know the result of Plus and one of its arguments we can determine the
other argument:

   type family Plus a b = (r :: Nat) | r a -> b, r b -> a where ...

Here injectivity annotation would consist of two comma-separated injectivity
conditions.

See also Note [Injective type families] in GHC.Core.TyCon
-}

-- | Located type Family Result Signature
type LFamilyResultSig pass = Located (FamilyResultSig pass)

-- | type Family Result Signature
data FamilyResultSig pass = -- see Note [FamilyResultSig]
    NoSig (XNoSig pass)
  -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | KindSig  (XCKindSig pass) (LHsKind pass)
  -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
  --             'GHC.Parser.Annotation.AnnOpenP','GHC.Parser.Annotation.AnnDcolon',
  --             'GHC.Parser.Annotation.AnnCloseP'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | TyVarSig (XTyVarSig pass) (LHsTyVarBndr () pass)
  -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
  --             'GHC.Parser.Annotation.AnnOpenP','GHC.Parser.Annotation.AnnDcolon',
  --             'GHC.Parser.Annotation.AnnCloseP', 'GHC.Parser.Annotation.AnnEqual'
  | XFamilyResultSig !(XXFamilyResultSig pass)

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

type instance XNoSig            (GhcPass _) = NoExtField
type instance XCKindSig         (GhcPass _) = NoExtField

type instance XTyVarSig         (GhcPass _) = NoExtField
type instance XXFamilyResultSig (GhcPass _) = NoExtCon


-- | Located type Family Declaration
type LFamilyDecl pass = Located (FamilyDecl pass)

-- | type Family Declaration
data FamilyDecl pass = FamilyDecl
  { forall pass. FamilyDecl pass -> XCFamilyDecl pass
fdExt            :: XCFamilyDecl pass
  , forall pass. FamilyDecl pass -> FamilyInfo pass
fdInfo           :: FamilyInfo pass              -- type/data, closed/open
  , forall pass. FamilyDecl pass -> Located (IdP pass)
fdLName          :: Located (IdP pass)           -- type constructor
  , forall pass. FamilyDecl pass -> LHsQTyVars pass
fdTyVars         :: LHsQTyVars pass              -- type variables
                       -- See Note [TyVar binders for associated declarations]
  , forall pass. FamilyDecl pass -> LexicalFixity
fdFixity         :: LexicalFixity                -- Fixity used in the declaration
  , forall pass. FamilyDecl pass -> LFamilyResultSig pass
fdResultSig      :: LFamilyResultSig pass        -- result signature
  , forall pass. FamilyDecl pass -> Maybe (LInjectivityAnn pass)
fdInjectivityAnn :: Maybe (LInjectivityAnn pass) -- optional injectivity ann
  }
  | XFamilyDecl !(XXFamilyDecl pass)
  -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
  --             'GHC.Parser.Annotation.AnnData', 'GHC.Parser.Annotation.AnnFamily',
  --             'GHC.Parser.Annotation.AnnWhere', 'GHC.Parser.Annotation.AnnOpenP',
  --             'GHC.Parser.Annotation.AnnDcolon', 'GHC.Parser.Annotation.AnnCloseP',
  --             'GHC.Parser.Annotation.AnnEqual', 'GHC.Parser.Annotation.AnnRarrow',
  --             'GHC.Parser.Annotation.AnnVbar'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

type instance XCFamilyDecl    (GhcPass _) = NoExtField
type instance XXFamilyDecl    (GhcPass _) = NoExtCon


-- | Located Injectivity Annotation
type LInjectivityAnn pass = Located (InjectivityAnn pass)

-- | If the user supplied an injectivity annotation it is represented using
-- InjectivityAnn. At the moment this is a single injectivity condition - see
-- Note [Injectivity annotation]. `Located name` stores the LHS of injectivity
-- condition. `[Located name]` stores the RHS of injectivity condition. Example:
--
--   type family Foo a b c = r | r -> a c where ...
--
-- This will be represented as "InjectivityAnn `r` [`a`, `c`]"
data InjectivityAnn pass
  = InjectivityAnn (Located (IdP pass)) [Located (IdP pass)]
  -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' :
  --             'GHC.Parser.Annotation.AnnRarrow', 'GHC.Parser.Annotation.AnnVbar'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

data FamilyInfo pass
  = DataFamily
  | OpenTypeFamily
     -- | 'Nothing' if we're in an hs-boot file and the user
     -- said "type family Foo x where .."
  | ClosedTypeFamily (Maybe [LTyFamInstEqn pass])


------------- Functions over FamilyDecls -----------

familyDeclLName :: FamilyDecl (GhcPass p) -> Located (IdP (GhcPass p))
familyDeclLName :: forall (p :: Pass).
FamilyDecl (GhcPass p) -> Located (IdP (GhcPass p))
familyDeclLName (FamilyDecl { fdLName :: forall pass. FamilyDecl pass -> Located (IdP pass)
fdLName = Located (IdP (GhcPass p))
n }) = Located (IdP (GhcPass p))
n

familyDeclName :: FamilyDecl (GhcPass p) -> IdP (GhcPass p)
familyDeclName :: forall (p :: Pass). FamilyDecl (GhcPass p) -> IdP (GhcPass p)
familyDeclName = GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p)
-> (FamilyDecl (GhcPass p) -> GenLocated SrcSpan (IdGhcP p))
-> FamilyDecl (GhcPass p)
-> IdGhcP p
forall b c a. (b -> c) -> (a -> b) -> a -> c
. FamilyDecl (GhcPass p) -> GenLocated SrcSpan (IdGhcP p)
forall (p :: Pass).
FamilyDecl (GhcPass p) -> Located (IdP (GhcPass p))
familyDeclLName

famResultKindSignature :: FamilyResultSig (GhcPass p) -> Maybe (LHsKind (GhcPass p))
famResultKindSignature :: forall (p :: Pass).
FamilyResultSig (GhcPass p) -> Maybe (LHsKind (GhcPass p))
famResultKindSignature (NoSig XNoSig (GhcPass p)
_) = Maybe (LHsKind (GhcPass p))
forall a. Maybe a
Nothing
famResultKindSignature (KindSig XCKindSig (GhcPass p)
_ LHsKind (GhcPass p)
ki) = LHsKind (GhcPass p) -> Maybe (LHsKind (GhcPass p))
forall a. a -> Maybe a
Just LHsKind (GhcPass p)
ki
famResultKindSignature (TyVarSig XTyVarSig (GhcPass p)
_ LHsTyVarBndr () (GhcPass p)
bndr) =
  case LHsTyVarBndr () (GhcPass p) -> HsTyVarBndr () (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsTyVarBndr () (GhcPass p)
bndr of
    UserTyVar XUserTyVar (GhcPass p)
_ ()
_ Located (IdP (GhcPass p))
_ -> Maybe (LHsKind (GhcPass p))
forall a. Maybe a
Nothing
    KindedTyVar XKindedTyVar (GhcPass p)
_ ()
_ Located (IdP (GhcPass p))
_ LHsKind (GhcPass p)
ki -> LHsKind (GhcPass p) -> Maybe (LHsKind (GhcPass p))
forall a. a -> Maybe a
Just LHsKind (GhcPass p)
ki

-- | Maybe return name of the result type variable
resultVariableName :: FamilyResultSig (GhcPass a) -> Maybe (IdP (GhcPass a))
resultVariableName :: forall (a :: Pass).
FamilyResultSig (GhcPass a) -> Maybe (IdP (GhcPass a))
resultVariableName (TyVarSig XTyVarSig (GhcPass a)
_ LHsTyVarBndr () (GhcPass a)
sig) = IdGhcP a -> Maybe (IdGhcP a)
forall a. a -> Maybe a
Just (IdGhcP a -> Maybe (IdGhcP a)) -> IdGhcP a -> Maybe (IdGhcP a)
forall a b. (a -> b) -> a -> b
$ LHsTyVarBndr () (GhcPass a) -> IdP (GhcPass a)
forall flag (p :: Pass).
LHsTyVarBndr flag (GhcPass p) -> IdP (GhcPass p)
hsLTyVarName LHsTyVarBndr () (GhcPass a)
sig
resultVariableName FamilyResultSig (GhcPass a)
_                = Maybe (IdP (GhcPass a))
forall a. Maybe a
Nothing

------------- Pretty printing FamilyDecls -----------

instance OutputableBndrId p
       => Outputable (FamilyDecl (GhcPass p)) where
  ppr :: FamilyDecl (GhcPass p) -> SDoc
ppr = TopLevelFlag -> FamilyDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> FamilyDecl (GhcPass p) -> SDoc
pprFamilyDecl TopLevelFlag
TopLevel

pprFamilyDecl :: (OutputableBndrId p)
              => TopLevelFlag -> FamilyDecl (GhcPass p) -> SDoc
pprFamilyDecl :: forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> FamilyDecl (GhcPass p) -> SDoc
pprFamilyDecl TopLevelFlag
top_level (FamilyDecl { fdInfo :: forall pass. FamilyDecl pass -> FamilyInfo pass
fdInfo = FamilyInfo (GhcPass p)
info, fdLName :: forall pass. FamilyDecl pass -> Located (IdP pass)
fdLName = Located (IdP (GhcPass p))
ltycon
                                    , fdTyVars :: forall pass. FamilyDecl pass -> LHsQTyVars pass
fdTyVars = LHsQTyVars (GhcPass p)
tyvars
                                    , fdFixity :: forall pass. FamilyDecl pass -> LexicalFixity
fdFixity = LexicalFixity
fixity
                                    , fdResultSig :: forall pass. FamilyDecl pass -> LFamilyResultSig pass
fdResultSig = L SrcSpan
_ FamilyResultSig (GhcPass p)
result
                                    , fdInjectivityAnn :: forall pass. FamilyDecl pass -> Maybe (LInjectivityAnn pass)
fdInjectivityAnn = Maybe (LInjectivityAnn (GhcPass p))
mb_inj })
  = [SDoc] -> SDoc
vcat [ FamilyInfo (GhcPass p) -> SDoc
forall pass. FamilyInfo pass -> SDoc
pprFlavour FamilyInfo (GhcPass p)
info SDoc -> SDoc -> SDoc
<+> SDoc
pp_top_level SDoc -> SDoc -> SDoc
<+>
           Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Located (IdP (GhcPass p))
-> LHsQTyVars (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pp_vanilla_decl_head Located (IdP (GhcPass p))
ltycon LHsQTyVars (GhcPass p)
tyvars LexicalFixity
fixity LHsContext (GhcPass p)
forall pass. LHsContext pass
noLHsContext SDoc -> SDoc -> SDoc
<+>
           SDoc
pp_kind SDoc -> SDoc -> SDoc
<+> SDoc
pp_inj SDoc -> SDoc -> SDoc
<+> SDoc
pp_where
         , Int -> SDoc -> SDoc
nest Int
2 (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ SDoc
pp_eqns ]
  where
    pp_top_level :: SDoc
pp_top_level = case TopLevelFlag
top_level of
                     TopLevelFlag
TopLevel    -> String -> SDoc
text String
"family"
                     TopLevelFlag
NotTopLevel -> SDoc
empty

    pp_kind :: SDoc
pp_kind = case FamilyResultSig (GhcPass p)
result of
                NoSig    XNoSig (GhcPass p)
_         -> SDoc
empty
                KindSig  XCKindSig (GhcPass p)
_ LHsKind (GhcPass p)
kind    -> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LHsKind (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsKind (GhcPass p)
kind
                TyVarSig XTyVarSig (GhcPass p)
_ LHsTyVarBndr () (GhcPass p)
tv_bndr -> String -> SDoc
text String
"=" SDoc -> SDoc -> SDoc
<+> LHsTyVarBndr () (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsTyVarBndr () (GhcPass p)
tv_bndr
    pp_inj :: SDoc
pp_inj = case Maybe (LInjectivityAnn (GhcPass p))
mb_inj of
               Just (L SrcSpan
_ (InjectivityAnn Located (IdP (GhcPass p))
lhs [Located (IdP (GhcPass p))]
rhs)) ->
                 [SDoc] -> SDoc
hsep [ SDoc
vbar, Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdGhcP p)
Located (IdP (GhcPass p))
lhs, String -> SDoc
text String
"->", [SDoc] -> SDoc
hsep ((Located (IdGhcP p) -> SDoc) -> [Located (IdGhcP p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Located (IdGhcP p)]
[Located (IdP (GhcPass p))]
rhs) ]
               Maybe (LInjectivityAnn (GhcPass p))
Nothing -> SDoc
empty
    (SDoc
pp_where, SDoc
pp_eqns) = case FamilyInfo (GhcPass p)
info of
      ClosedTypeFamily Maybe [LTyFamInstEqn (GhcPass p)]
mb_eqns ->
        ( String -> SDoc
text String
"where"
        , case Maybe [LTyFamInstEqn (GhcPass p)]
mb_eqns of
            Maybe [LTyFamInstEqn (GhcPass p)]
Nothing   -> String -> SDoc
text String
".."
            Just [LTyFamInstEqn (GhcPass p)]
eqns -> [SDoc] -> SDoc
vcat ([SDoc] -> SDoc) -> [SDoc] -> SDoc
forall a b. (a -> b) -> a -> b
$ (LTyFamInstEqn (GhcPass p) -> SDoc)
-> [LTyFamInstEqn (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (TyFamInstEqn (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TyFamInstEqn (GhcPass p) -> SDoc
ppr_fam_inst_eqn (TyFamInstEqn (GhcPass p) -> SDoc)
-> (LTyFamInstEqn (GhcPass p) -> TyFamInstEqn (GhcPass p))
-> LTyFamInstEqn (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LTyFamInstEqn (GhcPass p) -> TyFamInstEqn (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) [LTyFamInstEqn (GhcPass p)]
eqns )
      FamilyInfo (GhcPass p)
_ -> (SDoc
empty, SDoc
empty)

pprFlavour :: FamilyInfo pass -> SDoc
pprFlavour :: forall pass. FamilyInfo pass -> SDoc
pprFlavour FamilyInfo pass
DataFamily            = String -> SDoc
text String
"data"
pprFlavour FamilyInfo pass
OpenTypeFamily        = String -> SDoc
text String
"type"
pprFlavour (ClosedTypeFamily {}) = String -> SDoc
text String
"type"

instance Outputable (FamilyInfo pass) where
  ppr :: FamilyInfo pass -> SDoc
ppr FamilyInfo pass
info = FamilyInfo pass -> SDoc
forall pass. FamilyInfo pass -> SDoc
pprFlavour FamilyInfo pass
info SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"family"



{- *********************************************************************
*                                                                      *
               Data types and data constructors
*                                                                      *
********************************************************************* -}

-- | Haskell Data type Definition
data HsDataDefn pass   -- The payload of a data type defn
                       -- Used *both* for vanilla data declarations,
                       --       *and* for data family instances
  = -- | Declares a data type or newtype, giving its constructors
    -- @
    --  data/newtype T a = <constrs>
    --  data/newtype instance T [a] = <constrs>
    -- @
    HsDataDefn { forall pass. HsDataDefn pass -> XCHsDataDefn pass
dd_ext    :: XCHsDataDefn pass,
                 forall pass. HsDataDefn pass -> NewOrData
dd_ND     :: NewOrData,
                 forall pass. HsDataDefn pass -> LHsContext pass
dd_ctxt   :: LHsContext pass,           -- ^ Context
                 forall pass. HsDataDefn pass -> Maybe (Located CType)
dd_cType  :: Maybe (Located CType),
                 forall pass. HsDataDefn pass -> Maybe (LHsKind pass)
dd_kindSig:: Maybe (LHsKind pass),
                     -- ^ Optional kind signature.
                     --
                     -- @(Just k)@ for a GADT-style @data@,
                     -- or @data instance@ decl, with explicit kind sig
                     --
                     -- Always @Nothing@ for H98-syntax decls

                 forall pass. HsDataDefn pass -> [LConDecl pass]
dd_cons   :: [LConDecl pass],
                     -- ^ Data constructors
                     --
                     -- For @data T a = T1 | T2 a@
                     --   the 'LConDecl's all have 'ConDeclH98'.
                     -- For @data T a where { T1 :: T a }@
                     --   the 'LConDecls' all have 'ConDeclGADT'.

                 forall pass. HsDataDefn pass -> HsDeriving pass
dd_derivs :: HsDeriving pass  -- ^ Optional 'deriving' clause

             -- For details on above see note [Api annotations] in GHC.Parser.Annotation
   }
  | XHsDataDefn !(XXHsDataDefn pass)

type instance XCHsDataDefn    (GhcPass _) = NoExtField

type instance XXHsDataDefn    (GhcPass _) = NoExtCon

-- | Haskell Deriving clause
type HsDeriving pass = Located [LHsDerivingClause pass]
  -- ^ The optional @deriving@ clauses of a data declaration. "Clauses" is
  -- plural because one can specify multiple deriving clauses using the
  -- @-XDerivingStrategies@ language extension.
  --
  -- The list of 'LHsDerivingClause's corresponds to exactly what the user
  -- requested to derive, in order. If no deriving clauses were specified,
  -- the list is empty.

type LHsDerivingClause pass = Located (HsDerivingClause pass)

-- | A single @deriving@ clause of a data declaration.
--
--  - 'GHC.Parser.Annotation.AnnKeywordId' :
--       'GHC.Parser.Annotation.AnnDeriving', 'GHC.Parser.Annotation.AnnStock',
--       'GHC.Parser.Annotation.AnnAnyClass', 'Api.AnnNewtype',
--       'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
data HsDerivingClause pass
  -- See Note [Deriving strategies] in GHC.Tc.Deriv
  = HsDerivingClause
    { forall pass. HsDerivingClause pass -> XCHsDerivingClause pass
deriv_clause_ext :: XCHsDerivingClause pass
    , forall pass. HsDerivingClause pass -> Maybe (LDerivStrategy pass)
deriv_clause_strategy :: Maybe (LDerivStrategy pass)
      -- ^ The user-specified strategy (if any) to use when deriving
      -- 'deriv_clause_tys'.
    , forall pass. HsDerivingClause pass -> Located [LHsSigType pass]
deriv_clause_tys :: Located [LHsSigType pass]
      -- ^ The types to derive.
      --
      -- It uses 'LHsSigType's because, with @-XGeneralizedNewtypeDeriving@,
      -- we can mention type variables that aren't bound by the datatype, e.g.
      --
      -- > data T b = ... deriving (C [a])
      --
      -- should produce a derived instance for @C [a] (T b)@.
    }
  | XHsDerivingClause !(XXHsDerivingClause pass)

type instance XCHsDerivingClause    (GhcPass _) = NoExtField
type instance XXHsDerivingClause    (GhcPass _) = NoExtCon

instance OutputableBndrId p
       => Outputable (HsDerivingClause (GhcPass p)) where
  ppr :: HsDerivingClause (GhcPass p) -> SDoc
ppr (HsDerivingClause { deriv_clause_strategy :: forall pass. HsDerivingClause pass -> Maybe (LDerivStrategy pass)
deriv_clause_strategy = Maybe (LDerivStrategy (GhcPass p))
dcs
                        , deriv_clause_tys :: forall pass. HsDerivingClause pass -> Located [LHsSigType pass]
deriv_clause_tys      = L SrcSpan
_ [LHsSigType (GhcPass p)]
dct })
    = [SDoc] -> SDoc
hsep [ String -> SDoc
text String
"deriving"
           , SDoc
pp_strat_before
           , [LHsSigType (GhcPass p)] -> SDoc
pp_dct [LHsSigType (GhcPass p)]
dct
           , SDoc
pp_strat_after ]
      where
        -- This complexity is to distinguish between
        --    deriving Show
        --    deriving (Show)
        pp_dct :: [LHsSigType (GhcPass p)] -> SDoc
pp_dct [HsIB { hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = LHsType (GhcPass p)
ty }]
                 = LHsType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
forall (p :: Pass).
PprPrec -> LHsType (GhcPass p) -> LHsType (GhcPass p)
parenthesizeHsType PprPrec
appPrec LHsType (GhcPass p)
ty)
        pp_dct [LHsSigType (GhcPass p)]
_ = SDoc -> SDoc
parens ([LHsSigType (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [LHsSigType (GhcPass p)]
dct)

        -- @via@ is unique in that in comes /after/ the class being derived,
        -- so we must special-case it.
        (SDoc
pp_strat_before, SDoc
pp_strat_after) =
          case Maybe (LDerivStrategy (GhcPass p))
dcs of
            Just (L SrcSpan
_ via :: DerivStrategy (GhcPass p)
via@ViaStrategy{}) -> (SDoc
empty, DerivStrategy (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr DerivStrategy (GhcPass p)
via)
            Maybe (LDerivStrategy (GhcPass p))
_                            -> (Maybe (LDerivStrategy (GhcPass p)) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Maybe (LDerivStrategy (GhcPass p)) -> SDoc
ppDerivStrategy Maybe (LDerivStrategy (GhcPass p))
dcs, SDoc
empty)

-- | Located Standalone Kind Signature
type LStandaloneKindSig pass = Located (StandaloneKindSig pass)

data StandaloneKindSig pass
  = StandaloneKindSig (XStandaloneKindSig pass)
      (Located (IdP pass))  -- Why a single binder? See #16754
      (LHsSigType pass)     -- Why not LHsSigWcType? See Note [Wildcards in standalone kind signatures]
  | XStandaloneKindSig !(XXStandaloneKindSig pass)

type instance XStandaloneKindSig (GhcPass p) = NoExtField
type instance XXStandaloneKindSig (GhcPass p) = NoExtCon

standaloneKindSigName :: StandaloneKindSig (GhcPass p) -> IdP (GhcPass p)
standaloneKindSigName :: forall (p :: Pass).
StandaloneKindSig (GhcPass p) -> IdP (GhcPass p)
standaloneKindSigName (StandaloneKindSig XStandaloneKindSig (GhcPass p)
_ Located (IdP (GhcPass p))
lname LHsSigType (GhcPass p)
_) = GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (IdGhcP p)
Located (IdP (GhcPass p))
lname

{- Note [Wildcards in standalone kind signatures]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Standalone kind signatures enable polymorphic recursion, and it is unclear how
to reconcile this with partial type signatures, so we disallow wildcards in
them.

We reject wildcards in 'rnStandaloneKindSignature' by returning False for
'StandaloneKindSigCtx' in 'wildCardsAllowed'.

The alternative design is to have special treatment for partial standalone kind
signatures, much like we have special treatment for partial type signatures in
terms. However, partial standalone kind signatures are not a proper replacement
for CUSKs, so this would be a separate feature.
-}

data NewOrData
  = NewType                     -- ^ @newtype Blah ...@
  | DataType                    -- ^ @data Blah ...@
  deriving( NewOrData -> NewOrData -> Bool
(NewOrData -> NewOrData -> Bool)
-> (NewOrData -> NewOrData -> Bool) -> Eq NewOrData
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: NewOrData -> NewOrData -> Bool
$c/= :: NewOrData -> NewOrData -> Bool
== :: NewOrData -> NewOrData -> Bool
$c== :: NewOrData -> NewOrData -> Bool
Eq, Typeable NewOrData
Typeable NewOrData
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> NewOrData -> c NewOrData)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c NewOrData)
-> (NewOrData -> Constr)
-> (NewOrData -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c NewOrData))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NewOrData))
-> ((forall b. Data b => b -> b) -> NewOrData -> NewOrData)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> NewOrData -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> NewOrData -> r)
-> (forall u. (forall d. Data d => d -> u) -> NewOrData -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> NewOrData -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> NewOrData -> m NewOrData)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> NewOrData -> m NewOrData)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> NewOrData -> m NewOrData)
-> Data NewOrData
NewOrData -> DataType
NewOrData -> Constr
(forall b. Data b => b -> b) -> NewOrData -> NewOrData
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> NewOrData -> u
forall u. (forall d. Data d => d -> u) -> NewOrData -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> NewOrData -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> NewOrData -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c NewOrData
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> NewOrData -> c NewOrData
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c NewOrData)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NewOrData)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> NewOrData -> m NewOrData
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> NewOrData -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> NewOrData -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> NewOrData -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> NewOrData -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> NewOrData -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> NewOrData -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> NewOrData -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> NewOrData -> r
gmapT :: (forall b. Data b => b -> b) -> NewOrData -> NewOrData
$cgmapT :: (forall b. Data b => b -> b) -> NewOrData -> NewOrData
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NewOrData)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NewOrData)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c NewOrData)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c NewOrData)
dataTypeOf :: NewOrData -> DataType
$cdataTypeOf :: NewOrData -> DataType
toConstr :: NewOrData -> Constr
$ctoConstr :: NewOrData -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c NewOrData
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c NewOrData
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> NewOrData -> c NewOrData
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> NewOrData -> c NewOrData
Data )                -- Needed because Demand derives Eq

-- | Convert a 'NewOrData' to a 'TyConFlavour'
newOrDataToFlavour :: NewOrData -> TyConFlavour
newOrDataToFlavour :: NewOrData -> TyConFlavour
newOrDataToFlavour NewOrData
NewType  = TyConFlavour
NewtypeFlavour
newOrDataToFlavour NewOrData
DataType = TyConFlavour
DataTypeFlavour


-- | Located data Constructor Declaration
type LConDecl pass = Located (ConDecl pass)
      -- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when
      --   in a GADT constructor list

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

-- |
--
-- @
-- data T b = forall a. Eq a => MkT a b
--   MkT :: forall b a. Eq a => MkT a b
--
-- data T b where
--      MkT1 :: Int -> T Int
--
-- data T = Int `MkT` Int
--        | MkT2
--
-- data T a where
--      Int `MkT` Int :: T Int
-- @
--
-- - 'GHC.Parser.Annotation.AnnKeywordId's : 'GHC.Parser.Annotation.AnnOpen',
--            'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnCLose',
--            'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnVbar',
--            'GHC.Parser.Annotation.AnnDarrow','GHC.Parser.Annotation.AnnDarrow',
--            'GHC.Parser.Annotation.AnnForall','GHC.Parser.Annotation.AnnDot'

-- For details on above see note [Api annotations] in GHC.Parser.Annotation

-- | data Constructor Declaration
data ConDecl pass
  = ConDeclGADT
      { forall pass. ConDecl pass -> XConDeclGADT pass
con_g_ext   :: XConDeclGADT pass
      , forall pass. ConDecl pass -> [Located (IdP pass)]
con_names   :: [Located (IdP pass)]

      -- The following fields describe the type after the '::'
      -- See Note [GADT abstract syntax]
      , forall pass. ConDecl pass -> Located Bool
con_forall  :: Located Bool    -- ^ True <=> explicit forall
                                         --   False => hsq_explicit is empty
                                         --
                                         -- The 'XRec' is used to anchor API
                                         -- annotations, AnnForall and AnnDot.
      , forall pass. ConDecl pass -> [LHsTyVarBndr Specificity pass]
con_qvars   :: [LHsTyVarBndr Specificity pass]
                       -- Whether or not there is an /explicit/ forall, we still
                       -- need to capture the implicitly-bound type/kind variables

      , forall pass. ConDecl pass -> Maybe (LHsContext pass)
con_mb_cxt  :: Maybe (LHsContext pass) -- ^ User-written context (if any)
      , forall pass. ConDecl pass -> HsConDeclDetails pass
con_args    :: HsConDeclDetails pass   -- ^ Arguments; never InfixCon
      , forall pass. ConDecl pass -> LHsType pass
con_res_ty  :: LHsType pass            -- ^ Result type

      , forall pass. ConDecl pass -> Maybe LHsDocString
con_doc     :: Maybe LHsDocString
          -- ^ A possible Haddock comment.
      }

  | ConDeclH98
      { forall pass. ConDecl pass -> XConDeclH98 pass
con_ext     :: XConDeclH98 pass
      , forall pass. ConDecl pass -> Located (IdP pass)
con_name    :: Located (IdP pass)

      , con_forall  :: Located Bool
                              -- ^ True <=> explicit user-written forall
                              --     e.g. data T a = forall b. MkT b (b->a)
                              --     con_ex_tvs = {b}
                              -- False => con_ex_tvs is empty
      , forall pass. ConDecl pass -> [LHsTyVarBndr Specificity pass]
con_ex_tvs :: [LHsTyVarBndr Specificity pass] -- ^ Existentials only
      , con_mb_cxt :: Maybe (LHsContext pass)         -- ^ User-written context (if any)
      , con_args   :: HsConDeclDetails pass           -- ^ Arguments; can be InfixCon

      , con_doc       :: Maybe LHsDocString
          -- ^ A possible Haddock comment.
      }
  | XConDecl !(XXConDecl pass)

type instance XConDeclGADT GhcPs = NoExtField
type instance XConDeclGADT GhcRn = [Name] -- Implicitly bound type variables
type instance XConDeclGADT GhcTc = NoExtField

type instance XConDeclH98  (GhcPass _) = NoExtField

type instance XXConDecl (GhcPass _) = NoExtCon

{- Note [GADT abstract syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The types of both forms of GADT constructors are very structured, as they
must consist of the quantified type variables (if provided), followed by the
context (if provided), followed by the argument types (if provided), followed
by the result type. (See "Wrinkle: No nested foralls or contexts" below for
more discussion on the restrictions imposed here.) As a result, instead of
storing the type of a GADT constructor as a single LHsType, we split it up
into its constituent components for easier access.

There are two broad ways to classify GADT constructors:

* Record-syntax constructors. For example:

    data T a where
      K :: forall a. Ord a => { x :: [a], ... } -> T a

* Prefix constructors, which do not use record syntax. For example:

    data T a where
      K :: forall a. Ord a => [a] -> ... -> T a

This distinction is recorded in the `con_args :: HsConDetails pass`, which
tracks if we're dealing with a RecCon or PrefixCon. It is easy to distinguish
the two in the AST since record GADT constructors use HsRecTy. This distinction
is made in GHC.Parser.PostProcess.mkGadtDecl.

It is worth elaborating a bit more on the process of splitting the argument
types of a GADT constructor, since there are some non-obvious details involved.
While splitting the argument types of a record GADT constructor is easy (they
are stored in an HsRecTy), splitting the arguments of a prefix GADT constructor
is trickier. The basic idea is that we must split along the outermost function
arrows ((->) and (%1 ->)) in the type, which GHC.Hs.Type.splitHsFunType
accomplishes. But what about type operators? Consider:

  C :: a :*: b -> a :*: b -> a :+: b

This could parse in many different ways depending on the precedences of each
type operator. In particular, if (:*:) were to have lower precedence than (->),
then it could very well parse like this:

  a :*: ((b -> a) :*: ((b -> a) :+: b)))

This would give the false impression that the whole type is part of one large
return type, with no arguments. Note that we do not fully resolve the exact
precedences of each user-defined type operator until the renamer, so this a
more difficult task for the parser.

Fortunately, there is no risk of the above happening. GHC's parser gives
special treatment to function arrows, and as a result, they are always parsed
with a lower precedence than any other type operator. As a result, the type
above is actually parsed like this:

  (a :*: b) -> ((a :*: b) -> (a :+: b))

While we won't know the exact precedences of (:*:) and (:+:) until the renamer,
all we are concerned about in the parser is identifying the overall shape of
the argument and result types, which we can accomplish by piggybacking on the
special treatment given to function arrows. In a future where function arrows
aren't given special status in the parser, we will likely have to modify
GHC.Parser.PostProcess.mergeOps to preserve this trick.

-----
-- Wrinkle: No nested foralls or contexts
-----

GADT constructors provide some freedom to change the order of foralls in their
types (see Note [DataCon user type variable binders] in GHC.Core.DataCon), but
this freedom is still limited. GADTs still require that all quantification
occurs "prenex". That is, any explicitly quantified type variables must occur
at the front of the GADT type, followed by any contexts, followed by the body of
the GADT type, in precisely that order. For instance:

  data T where
    MkT1 :: forall a b. (Eq a, Eq b) => a -> b -> T
      -- OK
    MkT2 :: forall a. Eq a => forall b. a -> b -> T
      -- Rejected, `forall b` is nested
    MkT3 :: forall a b. Eq a => Eq b => a -> b -> T
      -- Rejected, `Eq b` is nested
    MkT4 :: Int -> forall a. a -> T
      -- Rejected, `forall a` is nested
    MkT5 :: forall a. Int -> Eq a => a -> T
      -- Rejected, `Eq a` is nested
    MkT6 :: (forall a. a -> T)
      -- Rejected, `forall a` is nested due to the surrounding parentheses
    MkT7 :: (Eq a => a -> t)
      -- Rejected, `Eq a` is nested due to the surrounding parentheses

For the full details, see the "Formal syntax for GADTs" section of the GHC
User's Guide. GHC enforces that GADT constructors do not have nested `forall`s
or contexts in two parts:

1. GHC, in the process of splitting apart a GADT's type,
   extracts out the leading `forall` and context (if they are provided). To
   accomplish this splitting, the renamer uses the
   GHC.Hs.Type.splitLHsGADTPrefixTy function, which is careful not to remove
   parentheses surrounding the leading `forall` or context (as these
   parentheses can be syntactically significant). If the third result returned
   by splitLHsGADTPrefixTy contains any `forall`s or contexts, then they must
   be nested, so they will be rejected.

   Note that this step applies to both prefix and record GADTs alike, as they
   both have syntax which permits `forall`s and contexts. The difference is
   where this step happens:

   * For prefix GADTs, this happens in the renamer (in rnConDecl), as we cannot
     split until after the type operator fixities have been resolved.
   * For record GADTs, this happens in the parser (in mkGadtDecl).
2. If the GADT type is prefix, the renamer (in the ConDeclGADTPrefixPs case of
   rnConDecl) will then check for nested `forall`s/contexts in the body of a
   prefix GADT type, after it has determined what all of the argument types are.
   This step is necessary to catch examples like MkT4 above, where the nested
   quantification occurs after a visible argument type.
-}

-- | Haskell data Constructor Declaration Details
type HsConDeclDetails pass
   = HsConDetails (HsScaled pass (LBangType pass)) (Located [LConDeclField pass])

getConNames :: ConDecl GhcRn -> [Located Name]
getConNames :: ConDecl GhcRn -> [Located Name]
getConNames ConDeclH98  {con_name :: forall pass. ConDecl pass -> Located (IdP pass)
con_name  = Located (IdP GhcRn)
name}  = [Located Name
Located (IdP GhcRn)
name]
getConNames ConDeclGADT {con_names :: forall pass. ConDecl pass -> [Located (IdP pass)]
con_names = [Located (IdP GhcRn)]
names} = [Located Name]
[Located (IdP GhcRn)]
names

getConArgs :: ConDecl GhcRn -> HsConDeclDetails GhcRn
getConArgs :: ConDecl GhcRn -> HsConDeclDetails GhcRn
getConArgs ConDecl GhcRn
d = ConDecl GhcRn -> HsConDeclDetails GhcRn
forall pass. ConDecl pass -> HsConDeclDetails pass
con_args ConDecl GhcRn
d

hsConDeclArgTys :: HsConDeclDetails pass -> [HsScaled pass (LBangType pass)]
hsConDeclArgTys :: forall pass.
HsConDeclDetails pass -> [HsScaled pass (LBangType pass)]
hsConDeclArgTys (PrefixCon [HsScaled pass (LBangType pass)]
tys)    = [HsScaled pass (LBangType pass)]
tys
hsConDeclArgTys (InfixCon HsScaled pass (LBangType pass)
ty1 HsScaled pass (LBangType pass)
ty2) = [HsScaled pass (LBangType pass)
ty1,HsScaled pass (LBangType pass)
ty2]
hsConDeclArgTys (RecCon Located [LConDeclField pass]
flds)      = (LConDeclField pass -> HsScaled pass (LBangType pass))
-> [LConDeclField pass] -> [HsScaled pass (LBangType pass)]
forall a b. (a -> b) -> [a] -> [b]
map (LBangType pass -> HsScaled pass (LBangType pass)
forall a pass. a -> HsScaled pass a
hsLinear (LBangType pass -> HsScaled pass (LBangType pass))
-> (LConDeclField pass -> LBangType pass)
-> LConDeclField pass
-> HsScaled pass (LBangType pass)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ConDeclField pass -> LBangType pass
forall pass. ConDeclField pass -> LBangType pass
cd_fld_type (ConDeclField pass -> LBangType pass)
-> (LConDeclField pass -> ConDeclField pass)
-> LConDeclField pass
-> LBangType pass
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LConDeclField pass -> ConDeclField pass
forall l e. GenLocated l e -> e
unLoc) (Located [LConDeclField pass] -> [LConDeclField pass]
forall l e. GenLocated l e -> e
unLoc Located [LConDeclField pass]
flds)
  -- Remark: with the record syntax, constructors have all their argument
  -- linear, despite the fact that projections do not make sense on linear
  -- constructors. The design here is that the record projection themselves are
  -- typed to take an unrestricted argument (that is the record itself is
  -- unrestricted). By the transfer property, projections are then correct in
  -- that all the non-projected fields have multiplicity Many, and can be dropped.

hsConDeclTheta :: Maybe (LHsContext pass) -> [LHsType pass]
hsConDeclTheta :: forall pass. Maybe (LHsContext pass) -> [LHsType pass]
hsConDeclTheta Maybe (LHsContext pass)
Nothing            = []
hsConDeclTheta (Just (L SrcSpan
_ [LHsType pass]
theta)) = [LHsType pass]
theta

pp_data_defn :: (OutputableBndrId p)
                  => (LHsContext (GhcPass p) -> SDoc)   -- Printing the header
                  -> HsDataDefn (GhcPass p)
                  -> SDoc
pp_data_defn :: forall (p :: Pass).
OutputableBndrId p =>
(LHsContext (GhcPass p) -> SDoc) -> HsDataDefn (GhcPass p) -> SDoc
pp_data_defn LHsContext (GhcPass p) -> SDoc
pp_hdr (HsDataDefn { dd_ND :: forall pass. HsDataDefn pass -> NewOrData
dd_ND = NewOrData
new_or_data, dd_ctxt :: forall pass. HsDataDefn pass -> LHsContext pass
dd_ctxt = LHsContext (GhcPass p)
context
                                , dd_cType :: forall pass. HsDataDefn pass -> Maybe (Located CType)
dd_cType = Maybe (Located CType)
mb_ct
                                , dd_kindSig :: forall pass. HsDataDefn pass -> Maybe (LHsKind pass)
dd_kindSig = Maybe (LHsKind (GhcPass p))
mb_sig
                                , dd_cons :: forall pass. HsDataDefn pass -> [LConDecl pass]
dd_cons = [LConDecl (GhcPass p)]
condecls, dd_derivs :: forall pass. HsDataDefn pass -> HsDeriving pass
dd_derivs = HsDeriving (GhcPass p)
derivings })
  | [LConDecl (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LConDecl (GhcPass p)]
condecls
  = NewOrData -> SDoc
forall a. Outputable a => a -> SDoc
ppr NewOrData
new_or_data SDoc -> SDoc -> SDoc
<+> SDoc
pp_ct SDoc -> SDoc -> SDoc
<+> LHsContext (GhcPass p) -> SDoc
pp_hdr LHsContext (GhcPass p)
context SDoc -> SDoc -> SDoc
<+> SDoc
pp_sig
    SDoc -> SDoc -> SDoc
<+> HsDeriving (GhcPass p) -> SDoc
forall {a} {l}. Outputable a => GenLocated l [a] -> SDoc
pp_derivings HsDeriving (GhcPass p)
derivings

  | Bool
otherwise
  = SDoc -> Int -> SDoc -> SDoc
hang (NewOrData -> SDoc
forall a. Outputable a => a -> SDoc
ppr NewOrData
new_or_data SDoc -> SDoc -> SDoc
<+> SDoc
pp_ct  SDoc -> SDoc -> SDoc
<+> LHsContext (GhcPass p) -> SDoc
pp_hdr LHsContext (GhcPass p)
context SDoc -> SDoc -> SDoc
<+> SDoc
pp_sig)
       Int
2 ([LConDecl (GhcPass p)] -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
[LConDecl (GhcPass p)] -> SDoc
pp_condecls [LConDecl (GhcPass p)]
condecls SDoc -> SDoc -> SDoc
$$ HsDeriving (GhcPass p) -> SDoc
forall {a} {l}. Outputable a => GenLocated l [a] -> SDoc
pp_derivings HsDeriving (GhcPass p)
derivings)
  where
    pp_ct :: SDoc
pp_ct = case Maybe (Located CType)
mb_ct of
               Maybe (Located CType)
Nothing   -> SDoc
empty
               Just Located CType
ct -> Located CType -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located CType
ct
    pp_sig :: SDoc
pp_sig = case Maybe (LHsKind (GhcPass p))
mb_sig of
               Maybe (LHsKind (GhcPass p))
Nothing   -> SDoc
empty
               Just LHsKind (GhcPass p)
kind -> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LHsKind (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsKind (GhcPass p)
kind
    pp_derivings :: GenLocated l [a] -> SDoc
pp_derivings (L l
_ [a]
ds) = [SDoc] -> SDoc
vcat ((a -> SDoc) -> [a] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map a -> SDoc
forall a. Outputable a => a -> SDoc
ppr [a]
ds)

instance OutputableBndrId p
       => Outputable (HsDataDefn (GhcPass p)) where
   ppr :: HsDataDefn (GhcPass p) -> SDoc
ppr HsDataDefn (GhcPass p)
d = (LHsContext (GhcPass p) -> SDoc) -> HsDataDefn (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
(LHsContext (GhcPass p) -> SDoc) -> HsDataDefn (GhcPass p) -> SDoc
pp_data_defn (\LHsContext (GhcPass p)
_ -> String -> SDoc
text String
"Naked HsDataDefn") HsDataDefn (GhcPass p)
d

instance OutputableBndrId p
       => Outputable (StandaloneKindSig (GhcPass p)) where
  ppr :: StandaloneKindSig (GhcPass p) -> SDoc
ppr (StandaloneKindSig XStandaloneKindSig (GhcPass p)
_ Located (IdP (GhcPass p))
v LHsSigType (GhcPass p)
ki)
    = String -> SDoc
text String
"type" SDoc -> SDoc -> SDoc
<+> IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (IdGhcP p)
Located (IdP (GhcPass p))
v) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"::" SDoc -> SDoc -> SDoc
<+> LHsSigType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsSigType (GhcPass p)
ki

instance Outputable NewOrData where
  ppr :: NewOrData -> SDoc
ppr NewOrData
NewType  = String -> SDoc
text String
"newtype"
  ppr NewOrData
DataType = String -> SDoc
text String
"data"

pp_condecls :: forall p. OutputableBndrId p => [LConDecl (GhcPass p)] -> SDoc
pp_condecls :: forall (p :: Pass).
OutputableBndrId p =>
[LConDecl (GhcPass p)] -> SDoc
pp_condecls [LConDecl (GhcPass p)]
cs
  | Bool
gadt_syntax                  -- In GADT syntax
  = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"where") Int
2 ([SDoc] -> SDoc
vcat ((LConDecl (GhcPass p) -> SDoc) -> [LConDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LConDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LConDecl (GhcPass p)]
cs))
  | Bool
otherwise                    -- In H98 syntax
  = SDoc
equals SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
sep (SDoc -> [SDoc] -> [SDoc]
punctuate (String -> SDoc
text String
" |") ((LConDecl (GhcPass p) -> SDoc) -> [LConDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LConDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LConDecl (GhcPass p)]
cs))
  where
    gadt_syntax :: Bool
gadt_syntax = case [LConDecl (GhcPass p)]
cs of
      []                      -> Bool
False
      (L SrcSpan
_ ConDeclH98{}  : [LConDecl (GhcPass p)]
_) -> Bool
False
      (L SrcSpan
_ ConDeclGADT{} : [LConDecl (GhcPass p)]
_) -> Bool
True

instance (OutputableBndrId p) => Outputable (ConDecl (GhcPass p)) where
    ppr :: ConDecl (GhcPass p) -> SDoc
ppr = ConDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
ConDecl (GhcPass p) -> SDoc
pprConDecl

pprConDecl :: forall p. OutputableBndrId p => ConDecl (GhcPass p) -> SDoc
pprConDecl :: forall (p :: Pass).
OutputableBndrId p =>
ConDecl (GhcPass p) -> SDoc
pprConDecl (ConDeclH98 { con_name :: forall pass. ConDecl pass -> Located (IdP pass)
con_name = L SrcSpan
_ IdP (GhcPass p)
con
                       , con_ex_tvs :: forall pass. ConDecl pass -> [LHsTyVarBndr Specificity pass]
con_ex_tvs = [LHsTyVarBndr Specificity (GhcPass p)]
ex_tvs
                       , con_mb_cxt :: forall pass. ConDecl pass -> Maybe (LHsContext pass)
con_mb_cxt = Maybe (LHsContext (GhcPass p))
mcxt
                       , con_args :: forall pass. ConDecl pass -> HsConDeclDetails pass
con_args = HsConDeclDetails (GhcPass p)
args
                       , con_doc :: forall pass. ConDecl pass -> Maybe LHsDocString
con_doc = Maybe LHsDocString
doc })
  = [SDoc] -> SDoc
sep [ Maybe LHsDocString -> SDoc
ppr_mbDoc Maybe LHsDocString
doc
        , HsForAllTelescope (GhcPass p) -> LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsForAllTelescope (GhcPass p) -> LHsContext (GhcPass p) -> SDoc
pprHsForAll ([LHsTyVarBndr Specificity (GhcPass p)]
-> HsForAllTelescope (GhcPass p)
forall (p :: Pass).
[LHsTyVarBndr Specificity (GhcPass p)]
-> HsForAllTelescope (GhcPass p)
mkHsForAllInvisTele [LHsTyVarBndr Specificity (GhcPass p)]
ex_tvs) LHsContext (GhcPass p)
cxt
        , HsConDeclDetails (GhcPass p) -> SDoc
ppr_details HsConDeclDetails (GhcPass p)
args ]
  where
    -- In ppr_details: let's not print the multiplicities (they are always 1, by
    -- definition) as they do not appear in an actual declaration.
    ppr_details :: HsConDeclDetails (GhcPass p) -> SDoc
ppr_details (InfixCon HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
t1 HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
t2) = [SDoc] -> SDoc
hsep [GenLocated SrcSpan (HsType (GhcPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
-> GenLocated SrcSpan (HsType (GhcPass p))
forall pass a. HsScaled pass a -> a
hsScaledThing HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
t1),
                                         IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc IdGhcP p
IdP (GhcPass p)
con,
                                         GenLocated SrcSpan (HsType (GhcPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
-> GenLocated SrcSpan (HsType (GhcPass p))
forall pass a. HsScaled pass a -> a
hsScaledThing HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
t2)]
    ppr_details (PrefixCon [HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))]
tys)  = [SDoc] -> SDoc
hsep (IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdGhcP p
IdP (GhcPass p)
con
                                   SDoc -> [SDoc] -> [SDoc]
forall a. a -> [a] -> [a]
: (HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
 -> SDoc)
-> [HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))]
-> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (HsType (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsType (GhcPass p) -> SDoc
pprHsType (HsType (GhcPass p) -> SDoc)
-> (HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
    -> HsType (GhcPass p))
-> HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated SrcSpan (HsType (GhcPass p)) -> HsType (GhcPass p)
forall l e. GenLocated l e -> e
unLoc (GenLocated SrcSpan (HsType (GhcPass p)) -> HsType (GhcPass p))
-> (HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
    -> GenLocated SrcSpan (HsType (GhcPass p)))
-> HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
-> HsType (GhcPass p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
-> GenLocated SrcSpan (HsType (GhcPass p))
forall pass a. HsScaled pass a -> a
hsScaledThing) [HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))]
tys)
    ppr_details (RecCon GenLocated SrcSpan [LConDeclField (GhcPass p)]
fields)  = IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdGhcP p
IdP (GhcPass p)
con
                                 SDoc -> SDoc -> SDoc
<+> [LConDeclField (GhcPass p)] -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
[LConDeclField (GhcPass p)] -> SDoc
pprConDeclFields (GenLocated SrcSpan [LConDeclField (GhcPass p)]
-> [LConDeclField (GhcPass p)]
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan [LConDeclField (GhcPass p)]
fields)
    cxt :: LHsContext (GhcPass p)
cxt = LHsContext (GhcPass p)
-> Maybe (LHsContext (GhcPass p)) -> LHsContext (GhcPass p)
forall a. a -> Maybe a -> a
fromMaybe LHsContext (GhcPass p)
forall pass. LHsContext pass
noLHsContext Maybe (LHsContext (GhcPass p))
mcxt

pprConDecl (ConDeclGADT { con_names :: forall pass. ConDecl pass -> [Located (IdP pass)]
con_names = [GenLocated SrcSpan (IdP (GhcPass p))]
cons, con_qvars :: forall pass. ConDecl pass -> [LHsTyVarBndr Specificity pass]
con_qvars = [LHsTyVarBndr Specificity (GhcPass p)]
qvars
                        , con_mb_cxt :: forall pass. ConDecl pass -> Maybe (LHsContext pass)
con_mb_cxt = Maybe (LHsContext (GhcPass p))
mcxt, con_args :: forall pass. ConDecl pass -> HsConDeclDetails pass
con_args = HsConDeclDetails (GhcPass p)
args
                        , con_res_ty :: forall pass. ConDecl pass -> LHsType pass
con_res_ty = GenLocated SrcSpan (HsType (GhcPass p))
res_ty, con_doc :: forall pass. ConDecl pass -> Maybe LHsDocString
con_doc = Maybe LHsDocString
doc })
  = Maybe LHsDocString -> SDoc
ppr_mbDoc Maybe LHsDocString
doc SDoc -> SDoc -> SDoc
<+> [Located (IdGhcP p)] -> SDoc
forall a. OutputableBndr a => [Located a] -> SDoc
ppr_con_names [Located (IdGhcP p)]
[GenLocated SrcSpan (IdP (GhcPass p))]
cons SDoc -> SDoc -> SDoc
<+> SDoc
dcolon
    SDoc -> SDoc -> SDoc
<+> ([SDoc] -> SDoc
sep [HsForAllTelescope (GhcPass p) -> LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsForAllTelescope (GhcPass p) -> LHsContext (GhcPass p) -> SDoc
pprHsForAll ([LHsTyVarBndr Specificity (GhcPass p)]
-> HsForAllTelescope (GhcPass p)
forall (p :: Pass).
[LHsTyVarBndr Specificity (GhcPass p)]
-> HsForAllTelescope (GhcPass p)
mkHsForAllInvisTele [LHsTyVarBndr Specificity (GhcPass p)]
qvars) LHsContext (GhcPass p)
cxt,
              [SDoc] -> SDoc
ppr_arrow_chain (HsConDeclDetails (GhcPass p) -> [SDoc]
get_args HsConDeclDetails (GhcPass p)
args [SDoc] -> [SDoc] -> [SDoc]
forall a. [a] -> [a] -> [a]
++ [GenLocated SrcSpan (HsType (GhcPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr GenLocated SrcSpan (HsType (GhcPass p))
res_ty]) ])
  where
    get_args :: HsConDeclDetails (GhcPass p) -> [SDoc]
get_args (PrefixCon [HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))]
args) = (HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
 -> SDoc)
-> [HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))]
-> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))
-> SDoc
forall a. Outputable a => a -> SDoc
ppr [HsScaled (GhcPass p) (GenLocated SrcSpan (HsType (GhcPass p)))]
args
    get_args (RecCon GenLocated SrcSpan [LConDeclField (GhcPass p)]
fields)  = [[LConDeclField (GhcPass p)] -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
[LConDeclField (GhcPass p)] -> SDoc
pprConDeclFields (GenLocated SrcSpan [LConDeclField (GhcPass p)]
-> [LConDeclField (GhcPass p)]
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan [LConDeclField (GhcPass p)]
fields)]
    get_args (InfixCon {})    = String -> SDoc -> [SDoc]
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"pprConDecl:GADT" ([Located (IdGhcP p)] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Located (IdGhcP p)]
[GenLocated SrcSpan (IdP (GhcPass p))]
cons)

    cxt :: LHsContext (GhcPass p)
cxt = LHsContext (GhcPass p)
-> Maybe (LHsContext (GhcPass p)) -> LHsContext (GhcPass p)
forall a. a -> Maybe a -> a
fromMaybe LHsContext (GhcPass p)
forall pass. LHsContext pass
noLHsContext Maybe (LHsContext (GhcPass p))
mcxt

    ppr_arrow_chain :: [SDoc] -> SDoc
ppr_arrow_chain (SDoc
a:[SDoc]
as) = [SDoc] -> SDoc
sep (SDoc
a SDoc -> [SDoc] -> [SDoc]
forall a. a -> [a] -> [a]
: (SDoc -> SDoc) -> [SDoc] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (SDoc
arrow SDoc -> SDoc -> SDoc
<+>) [SDoc]
as)
    ppr_arrow_chain []     = SDoc
empty

ppr_con_names :: (OutputableBndr a) => [Located a] -> SDoc
ppr_con_names :: forall a. OutputableBndr a => [Located a] -> SDoc
ppr_con_names = (GenLocated SrcSpan a -> SDoc) -> [GenLocated SrcSpan a] -> SDoc
forall a. (a -> SDoc) -> [a] -> SDoc
pprWithCommas (a -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc (a -> SDoc)
-> (GenLocated SrcSpan a -> a) -> GenLocated SrcSpan a -> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated SrcSpan a -> a
forall l e. GenLocated l e -> e
unLoc)

{-
************************************************************************
*                                                                      *
                Instance declarations
*                                                                      *
************************************************************************

Note [Type family instance declarations in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The data type FamEqn represents one equation of a type family instance.
Aside from the pass, it is also parameterised over another field, feqn_rhs.
feqn_rhs is either an HsDataDefn (for data family instances) or an LHsType
(for type family instances).

Type family instances also include associated type family default equations.
That is because a default for a type family looks like this:

  class C a where
    type family F a b :: Type
    type F c d = (c,d)   -- Default instance

The default declaration is really just a `type instance` declaration, but one
with particularly simple patterns: they must all be distinct type variables.
That's because we will instantiate it (in an instance declaration for `C`) if
we don't give an explicit instance for `F`. Note that the names of the
variables don't need to match those of the class: it really is like a
free-standing `type instance` declaration.
-}

----------------- Type synonym family instances -------------

-- | Located Type Family Instance Equation
type LTyFamInstEqn pass = Located (TyFamInstEqn pass)
  -- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi'
  --   when in a list

-- For details on above see note [Api annotations] in GHC.Parser.Annotation

-- | Haskell Type Patterns
type HsTyPats pass = [LHsTypeArg pass]

{- Note [Family instance declaration binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The feqn_pats field of FamEqn (family instance equation) stores the LHS type
(and kind) patterns. Any type (and kind) variables contained
in these type patterns are bound in the hsib_vars field of the HsImplicitBndrs
in FamInstEqn depending on whether or not an explicit forall is present. In
the case of an explicit forall, the hsib_vars only includes kind variables not
bound in the forall. Otherwise, all type (and kind) variables are bound in
the hsib_vars. In the latter case, note that in particular

* The hsib_vars *includes* any anonymous wildcards.  For example
     type instance F a _ = a
  The hsib_vars will be {a, _}.  Remember that each separate wildcard
  '_' gets its own unique.  In this context wildcards behave just like
  an ordinary type variable, only anonymous.

* The hsib_vars *includes* type variables that are already in scope

   Eg   class C s t where
          type F t p :: *
        instance C w (a,b) where
          type F (a,b) x = x->a
   The hsib_vars of the F decl are {a,b,x}, even though the F decl
   is nested inside the 'instance' decl.

   However after the renamer, the uniques will match up:
        instance C w7 (a8,b9) where
          type F (a8,b9) x10 = x10->a8
   so that we can compare the type pattern in the 'instance' decl and
   in the associated 'type' decl

c.f. Note [TyVar binders for associated decls]
-}

-- | Type Family Instance Equation
type TyFamInstEqn pass = FamInstEqn pass (LHsType pass)

-- | Type family default declarations.
-- A convenient synonym for 'TyFamInstDecl'.
-- See @Note [Type family instance declarations in HsSyn]@.
type TyFamDefltDecl = TyFamInstDecl

-- | Located type family default declarations.
type LTyFamDefltDecl pass = Located (TyFamDefltDecl pass)

-- | Located Type Family Instance Declaration
type LTyFamInstDecl pass = Located (TyFamInstDecl pass)

-- | Type Family Instance Declaration
newtype TyFamInstDecl pass = TyFamInstDecl { forall pass. TyFamInstDecl pass -> TyFamInstEqn pass
tfid_eqn :: TyFamInstEqn pass }
    -- ^
    --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
    --           'GHC.Parser.Annotation.AnnInstance',

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

----------------- Data family instances -------------

-- | Located Data Family Instance Declaration
type LDataFamInstDecl pass = Located (DataFamInstDecl pass)

-- | Data Family Instance Declaration
newtype DataFamInstDecl pass
  = DataFamInstDecl { forall pass.
DataFamInstDecl pass -> FamInstEqn pass (HsDataDefn pass)
dfid_eqn :: FamInstEqn pass (HsDataDefn pass) }
    -- ^
    --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnData',
    --           'GHC.Parser.Annotation.AnnNewType','GHC.Parser.Annotation.AnnInstance',
    --           'GHC.Parser.Annotation.AnnDcolon'
    --           'GHC.Parser.Annotation.AnnWhere','GHC.Parser.Annotation.AnnOpen',
    --           'GHC.Parser.Annotation.AnnClose'

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

----------------- Family instances (common types) -------------

-- | Located Family Instance Equation
type LFamInstEqn pass rhs = Located (FamInstEqn pass rhs)

-- | Family Instance Equation
type FamInstEqn pass rhs = HsImplicitBndrs pass (FamEqn pass rhs)
            -- ^ Here, the @pats@ are type patterns (with kind and type bndrs).
            -- See Note [Family instance declaration binders]

-- | Family Equation
--
-- One equation in a type family instance declaration, data family instance
-- declaration, or type family default.
-- See Note [Type family instance declarations in HsSyn]
-- See Note [Family instance declaration binders]
data FamEqn pass rhs
  = FamEqn
       { forall pass rhs. FamEqn pass rhs -> XCFamEqn pass rhs
feqn_ext    :: XCFamEqn pass rhs
       , forall pass rhs. FamEqn pass rhs -> Located (IdP pass)
feqn_tycon  :: Located (IdP pass)
       , forall pass rhs. FamEqn pass rhs -> Maybe [LHsTyVarBndr () pass]
feqn_bndrs  :: Maybe [LHsTyVarBndr () pass] -- ^ Optional quantified type vars
       , forall pass rhs. FamEqn pass rhs -> HsTyPats pass
feqn_pats   :: HsTyPats pass
       , forall pass rhs. FamEqn pass rhs -> LexicalFixity
feqn_fixity :: LexicalFixity -- ^ Fixity used in the declaration
       , forall pass rhs. FamEqn pass rhs -> rhs
feqn_rhs    :: rhs
       }
    -- ^
    --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnEqual'
  | XFamEqn !(XXFamEqn pass rhs)

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

type instance XCFamEqn    (GhcPass _) r = NoExtField
type instance XXFamEqn    (GhcPass _) r = NoExtCon

----------------- Class instances -------------

-- | Located Class Instance Declaration
type LClsInstDecl pass = Located (ClsInstDecl pass)

-- | Class Instance Declaration
data ClsInstDecl pass
  = ClsInstDecl
      { forall pass. ClsInstDecl pass -> XCClsInstDecl pass
cid_ext     :: XCClsInstDecl pass
      , forall pass. ClsInstDecl pass -> LHsSigType pass
cid_poly_ty :: LHsSigType pass    -- Context => Class Instance-type
                                          -- Using a polytype means that the renamer conveniently
                                          -- figures out the quantified type variables for us.
      , forall pass. ClsInstDecl pass -> LHsBinds pass
cid_binds         :: LHsBinds pass       -- Class methods
      , forall pass. ClsInstDecl pass -> [LSig pass]
cid_sigs          :: [LSig pass]         -- User-supplied pragmatic info
      , forall pass. ClsInstDecl pass -> [LTyFamInstDecl pass]
cid_tyfam_insts   :: [LTyFamInstDecl pass]   -- Type family instances
      , forall pass. ClsInstDecl pass -> [LDataFamInstDecl pass]
cid_datafam_insts :: [LDataFamInstDecl pass] -- Data family instances
      , forall pass. ClsInstDecl pass -> Maybe (Located OverlapMode)
cid_overlap_mode  :: Maybe (Located OverlapMode)
         -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
         --                                    'GHC.Parser.Annotation.AnnClose',

        -- For details on above see note [Api annotations] in GHC.Parser.Annotation
      }
    -- ^
    --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnInstance',
    --           'GHC.Parser.Annotation.AnnWhere',
    --           'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | XClsInstDecl !(XXClsInstDecl pass)

type instance XCClsInstDecl    (GhcPass _) = NoExtField
type instance XXClsInstDecl    (GhcPass _) = NoExtCon

----------------- Instances of all kinds -------------

-- | Located Instance Declaration
type LInstDecl pass = Located (InstDecl pass)

-- | Instance Declaration
data InstDecl pass  -- Both class and family instances
  = ClsInstD
      { forall pass. InstDecl pass -> XClsInstD pass
cid_d_ext :: XClsInstD pass
      , forall pass. InstDecl pass -> ClsInstDecl pass
cid_inst  :: ClsInstDecl pass }
  | DataFamInstD              -- data family instance
      { forall pass. InstDecl pass -> XDataFamInstD pass
dfid_ext  :: XDataFamInstD pass
      , forall pass. InstDecl pass -> DataFamInstDecl pass
dfid_inst :: DataFamInstDecl pass }
  | TyFamInstD              -- type family instance
      { forall pass. InstDecl pass -> XTyFamInstD pass
tfid_ext  :: XTyFamInstD pass
      , forall pass. InstDecl pass -> TyFamInstDecl pass
tfid_inst :: TyFamInstDecl pass }
  | XInstDecl !(XXInstDecl pass)

type instance XClsInstD     (GhcPass _) = NoExtField
type instance XDataFamInstD (GhcPass _) = NoExtField
type instance XTyFamInstD   (GhcPass _) = NoExtField
type instance XXInstDecl    (GhcPass _) = NoExtCon

instance OutputableBndrId p
       => Outputable (TyFamInstDecl (GhcPass p)) where
  ppr :: TyFamInstDecl (GhcPass p) -> SDoc
ppr = TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
pprTyFamInstDecl TopLevelFlag
TopLevel

pprTyFamInstDecl :: (OutputableBndrId p)
                 => TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
pprTyFamInstDecl :: forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
pprTyFamInstDecl TopLevelFlag
top_lvl (TyFamInstDecl { tfid_eqn :: forall pass. TyFamInstDecl pass -> TyFamInstEqn pass
tfid_eqn = TyFamInstEqn (GhcPass p)
eqn })
   = String -> SDoc
text String
"type" SDoc -> SDoc -> SDoc
<+> TopLevelFlag -> SDoc
ppr_instance_keyword TopLevelFlag
top_lvl SDoc -> SDoc -> SDoc
<+> TyFamInstEqn (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TyFamInstEqn (GhcPass p) -> SDoc
ppr_fam_inst_eqn TyFamInstEqn (GhcPass p)
eqn

ppr_instance_keyword :: TopLevelFlag -> SDoc
ppr_instance_keyword :: TopLevelFlag -> SDoc
ppr_instance_keyword TopLevelFlag
TopLevel    = String -> SDoc
text String
"instance"
ppr_instance_keyword TopLevelFlag
NotTopLevel = SDoc
empty

pprTyFamDefltDecl :: (OutputableBndrId p)
                  => TyFamDefltDecl (GhcPass p) -> SDoc
pprTyFamDefltDecl :: forall (p :: Pass).
OutputableBndrId p =>
TyFamDefltDecl (GhcPass p) -> SDoc
pprTyFamDefltDecl = TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
pprTyFamInstDecl TopLevelFlag
NotTopLevel

ppr_fam_inst_eqn :: (OutputableBndrId p)
                 => TyFamInstEqn (GhcPass p) -> SDoc
ppr_fam_inst_eqn :: forall (p :: Pass).
OutputableBndrId p =>
TyFamInstEqn (GhcPass p) -> SDoc
ppr_fam_inst_eqn (HsIB { hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body = FamEqn { feqn_tycon :: forall pass rhs. FamEqn pass rhs -> Located (IdP pass)
feqn_tycon  = L SrcSpan
_ IdP (GhcPass p)
tycon
                                            , feqn_bndrs :: forall pass rhs. FamEqn pass rhs -> Maybe [LHsTyVarBndr () pass]
feqn_bndrs  = Maybe [LHsTyVarBndr () (GhcPass p)]
bndrs
                                            , feqn_pats :: forall pass rhs. FamEqn pass rhs -> HsTyPats pass
feqn_pats   = HsTyPats (GhcPass p)
pats
                                            , feqn_fixity :: forall pass rhs. FamEqn pass rhs -> LexicalFixity
feqn_fixity = LexicalFixity
fixity
                                            , feqn_rhs :: forall pass rhs. FamEqn pass rhs -> rhs
feqn_rhs    = LHsType (GhcPass p)
rhs }})
    = IdP (GhcPass p)
-> Maybe [LHsTyVarBndr () (GhcPass p)]
-> HsTyPats (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
IdP (GhcPass p)
-> Maybe [LHsTyVarBndr () (GhcPass p)]
-> HsTyPats (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pprHsFamInstLHS IdP (GhcPass p)
tycon Maybe [LHsTyVarBndr () (GhcPass p)]
bndrs HsTyPats (GhcPass p)
pats LexicalFixity
fixity LHsContext (GhcPass p)
forall pass. LHsContext pass
noLHsContext SDoc -> SDoc -> SDoc
<+> SDoc
equals SDoc -> SDoc -> SDoc
<+> LHsType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsType (GhcPass p)
rhs

instance OutputableBndrId p
       => Outputable (DataFamInstDecl (GhcPass p)) where
  ppr :: DataFamInstDecl (GhcPass p) -> SDoc
ppr = TopLevelFlag -> DataFamInstDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> DataFamInstDecl (GhcPass p) -> SDoc
pprDataFamInstDecl TopLevelFlag
TopLevel

pprDataFamInstDecl :: (OutputableBndrId p)
                   => TopLevelFlag -> DataFamInstDecl (GhcPass p) -> SDoc
pprDataFamInstDecl :: forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> DataFamInstDecl (GhcPass p) -> SDoc
pprDataFamInstDecl TopLevelFlag
top_lvl (DataFamInstDecl { dfid_eqn :: forall pass.
DataFamInstDecl pass -> FamInstEqn pass (HsDataDefn pass)
dfid_eqn = HsIB { hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body =
                             FamEqn { feqn_tycon :: forall pass rhs. FamEqn pass rhs -> Located (IdP pass)
feqn_tycon  = L SrcSpan
_ IdP (GhcPass p)
tycon
                                    , feqn_bndrs :: forall pass rhs. FamEqn pass rhs -> Maybe [LHsTyVarBndr () pass]
feqn_bndrs  = Maybe [LHsTyVarBndr () (GhcPass p)]
bndrs
                                    , feqn_pats :: forall pass rhs. FamEqn pass rhs -> HsTyPats pass
feqn_pats   = HsTyPats (GhcPass p)
pats
                                    , feqn_fixity :: forall pass rhs. FamEqn pass rhs -> LexicalFixity
feqn_fixity = LexicalFixity
fixity
                                    , feqn_rhs :: forall pass rhs. FamEqn pass rhs -> rhs
feqn_rhs    = HsDataDefn (GhcPass p)
defn }}})
  = (LHsContext (GhcPass p) -> SDoc) -> HsDataDefn (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
(LHsContext (GhcPass p) -> SDoc) -> HsDataDefn (GhcPass p) -> SDoc
pp_data_defn LHsContext (GhcPass p) -> SDoc
pp_hdr HsDataDefn (GhcPass p)
defn
  where
    pp_hdr :: LHsContext (GhcPass p) -> SDoc
pp_hdr LHsContext (GhcPass p)
ctxt = TopLevelFlag -> SDoc
ppr_instance_keyword TopLevelFlag
top_lvl
              SDoc -> SDoc -> SDoc
<+> IdP (GhcPass p)
-> Maybe [LHsTyVarBndr () (GhcPass p)]
-> HsTyPats (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
IdP (GhcPass p)
-> Maybe [LHsTyVarBndr () (GhcPass p)]
-> HsTyPats (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pprHsFamInstLHS IdP (GhcPass p)
tycon Maybe [LHsTyVarBndr () (GhcPass p)]
bndrs HsTyPats (GhcPass p)
pats LexicalFixity
fixity LHsContext (GhcPass p)
ctxt
                  -- pp_data_defn pretty-prints the kind sig. See #14817.

pprDataFamInstFlavour :: DataFamInstDecl (GhcPass p) -> SDoc
pprDataFamInstFlavour :: forall (p :: Pass). DataFamInstDecl (GhcPass p) -> SDoc
pprDataFamInstFlavour (DataFamInstDecl { dfid_eqn :: forall pass.
DataFamInstDecl pass -> FamInstEqn pass (HsDataDefn pass)
dfid_eqn = HsIB { hsib_body :: forall pass thing. HsImplicitBndrs pass thing -> thing
hsib_body =
                        FamEqn { feqn_rhs :: forall pass rhs. FamEqn pass rhs -> rhs
feqn_rhs = HsDataDefn { dd_ND :: forall pass. HsDataDefn pass -> NewOrData
dd_ND = NewOrData
nd }}}})
  = NewOrData -> SDoc
forall a. Outputable a => a -> SDoc
ppr NewOrData
nd

pprHsFamInstLHS :: (OutputableBndrId p)
   => IdP (GhcPass p)
   -> Maybe [LHsTyVarBndr () (GhcPass p)]
   -> HsTyPats (GhcPass p)
   -> LexicalFixity
   -> LHsContext (GhcPass p)
   -> SDoc
pprHsFamInstLHS :: forall (p :: Pass).
OutputableBndrId p =>
IdP (GhcPass p)
-> Maybe [LHsTyVarBndr () (GhcPass p)]
-> HsTyPats (GhcPass p)
-> LexicalFixity
-> LHsContext (GhcPass p)
-> SDoc
pprHsFamInstLHS IdP (GhcPass p)
thing Maybe [LHsTyVarBndr () (GhcPass p)]
bndrs HsTyPats (GhcPass p)
typats LexicalFixity
fixity LHsContext (GhcPass p)
mb_ctxt
   = [SDoc] -> SDoc
hsep [ Maybe [LHsTyVarBndr () (GhcPass p)] -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Maybe [LHsTyVarBndr () (GhcPass p)] -> SDoc
pprHsExplicitForAll Maybe [LHsTyVarBndr () (GhcPass p)]
bndrs
          , LHsContext (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsContext (GhcPass p) -> SDoc
pprLHsContext LHsContext (GhcPass p)
mb_ctxt
          , HsTyPats (GhcPass p) -> SDoc
pp_pats HsTyPats (GhcPass p)
typats ]
   where
     pp_pats :: HsTyPats (GhcPass p) -> SDoc
pp_pats (LHsTypeArg (GhcPass p)
patl:LHsTypeArg (GhcPass p)
patr:HsTyPats (GhcPass p)
pats)
       | LexicalFixity
Infix <- LexicalFixity
fixity
       = let pp_op_app :: SDoc
pp_op_app = [SDoc] -> SDoc
hsep [ LHsTypeArg (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsTypeArg (GhcPass p)
patl, IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc IdGhcP p
IdP (GhcPass p)
thing, LHsTypeArg (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsTypeArg (GhcPass p)
patr ] in
         case HsTyPats (GhcPass p)
pats of
           [] -> SDoc
pp_op_app
           HsTyPats (GhcPass p)
_  -> [SDoc] -> SDoc
hsep (SDoc -> SDoc
parens SDoc
pp_op_app SDoc -> [SDoc] -> [SDoc]
forall a. a -> [a] -> [a]
: (LHsTypeArg (GhcPass p) -> SDoc) -> HsTyPats (GhcPass p) -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LHsTypeArg (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsTyPats (GhcPass p)
pats)

     pp_pats HsTyPats (GhcPass p)
pats = [SDoc] -> SDoc
hsep [ IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdGhcP p
IdP (GhcPass p)
thing
                         , [SDoc] -> SDoc
hsep ((LHsTypeArg (GhcPass p) -> SDoc) -> HsTyPats (GhcPass p) -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LHsTypeArg (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsTyPats (GhcPass p)
pats)]

instance OutputableBndrId p
       => Outputable (ClsInstDecl (GhcPass p)) where
    ppr :: ClsInstDecl (GhcPass p) -> SDoc
ppr (ClsInstDecl { cid_poly_ty :: forall pass. ClsInstDecl pass -> LHsSigType pass
cid_poly_ty = LHsSigType (GhcPass p)
inst_ty, cid_binds :: forall pass. ClsInstDecl pass -> LHsBinds pass
cid_binds = LHsBinds (GhcPass p)
binds
                     , cid_sigs :: forall pass. ClsInstDecl pass -> [LSig pass]
cid_sigs = [LSig (GhcPass p)]
sigs, cid_tyfam_insts :: forall pass. ClsInstDecl pass -> [LTyFamInstDecl pass]
cid_tyfam_insts = [LTyFamInstDecl (GhcPass p)]
ats
                     , cid_overlap_mode :: forall pass. ClsInstDecl pass -> Maybe (Located OverlapMode)
cid_overlap_mode = Maybe (Located OverlapMode)
mbOverlap
                     , cid_datafam_insts :: forall pass. ClsInstDecl pass -> [LDataFamInstDecl pass]
cid_datafam_insts = [LDataFamInstDecl (GhcPass p)]
adts })
      | [LSig (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LSig (GhcPass p)]
sigs, [LTyFamInstDecl (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LTyFamInstDecl (GhcPass p)]
ats, [LDataFamInstDecl (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LDataFamInstDecl (GhcPass p)]
adts, LHsBinds (GhcPass p) -> Bool
forall a. Bag a -> Bool
isEmptyBag LHsBinds (GhcPass p)
binds  -- No "where" part
      = SDoc
top_matter

      | Bool
otherwise       -- Laid out
      = [SDoc] -> SDoc
vcat [ SDoc
top_matter SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"where"
             , Int -> SDoc -> SDoc
nest Int
2 (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
pprDeclList ([SDoc] -> SDoc) -> [SDoc] -> SDoc
forall a b. (a -> b) -> a -> b
$
               (LTyFamInstDecl (GhcPass p) -> SDoc)
-> [LTyFamInstDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> TyFamInstDecl (GhcPass p) -> SDoc
pprTyFamInstDecl TopLevelFlag
NotTopLevel (TyFamInstDecl (GhcPass p) -> SDoc)
-> (LTyFamInstDecl (GhcPass p) -> TyFamInstDecl (GhcPass p))
-> LTyFamInstDecl (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LTyFamInstDecl (GhcPass p) -> TyFamInstDecl (GhcPass p)
forall l e. GenLocated l e -> e
unLoc)   [LTyFamInstDecl (GhcPass p)]
ats [SDoc] -> [SDoc] -> [SDoc]
forall a. [a] -> [a] -> [a]
++
               (LDataFamInstDecl (GhcPass p) -> SDoc)
-> [LDataFamInstDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (TopLevelFlag -> DataFamInstDecl (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
TopLevelFlag -> DataFamInstDecl (GhcPass p) -> SDoc
pprDataFamInstDecl TopLevelFlag
NotTopLevel (DataFamInstDecl (GhcPass p) -> SDoc)
-> (LDataFamInstDecl (GhcPass p) -> DataFamInstDecl (GhcPass p))
-> LDataFamInstDecl (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LDataFamInstDecl (GhcPass p) -> DataFamInstDecl (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) [LDataFamInstDecl (GhcPass p)]
adts [SDoc] -> [SDoc] -> [SDoc]
forall a. [a] -> [a] -> [a]
++
               LHsBinds (GhcPass p) -> [LSig (GhcPass p)] -> [SDoc]
forall (idL :: Pass) (idR :: Pass) (id2 :: Pass).
(OutputableBndrId idL, OutputableBndrId idR,
 OutputableBndrId id2) =>
LHsBindsLR (GhcPass idL) (GhcPass idR)
-> [LSig (GhcPass id2)] -> [SDoc]
pprLHsBindsForUser LHsBinds (GhcPass p)
binds [LSig (GhcPass p)]
sigs ]
      where
        top_matter :: SDoc
top_matter = String -> SDoc
text String
"instance" SDoc -> SDoc -> SDoc
<+> Maybe (Located OverlapMode) -> SDoc
ppOverlapPragma Maybe (Located OverlapMode)
mbOverlap
                                             SDoc -> SDoc -> SDoc
<+> LHsSigType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsSigType (GhcPass p)
inst_ty

ppDerivStrategy :: OutputableBndrId p
                => Maybe (LDerivStrategy (GhcPass p)) -> SDoc
ppDerivStrategy :: forall (p :: Pass).
OutputableBndrId p =>
Maybe (LDerivStrategy (GhcPass p)) -> SDoc
ppDerivStrategy Maybe (LDerivStrategy (GhcPass p))
mb =
  case Maybe (LDerivStrategy (GhcPass p))
mb of
    Maybe (LDerivStrategy (GhcPass p))
Nothing       -> SDoc
empty
    Just (L SrcSpan
_ DerivStrategy (GhcPass p)
ds) -> DerivStrategy (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr DerivStrategy (GhcPass p)
ds

ppOverlapPragma :: Maybe (Located OverlapMode) -> SDoc
ppOverlapPragma :: Maybe (Located OverlapMode) -> SDoc
ppOverlapPragma Maybe (Located OverlapMode)
mb =
  case Maybe (Located OverlapMode)
mb of
    Maybe (Located OverlapMode)
Nothing           -> SDoc
empty
    Just (L SrcSpan
_ (NoOverlap SourceText
s))    -> SourceText -> String -> SDoc
maybe_stext SourceText
s String
"{-# NO_OVERLAP #-}"
    Just (L SrcSpan
_ (Overlappable SourceText
s)) -> SourceText -> String -> SDoc
maybe_stext SourceText
s String
"{-# OVERLAPPABLE #-}"
    Just (L SrcSpan
_ (Overlapping SourceText
s))  -> SourceText -> String -> SDoc
maybe_stext SourceText
s String
"{-# OVERLAPPING #-}"
    Just (L SrcSpan
_ (Overlaps SourceText
s))     -> SourceText -> String -> SDoc
maybe_stext SourceText
s String
"{-# OVERLAPS #-}"
    Just (L SrcSpan
_ (Incoherent SourceText
s))   -> SourceText -> String -> SDoc
maybe_stext SourceText
s String
"{-# INCOHERENT #-}"
  where
    maybe_stext :: SourceText -> String -> SDoc
maybe_stext SourceText
NoSourceText     String
alt = String -> SDoc
text String
alt
    maybe_stext (SourceText String
src) String
_   = String -> SDoc
text String
src SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"#-}"


instance (OutputableBndrId p) => Outputable (InstDecl (GhcPass p)) where
    ppr :: InstDecl (GhcPass p) -> SDoc
ppr (ClsInstD     { cid_inst :: forall pass. InstDecl pass -> ClsInstDecl pass
cid_inst  = ClsInstDecl (GhcPass p)
decl }) = ClsInstDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr ClsInstDecl (GhcPass p)
decl
    ppr (TyFamInstD   { tfid_inst :: forall pass. InstDecl pass -> TyFamInstDecl pass
tfid_inst = TyFamInstDecl (GhcPass p)
decl }) = TyFamInstDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyFamInstDecl (GhcPass p)
decl
    ppr (DataFamInstD { dfid_inst :: forall pass. InstDecl pass -> DataFamInstDecl pass
dfid_inst = DataFamInstDecl (GhcPass p)
decl }) = DataFamInstDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr DataFamInstDecl (GhcPass p)
decl

-- Extract the declarations of associated data types from an instance

instDeclDataFamInsts :: [LInstDecl (GhcPass p)] -> [DataFamInstDecl (GhcPass p)]
instDeclDataFamInsts :: forall (p :: Pass).
[LInstDecl (GhcPass p)] -> [DataFamInstDecl (GhcPass p)]
instDeclDataFamInsts [LInstDecl (GhcPass p)]
inst_decls
  = (LInstDecl (GhcPass p) -> [DataFamInstDecl (GhcPass p)])
-> [LInstDecl (GhcPass p)] -> [DataFamInstDecl (GhcPass p)]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap LInstDecl (GhcPass p) -> [DataFamInstDecl (GhcPass p)]
forall (p :: Pass).
LInstDecl (GhcPass p) -> [DataFamInstDecl (GhcPass p)]
do_one [LInstDecl (GhcPass p)]
inst_decls
  where
    do_one :: LInstDecl (GhcPass p) -> [DataFamInstDecl (GhcPass p)]
    do_one :: forall (p :: Pass).
LInstDecl (GhcPass p) -> [DataFamInstDecl (GhcPass p)]
do_one (L SrcSpan
_ (ClsInstD { cid_inst :: forall pass. InstDecl pass -> ClsInstDecl pass
cid_inst = ClsInstDecl { cid_datafam_insts :: forall pass. ClsInstDecl pass -> [LDataFamInstDecl pass]
cid_datafam_insts = [LDataFamInstDecl (GhcPass p)]
fam_insts } }))
      = (LDataFamInstDecl (GhcPass p) -> DataFamInstDecl (GhcPass p))
-> [LDataFamInstDecl (GhcPass p)] -> [DataFamInstDecl (GhcPass p)]
forall a b. (a -> b) -> [a] -> [b]
map LDataFamInstDecl (GhcPass p) -> DataFamInstDecl (GhcPass p)
forall l e. GenLocated l e -> e
unLoc [LDataFamInstDecl (GhcPass p)]
fam_insts
    do_one (L SrcSpan
_ (DataFamInstD { dfid_inst :: forall pass. InstDecl pass -> DataFamInstDecl pass
dfid_inst = DataFamInstDecl (GhcPass p)
fam_inst }))      = [DataFamInstDecl (GhcPass p)
fam_inst]
    do_one (L SrcSpan
_ (TyFamInstD {}))                              = []

{-
************************************************************************
*                                                                      *
\subsection[DerivDecl]{A stand-alone instance deriving declaration}
*                                                                      *
************************************************************************
-}

-- | Located stand-alone 'deriving instance' declaration
type LDerivDecl pass = Located (DerivDecl pass)

-- | Stand-alone 'deriving instance' declaration
data DerivDecl pass = DerivDecl
        { forall pass. DerivDecl pass -> XCDerivDecl pass
deriv_ext          :: XCDerivDecl pass
        , forall pass. DerivDecl pass -> LHsSigWcType pass
deriv_type         :: LHsSigWcType pass
          -- ^ The instance type to derive.
          --
          -- It uses an 'LHsSigWcType' because the context is allowed to be a
          -- single wildcard:
          --
          -- > deriving instance _ => Eq (Foo a)
          --
          -- Which signifies that the context should be inferred.

          -- See Note [Inferring the instance context] in GHC.Tc.Deriv.Infer.

        , forall pass. DerivDecl pass -> Maybe (LDerivStrategy pass)
deriv_strategy     :: Maybe (LDerivStrategy pass)
        , forall pass. DerivDecl pass -> Maybe (Located OverlapMode)
deriv_overlap_mode :: Maybe (Located OverlapMode)
         -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDeriving',
         --        'GHC.Parser.Annotation.AnnInstance', 'GHC.Parser.Annotation.AnnStock',
         --        'GHC.Parser.Annotation.AnnAnyClass', 'Api.AnnNewtype',
         --        'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
        }
  | XDerivDecl !(XXDerivDecl pass)

type instance XCDerivDecl    (GhcPass _) = NoExtField
type instance XXDerivDecl    (GhcPass _) = NoExtCon

instance OutputableBndrId p
       => Outputable (DerivDecl (GhcPass p)) where
    ppr :: DerivDecl (GhcPass p) -> SDoc
ppr (DerivDecl { deriv_type :: forall pass. DerivDecl pass -> LHsSigWcType pass
deriv_type = LHsSigWcType (GhcPass p)
ty
                   , deriv_strategy :: forall pass. DerivDecl pass -> Maybe (LDerivStrategy pass)
deriv_strategy = Maybe (LDerivStrategy (GhcPass p))
ds
                   , deriv_overlap_mode :: forall pass. DerivDecl pass -> Maybe (Located OverlapMode)
deriv_overlap_mode = Maybe (Located OverlapMode)
o })
        = [SDoc] -> SDoc
hsep [ String -> SDoc
text String
"deriving"
               , Maybe (LDerivStrategy (GhcPass p)) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
Maybe (LDerivStrategy (GhcPass p)) -> SDoc
ppDerivStrategy Maybe (LDerivStrategy (GhcPass p))
ds
               , String -> SDoc
text String
"instance"
               , Maybe (Located OverlapMode) -> SDoc
ppOverlapPragma Maybe (Located OverlapMode)
o
               , LHsSigWcType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsSigWcType (GhcPass p)
ty ]

{-
************************************************************************
*                                                                      *
                Deriving strategies
*                                                                      *
************************************************************************
-}

-- | A 'Located' 'DerivStrategy'.
type LDerivStrategy pass = Located (DerivStrategy pass)

-- | Which technique the user explicitly requested when deriving an instance.
data DerivStrategy pass
  -- See Note [Deriving strategies] in GHC.Tc.Deriv
  = StockStrategy    -- ^ GHC's \"standard\" strategy, which is to implement a
                     --   custom instance for the data type. This only works
                     --   for certain types that GHC knows about (e.g., 'Eq',
                     --   'Show', 'Functor' when @-XDeriveFunctor@ is enabled,
                     --   etc.)
  | AnyclassStrategy -- ^ @-XDeriveAnyClass@
  | NewtypeStrategy  -- ^ @-XGeneralizedNewtypeDeriving@
  | ViaStrategy (XViaStrategy pass)
                     -- ^ @-XDerivingVia@

type instance XViaStrategy GhcPs = LHsSigType GhcPs
type instance XViaStrategy GhcRn = LHsSigType GhcRn
type instance XViaStrategy GhcTc = Type

instance OutputableBndrId p
        => Outputable (DerivStrategy (GhcPass p)) where
    ppr :: DerivStrategy (GhcPass p) -> SDoc
ppr DerivStrategy (GhcPass p)
StockStrategy    = String -> SDoc
text String
"stock"
    ppr DerivStrategy (GhcPass p)
AnyclassStrategy = String -> SDoc
text String
"anyclass"
    ppr DerivStrategy (GhcPass p)
NewtypeStrategy  = String -> SDoc
text String
"newtype"
    ppr (ViaStrategy XViaStrategy (GhcPass p)
ty) = String -> SDoc
text String
"via" SDoc -> SDoc -> SDoc
<+> case forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p of
                                            GhcPass p
GhcPs -> LHsSigType GhcPs -> SDoc
forall a. Outputable a => a -> SDoc
ppr XViaStrategy (GhcPass p)
LHsSigType GhcPs
ty
                                            GhcPass p
GhcRn -> LHsSigType GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr XViaStrategy (GhcPass p)
LHsSigType GhcRn
ty
                                            GhcPass p
GhcTc -> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
XViaStrategy (GhcPass p)
ty

-- | A short description of a @DerivStrategy'@.
derivStrategyName :: DerivStrategy a -> SDoc
derivStrategyName :: forall a. DerivStrategy a -> SDoc
derivStrategyName = String -> SDoc
text (String -> SDoc)
-> (DerivStrategy a -> String) -> DerivStrategy a -> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DerivStrategy a -> String
forall {pass}. DerivStrategy pass -> String
go
  where
    go :: DerivStrategy pass -> String
go DerivStrategy pass
StockStrategy    = String
"stock"
    go DerivStrategy pass
AnyclassStrategy = String
"anyclass"
    go DerivStrategy pass
NewtypeStrategy  = String
"newtype"
    go (ViaStrategy {}) = String
"via"

-- | Eliminate a 'DerivStrategy'.
foldDerivStrategy :: (p ~ GhcPass pass)
                  => r -> (XViaStrategy p -> r) -> DerivStrategy p -> r
foldDerivStrategy :: forall p (pass :: Pass) r.
(p ~ GhcPass pass) =>
r -> (XViaStrategy p -> r) -> DerivStrategy p -> r
foldDerivStrategy r
other XViaStrategy p -> r
_   DerivStrategy p
StockStrategy    = r
other
foldDerivStrategy r
other XViaStrategy p -> r
_   DerivStrategy p
AnyclassStrategy = r
other
foldDerivStrategy r
other XViaStrategy p -> r
_   DerivStrategy p
NewtypeStrategy  = r
other
foldDerivStrategy r
_     XViaStrategy p -> r
via (ViaStrategy XViaStrategy p
t)  = XViaStrategy p -> r
via XViaStrategy p
t

-- | Map over the @via@ type if dealing with 'ViaStrategy'. Otherwise,
-- return the 'DerivStrategy' unchanged.
mapDerivStrategy :: (p ~ GhcPass pass)
                 => (XViaStrategy p -> XViaStrategy p)
                 -> DerivStrategy p -> DerivStrategy p
mapDerivStrategy :: forall p (pass :: Pass).
(p ~ GhcPass pass) =>
(XViaStrategy p -> XViaStrategy p)
-> DerivStrategy p -> DerivStrategy p
mapDerivStrategy XViaStrategy p -> XViaStrategy p
f DerivStrategy p
ds = DerivStrategy p
-> (XViaStrategy p -> DerivStrategy p)
-> DerivStrategy p
-> DerivStrategy p
forall p (pass :: Pass) r.
(p ~ GhcPass pass) =>
r -> (XViaStrategy p -> r) -> DerivStrategy p -> r
foldDerivStrategy DerivStrategy p
ds (XViaStrategy (GhcPass pass) -> DerivStrategy p
forall pass. XViaStrategy pass -> DerivStrategy pass
ViaStrategy (XViaStrategy (GhcPass pass) -> DerivStrategy p)
-> (XViaStrategy (GhcPass pass) -> XViaStrategy (GhcPass pass))
-> XViaStrategy (GhcPass pass)
-> DerivStrategy p
forall b c a. (b -> c) -> (a -> b) -> a -> c
. XViaStrategy p -> XViaStrategy p
XViaStrategy (GhcPass pass) -> XViaStrategy (GhcPass pass)
f) DerivStrategy p
ds

{-
************************************************************************
*                                                                      *
\subsection[DefaultDecl]{A @default@ declaration}
*                                                                      *
************************************************************************

There can only be one default declaration per module, but it is hard
for the parser to check that; we pass them all through in the abstract
syntax, and that restriction must be checked in the front end.
-}

-- | Located Default Declaration
type LDefaultDecl pass = Located (DefaultDecl pass)

-- | Default Declaration
data DefaultDecl pass
  = DefaultDecl (XCDefaultDecl pass) [LHsType pass]
        -- ^ - 'GHC.Parser.Annotation.AnnKeywordId's : 'GHC.Parser.Annotation.AnnDefault',
        --          'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'

        -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | XDefaultDecl !(XXDefaultDecl pass)

type instance XCDefaultDecl    (GhcPass _) = NoExtField
type instance XXDefaultDecl    (GhcPass _) = NoExtCon

instance OutputableBndrId p
       => Outputable (DefaultDecl (GhcPass p)) where
    ppr :: DefaultDecl (GhcPass p) -> SDoc
ppr (DefaultDecl XCDefaultDecl (GhcPass p)
_ [LHsType (GhcPass p)]
tys)
      = String -> SDoc
text String
"default" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
parens ([LHsType (GhcPass p)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [LHsType (GhcPass p)]
tys)

{-
************************************************************************
*                                                                      *
\subsection{Foreign function interface declaration}
*                                                                      *
************************************************************************
-}

-- foreign declarations are distinguished as to whether they define or use a
-- Haskell name
--
--  * the Boolean value indicates whether the pre-standard deprecated syntax
--   has been used

-- | Located Foreign Declaration
type LForeignDecl pass = Located (ForeignDecl pass)

-- | Foreign Declaration
data ForeignDecl pass
  = ForeignImport
      { forall pass. ForeignDecl pass -> XForeignImport pass
fd_i_ext  :: XForeignImport pass   -- Post typechecker, rep_ty ~ sig_ty
      , forall pass. ForeignDecl pass -> Located (IdP pass)
fd_name   :: Located (IdP pass)    -- defines this name
      , forall pass. ForeignDecl pass -> LHsSigType pass
fd_sig_ty :: LHsSigType pass       -- sig_ty
      , forall pass. ForeignDecl pass -> ForeignImport
fd_fi     :: ForeignImport }

  | ForeignExport
      { forall pass. ForeignDecl pass -> XForeignExport pass
fd_e_ext  :: XForeignExport pass   -- Post typechecker, rep_ty ~ sig_ty
      , fd_name   :: Located (IdP pass)    -- uses this name
      , fd_sig_ty :: LHsSigType pass       -- sig_ty
      , forall pass. ForeignDecl pass -> ForeignExport
fd_fe     :: ForeignExport }
        -- ^
        --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnForeign',
        --           'GHC.Parser.Annotation.AnnImport','GHC.Parser.Annotation.AnnExport',
        --           'GHC.Parser.Annotation.AnnDcolon'

        -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | XForeignDecl !(XXForeignDecl pass)

{-
    In both ForeignImport and ForeignExport:
        sig_ty is the type given in the Haskell code
        rep_ty is the representation for this type, i.e. with newtypes
               coerced away and type functions evaluated.
    Thus if the declaration is valid, then rep_ty will only use types
    such as Int and IO that we know how to make foreign calls with.
-}

type instance XForeignImport   GhcPs = NoExtField
type instance XForeignImport   GhcRn = NoExtField
type instance XForeignImport   GhcTc = Coercion

type instance XForeignExport   GhcPs = NoExtField
type instance XForeignExport   GhcRn = NoExtField
type instance XForeignExport   GhcTc = Coercion

type instance XXForeignDecl    (GhcPass _) = NoExtCon

-- Specification Of an imported external entity in dependence on the calling
-- convention
--
data ForeignImport = -- import of a C entity
                     --
                     --  * the two strings specifying a header file or library
                     --   may be empty, which indicates the absence of a
                     --   header or object specification (both are not used
                     --   in the case of `CWrapper' and when `CFunction'
                     --   has a dynamic target)
                     --
                     --  * the calling convention is irrelevant for code
                     --   generation in the case of `CLabel', but is needed
                     --   for pretty printing
                     --
                     --  * `Safety' is irrelevant for `CLabel' and `CWrapper'
                     --
                     CImport  (Located CCallConv) -- ccall or stdcall
                              (Located Safety)  -- interruptible, safe or unsafe
                              (Maybe Header)       -- name of C header
                              CImportSpec          -- details of the C entity
                              (Located SourceText) -- original source text for
                                                   -- the C entity
  deriving Typeable ForeignImport
Typeable ForeignImport
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> ForeignImport -> c ForeignImport)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c ForeignImport)
-> (ForeignImport -> Constr)
-> (ForeignImport -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c ForeignImport))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c ForeignImport))
-> ((forall b. Data b => b -> b) -> ForeignImport -> ForeignImport)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> ForeignImport -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> ForeignImport -> r)
-> (forall u. (forall d. Data d => d -> u) -> ForeignImport -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> ForeignImport -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport)
-> Data ForeignImport
ForeignImport -> DataType
ForeignImport -> Constr
(forall b. Data b => b -> b) -> ForeignImport -> ForeignImport
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> ForeignImport -> u
forall u. (forall d. Data d => d -> u) -> ForeignImport -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignImport -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignImport -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ForeignImport
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ForeignImport -> c ForeignImport
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ForeignImport)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ForeignImport)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ForeignImport -> m ForeignImport
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> ForeignImport -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> ForeignImport -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> ForeignImport -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> ForeignImport -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignImport -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignImport -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignImport -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignImport -> r
gmapT :: (forall b. Data b => b -> b) -> ForeignImport -> ForeignImport
$cgmapT :: (forall b. Data b => b -> b) -> ForeignImport -> ForeignImport
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ForeignImport)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ForeignImport)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ForeignImport)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ForeignImport)
dataTypeOf :: ForeignImport -> DataType
$cdataTypeOf :: ForeignImport -> DataType
toConstr :: ForeignImport -> Constr
$ctoConstr :: ForeignImport -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ForeignImport
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ForeignImport
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ForeignImport -> c ForeignImport
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ForeignImport -> c ForeignImport
Data

-- details of an external C entity
--
data CImportSpec = CLabel    CLabelString     -- import address of a C label
                 | CFunction CCallTarget      -- static or dynamic function
                 | CWrapper                   -- wrapper to expose closures
                                              -- (former f.e.d.)
  deriving Typeable CImportSpec
Typeable CImportSpec
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> CImportSpec -> c CImportSpec)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c CImportSpec)
-> (CImportSpec -> Constr)
-> (CImportSpec -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c CImportSpec))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c CImportSpec))
-> ((forall b. Data b => b -> b) -> CImportSpec -> CImportSpec)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> CImportSpec -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> CImportSpec -> r)
-> (forall u. (forall d. Data d => d -> u) -> CImportSpec -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> CImportSpec -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec)
-> Data CImportSpec
CImportSpec -> DataType
CImportSpec -> Constr
(forall b. Data b => b -> b) -> CImportSpec -> CImportSpec
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> CImportSpec -> u
forall u. (forall d. Data d => d -> u) -> CImportSpec -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CImportSpec -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CImportSpec -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CImportSpec
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CImportSpec -> c CImportSpec
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CImportSpec)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CImportSpec)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CImportSpec -> m CImportSpec
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CImportSpec -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CImportSpec -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> CImportSpec -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> CImportSpec -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CImportSpec -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CImportSpec -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CImportSpec -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CImportSpec -> r
gmapT :: (forall b. Data b => b -> b) -> CImportSpec -> CImportSpec
$cgmapT :: (forall b. Data b => b -> b) -> CImportSpec -> CImportSpec
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CImportSpec)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CImportSpec)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CImportSpec)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CImportSpec)
dataTypeOf :: CImportSpec -> DataType
$cdataTypeOf :: CImportSpec -> DataType
toConstr :: CImportSpec -> Constr
$ctoConstr :: CImportSpec -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CImportSpec
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CImportSpec
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CImportSpec -> c CImportSpec
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CImportSpec -> c CImportSpec
Data

-- specification of an externally exported entity in dependence on the calling
-- convention
--
data ForeignExport = CExport  (Located CExportSpec) -- contains the calling
                                                    -- convention
                              (Located SourceText)  -- original source text for
                                                    -- the C entity
  deriving Typeable ForeignExport
Typeable ForeignExport
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> ForeignExport -> c ForeignExport)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c ForeignExport)
-> (ForeignExport -> Constr)
-> (ForeignExport -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c ForeignExport))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c ForeignExport))
-> ((forall b. Data b => b -> b) -> ForeignExport -> ForeignExport)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> ForeignExport -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> ForeignExport -> r)
-> (forall u. (forall d. Data d => d -> u) -> ForeignExport -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> ForeignExport -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport)
-> Data ForeignExport
ForeignExport -> DataType
ForeignExport -> Constr
(forall b. Data b => b -> b) -> ForeignExport -> ForeignExport
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> ForeignExport -> u
forall u. (forall d. Data d => d -> u) -> ForeignExport -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignExport -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignExport -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ForeignExport
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ForeignExport -> c ForeignExport
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ForeignExport)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ForeignExport)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> ForeignExport -> m ForeignExport
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> ForeignExport -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> ForeignExport -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> ForeignExport -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> ForeignExport -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignExport -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignExport -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignExport -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> ForeignExport -> r
gmapT :: (forall b. Data b => b -> b) -> ForeignExport -> ForeignExport
$cgmapT :: (forall b. Data b => b -> b) -> ForeignExport -> ForeignExport
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ForeignExport)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c ForeignExport)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ForeignExport)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c ForeignExport)
dataTypeOf :: ForeignExport -> DataType
$cdataTypeOf :: ForeignExport -> DataType
toConstr :: ForeignExport -> Constr
$ctoConstr :: ForeignExport -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ForeignExport
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c ForeignExport
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ForeignExport -> c ForeignExport
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> ForeignExport -> c ForeignExport
Data

-- pretty printing of foreign declarations
--

instance OutputableBndrId p
       => Outputable (ForeignDecl (GhcPass p)) where
  ppr :: ForeignDecl (GhcPass p) -> SDoc
ppr (ForeignImport { fd_name :: forall pass. ForeignDecl pass -> Located (IdP pass)
fd_name = Located (IdP (GhcPass p))
n, fd_sig_ty :: forall pass. ForeignDecl pass -> LHsSigType pass
fd_sig_ty = LHsSigType (GhcPass p)
ty, fd_fi :: forall pass. ForeignDecl pass -> ForeignImport
fd_fi = ForeignImport
fimport })
    = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"foreign import" SDoc -> SDoc -> SDoc
<+> ForeignImport -> SDoc
forall a. Outputable a => a -> SDoc
ppr ForeignImport
fimport SDoc -> SDoc -> SDoc
<+> Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdGhcP p)
Located (IdP (GhcPass p))
n)
         Int
2 (SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LHsSigType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsSigType (GhcPass p)
ty)
  ppr (ForeignExport { fd_name :: forall pass. ForeignDecl pass -> Located (IdP pass)
fd_name = Located (IdP (GhcPass p))
n, fd_sig_ty :: forall pass. ForeignDecl pass -> LHsSigType pass
fd_sig_ty = LHsSigType (GhcPass p)
ty, fd_fe :: forall pass. ForeignDecl pass -> ForeignExport
fd_fe = ForeignExport
fexport }) =
    SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"foreign export" SDoc -> SDoc -> SDoc
<+> ForeignExport -> SDoc
forall a. Outputable a => a -> SDoc
ppr ForeignExport
fexport SDoc -> SDoc -> SDoc
<+> Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdGhcP p)
Located (IdP (GhcPass p))
n)
       Int
2 (SDoc
dcolon SDoc -> SDoc -> SDoc
<+> LHsSigType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsSigType (GhcPass p)
ty)

instance Outputable ForeignImport where
  ppr :: ForeignImport -> SDoc
ppr (CImport  Located CCallConv
cconv Located Safety
safety Maybe Header
mHeader CImportSpec
spec (L SrcSpan
_ SourceText
srcText)) =
    Located CCallConv -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located CCallConv
cconv SDoc -> SDoc -> SDoc
<+> Located Safety -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located Safety
safety
      SDoc -> SDoc -> SDoc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
srcText (CImportSpec -> String -> SDoc
pprCEntity CImportSpec
spec String
"")
    where
      pp_hdr :: SDoc
pp_hdr = case Maybe Header
mHeader of
               Maybe Header
Nothing -> SDoc
empty
               Just (Header SourceText
_ CLabelString
header) -> CLabelString -> SDoc
ftext CLabelString
header

      pprCEntity :: CImportSpec -> String -> SDoc
pprCEntity (CLabel CLabelString
lbl) String
_ =
        SDoc -> SDoc
doubleQuotes (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ String -> SDoc
text String
"static" SDoc -> SDoc -> SDoc
<+> SDoc
pp_hdr SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'&' SDoc -> SDoc -> SDoc
<> CLabelString -> SDoc
forall a. Outputable a => a -> SDoc
ppr CLabelString
lbl
      pprCEntity (CFunction (StaticTarget SourceText
st CLabelString
_lbl Maybe Unit
_ Bool
isFun)) String
src =
        if Bool
dqNeeded then SDoc -> SDoc
doubleQuotes SDoc
ce else SDoc
empty
          where
            dqNeeded :: Bool
dqNeeded = (Int -> String -> String
forall a. Int -> [a] -> [a]
take Int
6 String
src String -> String -> Bool
forall a. Eq a => a -> a -> Bool
== String
"static")
                    Bool -> Bool -> Bool
|| Maybe Header -> Bool
forall a. Maybe a -> Bool
isJust Maybe Header
mHeader
                    Bool -> Bool -> Bool
|| Bool -> Bool
not Bool
isFun
                    Bool -> Bool -> Bool
|| SourceText
st SourceText -> SourceText -> Bool
forall a. Eq a => a -> a -> Bool
/= SourceText
NoSourceText
            ce :: SDoc
ce =
                  -- We may need to drop leading spaces first
                  (if Int -> String -> String
forall a. Int -> [a] -> [a]
take Int
6 String
src String -> String -> Bool
forall a. Eq a => a -> a -> Bool
== String
"static" then String -> SDoc
text String
"static" else SDoc
empty)
              SDoc -> SDoc -> SDoc
<+> SDoc
pp_hdr
              SDoc -> SDoc -> SDoc
<+> (if Bool
isFun then SDoc
empty else String -> SDoc
text String
"value")
              SDoc -> SDoc -> SDoc
<+> (SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
st SDoc
empty)
      pprCEntity (CFunction CCallTarget
DynamicTarget) String
_ =
        SDoc -> SDoc
doubleQuotes (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ String -> SDoc
text String
"dynamic"
      pprCEntity CImportSpec
CWrapper String
_ = SDoc -> SDoc
doubleQuotes (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ String -> SDoc
text String
"wrapper"

instance Outputable ForeignExport where
  ppr :: ForeignExport -> SDoc
ppr (CExport  (L SrcSpan
_ (CExportStatic SourceText
_ CLabelString
lbl CCallConv
cconv)) Located SourceText
_) =
    CCallConv -> SDoc
forall a. Outputable a => a -> SDoc
ppr CCallConv
cconv SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'"' SDoc -> SDoc -> SDoc
<> CLabelString -> SDoc
forall a. Outputable a => a -> SDoc
ppr CLabelString
lbl SDoc -> SDoc -> SDoc
<> Char -> SDoc
char Char
'"'

{-
************************************************************************
*                                                                      *
\subsection{Rewrite rules}
*                                                                      *
************************************************************************
-}

-- | Located Rule Declarations
type LRuleDecls pass = Located (RuleDecls pass)

  -- Note [Pragma source text] in GHC.Types.Basic
-- | Rule Declarations
data RuleDecls pass = HsRules { forall pass. RuleDecls pass -> XCRuleDecls pass
rds_ext   :: XCRuleDecls pass
                              , forall pass. RuleDecls pass -> SourceText
rds_src   :: SourceText
                              , forall pass. RuleDecls pass -> [LRuleDecl pass]
rds_rules :: [LRuleDecl pass] }
  | XRuleDecls !(XXRuleDecls pass)

type instance XCRuleDecls    (GhcPass _) = NoExtField
type instance XXRuleDecls    (GhcPass _) = NoExtCon

-- | Located Rule Declaration
type LRuleDecl pass = Located (RuleDecl pass)

-- | Rule Declaration
data RuleDecl pass
  = HsRule -- Source rule
       { forall pass. RuleDecl pass -> XHsRule pass
rd_ext  :: XHsRule pass
           -- ^ After renamer, free-vars from the LHS and RHS
       , forall pass. RuleDecl pass -> Located (SourceText, CLabelString)
rd_name :: Located (SourceText,RuleName)
           -- ^ Note [Pragma source text] in "GHC.Types.Basic"
       , forall pass. RuleDecl pass -> Activation
rd_act  :: Activation
       , forall pass.
RuleDecl pass -> Maybe [LHsTyVarBndr () (NoGhcTc pass)]
rd_tyvs :: Maybe [LHsTyVarBndr () (NoGhcTc pass)]
           -- ^ Forall'd type vars
       , forall pass. RuleDecl pass -> [LRuleBndr pass]
rd_tmvs :: [LRuleBndr pass]
           -- ^ Forall'd term vars, before typechecking; after typechecking
           --    this includes all forall'd vars
       , forall pass. RuleDecl pass -> Located (HsExpr pass)
rd_lhs  :: Located (HsExpr pass)
       , forall pass. RuleDecl pass -> Located (HsExpr pass)
rd_rhs  :: Located (HsExpr pass)
       }
    -- ^
    --  - 'GHC.Parser.Annotation.AnnKeywordId' :
    --           'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnTilde',
    --           'GHC.Parser.Annotation.AnnVal',
    --           'GHC.Parser.Annotation.AnnClose',
    --           'GHC.Parser.Annotation.AnnForall','GHC.Parser.Annotation.AnnDot',
    --           'GHC.Parser.Annotation.AnnEqual',
  | XRuleDecl !(XXRuleDecl pass)

data HsRuleRn = HsRuleRn NameSet NameSet -- Free-vars from the LHS and RHS
  deriving Typeable HsRuleRn
Typeable HsRuleRn
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> HsRuleRn -> c HsRuleRn)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c HsRuleRn)
-> (HsRuleRn -> Constr)
-> (HsRuleRn -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c HsRuleRn))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsRuleRn))
-> ((forall b. Data b => b -> b) -> HsRuleRn -> HsRuleRn)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r)
-> (forall u. (forall d. Data d => d -> u) -> HsRuleRn -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> HsRuleRn -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn)
-> Data HsRuleRn
HsRuleRn -> DataType
HsRuleRn -> Constr
(forall b. Data b => b -> b) -> HsRuleRn -> HsRuleRn
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> HsRuleRn -> u
forall u. (forall d. Data d => d -> u) -> HsRuleRn -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsRuleRn
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsRuleRn -> c HsRuleRn
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsRuleRn)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsRuleRn)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsRuleRn -> m HsRuleRn
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> HsRuleRn -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> HsRuleRn -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> HsRuleRn -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> HsRuleRn -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsRuleRn -> r
gmapT :: (forall b. Data b => b -> b) -> HsRuleRn -> HsRuleRn
$cgmapT :: (forall b. Data b => b -> b) -> HsRuleRn -> HsRuleRn
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsRuleRn)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c HsRuleRn)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsRuleRn)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsRuleRn)
dataTypeOf :: HsRuleRn -> DataType
$cdataTypeOf :: HsRuleRn -> DataType
toConstr :: HsRuleRn -> Constr
$ctoConstr :: HsRuleRn -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsRuleRn
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsRuleRn
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsRuleRn -> c HsRuleRn
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsRuleRn -> c HsRuleRn
Data

type instance XHsRule       GhcPs = NoExtField
type instance XHsRule       GhcRn = HsRuleRn
type instance XHsRule       GhcTc = HsRuleRn

type instance XXRuleDecl    (GhcPass _) = NoExtCon

flattenRuleDecls :: [LRuleDecls pass] -> [LRuleDecl pass]
flattenRuleDecls :: forall pass. [LRuleDecls pass] -> [LRuleDecl pass]
flattenRuleDecls [LRuleDecls pass]
decls = (LRuleDecls pass -> [LRuleDecl pass])
-> [LRuleDecls pass] -> [LRuleDecl pass]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (RuleDecls pass -> [LRuleDecl pass]
forall pass. RuleDecls pass -> [LRuleDecl pass]
rds_rules (RuleDecls pass -> [LRuleDecl pass])
-> (LRuleDecls pass -> RuleDecls pass)
-> LRuleDecls pass
-> [LRuleDecl pass]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LRuleDecls pass -> RuleDecls pass
forall l e. GenLocated l e -> e
unLoc) [LRuleDecls pass]
decls

-- | Located Rule Binder
type LRuleBndr pass = Located (RuleBndr pass)

-- | Rule Binder
data RuleBndr pass
  = RuleBndr (XCRuleBndr pass)  (Located (IdP pass))
  | RuleBndrSig (XRuleBndrSig pass) (Located (IdP pass)) (HsPatSigType pass)
  | XRuleBndr !(XXRuleBndr pass)
        -- ^
        --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
        --     'GHC.Parser.Annotation.AnnDcolon','GHC.Parser.Annotation.AnnClose'

        -- For details on above see note [Api annotations] in GHC.Parser.Annotation

type instance XCRuleBndr    (GhcPass _) = NoExtField
type instance XRuleBndrSig  (GhcPass _) = NoExtField
type instance XXRuleBndr    (GhcPass _) = NoExtCon

collectRuleBndrSigTys :: [RuleBndr pass] -> [HsPatSigType pass]
collectRuleBndrSigTys :: forall pass. [RuleBndr pass] -> [HsPatSigType pass]
collectRuleBndrSigTys [RuleBndr pass]
bndrs = [HsPatSigType pass
ty | RuleBndrSig XRuleBndrSig pass
_ Located (IdP pass)
_ HsPatSigType pass
ty <- [RuleBndr pass]
bndrs]

pprFullRuleName :: Located (SourceText, RuleName) -> SDoc
pprFullRuleName :: Located (SourceText, CLabelString) -> SDoc
pprFullRuleName (L SrcSpan
_ (SourceText
st, CLabelString
n)) = SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
st (SDoc -> SDoc
doubleQuotes (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ CLabelString -> SDoc
ftext CLabelString
n)

instance (OutputableBndrId p) => Outputable (RuleDecls (GhcPass p)) where
  ppr :: RuleDecls (GhcPass p) -> SDoc
ppr (HsRules { rds_src :: forall pass. RuleDecls pass -> SourceText
rds_src = SourceText
st
               , rds_rules :: forall pass. RuleDecls pass -> [LRuleDecl pass]
rds_rules = [LRuleDecl (GhcPass p)]
rules })
    = SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
st (String -> SDoc
text String
"{-# RULES")
          SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat (SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
semi ((LRuleDecl (GhcPass p) -> SDoc)
-> [LRuleDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LRuleDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LRuleDecl (GhcPass p)]
rules)) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"#-}"

instance (OutputableBndrId p) => Outputable (RuleDecl (GhcPass p)) where
  ppr :: RuleDecl (GhcPass p) -> SDoc
ppr (HsRule { rd_name :: forall pass. RuleDecl pass -> Located (SourceText, CLabelString)
rd_name = Located (SourceText, CLabelString)
name
              , rd_act :: forall pass. RuleDecl pass -> Activation
rd_act  = Activation
act
              , rd_tyvs :: forall pass.
RuleDecl pass -> Maybe [LHsTyVarBndr () (NoGhcTc pass)]
rd_tyvs = Maybe [LHsTyVarBndr () (NoGhcTc (GhcPass p))]
tys
              , rd_tmvs :: forall pass. RuleDecl pass -> [LRuleBndr pass]
rd_tmvs = [LRuleBndr (GhcPass p)]
tms
              , rd_lhs :: forall pass. RuleDecl pass -> Located (HsExpr pass)
rd_lhs  = Located (HsExpr (GhcPass p))
lhs
              , rd_rhs :: forall pass. RuleDecl pass -> Located (HsExpr pass)
rd_rhs  = Located (HsExpr (GhcPass p))
rhs })
        = [SDoc] -> SDoc
sep [Located (SourceText, CLabelString) -> SDoc
pprFullRuleName Located (SourceText, CLabelString)
name SDoc -> SDoc -> SDoc
<+> Activation -> SDoc
forall a. Outputable a => a -> SDoc
ppr Activation
act,
               Int -> SDoc -> SDoc
nest Int
4 (Maybe [LHsTyVarBndr () (GhcPass (NoGhcTcPass p))] -> SDoc
forall {a}. Outputable a => Maybe [a] -> SDoc
pp_forall_ty Maybe [LHsTyVarBndr () (GhcPass (NoGhcTcPass p))]
Maybe [LHsTyVarBndr () (NoGhcTc (GhcPass p))]
tys SDoc -> SDoc -> SDoc
<+> Maybe [LHsTyVarBndr () (GhcPass (NoGhcTcPass p))] -> SDoc
pp_forall_tm Maybe [LHsTyVarBndr () (GhcPass (NoGhcTcPass p))]
Maybe [LHsTyVarBndr () (NoGhcTc (GhcPass p))]
tys
                                        SDoc -> SDoc -> SDoc
<+> HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr (Located (HsExpr (GhcPass p)) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc Located (HsExpr (GhcPass p))
lhs)),
               Int -> SDoc -> SDoc
nest Int
6 (SDoc
equals SDoc -> SDoc -> SDoc
<+> HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr (Located (HsExpr (GhcPass p)) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc Located (HsExpr (GhcPass p))
rhs)) ]
        where
          pp_forall_ty :: Maybe [a] -> SDoc
pp_forall_ty Maybe [a]
Nothing     = SDoc
empty
          pp_forall_ty (Just [a]
qtvs) = SDoc
forAllLit SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
fsep ((a -> SDoc) -> [a] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map a -> SDoc
forall a. Outputable a => a -> SDoc
ppr [a]
qtvs) SDoc -> SDoc -> SDoc
<> SDoc
dot
          pp_forall_tm :: Maybe [LHsTyVarBndr () (GhcPass (NoGhcTcPass p))] -> SDoc
pp_forall_tm Maybe [LHsTyVarBndr () (GhcPass (NoGhcTcPass p))]
Nothing | [LRuleBndr (GhcPass p)] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LRuleBndr (GhcPass p)]
tms = SDoc
empty
          pp_forall_tm Maybe [LHsTyVarBndr () (GhcPass (NoGhcTcPass p))]
_ = SDoc
forAllLit SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
fsep ((LRuleBndr (GhcPass p) -> SDoc)
-> [LRuleBndr (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LRuleBndr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LRuleBndr (GhcPass p)]
tms) SDoc -> SDoc -> SDoc
<> SDoc
dot

instance (OutputableBndrId p) => Outputable (RuleBndr (GhcPass p)) where
   ppr :: RuleBndr (GhcPass p) -> SDoc
ppr (RuleBndr XCRuleBndr (GhcPass p)
_ Located (IdP (GhcPass p))
name) = Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdGhcP p)
Located (IdP (GhcPass p))
name
   ppr (RuleBndrSig XRuleBndrSig (GhcPass p)
_ Located (IdP (GhcPass p))
name HsPatSigType (GhcPass p)
ty) = SDoc -> SDoc
parens (Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdGhcP p)
Located (IdP (GhcPass p))
name SDoc -> SDoc -> SDoc
<> SDoc
dcolon SDoc -> SDoc -> SDoc
<> HsPatSigType (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsPatSigType (GhcPass p)
ty)

{-
************************************************************************
*                                                                      *
\subsection[DocDecl]{Document comments}
*                                                                      *
************************************************************************
-}

-- | Located Documentation comment Declaration
type LDocDecl = Located (DocDecl)

-- | Documentation comment Declaration
data DocDecl
  = DocCommentNext HsDocString
  | DocCommentPrev HsDocString
  | DocCommentNamed String HsDocString
  | DocGroup Int HsDocString
  deriving Typeable DocDecl
Typeable DocDecl
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> DocDecl -> c DocDecl)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c DocDecl)
-> (DocDecl -> Constr)
-> (DocDecl -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c DocDecl))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocDecl))
-> ((forall b. Data b => b -> b) -> DocDecl -> DocDecl)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> DocDecl -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> DocDecl -> r)
-> (forall u. (forall d. Data d => d -> u) -> DocDecl -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> DocDecl -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> DocDecl -> m DocDecl)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DocDecl -> m DocDecl)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> DocDecl -> m DocDecl)
-> Data DocDecl
DocDecl -> DataType
DocDecl -> Constr
(forall b. Data b => b -> b) -> DocDecl -> DocDecl
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> DocDecl -> u
forall u. (forall d. Data d => d -> u) -> DocDecl -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DocDecl -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DocDecl -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DocDecl
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DocDecl -> c DocDecl
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DocDecl)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocDecl)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> DocDecl -> m DocDecl
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DocDecl -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> DocDecl -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> DocDecl -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> DocDecl -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DocDecl -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> DocDecl -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DocDecl -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> DocDecl -> r
gmapT :: (forall b. Data b => b -> b) -> DocDecl -> DocDecl
$cgmapT :: (forall b. Data b => b -> b) -> DocDecl -> DocDecl
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocDecl)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c DocDecl)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DocDecl)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c DocDecl)
dataTypeOf :: DocDecl -> DataType
$cdataTypeOf :: DocDecl -> DataType
toConstr :: DocDecl -> Constr
$ctoConstr :: DocDecl -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DocDecl
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c DocDecl
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DocDecl -> c DocDecl
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> DocDecl -> c DocDecl
Data

-- Okay, I need to reconstruct the document comments, but for now:
instance Outputable DocDecl where
  ppr :: DocDecl -> SDoc
ppr DocDecl
_ = String -> SDoc
text String
"<document comment>"

docDeclDoc :: DocDecl -> HsDocString
docDeclDoc :: DocDecl -> HsDocString
docDeclDoc (DocCommentNext HsDocString
d) = HsDocString
d
docDeclDoc (DocCommentPrev HsDocString
d) = HsDocString
d
docDeclDoc (DocCommentNamed String
_ HsDocString
d) = HsDocString
d
docDeclDoc (DocGroup Int
_ HsDocString
d) = HsDocString
d

{-
************************************************************************
*                                                                      *
\subsection[DeprecDecl]{Deprecations}
*                                                                      *
************************************************************************

We use exported entities for things to deprecate.
-}

-- | Located Warning Declarations
type LWarnDecls pass = Located (WarnDecls pass)

 -- Note [Pragma source text] in GHC.Types.Basic
-- | Warning pragma Declarations
data WarnDecls pass = Warnings { forall pass. WarnDecls pass -> XWarnings pass
wd_ext      :: XWarnings pass
                               , forall pass. WarnDecls pass -> SourceText
wd_src      :: SourceText
                               , forall pass. WarnDecls pass -> [LWarnDecl pass]
wd_warnings :: [LWarnDecl pass]
                               }
  | XWarnDecls !(XXWarnDecls pass)

type instance XWarnings      (GhcPass _) = NoExtField
type instance XXWarnDecls    (GhcPass _) = NoExtCon

-- | Located Warning pragma Declaration
type LWarnDecl pass = Located (WarnDecl pass)

-- | Warning pragma Declaration
data WarnDecl pass = Warning (XWarning pass) [Located (IdP pass)] WarningTxt
                   | XWarnDecl !(XXWarnDecl pass)

type instance XWarning      (GhcPass _) = NoExtField
type instance XXWarnDecl    (GhcPass _) = NoExtCon


instance OutputableBndr (IdP (GhcPass p))
        => Outputable (WarnDecls (GhcPass p)) where
    ppr :: WarnDecls (GhcPass p) -> SDoc
ppr (Warnings XWarnings (GhcPass p)
_ (SourceText String
src) [LWarnDecl (GhcPass p)]
decls)
      = String -> SDoc
text String
src SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat (SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma ((LWarnDecl (GhcPass p) -> SDoc)
-> [LWarnDecl (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LWarnDecl (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LWarnDecl (GhcPass p)]
decls)) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"#-}"
    ppr (Warnings XWarnings (GhcPass p)
_ SourceText
NoSourceText [LWarnDecl (GhcPass p)]
_decls) = String -> SDoc
forall a. String -> a
panic String
"WarnDecls"

instance OutputableBndr (IdP (GhcPass p))
       => Outputable (WarnDecl (GhcPass p)) where
    ppr :: WarnDecl (GhcPass p) -> SDoc
ppr (Warning XWarning (GhcPass p)
_ [Located (IdP (GhcPass p))]
thing WarningTxt
txt)
      = [SDoc] -> SDoc
hsep ( SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma ((Located (IdGhcP p) -> SDoc) -> [Located (IdGhcP p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Located (IdGhcP p)]
[Located (IdP (GhcPass p))]
thing))
              SDoc -> SDoc -> SDoc
<+> WarningTxt -> SDoc
forall a. Outputable a => a -> SDoc
ppr WarningTxt
txt

{-
************************************************************************
*                                                                      *
\subsection[AnnDecl]{Annotations}
*                                                                      *
************************************************************************
-}

-- | Located Annotation Declaration
type LAnnDecl pass = Located (AnnDecl pass)

-- | Annotation Declaration
data AnnDecl pass = HsAnnotation
                      (XHsAnnotation pass)
                      SourceText -- Note [Pragma source text] in GHC.Types.Basic
                      (AnnProvenance (IdP pass)) (Located (HsExpr pass))
      -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
      --           'GHC.Parser.Annotation.AnnType'
      --           'GHC.Parser.Annotation.AnnModule'
      --           'GHC.Parser.Annotation.AnnClose'

      -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | XAnnDecl !(XXAnnDecl pass)

type instance XHsAnnotation (GhcPass _) = NoExtField
type instance XXAnnDecl     (GhcPass _) = NoExtCon

instance (OutputableBndrId p) => Outputable (AnnDecl (GhcPass p)) where
    ppr :: AnnDecl (GhcPass p) -> SDoc
ppr (HsAnnotation XHsAnnotation (GhcPass p)
_ SourceText
_ AnnProvenance (IdP (GhcPass p))
provenance Located (HsExpr (GhcPass p))
expr)
      = [SDoc] -> SDoc
hsep [String -> SDoc
text String
"{-#", AnnProvenance (IdGhcP p) -> SDoc
forall name. OutputableBndr name => AnnProvenance name -> SDoc
pprAnnProvenance AnnProvenance (IdGhcP p)
AnnProvenance (IdP (GhcPass p))
provenance, HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr (Located (HsExpr (GhcPass p)) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc Located (HsExpr (GhcPass p))
expr), String -> SDoc
text String
"#-}"]

-- | Annotation Provenance
data AnnProvenance name = ValueAnnProvenance (Located name)
                        | TypeAnnProvenance (Located name)
                        | ModuleAnnProvenance
deriving instance Functor     AnnProvenance
deriving instance Foldable    AnnProvenance
deriving instance Traversable AnnProvenance
deriving instance (Data pass) => Data (AnnProvenance pass)

annProvenanceName_maybe :: AnnProvenance name -> Maybe name
annProvenanceName_maybe :: forall name. AnnProvenance name -> Maybe name
annProvenanceName_maybe (ValueAnnProvenance (L SrcSpan
_ name
name)) = name -> Maybe name
forall a. a -> Maybe a
Just name
name
annProvenanceName_maybe (TypeAnnProvenance (L SrcSpan
_ name
name))  = name -> Maybe name
forall a. a -> Maybe a
Just name
name
annProvenanceName_maybe AnnProvenance name
ModuleAnnProvenance       = Maybe name
forall a. Maybe a
Nothing

pprAnnProvenance :: OutputableBndr name => AnnProvenance name -> SDoc
pprAnnProvenance :: forall name. OutputableBndr name => AnnProvenance name -> SDoc
pprAnnProvenance AnnProvenance name
ModuleAnnProvenance       = String -> SDoc
text String
"ANN module"
pprAnnProvenance (ValueAnnProvenance (L SrcSpan
_ name
name))
  = String -> SDoc
text String
"ANN" SDoc -> SDoc -> SDoc
<+> name -> SDoc
forall a. Outputable a => a -> SDoc
ppr name
name
pprAnnProvenance (TypeAnnProvenance (L SrcSpan
_ name
name))
  = String -> SDoc
text String
"ANN type" SDoc -> SDoc -> SDoc
<+> name -> SDoc
forall a. Outputable a => a -> SDoc
ppr name
name

{-
************************************************************************
*                                                                      *
\subsection[RoleAnnot]{Role annotations}
*                                                                      *
************************************************************************
-}

-- | Located Role Annotation Declaration
type LRoleAnnotDecl pass = Located (RoleAnnotDecl pass)

-- See #8185 for more info about why role annotations are
-- top-level declarations
-- | Role Annotation Declaration
data RoleAnnotDecl pass
  = RoleAnnotDecl (XCRoleAnnotDecl pass)
                  (Located (IdP pass))   -- type constructor
                  [Located (Maybe Role)] -- optional annotations
      -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnType',
      --           'GHC.Parser.Annotation.AnnRole'

      -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | XRoleAnnotDecl !(XXRoleAnnotDecl pass)

type instance XCRoleAnnotDecl (GhcPass _) = NoExtField
type instance XXRoleAnnotDecl (GhcPass _) = NoExtCon

instance OutputableBndr (IdP (GhcPass p))
       => Outputable (RoleAnnotDecl (GhcPass p)) where
  ppr :: RoleAnnotDecl (GhcPass p) -> SDoc
ppr (RoleAnnotDecl XCRoleAnnotDecl (GhcPass p)
_ Located (IdP (GhcPass p))
ltycon [Located (Maybe Role)]
roles)
    = String -> SDoc
text String
"type role" SDoc -> SDoc -> SDoc
<+> IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc (GenLocated SrcSpan (IdGhcP p) -> IdGhcP p
forall l e. GenLocated l e -> e
unLoc GenLocated SrcSpan (IdGhcP p)
Located (IdP (GhcPass p))
ltycon) SDoc -> SDoc -> SDoc
<+>
      [SDoc] -> SDoc
hsep ((Located (Maybe Role) -> SDoc) -> [Located (Maybe Role)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (Maybe Role -> SDoc
forall {a}. Outputable a => Maybe a -> SDoc
pp_role (Maybe Role -> SDoc)
-> (Located (Maybe Role) -> Maybe Role)
-> Located (Maybe Role)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Located (Maybe Role) -> Maybe Role
forall l e. GenLocated l e -> e
unLoc) [Located (Maybe Role)]
roles)
    where
      pp_role :: Maybe a -> SDoc
pp_role Maybe a
Nothing  = SDoc
underscore
      pp_role (Just a
r) = a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
r

roleAnnotDeclName :: RoleAnnotDecl (GhcPass p) -> IdP (GhcPass p)
roleAnnotDeclName :: forall (p :: Pass). RoleAnnotDecl (GhcPass p) -> IdP (GhcPass p)
roleAnnotDeclName (RoleAnnotDecl XCRoleAnnotDecl (GhcPass p)
_ (L SrcSpan
_ IdP (GhcPass p)
name) [Located (Maybe Role)]
_) = IdP (GhcPass p)
name