{-# LANGUAGE CPP, DeriveFunctor, MultiWayIf, TupleSections,
ScopedTypeVariables #-}
{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}
module GHC.Tc.Utils.Unify (
tcWrapResult, tcWrapResultO, tcWrapResultMono,
tcSkolemise, tcSkolemiseScoped, tcSkolemiseET,
tcSubType, tcSubTypeSigma, tcSubTypePat,
tcSubMult,
checkConstraints, checkTvConstraints,
buildImplicationFor, buildTvImplication, emitResidualTvConstraint,
unifyType, unifyKind,
uType, promoteTcType,
swapOverTyVars, canSolveByUnification,
tcInfer,
matchExpectedListTy,
matchExpectedTyConApp,
matchExpectedAppTy,
matchExpectedFunTys,
matchActualFunTysRho, matchActualFunTySigma,
matchExpectedFunKind,
metaTyVarUpdateOK, occCheckForErrors, MetaTyVarUpdateResult(..)
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Hs
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr( debugPprType )
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.Env
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.Multiplicity
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
import GHC.Types.Name( isSystemName )
import GHC.Tc.Utils.Instantiate
import GHC.Core.TyCon
import GHC.Builtin.Types
import GHC.Types.Var as Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Error
import GHC.Driver.Session
import GHC.Types.Basic
import GHC.Data.Bag
import GHC.Utils.Misc
import qualified GHC.LanguageExtensions as LangExt
import GHC.Utils.Outputable as Outputable
import Control.Monad
import Control.Arrow ( second )
matchExpectedFunTys :: forall a.
SDoc
-> UserTypeCtxt
-> Arity
-> ExpRhoType
-> ([Scaled ExpSigmaType] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchExpectedFunTys :: forall a.
SDoc
-> UserTypeCtxt
-> Int
-> ExpRhoType
-> ([Scaled ExpRhoType] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchExpectedFunTys SDoc
herald UserTypeCtxt
ctx Int
arity ExpRhoType
orig_ty [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside
= case ExpRhoType
orig_ty of
Check TcType
ty -> [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [] Int
arity TcType
ty
ExpRhoType
_ -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [] Int
arity ExpRhoType
orig_ty
where
go :: [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty
| ([TcTyVar]
tvs, ThetaType
theta, TcType
_) <- TcType -> ([TcTyVar], ThetaType, TcType)
tcSplitSigmaTy TcType
ty
, Bool -> Bool
not ([TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& ThetaType -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta)
= do { (HsWrapper
wrap_gen, (HsWrapper
wrap_res, a
result)) <- UserTypeCtxt
-> TcType
-> (TcType -> TcM (HsWrapper, a))
-> TcM (HsWrapper, (HsWrapper, a))
forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctx TcType
ty ((TcType -> TcM (HsWrapper, a)) -> TcM (HsWrapper, (HsWrapper, a)))
-> (TcType -> TcM (HsWrapper, a))
-> TcM (HsWrapper, (HsWrapper, a))
forall a b. (a -> b) -> a -> b
$ \TcType
ty' ->
[Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty'
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_gen HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_res, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
0 TcType
rho_ty
= do { a
result <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys) (TcType -> ExpRhoType
mkCheckExpType TcType
rho_ty)
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, a
result) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty
| Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty = [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty'
go [Scaled ExpRhoType]
acc_arg_tys Int
n (FunTy { ft_mult :: TcType -> TcType
ft_mult = TcType
mult, ft_af :: TcType -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_arg :: TcType -> TcType
ft_arg = TcType
arg_ty, ft_res :: TcType -> TcType
ft_res = TcType
res_ty })
= ASSERT( af == VisArg )
do { (HsWrapper
wrap_res, a
result) <- [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go ((TcType -> ExpRhoType -> Scaled ExpRhoType
forall a. TcType -> a -> Scaled a
Scaled TcType
mult (ExpRhoType -> Scaled ExpRhoType)
-> ExpRhoType -> Scaled ExpRhoType
forall a b. (a -> b) -> a -> b
$ TcType -> ExpRhoType
mkCheckExpType TcType
arg_ty) Scaled ExpRhoType -> [Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. a -> [a] -> [a]
: [Scaled ExpRhoType]
acc_arg_tys)
(Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) TcType
res_ty
; let fun_wrap :: HsWrapper
fun_wrap = HsWrapper
-> HsWrapper -> Scaled TcType -> TcType -> SDoc -> HsWrapper
mkWpFun HsWrapper
idHsWrapper HsWrapper
wrap_res (TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
mult TcType
arg_ty) TcType
res_ty SDoc
doc
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return ( HsWrapper
fun_wrap, a
result ) }
where
doc :: SDoc
doc = String -> SDoc
text String
"When inferring the argument type of a function with type" SDoc -> SDoc -> SDoc
<+>
SDoc -> SDoc
quotes (ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
orig_ty)
go [Scaled ExpRhoType]
acc_arg_tys Int
n ty :: TcType
ty@(TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect TcType
ty' -> [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty'
MetaDetails
Flexi -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (TcType -> ExpRhoType
mkCheckExpType TcType
ty) }
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty = (TidyEnv -> TcM (TidyEnv, SDoc))
-> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM ([Scaled ExpRhoType] -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
acc_arg_tys TcType
ty) (TcM (HsWrapper, a) -> TcM (HsWrapper, a))
-> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a b. (a -> b) -> a -> b
$
[Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (TcType -> ExpRhoType
mkCheckExpType TcType
ty)
defer :: [Scaled ExpSigmaType] -> Arity -> ExpRhoType -> TcM (HsWrapper, a)
defer :: [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n ExpRhoType
fun_ty
= do { [Scaled ExpRhoType]
more_arg_tys <- Int
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) [Scaled ExpRhoType]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
n (TcType -> ExpRhoType -> Scaled ExpRhoType
forall a. TcType -> a -> Scaled a
mkScaled (TcType -> ExpRhoType -> Scaled ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) TcType
-> IOEnv (Env TcGblEnv TcLclEnv) (ExpRhoType -> Scaled ExpRhoType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
multiplicityTy IOEnv (Env TcGblEnv TcLclEnv) (ExpRhoType -> Scaled ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) ExpRhoType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> IOEnv (Env TcGblEnv TcLclEnv) ExpRhoType
newInferExpType)
; ExpRhoType
res_ty <- IOEnv (Env TcGblEnv TcLclEnv) ExpRhoType
newInferExpType
; a
result <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys [Scaled ExpRhoType] -> [Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a] -> [a]
++ [Scaled ExpRhoType]
more_arg_tys) ExpRhoType
res_ty
; [Scaled TcType]
more_arg_tys <- (Scaled ExpRhoType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcType))
-> [Scaled ExpRhoType]
-> IOEnv (Env TcGblEnv TcLclEnv) [Scaled TcType]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\(Scaled TcType
m ExpRhoType
t) -> TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
m (TcType -> Scaled TcType)
-> IOEnv (Env TcGblEnv TcLclEnv) TcType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
readExpType ExpRhoType
t) [Scaled ExpRhoType]
more_arg_tys
; TcType
res_ty <- ExpRhoType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
readExpType ExpRhoType
res_ty
; let unif_fun_ty :: TcType
unif_fun_ty = [Scaled TcType] -> TcType -> TcType
mkVisFunTys [Scaled TcType]
more_arg_tys TcType
res_ty
; HsWrapper
wrap <- CtOrigin -> UserTypeCtxt -> TcType -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
AppOrigin UserTypeCtxt
ctx TcType
unif_fun_ty ExpRhoType
fun_ty
; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap, a
result) }
mk_ctxt :: [Scaled ExpSigmaType] -> TcType -> TidyEnv -> TcM (TidyEnv, MsgDoc)
mk_ctxt :: [Scaled ExpRhoType] -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
arg_tys TcType
res_ty TidyEnv
env
= do { (TidyEnv
env', TcType
ty) <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
env ([Scaled TcType] -> TcType -> TcType
mkVisFunTys [Scaled TcType]
arg_tys' TcType
res_ty)
; (TidyEnv, SDoc) -> TcM (TidyEnv, SDoc)
forall (m :: * -> *) a. Monad m => a -> m a
return ( TidyEnv
env', SDoc -> TcType -> Int -> SDoc
mk_fun_tys_msg SDoc
herald TcType
ty Int
arity) }
where
arg_tys' :: [Scaled TcType]
arg_tys' = (Scaled ExpRhoType -> Scaled TcType)
-> [Scaled ExpRhoType] -> [Scaled TcType]
forall a b. (a -> b) -> [a] -> [b]
map (\(Scaled TcType
u ExpRhoType
v) -> TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
u (String -> ExpRhoType -> TcType
checkingExpType String
"matchExpectedFunTys" ExpRhoType
v)) ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
arg_tys)
matchActualFunTysRho :: SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> Arity
-> TcSigmaType
-> TcM (HsWrapper, [Scaled TcSigmaType], TcRhoType)
matchActualFunTysRho :: SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> Int
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
matchActualFunTysRho SDoc
herald CtOrigin
ct_orig Maybe (HsExpr GhcRn)
mb_thing Int
n_val_args_wanted TcType
fun_ty
= Int
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
forall {t}.
(Eq t, Num t) =>
t
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
go Int
n_val_args_wanted [] TcType
fun_ty
where
go :: t
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
go t
0 [Scaled TcType]
_ TcType
fun_ty
= do { (HsWrapper
wrap, TcType
rho) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
ct_orig TcType
fun_ty
; (HsWrapper, [Scaled TcType], TcType)
-> TcM (HsWrapper, [Scaled TcType], TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap, [], TcType
rho) }
go t
n [Scaled TcType]
so_far TcType
fun_ty
= do { (HsWrapper
wrap_fun1, Scaled TcType
arg_ty1, TcType
res_ty1) <- SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> (Int, [Scaled TcType])
-> TcType
-> TcM (HsWrapper, Scaled TcType, TcType)
matchActualFunTySigma
SDoc
herald CtOrigin
ct_orig Maybe (HsExpr GhcRn)
mb_thing
(Int
n_val_args_wanted, [Scaled TcType]
so_far)
TcType
fun_ty
; (HsWrapper
wrap_res, [Scaled TcType]
arg_tys, TcType
res_ty) <- t
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
go (t
nt -> t -> t
forall a. Num a => a -> a -> a
-t
1) (Scaled TcType
arg_ty1Scaled TcType -> [Scaled TcType] -> [Scaled TcType]
forall a. a -> [a] -> [a]
:[Scaled TcType]
so_far) TcType
res_ty1
; let wrap_fun2 :: HsWrapper
wrap_fun2 = HsWrapper
-> HsWrapper -> Scaled TcType -> TcType -> SDoc -> HsWrapper
mkWpFun HsWrapper
idHsWrapper HsWrapper
wrap_res Scaled TcType
arg_ty1 TcType
res_ty SDoc
doc
; (HsWrapper, [Scaled TcType], TcType)
-> TcM (HsWrapper, [Scaled TcType], TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_fun2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_fun1, Scaled TcType
arg_ty1Scaled TcType -> [Scaled TcType] -> [Scaled TcType]
forall a. a -> [a] -> [a]
:[Scaled TcType]
arg_tys, TcType
res_ty) }
where
doc :: SDoc
doc = String -> SDoc
text String
"When inferring the argument type of a function with type" SDoc -> SDoc -> SDoc
<+>
SDoc -> SDoc
quotes (TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
fun_ty)
matchActualFunTySigma
:: SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> (Arity, [Scaled TcSigmaType])
-> TcSigmaType
-> TcM (HsWrapper, Scaled TcSigmaType, TcSigmaType)
matchActualFunTySigma :: SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> (Int, [Scaled TcType])
-> TcType
-> TcM (HsWrapper, Scaled TcType, TcType)
matchActualFunTySigma SDoc
herald CtOrigin
ct_orig Maybe (HsExpr GhcRn)
mb_thing (Int, [Scaled TcType])
err_info TcType
fun_ty
= TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
fun_ty
where
go :: TcSigmaType
-> TcM (HsWrapper, Scaled TcSigmaType, TcSigmaType)
go :: TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
ty | Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty = TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
ty'
go TcType
ty
| Bool -> Bool
not ([TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& ThetaType -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta)
= do { (HsWrapper
wrap1, TcType
rho) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
ct_orig TcType
ty
; (HsWrapper
wrap2, Scaled TcType
arg_ty, TcType
res_ty) <- TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
rho
; (HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap1, Scaled TcType
arg_ty, TcType
res_ty) }
where
([TcTyVar]
tvs, ThetaType
theta, TcType
_) = TcType -> ([TcTyVar], ThetaType, TcType)
tcSplitSigmaTy TcType
ty
go (FunTy { ft_af :: TcType -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_mult :: TcType -> TcType
ft_mult = TcType
w, ft_arg :: TcType -> TcType
ft_arg = TcType
arg_ty, ft_res :: TcType -> TcType
ft_res = TcType
res_ty })
= ASSERT( af == VisArg )
(HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
w TcType
arg_ty, TcType
res_ty)
go ty :: TcType
ty@(TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect TcType
ty' -> TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
ty'
MetaDetails
Flexi -> TcType -> TcM (HsWrapper, Scaled TcType, TcType)
defer TcType
ty }
go TcType
ty = (TidyEnv -> TcM (TidyEnv, SDoc))
-> TcM (HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM (TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt TcType
ty) (TcType -> TcM (HsWrapper, Scaled TcType, TcType)
defer TcType
ty)
defer :: TcType -> TcM (HsWrapper, Scaled TcType, TcType)
defer TcType
fun_ty
= do { TcType
arg_ty <- IOEnv (Env TcGblEnv TcLclEnv) TcType
newOpenFlexiTyVarTy
; TcType
res_ty <- IOEnv (Env TcGblEnv TcLclEnv) TcType
newOpenFlexiTyVarTy
; TcType
mult <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
multiplicityTy
; let unif_fun_ty :: TcType
unif_fun_ty = TcType -> TcType -> TcType -> TcType
mkVisFunTy TcType
mult TcType
arg_ty TcType
res_ty
; Coercion
co <- Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
mb_thing TcType
fun_ty TcType
unif_fun_ty
; (HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co, TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
mult TcType
arg_ty, TcType
res_ty) }
mk_ctxt :: TcType -> TidyEnv -> TcM (TidyEnv, MsgDoc)
mk_ctxt :: TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt TcType
res_ty TidyEnv
env
= do { (TidyEnv
env', TcType
ty) <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
env (TcType -> TcM (TidyEnv, TcType))
-> TcType -> TcM (TidyEnv, TcType)
forall a b. (a -> b) -> a -> b
$
[Scaled TcType] -> TcType -> TcType
mkVisFunTys ([Scaled TcType] -> [Scaled TcType]
forall a. [a] -> [a]
reverse [Scaled TcType]
arg_tys_so_far) TcType
res_ty
; (TidyEnv, SDoc) -> TcM (TidyEnv, SDoc)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
env', SDoc -> TcType -> Int -> SDoc
mk_fun_tys_msg SDoc
herald TcType
ty Int
n_val_args_in_call) }
(Int
n_val_args_in_call, [Scaled TcType]
arg_tys_so_far) = (Int, [Scaled TcType])
err_info
mk_fun_tys_msg :: SDoc -> TcType -> Arity -> SDoc
mk_fun_tys_msg :: SDoc -> TcType -> Int -> SDoc
mk_fun_tys_msg SDoc
herald TcType
ty Int
n_args_in_call
| Int
n_args_in_call Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
n_fun_args
= String -> SDoc
text String
"In the result of a function call"
| Bool
otherwise
= SDoc -> Int -> SDoc -> SDoc
hang (SDoc
herald SDoc -> SDoc -> SDoc
<+> Int -> SDoc -> SDoc
speakNOf Int
n_args_in_call (String -> SDoc
text String
"value argument") SDoc -> SDoc -> SDoc
<> SDoc
comma)
Int
2 ([SDoc] -> SDoc
sep [ String -> SDoc
text String
"but its type" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (TcType -> SDoc
pprType TcType
ty)
, if Int
n_fun_args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then String -> SDoc
text String
"has none"
else String -> SDoc
text String
"has only" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
speakN Int
n_fun_args])
where
([Scaled TcType]
args, TcType
_) = TcType -> ([Scaled TcType], TcType)
tcSplitFunTys TcType
ty
n_fun_args :: Int
n_fun_args = [Scaled TcType] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled TcType]
args
matchExpectedListTy :: TcRhoType -> TcM (TcCoercionN, TcRhoType)
matchExpectedListTy :: TcType -> TcM (Coercion, TcType)
matchExpectedListTy TcType
exp_ty
= do { (Coercion
co, [TcType
elt_ty]) <- TyCon -> TcType -> TcM (Coercion, ThetaType)
matchExpectedTyConApp TyCon
listTyCon TcType
exp_ty
; (Coercion, TcType) -> TcM (Coercion, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, TcType
elt_ty) }
matchExpectedTyConApp :: TyCon
-> TcRhoType
-> TcM (TcCoercionN,
[TcSigmaType])
matchExpectedTyConApp :: TyCon -> TcType -> TcM (Coercion, ThetaType)
matchExpectedTyConApp TyCon
tc TcType
orig_ty
= ASSERT(not $ isFunTyCon tc) go orig_ty
where
go :: TcType -> TcM (Coercion, ThetaType)
go TcType
ty
| Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty
= TcType -> TcM (Coercion, ThetaType)
go TcType
ty'
go ty :: TcType
ty@(TyConApp TyCon
tycon ThetaType
args)
| TyCon
tc TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tycon
= (Coercion, ThetaType) -> TcM (Coercion, ThetaType)
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkTcNomReflCo TcType
ty, ThetaType
args)
go (TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect TcType
ty -> TcType -> TcM (Coercion, ThetaType)
go TcType
ty
MetaDetails
Flexi -> TcM (Coercion, ThetaType)
defer }
go TcType
_ = TcM (Coercion, ThetaType)
defer
defer :: TcM (Coercion, ThetaType)
defer
= do { (TCvSubst
_, [TcTyVar]
arg_tvs) <- [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
newMetaTyVars (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc)
; String -> SDoc -> TcRn ()
traceTc String
"matchExpectedTyConApp" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc) SDoc -> SDoc -> SDoc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
arg_tvs)
; let args :: ThetaType
args = [TcTyVar] -> ThetaType
mkTyVarTys [TcTyVar]
arg_tvs
tc_template :: TcType
tc_template = TyCon -> ThetaType -> TcType
mkTyConApp TyCon
tc ThetaType
args
; Coercion
co <- Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing TcType
tc_template TcType
orig_ty
; (Coercion, ThetaType) -> TcM (Coercion, ThetaType)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, ThetaType
args) }
matchExpectedAppTy :: TcRhoType
-> TcM (TcCoercion,
(TcSigmaType, TcSigmaType))
matchExpectedAppTy :: TcType -> TcM (Coercion, (TcType, TcType))
matchExpectedAppTy TcType
orig_ty
= TcType -> TcM (Coercion, (TcType, TcType))
go TcType
orig_ty
where
go :: TcType -> TcM (Coercion, (TcType, TcType))
go TcType
ty
| Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty = TcType -> TcM (Coercion, (TcType, TcType))
go TcType
ty'
| Just (TcType
fun_ty, TcType
arg_ty) <- TcType -> Maybe (TcType, TcType)
tcSplitAppTy_maybe TcType
ty
= (Coercion, (TcType, TcType)) -> TcM (Coercion, (TcType, TcType))
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkTcNomReflCo TcType
orig_ty, (TcType
fun_ty, TcType
arg_ty))
go (TyVarTy TcTyVar
tv)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
; case MetaDetails
cts of
Indirect TcType
ty -> TcType -> TcM (Coercion, (TcType, TcType))
go TcType
ty
MetaDetails
Flexi -> TcM (Coercion, (TcType, TcType))
defer }
go TcType
_ = TcM (Coercion, (TcType, TcType))
defer
defer :: TcM (Coercion, (TcType, TcType))
defer
= do { TcType
ty1 <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
kind1
; TcType
ty2 <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
kind2
; Coercion
co <- Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing (TcType -> TcType -> TcType
mkAppTy TcType
ty1 TcType
ty2) TcType
orig_ty
; (Coercion, (TcType, TcType)) -> TcM (Coercion, (TcType, TcType))
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, (TcType
ty1, TcType
ty2)) }
orig_kind :: TcType
orig_kind = HasDebugCallStack => TcType -> TcType
TcType -> TcType
tcTypeKind TcType
orig_ty
kind1 :: TcType
kind1 = TcType -> TcType -> TcType
mkVisFunTyMany TcType
liftedTypeKind TcType
orig_kind
kind2 :: TcType
kind2 = TcType
liftedTypeKind
tcWrapResult :: HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResult :: HsExpr GhcRn
-> HsExpr GhcTc -> TcType -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResult HsExpr GhcRn
rn_expr = CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> TcType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO (HsExpr GhcRn -> CtOrigin
exprCtOrigin HsExpr GhcRn
rn_expr) HsExpr GhcRn
rn_expr
tcWrapResultO :: CtOrigin -> HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO :: CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> TcType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO CtOrigin
orig HsExpr GhcRn
rn_expr HsExpr GhcTc
expr TcType
actual_ty ExpRhoType
res_ty
= do { String -> SDoc -> TcRn ()
traceTc String
"tcWrapResult" ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Actual: " SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
actual_ty
, String -> SDoc
text String
"Expected:" SDoc -> SDoc -> SDoc
<+> ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
res_ty ])
; HsWrapper
wrap <- CtOrigin
-> UserTypeCtxt
-> Maybe (HsExpr GhcRn)
-> TcType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
GenSigCtxt (HsExpr GhcRn -> Maybe (HsExpr GhcRn)
forall a. a -> Maybe a
Just HsExpr GhcRn
rn_expr) TcType
actual_ty ExpRhoType
res_ty
; HsExpr GhcTc -> TcM (HsExpr GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap HsWrapper
wrap HsExpr GhcTc
expr) }
tcWrapResultMono :: HsExpr GhcRn -> HsExpr GhcTc
-> TcRhoType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultMono :: HsExpr GhcRn
-> HsExpr GhcTc -> TcType -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResultMono HsExpr GhcRn
rn_expr HsExpr GhcTc
expr TcType
act_ty ExpRhoType
res_ty
= ASSERT2( isRhoTy act_ty, ppr act_ty $$ ppr rn_expr )
do { Coercion
co <- case ExpRhoType
res_ty of
Infer InferResult
inf_res -> TcType -> InferResult -> TcM Coercion
fillInferResult TcType
act_ty InferResult
inf_res
Check TcType
exp_ty -> Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType (HsExpr GhcRn -> Maybe (HsExpr GhcRn)
forall a. a -> Maybe a
Just HsExpr GhcRn
rn_expr) TcType
act_ty TcType
exp_ty
; HsExpr GhcTc -> TcM (HsExpr GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCo Coercion
co HsExpr GhcTc
expr) }
tcSubTypePat :: CtOrigin -> UserTypeCtxt
-> ExpSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypePat :: CtOrigin -> UserTypeCtxt -> ExpRhoType -> TcType -> TcM HsWrapper
tcSubTypePat CtOrigin
inst_orig UserTypeCtxt
ctxt (Check TcType
ty_actual) TcType
ty_expected
= (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type TcType -> TcType -> TcM Coercion
unifyTypeET CtOrigin
inst_orig UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected
tcSubTypePat CtOrigin
_ UserTypeCtxt
_ (Infer InferResult
inf_res) TcType
ty_expected
= do { Coercion
co <- TcType -> InferResult -> TcM Coercion
fillInferResult TcType
ty_expected InferResult
inf_res
; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN (Coercion -> Coercion
mkTcSymCo Coercion
co)) }
tcSubType :: CtOrigin -> UserTypeCtxt
-> TcSigmaType
-> ExpRhoType
-> TcM HsWrapper
tcSubType :: CtOrigin -> UserTypeCtxt -> TcType -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
orig UserTypeCtxt
ctxt TcType
ty_actual ExpRhoType
ty_expected
= TcType -> ExpRhoType -> TcM HsWrapper -> TcM HsWrapper
forall a. TcType -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt TcType
ty_actual ExpRhoType
ty_expected (TcM HsWrapper -> TcM HsWrapper) -> TcM HsWrapper -> TcM HsWrapper
forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcRn ()
traceTc String
"tcSubType" ([SDoc] -> SDoc
vcat [UserTypeCtxt -> SDoc
pprUserTypeCtxt UserTypeCtxt
ctxt, TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual, ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
ty_expected])
; CtOrigin
-> UserTypeCtxt
-> Maybe (HsExpr GhcRn)
-> TcType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
ctxt Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing TcType
ty_actual ExpRhoType
ty_expected }
tcSubTypeNC :: CtOrigin
-> UserTypeCtxt
-> Maybe (HsExpr GhcRn)
-> TcSigmaType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC :: CtOrigin
-> UserTypeCtxt
-> Maybe (HsExpr GhcRn)
-> TcType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
inst_orig UserTypeCtxt
ctxt Maybe (HsExpr GhcRn)
m_thing TcType
ty_actual ExpRhoType
res_ty
= case ExpRhoType
res_ty of
Check TcType
ty_expected -> (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type (Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
m_thing) CtOrigin
inst_orig UserTypeCtxt
ctxt
TcType
ty_actual TcType
ty_expected
Infer InferResult
inf_res -> do { (HsWrapper
wrap, TcType
rho) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
inst_orig TcType
ty_actual
; Coercion
co <- TcType -> InferResult -> TcM Coercion
fillInferResult TcType
rho InferResult
inf_res
; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }
tcSubTypeSigma :: UserTypeCtxt -> TcSigmaType -> TcSigmaType -> TcM HsWrapper
tcSubTypeSigma :: UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tcSubTypeSigma UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected
= (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type (Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing) CtOrigin
eq_orig UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected
where
eq_orig :: CtOrigin
eq_orig = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual = TcType
ty_actual
, uo_expected :: TcType
uo_expected = TcType
ty_expected
, uo_thing :: Maybe SDoc
uo_thing = Maybe SDoc
forall a. Maybe a
Nothing
, uo_visible :: Bool
uo_visible = Bool
True }
tc_sub_type :: (TcType -> TcType -> TcM TcCoercionN)
-> CtOrigin
-> UserTypeCtxt
-> TcSigmaType
-> TcSigmaType
-> TcM HsWrapper
tc_sub_type :: (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type TcType -> TcType -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected
| TcType -> Bool
definitely_poly TcType
ty_expected
, Bool -> Bool
not (TcType -> Bool
possibly_poly TcType
ty_actual)
= do { String -> SDoc -> TcRn ()
traceTc String
"tc_sub_type (drop to equality)" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual
, String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_expected ]
; Coercion -> HsWrapper
mkWpCastN (Coercion -> HsWrapper) -> TcM Coercion -> TcM HsWrapper
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
TcType -> TcType -> TcM Coercion
unify TcType
ty_actual TcType
ty_expected }
| Bool
otherwise
= do { String -> SDoc -> TcRn ()
traceTc String
"tc_sub_type (general case)" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual
, String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_expected ]
; (HsWrapper
sk_wrap, HsWrapper
inner_wrap)
<- UserTypeCtxt
-> TcType
-> (TcType -> TcM HsWrapper)
-> TcM (HsWrapper, HsWrapper)
forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctxt TcType
ty_expected ((TcType -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper))
-> (TcType -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall a b. (a -> b) -> a -> b
$ \ TcType
sk_rho ->
do { (HsWrapper
wrap, TcType
rho_a) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
inst_orig TcType
ty_actual
; Coercion
cow <- TcType -> TcType -> TcM Coercion
unify TcType
rho_a TcType
sk_rho
; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
cow HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }
; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inner_wrap) }
where
possibly_poly :: TcType -> Bool
possibly_poly TcType
ty
| TcType -> Bool
isForAllTy TcType
ty = Bool
True
| Just (TcType
_, TcType
_, TcType
res) <- TcType -> Maybe (TcType, TcType, TcType)
splitFunTy_maybe TcType
ty = TcType -> Bool
possibly_poly TcType
res
| Bool
otherwise = Bool
False
definitely_poly :: TcType -> Bool
definitely_poly TcType
ty
| ([TcTyVar]
tvs, ThetaType
theta, TcType
tau) <- TcType -> ([TcTyVar], ThetaType, TcType)
tcSplitSigmaTy TcType
ty
, (TcTyVar
tv:[TcTyVar]
_) <- [TcTyVar]
tvs
, ThetaType -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta
, EqRel -> TcTyVar -> TcType -> Bool
isInsolubleOccursCheck EqRel
NomEq TcTyVar
tv TcType
tau
= Bool
True
| Bool
otherwise
= Bool
False
addSubTypeCtxt :: TcType -> ExpType -> TcM a -> TcM a
addSubTypeCtxt :: forall a. TcType -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt TcType
ty_actual ExpRhoType
ty_expected TcM a
thing_inside
| TcType -> Bool
isRhoTy TcType
ty_actual
, ExpRhoType -> Bool
isRhoExpTy ExpRhoType
ty_expected
= TcM a
thing_inside
| Bool
otherwise
= (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM TidyEnv -> TcM (TidyEnv, SDoc)
mk_msg TcM a
thing_inside
where
mk_msg :: TidyEnv -> TcM (TidyEnv, SDoc)
mk_msg TidyEnv
tidy_env
= do { (TidyEnv
tidy_env, TcType
ty_actual) <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
tidy_env TcType
ty_actual
; Maybe TcType
mb_ty_expected <- ExpRhoType -> TcM (Maybe TcType)
readExpType_maybe ExpRhoType
ty_expected
; (TidyEnv
tidy_env, ExpRhoType
ty_expected) <- case Maybe TcType
mb_ty_expected of
Just TcType
ty -> (TcType -> ExpRhoType)
-> (TidyEnv, TcType) -> (TidyEnv, ExpRhoType)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second TcType -> ExpRhoType
mkCheckExpType ((TidyEnv, TcType) -> (TidyEnv, ExpRhoType))
-> TcM (TidyEnv, TcType)
-> IOEnv (Env TcGblEnv TcLclEnv) (TidyEnv, ExpRhoType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
tidy_env TcType
ty
Maybe TcType
Nothing -> (TidyEnv, ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) (TidyEnv, ExpRhoType)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env, ExpRhoType
ty_expected)
; TcType
ty_expected <- ExpRhoType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
readExpType ExpRhoType
ty_expected
; (TidyEnv
tidy_env, TcType
ty_expected) <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
tidy_env TcType
ty_expected
; let msg :: SDoc
msg = [SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"When checking that:")
Int
4 (TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual)
, Int -> SDoc -> SDoc
nest Int
2 (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"is more polymorphic than:")
Int
2 (TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_expected)) ]
; (TidyEnv, SDoc) -> TcM (TidyEnv, SDoc)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env, SDoc
msg) }
tcSubMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcSubMult :: CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcSubMult CtOrigin
origin TcType
w_actual TcType
w_expected
| Just (TcType
w1, TcType
w2) <- TcType -> Maybe (TcType, TcType)
isMultMul TcType
w_actual =
do { HsWrapper
w1 <- CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcSubMult CtOrigin
origin TcType
w1 TcType
w_expected
; HsWrapper
w2 <- CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcSubMult CtOrigin
origin TcType
w2 TcType
w_expected
; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
w1 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
w2) }
tcSubMult CtOrigin
origin TcType
w_actual TcType
w_expected =
case TcType -> TcType -> IsSubmult
submult TcType
w_actual TcType
w_expected of
IsSubmult
Submult -> HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return HsWrapper
WpHole
IsSubmult
Unknown -> CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcEqMult CtOrigin
origin TcType
w_actual TcType
w_expected
tcEqMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcEqMult :: CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcEqMult CtOrigin
origin TcType
w_actual TcType
w_expected = do
{
; Coercion
coercion <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin TcType
w_actual TcType
w_expected
; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> TcM HsWrapper) -> HsWrapper -> TcM HsWrapper
forall a b. (a -> b) -> a -> b
$ if Coercion -> Bool
isReflCo Coercion
coercion then HsWrapper
WpHole else Coercion -> HsWrapper
WpMultCoercion Coercion
coercion }
tcSkolemise, tcSkolemiseScoped
:: UserTypeCtxt -> TcSigmaType
-> (TcType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseScoped :: forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemiseScoped UserTypeCtxt
ctxt TcType
expected_ty TcType -> TcM result
thing_inside
= do { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, TcType
rho_ty) <- TcType -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], TcType)
topSkolemise TcType
expected_ty
; let skol_tvs :: [TcTyVar]
skol_tvs = ((Name, TcTyVar) -> TcTyVar) -> [(Name, TcTyVar)] -> [TcTyVar]
forall a b. (a -> b) -> [a] -> [b]
map (Name, TcTyVar) -> TcTyVar
forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
skol_info :: SkolemInfo
skol_info = UserTypeCtxt -> TcType -> [(Name, TcTyVar)] -> SkolemInfo
SigSkol UserTypeCtxt
ctxt TcType
expected_ty [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
res)
<- SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
forall result.
SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given (TcM result -> TcM (TcEvBinds, result))
-> TcM result -> TcM (TcEvBinds, result)
forall a b. (a -> b) -> a -> b
$
[(Name, TcTyVar)] -> TcM result -> TcM result
forall r. [(Name, TcTyVar)] -> TcM r -> TcM r
tcExtendNameTyVarEnv [(Name, TcTyVar)]
tv_prs (TcM result -> TcM result) -> TcM result -> TcM result
forall a b. (a -> b) -> a -> b
$
TcType -> TcM result
thing_inside TcType
rho_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
res) }
tcSkolemise :: forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctxt TcType
expected_ty TcType -> TcM result
thing_inside
| TcType -> Bool
isRhoTy TcType
expected_ty
= do { result
res <- TcType -> TcM result
thing_inside TcType
expected_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, result
res) }
| Bool
otherwise
= do { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, TcType
rho_ty) <- TcType -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], TcType)
topSkolemise TcType
expected_ty
; let skol_tvs :: [TcTyVar]
skol_tvs = ((Name, TcTyVar) -> TcTyVar) -> [(Name, TcTyVar)] -> [TcTyVar]
forall a b. (a -> b) -> [a] -> [b]
map (Name, TcTyVar) -> TcTyVar
forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
skol_info :: SkolemInfo
skol_info = UserTypeCtxt -> TcType -> [(Name, TcTyVar)] -> SkolemInfo
SigSkol UserTypeCtxt
ctxt TcType
expected_ty [(Name, TcTyVar)]
tv_prs
; (TcEvBinds
ev_binds, result
result)
<- SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
forall result.
SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given (TcM result -> TcM (TcEvBinds, result))
-> TcM result -> TcM (TcEvBinds, result)
forall a b. (a -> b) -> a -> b
$
TcType -> TcM result
thing_inside TcType
rho_ty
; (HsWrapper, result) -> TcM (HsWrapper, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
result) }
tcSkolemiseET :: UserTypeCtxt -> ExpSigmaType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseET :: forall result.
UserTypeCtxt
-> ExpRhoType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseET UserTypeCtxt
_ et :: ExpRhoType
et@(Infer {}) ExpRhoType -> TcM result
thing_inside
= (HsWrapper
idHsWrapper, ) (result -> (HsWrapper, result))
-> TcM result -> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> TcM result
thing_inside ExpRhoType
et
tcSkolemiseET UserTypeCtxt
ctxt (Check TcType
ty) ExpRhoType -> TcM result
thing_inside
= UserTypeCtxt
-> TcType
-> (TcType -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctxt TcType
ty ((TcType -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result))
-> (TcType -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall a b. (a -> b) -> a -> b
$ \TcType
rho_ty ->
ExpRhoType -> TcM result
thing_inside (TcType -> ExpRhoType
mkCheckExpType TcType
rho_ty)
checkConstraints :: SkolemInfo
-> [TcTyVar]
-> [EvVar]
-> TcM result
-> TcM (TcEvBinds, result)
checkConstraints :: forall result.
SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given TcM result
thing_inside
= do { Bool
implication_needed <- SkolemInfo -> [TcTyVar] -> [TcTyVar] -> TcM Bool
implicationNeeded SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given
; if Bool
implication_needed
then do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- TcM result -> TcM (TcLevel, WantedConstraints, result)
forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
; (Bag Implication
implics, TcEvBinds
ev_binds) <- TcLevel
-> SkolemInfo
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
; String -> SDoc -> TcRn ()
traceTc String
"checkConstraints" (TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl SDoc -> SDoc -> SDoc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs)
; Bag Implication -> TcRn ()
emitImplications Bag Implication
implics
; (TcEvBinds, result) -> TcM (TcEvBinds, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
ev_binds, result
result) }
else
do { result
res <- TcM result
thing_inside
; (TcEvBinds, result) -> TcM (TcEvBinds, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
emptyTcEvBinds, result
res) } }
checkTvConstraints :: SkolemInfo
-> [TcTyVar]
-> TcM result
-> TcM result
checkTvConstraints :: forall result. SkolemInfo -> [TcTyVar] -> TcM result -> TcM result
checkTvConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs TcM result
thing_inside
= do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- TcM result -> TcM (TcLevel, WantedConstraints, result)
forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
; SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcRn ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
; result -> TcM result
forall (m :: * -> *) a. Monad m => a -> m a
return result
result }
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcRn ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
| WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted
= () -> TcRn ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise
= do { Implication
implic <- SkolemInfo
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
; Implication -> TcRn ()
emitImplication Implication
implic }
buildTvImplication :: SkolemInfo -> [TcTyVar]
-> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication :: SkolemInfo
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
= do { EvBindsVar
ev_binds <- TcM EvBindsVar
newNoTcEvBinds
; Implication
implic <- TcM Implication
newImplication
; Implication -> TcM Implication
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication
implic { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_no_eqs :: Bool
ic_no_eqs = Bool
True
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wanted
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds
, ic_info :: SkolemInfo
ic_info = SkolemInfo
skol_info }) }
implicationNeeded :: SkolemInfo -> [TcTyVar] -> [EvVar] -> TcM Bool
implicationNeeded :: SkolemInfo -> [TcTyVar] -> [TcTyVar] -> TcM Bool
implicationNeeded SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given
| [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
skol_tvs
, [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
, Bool -> Bool
not (SkolemInfo -> Bool
alwaysBuildImplication SkolemInfo
skol_info)
=
do { TcLevel
tc_lvl <- TcM TcLevel
getTcLevel
; if Bool -> Bool
not (TcLevel -> Bool
isTopTcLevel TcLevel
tc_lvl)
then Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
else
do { DynFlags
dflags <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypeErrors DynFlags
dflags Bool -> Bool -> Bool
||
GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypedHoles DynFlags
dflags Bool -> Bool -> Bool
||
GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferOutOfScopeVariables DynFlags
dflags) } }
| Bool
otherwise
= Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
alwaysBuildImplication :: SkolemInfo -> Bool
alwaysBuildImplication :: SkolemInfo -> Bool
alwaysBuildImplication SkolemInfo
_ = Bool
False
buildImplicationFor :: TcLevel -> SkolemInfo -> [TcTyVar]
-> [EvVar] -> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor :: TcLevel
-> SkolemInfo
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
| WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted Bool -> Bool -> Bool
&& [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
= (Bag Implication, TcEvBinds) -> TcM (Bag Implication, TcEvBinds)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bag Implication
forall a. Bag a
emptyBag, TcEvBinds
emptyTcEvBinds)
| Bool
otherwise
= ASSERT2( all (isSkolemTyVar <||> isTyVarTyVar) skol_tvs, ppr skol_tvs )
do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
newTcEvBinds
; Implication
implic <- TcM Implication
newImplication
; let implic' :: Implication
implic' = Implication
implic { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_given :: [TcTyVar]
ic_given = [TcTyVar]
given
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wanted
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds_var
, ic_info :: SkolemInfo
ic_info = SkolemInfo
skol_info }
; (Bag Implication, TcEvBinds) -> TcM (Bag Implication, TcEvBinds)
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication -> Bag Implication
forall a. a -> Bag a
unitBag Implication
implic', EvBindsVar -> TcEvBinds
TcEvBinds EvBindsVar
ev_binds_var) }
unifyType :: Maybe (HsExpr GhcRn)
-> TcTauType -> TcTauType -> TcM TcCoercionN
unifyType :: Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
thing TcType
ty1 TcType
ty2
= TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin TcType
ty1 TcType
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual = TcType
ty1
, uo_expected :: TcType
uo_expected = TcType
ty2
, uo_thing :: Maybe SDoc
uo_thing = HsExpr GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsExpr GhcRn -> SDoc) -> Maybe (HsExpr GhcRn) -> Maybe SDoc
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (HsExpr GhcRn)
thing
, uo_visible :: Bool
uo_visible = Bool
True }
unifyTypeET :: TcTauType -> TcTauType -> TcM CoercionN
unifyTypeET :: TcType -> TcType -> TcM Coercion
unifyTypeET TcType
ty1 TcType
ty2
= TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin TcType
ty1 TcType
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual = TcType
ty2
, uo_expected :: TcType
uo_expected = TcType
ty1
, uo_thing :: Maybe SDoc
uo_thing = Maybe SDoc
forall a. Maybe a
Nothing
, uo_visible :: Bool
uo_visible = Bool
True }
unifyKind :: Maybe (HsType GhcRn) -> TcKind -> TcKind -> TcM CoercionN
unifyKind :: Maybe (HsType GhcRn) -> TcType -> TcType -> TcM Coercion
unifyKind Maybe (HsType GhcRn)
thing TcType
ty1 TcType
ty2
= TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
origin TcType
ty1 TcType
ty2
where
origin :: CtOrigin
origin = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual = TcType
ty1
, uo_expected :: TcType
uo_expected = TcType
ty2
, uo_thing :: Maybe SDoc
uo_thing = HsType GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsType GhcRn -> SDoc) -> Maybe (HsType GhcRn) -> Maybe SDoc
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (HsType GhcRn)
thing
, uo_visible :: Bool
uo_visible = Bool
True }
uType, uType_defer
:: TypeOrKind
-> CtOrigin
-> TcType
-> TcType
-> TcM CoercionN
uType_defer :: TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin TcType
ty1 TcType
ty2
= do { Coercion
co <- CtOrigin -> TypeOrKind -> Role -> TcType -> TcType -> TcM Coercion
emitWantedEq CtOrigin
origin TypeOrKind
t_or_k Role
Nominal TcType
ty1 TcType
ty2
; DumpFlag -> TcRn () -> TcRn ()
forall gbl lcl. DumpFlag -> TcRnIf gbl lcl () -> TcRnIf gbl lcl ()
whenDOptM DumpFlag
Opt_D_dump_tc_trace (TcRn () -> TcRn ()) -> TcRn () -> TcRn ()
forall a b. (a -> b) -> a -> b
$ do
{ [ErrCtxt]
ctxt <- TcM [ErrCtxt]
getErrCtxt
; SDoc
doc <- TidyEnv -> [ErrCtxt] -> TcM SDoc
mkErrInfo TidyEnv
emptyTidyEnv [ErrCtxt]
ctxt
; String -> SDoc -> TcRn ()
traceTc String
"utype_defer" ([SDoc] -> SDoc
vcat [ TcType -> SDoc
debugPprType TcType
ty1
, TcType -> SDoc
debugPprType TcType
ty2
, CtOrigin -> SDoc
pprCtOrigin CtOrigin
origin
, SDoc
doc])
; String -> SDoc -> TcRn ()
traceTc String
"utype_defer2" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co)
}
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
uType :: TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
orig_ty1 TcType
orig_ty2
= do { TcLevel
tclvl <- TcM TcLevel
getTcLevel
; String -> SDoc -> TcRn ()
traceTc String
"u_tys" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
[ String -> SDoc
text String
"tclvl" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl
, [SDoc] -> SDoc
sep [ TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
orig_ty1, String -> SDoc
text String
"~", TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
orig_ty2]
, CtOrigin -> SDoc
pprCtOrigin CtOrigin
origin]
; Coercion
co <- TcType -> TcType -> TcM Coercion
go TcType
orig_ty1 TcType
orig_ty2
; if Coercion -> Bool
isReflCo Coercion
co
then String -> SDoc -> TcRn ()
traceTc String
"u_tys yields no coercion" SDoc
Outputable.empty
else String -> SDoc -> TcRn ()
traceTc String
"u_tys yields coercion:" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co)
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
where
go :: TcType -> TcType -> TcM CoercionN
go :: TcType -> TcType -> TcM Coercion
go (CastTy TcType
t1 Coercion
co1) TcType
t2
= do { Coercion
co_tys <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
t1 TcType
t2
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> TcType -> Coercion -> Coercion -> Coercion
mkCoherenceLeftCo Role
Nominal TcType
t1 Coercion
co1 Coercion
co_tys) }
go TcType
t1 (CastTy TcType
t2 Coercion
co2)
= do { Coercion
co_tys <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
t1 TcType
t2
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> TcType -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
Nominal TcType
t2 Coercion
co2 Coercion
co_tys) }
go (TyVarTy TcTyVar
tv1) TcType
ty2
= do { LookupTyVarResult
lookup_res <- TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar TcTyVar
tv1
; case LookupTyVarResult
lookup_res of
Filled TcType
ty1 -> do { String -> SDoc -> TcRn ()
traceTc String
"found filled tyvar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":->" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty1)
; TcType -> TcType -> TcM Coercion
go TcType
ty1 TcType
ty2 }
Unfilled TcTyVarDetails
_ -> CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
NotSwapped TcTyVar
tv1 TcType
ty2 }
go TcType
ty1 (TyVarTy TcTyVar
tv2)
= do { LookupTyVarResult
lookup_res <- TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar TcTyVar
tv2
; case LookupTyVarResult
lookup_res of
Filled TcType
ty2 -> do { String -> SDoc -> TcRn ()
traceTc String
"found filled tyvar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv2 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":->" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty2)
; TcType -> TcType -> TcM Coercion
go TcType
ty1 TcType
ty2 }
Unfilled TcTyVarDetails
_ -> CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
IsSwapped TcTyVar
tv2 TcType
ty1 }
go ty1 :: TcType
ty1@(TyConApp TyCon
tc1 []) (TyConApp TyCon
tc2 [])
| TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2
= Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ TcType -> Coercion
mkNomReflCo TcType
ty1
go TcType
ty1 TcType
ty2
| Just TcType
ty1' <- TcType -> Maybe TcType
tcView TcType
ty1 = TcType -> TcType -> TcM Coercion
go TcType
ty1' TcType
ty2
| Just TcType
ty2' <- TcType -> Maybe TcType
tcView TcType
ty2 = TcType -> TcType -> TcM Coercion
go TcType
ty1 TcType
ty2'
go (FunTy AnonArgFlag
_ TcType
w1 TcType
fun1 TcType
arg1) (FunTy AnonArgFlag
_ TcType
w2 TcType
fun2 TcType
arg2)
= do { Coercion
co_l <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
fun1 TcType
fun2
; Coercion
co_r <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
arg1 TcType
arg2
; Coercion
co_w <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
w1 TcType
w2
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCo Role
Nominal Coercion
co_w Coercion
co_l Coercion
co_r }
go ty1 :: TcType
ty1@(TyConApp TyCon
tc1 ThetaType
_) TcType
ty2
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc1 = TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2
go TcType
ty1 ty2 :: TcType
ty2@(TyConApp TyCon
tc2 ThetaType
_)
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc2 = TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2
go (TyConApp TyCon
tc1 ThetaType
tys1) (TyConApp TyCon
tc2 ThetaType
tys2)
| TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2, ThetaType -> ThetaType -> Bool
forall a b. [a] -> [b] -> Bool
equalLength ThetaType
tys1 ThetaType
tys2
= ASSERT2( isGenerativeTyCon tc1 Nominal, ppr tc1 )
do { [Coercion]
cos <- (CtOrigin -> TcType -> TcType -> TcM Coercion)
-> [CtOrigin]
-> ThetaType
-> ThetaType
-> IOEnv (Env TcGblEnv TcLclEnv) [Coercion]
forall (m :: * -> *) a b c d.
Monad m =>
(a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m [d]
zipWith3M (TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k) [CtOrigin]
origins' ThetaType
tys1 ThetaType
tys2
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal TyCon
tc1 [Coercion]
cos }
where
origins' :: [CtOrigin]
origins' = (Bool -> CtOrigin) -> [Bool] -> [CtOrigin]
forall a b. (a -> b) -> [a] -> [b]
map (\Bool
is_vis -> if Bool
is_vis then CtOrigin
origin else CtOrigin -> CtOrigin
toInvisibleOrigin CtOrigin
origin)
(TyCon -> [Bool]
tcTyConVisibilities TyCon
tc1)
go (LitTy TyLit
m) ty :: TcType
ty@(LitTy TyLit
n)
| TyLit
m TyLit -> TyLit -> Bool
forall a. Eq a => a -> a -> Bool
== TyLit
n
= Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ TcType -> Coercion
mkNomReflCo TcType
ty
go (AppTy TcType
s1 TcType
t1) (AppTy TcType
s2 TcType
t2)
= Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app (TcType -> Bool
isNextArgVisible TcType
s1) TcType
s1 TcType
t1 TcType
s2 TcType
t2
go (AppTy TcType
s1 TcType
t1) (TyConApp TyCon
tc2 ThetaType
ts2)
| Just (ThetaType
ts2', TcType
t2') <- ThetaType -> Maybe (ThetaType, TcType)
forall a. [a] -> Maybe ([a], a)
snocView ThetaType
ts2
= ASSERT( not (mustBeSaturated tc2) )
Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app (TyCon -> ThetaType -> Bool
isNextTyConArgVisible TyCon
tc2 ThetaType
ts2') TcType
s1 TcType
t1 (TyCon -> ThetaType -> TcType
TyConApp TyCon
tc2 ThetaType
ts2') TcType
t2'
go (TyConApp TyCon
tc1 ThetaType
ts1) (AppTy TcType
s2 TcType
t2)
| Just (ThetaType
ts1', TcType
t1') <- ThetaType -> Maybe (ThetaType, TcType)
forall a. [a] -> Maybe ([a], a)
snocView ThetaType
ts1
= ASSERT( not (mustBeSaturated tc1) )
Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app (TyCon -> ThetaType -> Bool
isNextTyConArgVisible TyCon
tc1 ThetaType
ts1') (TyCon -> ThetaType -> TcType
TyConApp TyCon
tc1 ThetaType
ts1') TcType
t1' TcType
s2 TcType
t2
go (CoercionTy Coercion
co1) (CoercionTy Coercion
co2)
= do { let ty1 :: TcType
ty1 = Coercion -> TcType
coercionType Coercion
co1
ty2 :: TcType
ty2 = Coercion -> TcType
coercionType Coercion
co2
; Coercion
kco <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel
(TcType -> Maybe TcType -> CtOrigin -> Maybe TypeOrKind -> CtOrigin
KindEqOrigin TcType
orig_ty1 (TcType -> Maybe TcType
forall a. a -> Maybe a
Just TcType
orig_ty2) CtOrigin
origin
(TypeOrKind -> Maybe TypeOrKind
forall a. a -> Maybe a
Just TypeOrKind
t_or_k))
TcType
ty1 TcType
ty2
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
Nominal Coercion
kco Coercion
co1 Coercion
co2 }
go TcType
ty1 TcType
ty2 = TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2
defer :: TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2
| TcType
ty1 HasDebugCallStack => TcType -> TcType -> Bool
TcType -> TcType -> Bool
`tcEqType` TcType
ty2 = Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkNomReflCo TcType
ty1)
| Bool
otherwise = TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin TcType
ty1 TcType
ty2
go_app :: Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app Bool
vis TcType
s1 TcType
t1 TcType
s2 TcType
t2
= do { Coercion
co_s <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
s1 TcType
s2
; let arg_origin :: CtOrigin
arg_origin
| Bool
vis = CtOrigin
origin
| Bool
otherwise = CtOrigin -> CtOrigin
toInvisibleOrigin CtOrigin
origin
; Coercion
co_t <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
arg_origin TcType
t1 TcType
t2
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Coercion -> Coercion -> Coercion
mkAppCo Coercion
co_s Coercion
co_t }
uUnfilledVar :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM Coercion
uUnfilledVar :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
= do { TcType
ty2 <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
zonkTcType TcType
ty2
; CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar1 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2 }
uUnfilledVar1 :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM Coercion
uUnfilledVar1 :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar1 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
| Just TcTyVar
tv2 <- TcType -> Maybe TcTyVar
tcGetTyVar_maybe TcType
ty2
= TcTyVar -> TcM Coercion
go TcTyVar
tv2
| Bool
otherwise
= CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
where
go :: TcTyVar -> TcM Coercion
go TcTyVar
tv2 | TcTyVar
tv1 TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv2
= Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkNomReflCo (TcTyVar -> TcType
mkTyVarTy TcTyVar
tv1))
| Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
False TcTyVar
tv1 TcTyVar
tv2
= do { TcTyVar
tv1 <- TcTyVar -> TcM TcTyVar
zonkTyCoVarKind TcTyVar
tv1
; CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k (SwapFlag -> SwapFlag
flipSwap SwapFlag
swapped)
TcTyVar
tv2 (TcTyVar -> TcType
mkTyVarTy TcTyVar
tv1) }
| Bool
otherwise
= CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
uUnfilledVar2 :: CtOrigin
-> TypeOrKind
-> SwapFlag
-> TcTyVar
-> TcTauType
-> TcM Coercion
uUnfilledVar2 :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
= do { DynFlags
dflags <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; TcLevel
cur_lvl <- TcM TcLevel
getTcLevel
; DynFlags -> TcLevel -> TcM Coercion
go DynFlags
dflags TcLevel
cur_lvl }
where
go :: DynFlags -> TcLevel -> TcM Coercion
go DynFlags
dflags TcLevel
cur_lvl
| TcLevel -> TcTyVar -> TcType -> Bool
canSolveByUnification TcLevel
cur_lvl TcTyVar
tv1 TcType
ty2
, MTVU_OK TcType
ty2' <- DynFlags -> TcTyVar -> TcType -> MetaTyVarUpdateResult TcType
metaTyVarUpdateOK DynFlags
dflags TcTyVar
tv1 TcType
ty2
= do { Coercion
co_k <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
kind_origin (HasDebugCallStack => TcType -> TcType
TcType -> TcType
tcTypeKind TcType
ty2') (TcTyVar -> TcType
tyVarKind TcTyVar
tv1)
; String -> SDoc -> TcRn ()
traceTc String
"uUnfilledVar2 ok" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TcTyVar -> TcType
tyVarKind TcTyVar
tv1)
, TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty2 SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HasDebugCallStack => TcType -> TcType
TcType -> TcType
tcTypeKind TcType
ty2)
, Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Coercion -> Bool
isTcReflCo Coercion
co_k), Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co_k ]
; if Coercion -> Bool
isTcReflCo Coercion
co_k
then do { TcTyVar -> TcType -> TcRn ()
writeMetaTyVar TcTyVar
tv1 TcType
ty2'
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkTcNomReflCo TcType
ty2') }
else TcM Coercion
defer }
| Bool
otherwise
= do { String -> SDoc -> TcRn ()
traceTc String
"uUnfilledVar2 not ok" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
$$ TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty2)
; TcM Coercion
defer }
ty1 :: TcType
ty1 = TcTyVar -> TcType
mkTyVarTy TcTyVar
tv1
kind_origin :: CtOrigin
kind_origin = TcType -> Maybe TcType -> CtOrigin -> Maybe TypeOrKind -> CtOrigin
KindEqOrigin TcType
ty1 (TcType -> Maybe TcType
forall a. a -> Maybe a
Just TcType
ty2) CtOrigin
origin (TypeOrKind -> Maybe TypeOrKind
forall a. a -> Maybe a
Just TypeOrKind
t_or_k)
defer :: TcM Coercion
defer = SwapFlag
-> (TcType -> TcType -> TcM Coercion)
-> TcType
-> TcType
-> TcM Coercion
forall a b. SwapFlag -> (a -> a -> b) -> a -> a -> b
unSwap SwapFlag
swapped (TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin) TcType
ty1 TcType
ty2
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
is_given TcTyVar
tv1 TcTyVar
tv2
| Bool -> Bool
not Bool
is_given, Int
pri1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
True
| Bool -> Bool
not Bool
is_given, Int
pri2 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
False
| TcLevel
lvl1 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl2 = Bool
False
| TcLevel
lvl2 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl1 = Bool
True
| Int
pri1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
pri2 = Bool
False
| Int
pri2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
pri1 = Bool
True
| Name -> Bool
isSystemName Name
tv2_name, Bool -> Bool
not (Name -> Bool
isSystemName Name
tv1_name) = Bool
True
| Bool
otherwise = Bool
False
where
lvl1 :: TcLevel
lvl1 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv1
lvl2 :: TcLevel
lvl2 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv2
pri1 :: Int
pri1 = TcTyVar -> Int
lhsPriority TcTyVar
tv1
pri2 :: Int
pri2 = TcTyVar -> Int
lhsPriority TcTyVar
tv2
tv1_name :: Name
tv1_name = TcTyVar -> Name
Var.varName TcTyVar
tv1
tv2_name :: Name
tv2_name = TcTyVar -> Name
Var.varName TcTyVar
tv2
lhsPriority :: TcTyVar -> Int
lhsPriority :: TcTyVar -> Int
lhsPriority TcTyVar
tv
= ASSERT2( isTyVar tv, ppr tv)
case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
TcTyVarDetails
RuntimeUnk -> Int
0
SkolemTv {} -> Int
0
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info } -> case MetaInfo
info of
MetaInfo
FlatSkolTv -> Int
1
MetaInfo
TyVarTv -> Int
2
MetaInfo
TauTv -> Int
3
MetaInfo
FlatMetaTv -> Int
4
canSolveByUnification :: TcLevel -> TcTyVar -> TcType -> Bool
canSolveByUnification :: TcLevel -> TcTyVar -> TcType -> Bool
canSolveByUnification TcLevel
tclvl TcTyVar
tv TcType
xi
| TcLevel -> TcTyVar -> Bool
isTouchableMetaTyVar TcLevel
tclvl TcTyVar
tv
= case TcTyVar -> MetaInfo
metaTyVarInfo TcTyVar
tv of
MetaInfo
TyVarTv -> TcType -> Bool
is_tyvar TcType
xi
MetaInfo
_ -> Bool
True
| Bool
otherwise
= Bool
False
where
is_tyvar :: TcType -> Bool
is_tyvar TcType
xi
= case TcType -> Maybe TcTyVar
tcGetTyVar_maybe TcType
xi of
Maybe TcTyVar
Nothing -> Bool
False
Just TcTyVar
tv -> case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info }
-> case MetaInfo
info of
MetaInfo
TyVarTv -> Bool
True
MetaInfo
_ -> Bool
False
SkolemTv {} -> Bool
True
TcTyVarDetails
RuntimeUnk -> Bool
True
data LookupTyVarResult
= Unfilled TcTyVarDetails
| Filled TcType
lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar TcTyVar
tyvar
| MetaTv { mtv_ref :: TcTyVarDetails -> IORef MetaDetails
mtv_ref = IORef MetaDetails
ref } <- TcTyVarDetails
details
= do { MetaDetails
meta_details <- IORef MetaDetails -> TcM MetaDetails
forall a env. IORef a -> IOEnv env a
readMutVar IORef MetaDetails
ref
; case MetaDetails
meta_details of
Indirect TcType
ty -> LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> LookupTyVarResult
Filled TcType
ty)
MetaDetails
Flexi -> do { Bool
is_touchable <- TcTyVar -> TcM Bool
isTouchableTcM TcTyVar
tyvar
; if Bool
is_touchable then
LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcTyVarDetails -> LookupTyVarResult
Unfilled TcTyVarDetails
details)
else
LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcTyVarDetails -> LookupTyVarResult
Unfilled TcTyVarDetails
vanillaSkolemTv) } }
| Bool
otherwise
= LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcTyVarDetails -> LookupTyVarResult
Unfilled TcTyVarDetails
details)
where
details :: TcTyVarDetails
details = TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tyvar
matchExpectedFunKind
:: Outputable fun
=> fun
-> Arity
-> TcKind
-> TcM Coercion
matchExpectedFunKind :: forall fun. Outputable fun => fun -> Int -> TcType -> TcM Coercion
matchExpectedFunKind fun
hs_ty Int
n TcType
k = Int -> TcType -> TcM Coercion
go Int
n TcType
k
where
go :: Int -> TcType -> TcM Coercion
go Int
0 TcType
k = Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkNomReflCo TcType
k)
go Int
n TcType
k | Just TcType
k' <- TcType -> Maybe TcType
tcView TcType
k = Int -> TcType -> TcM Coercion
go Int
n TcType
k'
go Int
n k :: TcType
k@(TyVarTy TcTyVar
kvar)
| TcTyVar -> Bool
isMetaTyVar TcTyVar
kvar
= do { MetaDetails
maybe_kind <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
kvar
; case MetaDetails
maybe_kind of
Indirect TcType
fun_kind -> Int -> TcType -> TcM Coercion
go Int
n TcType
fun_kind
MetaDetails
Flexi -> Int -> TcType -> TcM Coercion
defer Int
n TcType
k }
go Int
n (FunTy AnonArgFlag
_ TcType
w TcType
arg TcType
res)
= do { Coercion
co <- Int -> TcType -> TcM Coercion
go (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) TcType
res
; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Coercion -> Coercion -> Coercion -> Coercion
mkTcFunCo Role
Nominal (TcType -> Coercion
mkTcNomReflCo TcType
w) (TcType -> Coercion
mkTcNomReflCo TcType
arg) Coercion
co) }
go Int
n TcType
other
= Int -> TcType -> TcM Coercion
defer Int
n TcType
other
defer :: Int -> TcType -> TcM Coercion
defer Int
n TcType
k
= do { ThetaType
arg_kinds <- Int -> TcM ThetaType
newMetaKindVars Int
n
; TcType
res_kind <- IOEnv (Env TcGblEnv TcLclEnv) TcType
newMetaKindVar
; let new_fun :: TcType
new_fun = ThetaType -> TcType -> TcType
mkVisFunTysMany ThetaType
arg_kinds TcType
res_kind
origin :: CtOrigin
origin = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual = TcType
k
, uo_expected :: TcType
uo_expected = TcType
new_fun
, uo_thing :: Maybe SDoc
uo_thing = SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (fun -> SDoc
forall a. Outputable a => a -> SDoc
ppr fun
hs_ty)
, uo_visible :: Bool
uo_visible = Bool
True
}
; TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
origin TcType
k TcType
new_fun }
data MetaTyVarUpdateResult a
= MTVU_OK a
| MTVU_Bad
| MTVU_HoleBlocker
| MTVU_Occurs
deriving ((forall a b.
(a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b)
-> (forall a b.
a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a)
-> Functor MetaTyVarUpdateResult
forall a b. a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a
forall a b.
(a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a
$c<$ :: forall a b. a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a
fmap :: forall a b.
(a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
$cfmap :: forall a b.
(a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
Functor)
instance Applicative MetaTyVarUpdateResult where
pure :: forall a. a -> MetaTyVarUpdateResult a
pure = a -> MetaTyVarUpdateResult a
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK
<*> :: forall a b.
MetaTyVarUpdateResult (a -> b)
-> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
(<*>) = MetaTyVarUpdateResult (a -> b)
-> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Monad MetaTyVarUpdateResult where
MTVU_OK a
x >>= :: forall a b.
MetaTyVarUpdateResult a
-> (a -> MetaTyVarUpdateResult b) -> MetaTyVarUpdateResult b
>>= a -> MetaTyVarUpdateResult b
k = a -> MetaTyVarUpdateResult b
k a
x
MetaTyVarUpdateResult a
MTVU_Bad >>= a -> MetaTyVarUpdateResult b
_ = MetaTyVarUpdateResult b
forall a. MetaTyVarUpdateResult a
MTVU_Bad
MetaTyVarUpdateResult a
MTVU_HoleBlocker >>= a -> MetaTyVarUpdateResult b
_ = MetaTyVarUpdateResult b
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker
MetaTyVarUpdateResult a
MTVU_Occurs >>= a -> MetaTyVarUpdateResult b
_ = MetaTyVarUpdateResult b
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
instance Outputable a => Outputable (MetaTyVarUpdateResult a) where
ppr :: MetaTyVarUpdateResult a -> SDoc
ppr (MTVU_OK a
a) = String -> SDoc
text String
"MTVU_OK" SDoc -> SDoc -> SDoc
<+> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
a
ppr MetaTyVarUpdateResult a
MTVU_Bad = String -> SDoc
text String
"MTVU_Bad"
ppr MetaTyVarUpdateResult a
MTVU_HoleBlocker = String -> SDoc
text String
"MTVU_HoleBlocker"
ppr MetaTyVarUpdateResult a
MTVU_Occurs = String -> SDoc
text String
"MTVU_Occurs"
occCheckForErrors :: DynFlags -> TcTyVar -> Type -> MetaTyVarUpdateResult ()
occCheckForErrors :: DynFlags -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
occCheckForErrors DynFlags
dflags TcTyVar
tv TcType
ty
= case DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
preCheck DynFlags
dflags Bool
True TcTyVar
tv TcType
ty of
MTVU_OK ()
_ -> () -> MetaTyVarUpdateResult ()
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK ()
MetaTyVarUpdateResult ()
MTVU_Bad -> MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
MetaTyVarUpdateResult ()
MTVU_HoleBlocker -> MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker
MetaTyVarUpdateResult ()
MTVU_Occurs -> case [TcTyVar] -> TcType -> Maybe TcType
occCheckExpand [TcTyVar
tv] TcType
ty of
Maybe TcType
Nothing -> MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
Just TcType
_ -> () -> MetaTyVarUpdateResult ()
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK ()
metaTyVarUpdateOK :: DynFlags
-> TcTyVar
-> TcType
-> MetaTyVarUpdateResult TcType
metaTyVarUpdateOK :: DynFlags -> TcTyVar -> TcType -> MetaTyVarUpdateResult TcType
metaTyVarUpdateOK DynFlags
dflags TcTyVar
tv TcType
ty
= case DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
preCheck DynFlags
dflags Bool
False TcTyVar
tv TcType
ty of
MTVU_OK ()
_ -> TcType -> MetaTyVarUpdateResult TcType
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK TcType
ty
MetaTyVarUpdateResult ()
MTVU_Bad -> MetaTyVarUpdateResult TcType
forall a. MetaTyVarUpdateResult a
MTVU_Bad
MetaTyVarUpdateResult ()
MTVU_HoleBlocker -> MetaTyVarUpdateResult TcType
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker
MetaTyVarUpdateResult ()
MTVU_Occurs -> case [TcTyVar] -> TcType -> Maybe TcType
occCheckExpand [TcTyVar
tv] TcType
ty of
Just TcType
expanded_ty -> TcType -> MetaTyVarUpdateResult TcType
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK TcType
expanded_ty
Maybe TcType
Nothing -> MetaTyVarUpdateResult TcType
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
preCheck :: DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
preCheck :: DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
preCheck DynFlags
dflags Bool
ty_fam_ok TcTyVar
tv TcType
ty
= TcType -> MetaTyVarUpdateResult ()
fast_check TcType
ty
where
details :: TcTyVarDetails
details = TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv
impredicative_ok :: Bool
impredicative_ok = DynFlags -> TcTyVarDetails -> Bool
canUnifyWithPolyType DynFlags
dflags TcTyVarDetails
details
ok :: MetaTyVarUpdateResult ()
ok :: MetaTyVarUpdateResult ()
ok = () -> MetaTyVarUpdateResult ()
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK ()
fast_check :: TcType -> MetaTyVarUpdateResult ()
fast_check :: TcType -> MetaTyVarUpdateResult ()
fast_check (TyVarTy TcTyVar
tv')
| TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv' = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
| Bool
otherwise = TcType -> MetaTyVarUpdateResult ()
fast_check_occ (TcTyVar -> TcType
tyVarKind TcTyVar
tv')
fast_check (TyConApp TyCon
tc ThetaType
tys)
| TyCon -> Bool
bad_tc TyCon
tc = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
| Bool
otherwise = (TcType -> MetaTyVarUpdateResult ())
-> ThetaType -> MetaTyVarUpdateResult [()]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM TcType -> MetaTyVarUpdateResult ()
fast_check ThetaType
tys MetaTyVarUpdateResult [()]
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> MetaTyVarUpdateResult ()
ok
fast_check (LitTy {}) = MetaTyVarUpdateResult ()
ok
fast_check (FunTy{ft_af :: TcType -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_mult :: TcType -> TcType
ft_mult = TcType
w, ft_arg :: TcType -> TcType
ft_arg = TcType
a, ft_res :: TcType -> TcType
ft_res = TcType
r})
| AnonArgFlag
InvisArg <- AnonArgFlag
af
, Bool -> Bool
not Bool
impredicative_ok = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
| Bool
otherwise = TcType -> MetaTyVarUpdateResult ()
fast_check TcType
w MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> TcType -> MetaTyVarUpdateResult ()
fast_check TcType
a MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> TcType -> MetaTyVarUpdateResult ()
fast_check TcType
r
fast_check (AppTy TcType
fun TcType
arg) = TcType -> MetaTyVarUpdateResult ()
fast_check TcType
fun MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> TcType -> MetaTyVarUpdateResult ()
fast_check TcType
arg
fast_check (CastTy TcType
ty Coercion
co) = TcType -> MetaTyVarUpdateResult ()
fast_check TcType
ty MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Coercion -> MetaTyVarUpdateResult ()
fast_check_co Coercion
co
fast_check (CoercionTy Coercion
co) = Coercion -> MetaTyVarUpdateResult ()
fast_check_co Coercion
co
fast_check (ForAllTy (Bndr TcTyVar
tv' ArgFlag
_) TcType
ty)
| Bool -> Bool
not Bool
impredicative_ok = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
| TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv' = MetaTyVarUpdateResult ()
ok
| Bool
otherwise = do { TcType -> MetaTyVarUpdateResult ()
fast_check_occ (TcTyVar -> TcType
tyVarKind TcTyVar
tv')
; TcType -> MetaTyVarUpdateResult ()
fast_check_occ TcType
ty }
fast_check_occ :: TcType -> MetaTyVarUpdateResult ()
fast_check_occ TcType
k | TcTyVar
tv TcTyVar -> VarSet -> Bool
`elemVarSet` TcType -> VarSet
tyCoVarsOfType TcType
k = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
| Bool
otherwise = MetaTyVarUpdateResult ()
ok
fast_check_co :: Coercion -> MetaTyVarUpdateResult ()
fast_check_co Coercion
co | Bool -> Bool
not (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypeErrors DynFlags
dflags)
, Coercion -> Bool
badCoercionHoleCo Coercion
co = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker
| TcTyVar
tv TcTyVar -> VarSet -> Bool
`elemVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
co = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
| Bool
otherwise = MetaTyVarUpdateResult ()
ok
bad_tc :: TyCon -> Bool
bad_tc :: TyCon -> Bool
bad_tc TyCon
tc
| Bool -> Bool
not (Bool
impredicative_ok Bool -> Bool -> Bool
|| TyCon -> Bool
isTauTyCon TyCon
tc) = Bool
True
| Bool -> Bool
not (Bool
ty_fam_ok Bool -> Bool -> Bool
|| TyCon -> Bool
isFamFreeTyCon TyCon
tc) = Bool
True
| Bool
otherwise = Bool
False
canUnifyWithPolyType :: DynFlags -> TcTyVarDetails -> Bool
canUnifyWithPolyType :: DynFlags -> TcTyVarDetails -> Bool
canUnifyWithPolyType DynFlags
dflags TcTyVarDetails
details
= case TcTyVarDetails
details of
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
TyVarTv } -> Bool
False
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
TauTv } -> Extension -> DynFlags -> Bool
xopt Extension
LangExt.ImpredicativeTypes DynFlags
dflags
TcTyVarDetails
_other -> Bool
True