Copyright | Conor McBride and Ross Paterson 2005 |
---|---|
License | BSD-style (see the LICENSE file in the distribution) |
Maintainer | libraries@haskell.org |
Stability | experimental |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
This module describes a structure intermediate between a functor and
a monad (technically, a strong lax monoidal functor). Compared with
monads, this interface lacks the full power of the binding operation
>>=
, but
- it has more instances.
- it is sufficient for many uses, e.g. context-free parsing, or the
Traversable
class. - instances can perform analysis of computations before they are executed, and thus produce shared optimizations.
This interface was introduced for parsers by Niklas Röjemo, because it admits more sharing than the monadic interface. The names here are mostly based on parsing work by Doaitse Swierstra.
For more details, see Applicative Programming with Effects, by Conor McBride and Ross Paterson.
Synopsis
- class Functor f => Applicative f where
- class Applicative f => Alternative f where
- newtype Const a b = Const {
- getConst :: a
- newtype WrappedMonad m a = WrapMonad {
- unwrapMonad :: m a
- newtype WrappedArrow a b c = WrapArrow {
- unwrapArrow :: a b c
- newtype ZipList a = ZipList {
- getZipList :: [a]
- (<$>) :: Functor f => (a -> b) -> f a -> f b
- (<$) :: Functor f => a -> f b -> f a
- (<**>) :: Applicative f => f a -> f (a -> b) -> f b
- liftA :: Applicative f => (a -> b) -> f a -> f b
- liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d
- optional :: Alternative f => f a -> f (Maybe a)
Applicative functors
class Functor f => Applicative f where Source #
A functor with application, providing operations to
A minimal complete definition must include implementations of pure
and of either <*>
or liftA2
. If it defines both, then they must behave
the same as their default definitions:
(<*>
) =liftA2
id
liftA2
f x y = f<$>
x<*>
y
Further, any definition must satisfy the following:
- Identity
pure
id
<*>
v = v- Composition
pure
(.)<*>
u<*>
v<*>
w = u<*>
(v<*>
w)- Homomorphism
pure
f<*>
pure
x =pure
(f x)- Interchange
u
<*>
pure
y =pure
($
y)<*>
u
The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:
As a consequence of these laws, the Functor
instance for f
will satisfy
It may be useful to note that supposing
forall x y. p (q x y) = f x . g y
it follows from the above that
liftA2
p (liftA2
q u v) =liftA2
f u .liftA2
g v
If f
is also a Monad
, it should satisfy
(which implies that pure
and <*>
satisfy the applicative functor laws).
Lift a value.
(<*>) :: f (a -> b) -> f a -> f b infixl 4 Source #
Sequential application.
A few functors support an implementation of <*>
that is more
efficient than the default one.
Using ApplicativeDo
: 'fs
' can be understood as
the <*>
asdo
expression
do f <- fs a <- as pure (f a)
liftA2 :: (a -> b -> c) -> f a -> f b -> f c Source #
Lift a binary function to actions.
Some functors support an implementation of liftA2
that is more
efficient than the default one. In particular, if fmap
is an
expensive operation, it is likely better to use liftA2
than to
fmap
over the structure and then use <*>
.
This became a typeclass method in 4.10.0.0. Prior to that, it was
a function defined in terms of <*>
and fmap
.
Using ApplicativeDo
: '
' can be understood
as the liftA2
f as bsdo
expression
do a <- as b <- bs pure (f a b)
(*>) :: f a -> f b -> f b infixl 4 Source #
Sequence actions, discarding the value of the first argument.
'as
' can be understood as the *>
bsdo
expression
do as bs
This is a tad complicated for our ApplicativeDo
extension
which will give it a Monad
constraint. For an Applicative
constraint we write it of the form
do _ <- as b <- bs pure b
(<*) :: f a -> f b -> f a infixl 4 Source #
Sequence actions, discarding the value of the second argument.
Using ApplicativeDo
: 'as
' can be understood as
the <*
bsdo
expression
do a <- as bs pure a
Instances
Applicative [] # | Since: base-2.1 |
Applicative Maybe # | Since: base-2.1 |
Applicative IO # | Since: base-2.1 |
Applicative Par1 # | Since: base-4.9.0.0 |
Applicative NonEmpty # | Since: base-4.9.0.0 |
Applicative NoIO # | Since: base-4.8.0.0 |
Applicative ReadP # | Since: base-4.6.0.0 |
Applicative ReadPrec # | Since: base-4.6.0.0 |
Defined in Text.ParserCombinators.ReadPrec | |
Applicative Down # | Since: base-4.11.0.0 |
Applicative Product # | Since: base-4.8.0.0 |
Defined in Data.Semigroup.Internal | |
Applicative Sum # | Since: base-4.8.0.0 |
Applicative Dual # | Since: base-4.8.0.0 |
Applicative Last # | Since: base-4.8.0.0 |
Applicative First # | Since: base-4.8.0.0 |
Applicative STM # | Since: base-4.8.0.0 |
Applicative Identity # | Since: base-4.8.0.0 |
Defined in Data.Functor.Identity | |
Applicative ZipList # | f <$> ZipList xs1 <*> ... <*> ZipList xsN = ZipList (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Applicative Option # | Since: base-4.9.0.0 |
Applicative Last # | Since: base-4.9.0.0 |
Applicative First # | Since: base-4.9.0.0 |
Applicative Max # | Since: base-4.9.0.0 |
Applicative Min # | Since: base-4.9.0.0 |
Applicative Complex # | Since: base-4.9.0.0 |
Applicative (Either e) # | Since: base-3.0 |
Defined in Data.Either | |
Applicative (U1 :: Type -> Type) # | Since: base-4.9.0.0 |
Monoid a => Applicative ((,) a) # | For tuples, the ("hello ", (+15)) <*> ("world!", 2002) ("hello world!",2017) Since: base-2.1 |
Applicative (ST s) # | Since: base-4.4.0.0 |
Applicative (Proxy :: Type -> Type) # | Since: base-4.7.0.0 |
Arrow a => Applicative (ArrowMonad a) # | Since: base-4.6.0.0 |
Defined in Control.Arrow pure :: a0 -> ArrowMonad a a0 Source # (<*>) :: ArrowMonad a (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b Source # liftA2 :: (a0 -> b -> c) -> ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a c Source # (*>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b Source # (<*) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a a0 Source # | |
Monad m => Applicative (WrappedMonad m) # | Since: base-2.1 |
Defined in Control.Applicative pure :: a -> WrappedMonad m a Source # (<*>) :: WrappedMonad m (a -> b) -> WrappedMonad m a -> WrappedMonad m b Source # liftA2 :: (a -> b -> c) -> WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m c Source # (*>) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m b Source # (<*) :: WrappedMonad m a -> WrappedMonad m b -> WrappedMonad m a Source # | |
Applicative (ST s) # | Since: base-2.1 |
Applicative f => Applicative (Rec1 f) # | Since: base-4.9.0.0 |
(Monoid a, Monoid b) => Applicative ((,,) a b) # | Since: base-4.14.0.0 |
Defined in GHC.Base | |
Applicative f => Applicative (Alt f) # | Since: base-4.8.0.0 |
Applicative f => Applicative (Ap f) # | Since: base-4.12.0.0 |
Monoid m => Applicative (Const m :: Type -> Type) # | Since: base-2.0.1 |
Applicative m => Applicative (Kleisli m a) # | Since: base-4.14.0.0 |
Defined in Control.Arrow pure :: a0 -> Kleisli m a a0 Source # (<*>) :: Kleisli m a (a0 -> b) -> Kleisli m a a0 -> Kleisli m a b Source # liftA2 :: (a0 -> b -> c) -> Kleisli m a a0 -> Kleisli m a b -> Kleisli m a c Source # (*>) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a b Source # (<*) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a a0 Source # | |
Arrow a => Applicative (WrappedArrow a b) # | Since: base-2.1 |
Defined in Control.Applicative pure :: a0 -> WrappedArrow a b a0 Source # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 Source # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c Source # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 Source # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 Source # | |
Monoid c => Applicative (K1 i c :: Type -> Type) # | Since: base-4.12.0.0 |
(Applicative f, Applicative g) => Applicative (f :*: g) # | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
Applicative ((->) r) # | Since: base-2.1 |
(Monoid a, Monoid b, Monoid c) => Applicative ((,,,) a b c) # | Since: base-4.14.0.0 |
Defined in GHC.Base pure :: a0 -> (a, b, c, a0) Source # (<*>) :: (a, b, c, a0 -> b0) -> (a, b, c, a0) -> (a, b, c, b0) Source # liftA2 :: (a0 -> b0 -> c0) -> (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, c0) Source # (*>) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, b0) Source # (<*) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, a0) Source # | |
(Applicative f, Applicative g) => Applicative (Product f g) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Product pure :: a -> Product f g a Source # (<*>) :: Product f g (a -> b) -> Product f g a -> Product f g b Source # liftA2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c Source # (*>) :: Product f g a -> Product f g b -> Product f g b Source # (<*) :: Product f g a -> Product f g b -> Product f g a Source # | |
Applicative f => Applicative (M1 i c f) # | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(Applicative f, Applicative g) => Applicative (f :.: g) # | Since: base-4.9.0.0 |
Defined in GHC.Generics | |
(Applicative f, Applicative g) => Applicative (Compose f g) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Compose pure :: a -> Compose f g a Source # (<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b Source # liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c Source # (*>) :: Compose f g a -> Compose f g b -> Compose f g b Source # (<*) :: Compose f g a -> Compose f g b -> Compose f g a Source # |
Alternatives
class Applicative f => Alternative f where Source #
A monoid on applicative functors.
If defined, some
and many
should be the least solutions
of the equations:
The identity of <|>
(<|>) :: f a -> f a -> f a infixl 3 Source #
An associative binary operation
One or more.
Zero or more.
Instances
Instances
The Const
functor.
Instances
Generic1 (Const a :: k -> Type) # | |
Show2 (Const :: Type -> Type -> Type) # | Since: base-4.9.0.0 |
Read2 (Const :: Type -> Type -> Type) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) Source # liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] Source # liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) Source # liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] Source # | |
Ord2 (Const :: Type -> Type -> Type) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Eq2 (Const :: Type -> Type -> Type) # | Since: base-4.9.0.0 |
Bifunctor (Const :: Type -> Type -> Type) # | Since: base-4.8.0.0 |
Bifoldable (Const :: Type -> Type -> Type) # | Since: base-4.10.0.0 |
Bitraversable (Const :: Type -> Type -> Type) # | Since: base-4.10.0.0 |
Defined in Data.Bitraversable bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) Source # | |
Functor (Const m :: Type -> Type) # | Since: base-2.1 |
Monoid m => Applicative (Const m :: Type -> Type) # | Since: base-2.0.1 |
Foldable (Const m :: Type -> Type) # | Since: base-4.7.0.0 |
Defined in Data.Functor.Const fold :: Monoid m0 => Const m m0 -> m0 Source # foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source # foldMap' :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source # foldr :: (a -> b -> b) -> b -> Const m a -> b Source # foldr' :: (a -> b -> b) -> b -> Const m a -> b Source # foldl :: (b -> a -> b) -> b -> Const m a -> b Source # foldl' :: (b -> a -> b) -> b -> Const m a -> b Source # foldr1 :: (a -> a -> a) -> Const m a -> a Source # foldl1 :: (a -> a -> a) -> Const m a -> a Source # toList :: Const m a -> [a] Source # null :: Const m a -> Bool Source # length :: Const m a -> Int Source # elem :: Eq a => a -> Const m a -> Bool Source # maximum :: Ord a => Const m a -> a Source # minimum :: Ord a => Const m a -> a Source # | |
Traversable (Const m :: Type -> Type) # | Since: base-4.7.0.0 |
Defined in Data.Traversable | |
Show a => Show1 (Const a :: Type -> Type) # | Since: base-4.9.0.0 |
Read a => Read1 (Const a :: Type -> Type) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) Source # liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] Source # liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) Source # liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] Source # | |
Ord a => Ord1 (Const a :: Type -> Type) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Classes | |
Eq a => Eq1 (Const a :: Type -> Type) # | Since: base-4.9.0.0 |
Contravariant (Const a :: Type -> Type) # | |
Bounded a => Bounded (Const a b) # | Since: base-4.9.0.0 |
Enum a => Enum (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const succ :: Const a b -> Const a b Source # pred :: Const a b -> Const a b Source # toEnum :: Int -> Const a b Source # fromEnum :: Const a b -> Int Source # enumFrom :: Const a b -> [Const a b] Source # enumFromThen :: Const a b -> Const a b -> [Const a b] Source # enumFromTo :: Const a b -> Const a b -> [Const a b] Source # enumFromThenTo :: Const a b -> Const a b -> Const a b -> [Const a b] Source # | |
Eq a => Eq (Const a b) # | Since: base-4.9.0.0 |
Floating a => Floating (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const exp :: Const a b -> Const a b Source # log :: Const a b -> Const a b Source # sqrt :: Const a b -> Const a b Source # (**) :: Const a b -> Const a b -> Const a b Source # logBase :: Const a b -> Const a b -> Const a b Source # sin :: Const a b -> Const a b Source # cos :: Const a b -> Const a b Source # tan :: Const a b -> Const a b Source # asin :: Const a b -> Const a b Source # acos :: Const a b -> Const a b Source # atan :: Const a b -> Const a b Source # sinh :: Const a b -> Const a b Source # cosh :: Const a b -> Const a b Source # tanh :: Const a b -> Const a b Source # asinh :: Const a b -> Const a b Source # acosh :: Const a b -> Const a b Source # atanh :: Const a b -> Const a b Source # log1p :: Const a b -> Const a b Source # expm1 :: Const a b -> Const a b Source # | |
Fractional a => Fractional (Const a b) # | Since: base-4.9.0.0 |
Integral a => Integral (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const quot :: Const a b -> Const a b -> Const a b Source # rem :: Const a b -> Const a b -> Const a b Source # div :: Const a b -> Const a b -> Const a b Source # mod :: Const a b -> Const a b -> Const a b Source # quotRem :: Const a b -> Const a b -> (Const a b, Const a b) Source # divMod :: Const a b -> Const a b -> (Const a b, Const a b) Source # | |
(Typeable k, Data a, Typeable b) => Data (Const a b) # | Since: base-4.10.0.0 |
Defined in Data.Data gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Const a b -> c (Const a b) Source # gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Const a b) Source # toConstr :: Const a b -> Constr Source # dataTypeOf :: Const a b -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Const a b)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Const a b)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> Const a b -> Const a b Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Const a b -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Const a b -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Const a b -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Const a b -> m (Const a b) Source # | |
Num a => Num (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const (+) :: Const a b -> Const a b -> Const a b Source # (-) :: Const a b -> Const a b -> Const a b Source # (*) :: Const a b -> Const a b -> Const a b Source # negate :: Const a b -> Const a b Source # abs :: Const a b -> Const a b Source # signum :: Const a b -> Const a b Source # fromInteger :: Integer -> Const a b Source # | |
Ord a => Ord (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
Read a => Read (Const a b) # | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Real a => Real (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const toRational :: Const a b -> Rational Source # | |
RealFloat a => RealFloat (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const floatRadix :: Const a b -> Integer Source # floatDigits :: Const a b -> Int Source # floatRange :: Const a b -> (Int, Int) Source # decodeFloat :: Const a b -> (Integer, Int) Source # encodeFloat :: Integer -> Int -> Const a b Source # exponent :: Const a b -> Int Source # significand :: Const a b -> Const a b Source # scaleFloat :: Int -> Const a b -> Const a b Source # isNaN :: Const a b -> Bool Source # isInfinite :: Const a b -> Bool Source # isDenormalized :: Const a b -> Bool Source # isNegativeZero :: Const a b -> Bool Source # | |
RealFrac a => RealFrac (Const a b) # | Since: base-4.9.0.0 |
Show a => Show (Const a b) # | This instance would be equivalent to the derived instances of the
Since: base-4.8.0.0 |
Ix a => Ix (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
IsString a => IsString (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.String fromString :: String -> Const a b Source # | |
Generic (Const a b) # | |
Semigroup a => Semigroup (Const a b) # | Since: base-4.9.0.0 |
Monoid a => Monoid (Const a b) # | Since: base-4.9.0.0 |
FiniteBits a => FiniteBits (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const finiteBitSize :: Const a b -> Int Source # countLeadingZeros :: Const a b -> Int Source # countTrailingZeros :: Const a b -> Int Source # | |
Bits a => Bits (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const (.&.) :: Const a b -> Const a b -> Const a b Source # (.|.) :: Const a b -> Const a b -> Const a b Source # xor :: Const a b -> Const a b -> Const a b Source # complement :: Const a b -> Const a b Source # shift :: Const a b -> Int -> Const a b Source # rotate :: Const a b -> Int -> Const a b Source # zeroBits :: Const a b Source # bit :: Int -> Const a b Source # setBit :: Const a b -> Int -> Const a b Source # clearBit :: Const a b -> Int -> Const a b Source # complementBit :: Const a b -> Int -> Const a b Source # testBit :: Const a b -> Int -> Bool Source # bitSizeMaybe :: Const a b -> Maybe Int Source # bitSize :: Const a b -> Int Source # isSigned :: Const a b -> Bool Source # shiftL :: Const a b -> Int -> Const a b Source # unsafeShiftL :: Const a b -> Int -> Const a b Source # shiftR :: Const a b -> Int -> Const a b Source # unsafeShiftR :: Const a b -> Int -> Const a b Source # rotateL :: Const a b -> Int -> Const a b Source # | |
Storable a => Storable (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const sizeOf :: Const a b -> Int Source # alignment :: Const a b -> Int Source # peekElemOff :: Ptr (Const a b) -> Int -> IO (Const a b) Source # pokeElemOff :: Ptr (Const a b) -> Int -> Const a b -> IO () Source # peekByteOff :: Ptr b0 -> Int -> IO (Const a b) Source # pokeByteOff :: Ptr b0 -> Int -> Const a b -> IO () Source # | |
type Rep1 (Const a :: k -> Type) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const | |
type Rep (Const a b) # | Since: base-4.9.0.0 |
Defined in Data.Functor.Const |
newtype WrappedMonad m a Source #
WrapMonad | |
|
Instances
newtype WrappedArrow a b c Source #
WrapArrow | |
|
Instances
Generic1 (WrappedArrow a b :: Type -> Type) # | |
Defined in Control.Applicative type Rep1 (WrappedArrow a b) :: k -> Type Source # from1 :: forall (a0 :: k). WrappedArrow a b a0 -> Rep1 (WrappedArrow a b) a0 Source # to1 :: forall (a0 :: k). Rep1 (WrappedArrow a b) a0 -> WrappedArrow a b a0 Source # | |
Arrow a => Functor (WrappedArrow a b) # | Since: base-2.1 |
Defined in Control.Applicative fmap :: (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 Source # (<$) :: a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 Source # | |
Arrow a => Applicative (WrappedArrow a b) # | Since: base-2.1 |
Defined in Control.Applicative pure :: a0 -> WrappedArrow a b a0 Source # (<*>) :: WrappedArrow a b (a0 -> b0) -> WrappedArrow a b a0 -> WrappedArrow a b b0 Source # liftA2 :: (a0 -> b0 -> c) -> WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b c Source # (*>) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b b0 Source # (<*) :: WrappedArrow a b a0 -> WrappedArrow a b b0 -> WrappedArrow a b a0 Source # | |
(ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b) # | Since: base-2.1 |
Defined in Control.Applicative empty :: WrappedArrow a b a0 Source # (<|>) :: WrappedArrow a b a0 -> WrappedArrow a b a0 -> WrappedArrow a b a0 Source # some :: WrappedArrow a b a0 -> WrappedArrow a b [a0] Source # many :: WrappedArrow a b a0 -> WrappedArrow a b [a0] Source # | |
(Typeable a, Typeable b, Typeable c, Data (a b c)) => Data (WrappedArrow a b c) # | Since: base-4.14.0.0 |
Defined in Data.Data gfoldl :: (forall d b0. Data d => c0 (d -> b0) -> d -> c0 b0) -> (forall g. g -> c0 g) -> WrappedArrow a b c -> c0 (WrappedArrow a b c) Source # gunfold :: (forall b0 r. Data b0 => c0 (b0 -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (WrappedArrow a b c) Source # toConstr :: WrappedArrow a b c -> Constr Source # dataTypeOf :: WrappedArrow a b c -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (WrappedArrow a b c)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (WrappedArrow a b c)) Source # gmapT :: (forall b0. Data b0 => b0 -> b0) -> WrappedArrow a b c -> WrappedArrow a b c Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> WrappedArrow a b c -> r Source # gmapQ :: (forall d. Data d => d -> u) -> WrappedArrow a b c -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> WrappedArrow a b c -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> WrappedArrow a b c -> m (WrappedArrow a b c) Source # | |
Generic (WrappedArrow a b c) # | |
Defined in Control.Applicative from :: WrappedArrow a b c -> Rep (WrappedArrow a b c) x Source # to :: Rep (WrappedArrow a b c) x -> WrappedArrow a b c Source # | |
type Rep1 (WrappedArrow a b :: Type -> Type) # | Since: base-4.7.0.0 |
Defined in Control.Applicative type Rep1 (WrappedArrow a b :: Type -> Type) = D1 ('MetaData "WrappedArrow" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapArrow" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapArrow") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec1 (a b)))) | |
type Rep (WrappedArrow a b c) # | Since: base-4.7.0.0 |
Defined in Control.Applicative type Rep (WrappedArrow a b c) = D1 ('MetaData "WrappedArrow" "Control.Applicative" "base" 'True) (C1 ('MetaCons "WrapArrow" 'PrefixI 'True) (S1 ('MetaSel ('Just "unwrapArrow") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (a b c)))) |
Lists, but with an Applicative
functor based on zipping.
ZipList | |
|
Instances
Functor ZipList # | Since: base-2.1 |
Applicative ZipList # | f <$> ZipList xs1 <*> ... <*> ZipList xsN = ZipList (zipWithN f xs1 ... xsN) where (\a b c -> stimes c [a, b]) <$> ZipList "abcd" <*> ZipList "567" <*> ZipList [1..] = ZipList (zipWith3 (\a b c -> stimes c [a, b]) "abcd" "567" [1..]) = ZipList {getZipList = ["a5","b6b6","c7c7c7"]} Since: base-2.1 |
Foldable ZipList # | Since: base-4.9.0.0 |
Defined in Control.Applicative fold :: Monoid m => ZipList m -> m Source # foldMap :: Monoid m => (a -> m) -> ZipList a -> m Source # foldMap' :: Monoid m => (a -> m) -> ZipList a -> m Source # foldr :: (a -> b -> b) -> b -> ZipList a -> b Source # foldr' :: (a -> b -> b) -> b -> ZipList a -> b Source # foldl :: (b -> a -> b) -> b -> ZipList a -> b Source # foldl' :: (b -> a -> b) -> b -> ZipList a -> b Source # foldr1 :: (a -> a -> a) -> ZipList a -> a Source # foldl1 :: (a -> a -> a) -> ZipList a -> a Source # toList :: ZipList a -> [a] Source # null :: ZipList a -> Bool Source # length :: ZipList a -> Int Source # elem :: Eq a => a -> ZipList a -> Bool Source # maximum :: Ord a => ZipList a -> a Source # minimum :: Ord a => ZipList a -> a Source # | |
Traversable ZipList # | Since: base-4.9.0.0 |
Defined in Data.Traversable | |
Alternative ZipList # | Since: base-4.11.0.0 |
IsList (ZipList a) # | Since: base-4.15.0.0 |
Eq a => Eq (ZipList a) # | Since: base-4.7.0.0 |
Data a => Data (ZipList a) # | Since: base-4.14.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ZipList a -> c (ZipList a) Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (ZipList a) Source # toConstr :: ZipList a -> Constr Source # dataTypeOf :: ZipList a -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (ZipList a)) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (ZipList a)) Source # gmapT :: (forall b. Data b => b -> b) -> ZipList a -> ZipList a Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ZipList a -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ZipList a -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ZipList a -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ZipList a -> m (ZipList a) Source # | |
Ord a => Ord (ZipList a) # | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
Read a => Read (ZipList a) # | Since: base-4.7.0.0 |
Show a => Show (ZipList a) # | Since: base-4.7.0.0 |
Generic (ZipList a) # | |
Generic1 ZipList # | |
type Rep (ZipList a) # | Since: base-4.7.0.0 |
Defined in Control.Applicative | |
type Item (ZipList a) # | |
type Rep1 ZipList # | Since: base-4.7.0.0 |
Defined in Control.Applicative |
Utility functions
(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 Source #
An infix synonym for fmap
.
The name of this operator is an allusion to $
.
Note the similarities between their types:
($) :: (a -> b) -> a -> b (<$>) :: Functor f => (a -> b) -> f a -> f b
Whereas $
is function application, <$>
is function
application lifted over a Functor
.
Examples
Convert from a
to a Maybe
Int
using Maybe
String
show
:
>>>
show <$> Nothing
Nothing>>>
show <$> Just 3
Just "3"
Convert from an
to an
Either
Int
Int
Either
Int
String
using show
:
>>>
show <$> Left 17
Left 17>>>
show <$> Right 17
Right "17"
Double each element of a list:
>>>
(*2) <$> [1,2,3]
[2,4,6]
Apply even
to the second element of a pair:
>>>
even <$> (2,2)
(2,True)
(<**>) :: Applicative f => f a -> f (a -> b) -> f b infixl 4 Source #
liftA :: Applicative f => (a -> b) -> f a -> f b Source #
liftA3 :: Applicative f => (a -> b -> c -> d) -> f a -> f b -> f c -> f d Source #
Lift a ternary function to actions.
Using ApplicativeDo
: '
' can be understood
as the liftA3
f as bs csdo
expression
do a <- as b <- bs c <- cs pure (f a b c)
optional :: Alternative f => f a -> f (Maybe a) Source #
One or none.
It is useful for modelling any computation that is allowed to fail.
Examples
Using the Alternative
instance of Except
, the following functions:
>>>
canFail = throwError "it failed" :: Except String Int
>>>
final = return 42 :: Except String Int
Can be combined by allowing the first function to fail:
>>>
runExcept $ canFail *> final
Left "it failed">>>
runExcept $ optional canFail *> final
Right 42