{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

-}

{-# LANGUAGE CPP, DeriveFunctor, MultiWayIf, TupleSections,
    ScopedTypeVariables #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns   #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates #-}

-- | Type subsumption and unification
module GHC.Tc.Utils.Unify (
  -- Full-blown subsumption
  tcWrapResult, tcWrapResultO, tcWrapResultMono,
  tcSkolemise, tcSkolemiseScoped, tcSkolemiseET,
  tcSubType, tcSubTypeSigma, tcSubTypePat,
  tcSubMult,
  checkConstraints, checkTvConstraints,
  buildImplicationFor, buildTvImplication, emitResidualTvConstraint,

  -- Various unifications
  unifyType, unifyKind,
  uType, promoteTcType,
  swapOverTyVars, canSolveByUnification,

  --------------------------------
  -- Holes
  tcInfer,
  matchExpectedListTy,
  matchExpectedTyConApp,
  matchExpectedAppTy,
  matchExpectedFunTys,
  matchActualFunTysRho, matchActualFunTySigma,
  matchExpectedFunKind,

  metaTyVarUpdateOK, occCheckForErrors, MetaTyVarUpdateResult(..)

  ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Hs
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Ppr( debugPprType )
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.Env
import GHC.Core.Type
import GHC.Core.Coercion
import GHC.Core.Multiplicity
import GHC.Tc.Types.Evidence
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Types.Origin
import GHC.Types.Name( isSystemName )
import GHC.Tc.Utils.Instantiate
import GHC.Core.TyCon
import GHC.Builtin.Types
import GHC.Types.Var as Var
import GHC.Types.Var.Set
import GHC.Types.Var.Env
import GHC.Utils.Error
import GHC.Driver.Session
import GHC.Types.Basic
import GHC.Data.Bag
import GHC.Utils.Misc
import qualified GHC.LanguageExtensions as LangExt
import GHC.Utils.Outputable as Outputable

import Control.Monad
import Control.Arrow ( second )

{-
************************************************************************
*                                                                      *
             matchExpected functions
*                                                                      *
************************************************************************

Note [Herald for matchExpectedFunTys]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The 'herald' always looks like:
   "The equation(s) for 'f' have"
   "The abstraction (\x.e) takes"
   "The section (+ x) expects"
   "The function 'f' is applied to"

This is used to construct a message of form

   The abstraction `\Just 1 -> ...' takes two arguments
   but its type `Maybe a -> a' has only one

   The equation(s) for `f' have two arguments
   but its type `Maybe a -> a' has only one

   The section `(f 3)' requires 'f' to take two arguments
   but its type `Int -> Int' has only one

   The function 'f' is applied to two arguments
   but its type `Int -> Int' has only one

When visible type applications (e.g., `f @Int 1 2`, as in #13902) enter the
picture, we have a choice in deciding whether to count the type applications as
proper arguments:

   The function 'f' is applied to one visible type argument
     and two value arguments
   but its type `forall a. a -> a` has only one visible type argument
     and one value argument

Or whether to include the type applications as part of the herald itself:

   The expression 'f @Int' is applied to two arguments
   but its type `Int -> Int` has only one

The latter is easier to implement and is arguably easier to understand, so we
choose to implement that option.

Note [matchExpectedFunTys]
~~~~~~~~~~~~~~~~~~~~~~~~~~
matchExpectedFunTys checks that a sigma has the form
of an n-ary function.  It passes the decomposed type to the
thing_inside, and returns a wrapper to coerce between the two types

It's used wherever a language construct must have a functional type,
namely:
        A lambda expression
        A function definition
     An operator section

This function must be written CPS'd because it needs to fill in the
ExpTypes produced for arguments before it can fill in the ExpType
passed in.

-}

-- Use this one when you have an "expected" type.
-- This function skolemises at each polytype.
matchExpectedFunTys :: forall a.
                       SDoc   -- See Note [Herald for matchExpectedFunTys]
                    -> UserTypeCtxt
                    -> Arity
                    -> ExpRhoType      -- Skolemised
                    -> ([Scaled ExpSigmaType] -> ExpRhoType -> TcM a)
                    -> TcM (HsWrapper, a)
-- If    matchExpectedFunTys n ty = (_, wrap)
-- then  wrap : (t1 -> ... -> tn -> ty_r) ~> ty,
--   where [t1, ..., tn], ty_r are passed to the thing_inside
matchExpectedFunTys :: forall a.
SDoc
-> UserTypeCtxt
-> Int
-> ExpRhoType
-> ([Scaled ExpRhoType] -> ExpRhoType -> TcM a)
-> TcM (HsWrapper, a)
matchExpectedFunTys SDoc
herald UserTypeCtxt
ctx Int
arity ExpRhoType
orig_ty [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside
  = case ExpRhoType
orig_ty of
      Check TcType
ty -> [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [] Int
arity TcType
ty
      ExpRhoType
_        -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [] Int
arity ExpRhoType
orig_ty
  where
    -- Skolemise any foralls /before/ the zero-arg case
    -- so that we guarantee to return a rho-type
    go :: [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty
      | ([TcTyVar]
tvs, ThetaType
theta, TcType
_) <- TcType -> ([TcTyVar], ThetaType, TcType)
tcSplitSigmaTy TcType
ty
      , Bool -> Bool
not ([TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& ThetaType -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta)
      = do { (HsWrapper
wrap_gen, (HsWrapper
wrap_res, a
result)) <- UserTypeCtxt
-> TcType
-> (TcType -> TcM (HsWrapper, a))
-> TcM (HsWrapper, (HsWrapper, a))
forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctx TcType
ty ((TcType -> TcM (HsWrapper, a)) -> TcM (HsWrapper, (HsWrapper, a)))
-> (TcType -> TcM (HsWrapper, a))
-> TcM (HsWrapper, (HsWrapper, a))
forall a b. (a -> b) -> a -> b
$ \TcType
ty' ->
                                               [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty'
           ; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_gen HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_res, a
result) }

    -- No more args; do this /before/ tcView, so
    -- that we do not unnecessarily unwrap synonyms
    go [Scaled ExpRhoType]
acc_arg_tys Int
0 TcType
rho_ty
      = do { a
result <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys) (TcType -> ExpRhoType
mkCheckExpType TcType
rho_ty)
           ; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, a
result) }

    go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty
      | Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty = [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty'

    go [Scaled ExpRhoType]
acc_arg_tys Int
n (FunTy { ft_mult :: TcType -> TcType
ft_mult = TcType
mult, ft_af :: TcType -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_arg :: TcType -> TcType
ft_arg = TcType
arg_ty, ft_res :: TcType -> TcType
ft_res = TcType
res_ty })
      = ASSERT( af == VisArg )
        do { (HsWrapper
wrap_res, a
result) <- [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go ((TcType -> ExpRhoType -> Scaled ExpRhoType
forall a. TcType -> a -> Scaled a
Scaled TcType
mult (ExpRhoType -> Scaled ExpRhoType)
-> ExpRhoType -> Scaled ExpRhoType
forall a b. (a -> b) -> a -> b
$ TcType -> ExpRhoType
mkCheckExpType TcType
arg_ty) Scaled ExpRhoType -> [Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. a -> [a] -> [a]
: [Scaled ExpRhoType]
acc_arg_tys)
                                      (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) TcType
res_ty
           ; let fun_wrap :: HsWrapper
fun_wrap = HsWrapper
-> HsWrapper -> Scaled TcType -> TcType -> SDoc -> HsWrapper
mkWpFun HsWrapper
idHsWrapper HsWrapper
wrap_res (TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
mult TcType
arg_ty) TcType
res_ty SDoc
doc
           ; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return ( HsWrapper
fun_wrap, a
result ) }
      where
        doc :: SDoc
doc = String -> SDoc
text String
"When inferring the argument type of a function with type" SDoc -> SDoc -> SDoc
<+>
              SDoc -> SDoc
quotes (ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
orig_ty)

    go [Scaled ExpRhoType]
acc_arg_tys Int
n ty :: TcType
ty@(TyVarTy TcTyVar
tv)
      | TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
      = do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
           ; case MetaDetails
cts of
               Indirect TcType
ty' -> [Scaled ExpRhoType] -> Int -> TcType -> TcM (HsWrapper, a)
go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty'
               MetaDetails
Flexi        -> [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (TcType -> ExpRhoType
mkCheckExpType TcType
ty) }

       -- In all other cases we bale out into ordinary unification
       -- However unlike the meta-tyvar case, we are sure that the
       -- number of arguments doesn't match arity of the original
       -- type, so we can add a bit more context to the error message
       -- (cf #7869).
       --
       -- It is not always an error, because specialized type may have
       -- different arity, for example:
       --
       -- > f1 = f2 'a'
       -- > f2 :: Monad m => m Bool
       -- > f2 = undefined
       --
       -- But in that case we add specialized type into error context
       -- anyway, because it may be useful. See also #9605.
    go [Scaled ExpRhoType]
acc_arg_tys Int
n TcType
ty = (TidyEnv -> TcM (TidyEnv, SDoc))
-> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM ([Scaled ExpRhoType] -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
acc_arg_tys TcType
ty) (TcM (HsWrapper, a) -> TcM (HsWrapper, a))
-> TcM (HsWrapper, a) -> TcM (HsWrapper, a)
forall a b. (a -> b) -> a -> b
$
                          [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n (TcType -> ExpRhoType
mkCheckExpType TcType
ty)

    ------------
    defer :: [Scaled ExpSigmaType] -> Arity -> ExpRhoType -> TcM (HsWrapper, a)
    defer :: [Scaled ExpRhoType] -> Int -> ExpRhoType -> TcM (HsWrapper, a)
defer [Scaled ExpRhoType]
acc_arg_tys Int
n ExpRhoType
fun_ty
      = do { [Scaled ExpRhoType]
more_arg_tys <- Int
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) [Scaled ExpRhoType]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM Int
n (TcType -> ExpRhoType -> Scaled ExpRhoType
forall a. TcType -> a -> Scaled a
mkScaled (TcType -> ExpRhoType -> Scaled ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) TcType
-> IOEnv (Env TcGblEnv TcLclEnv) (ExpRhoType -> Scaled ExpRhoType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
multiplicityTy IOEnv (Env TcGblEnv TcLclEnv) (ExpRhoType -> Scaled ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) ExpRhoType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled ExpRhoType)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> IOEnv (Env TcGblEnv TcLclEnv) ExpRhoType
newInferExpType)
           ; ExpRhoType
res_ty       <- IOEnv (Env TcGblEnv TcLclEnv) ExpRhoType
newInferExpType
           ; a
result       <- [Scaled ExpRhoType] -> ExpRhoType -> TcM a
thing_inside ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
acc_arg_tys [Scaled ExpRhoType] -> [Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a] -> [a]
++ [Scaled ExpRhoType]
more_arg_tys) ExpRhoType
res_ty
           ; [Scaled TcType]
more_arg_tys <- (Scaled ExpRhoType
 -> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcType))
-> [Scaled ExpRhoType]
-> IOEnv (Env TcGblEnv TcLclEnv) [Scaled TcType]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (\(Scaled TcType
m ExpRhoType
t) -> TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
m (TcType -> Scaled TcType)
-> IOEnv (Env TcGblEnv TcLclEnv) TcType
-> IOEnv (Env TcGblEnv TcLclEnv) (Scaled TcType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
readExpType ExpRhoType
t) [Scaled ExpRhoType]
more_arg_tys
           ; TcType
res_ty       <- ExpRhoType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
readExpType ExpRhoType
res_ty
           ; let unif_fun_ty :: TcType
unif_fun_ty = [Scaled TcType] -> TcType -> TcType
mkVisFunTys [Scaled TcType]
more_arg_tys TcType
res_ty
           ; HsWrapper
wrap <- CtOrigin -> UserTypeCtxt -> TcType -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
AppOrigin UserTypeCtxt
ctx TcType
unif_fun_ty ExpRhoType
fun_ty
                         -- Not a good origin at all :-(
           ; (HsWrapper, a) -> TcM (HsWrapper, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap, a
result) }

    ------------
    mk_ctxt :: [Scaled ExpSigmaType] -> TcType -> TidyEnv -> TcM (TidyEnv, MsgDoc)
    mk_ctxt :: [Scaled ExpRhoType] -> TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt [Scaled ExpRhoType]
arg_tys TcType
res_ty TidyEnv
env
      = do { (TidyEnv
env', TcType
ty) <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
env ([Scaled TcType] -> TcType -> TcType
mkVisFunTys [Scaled TcType]
arg_tys' TcType
res_ty)
           ; (TidyEnv, SDoc) -> TcM (TidyEnv, SDoc)
forall (m :: * -> *) a. Monad m => a -> m a
return ( TidyEnv
env', SDoc -> TcType -> Int -> SDoc
mk_fun_tys_msg SDoc
herald TcType
ty Int
arity) }
      where
        arg_tys' :: [Scaled TcType]
arg_tys' = (Scaled ExpRhoType -> Scaled TcType)
-> [Scaled ExpRhoType] -> [Scaled TcType]
forall a b. (a -> b) -> [a] -> [b]
map (\(Scaled TcType
u ExpRhoType
v) -> TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
u (String -> ExpRhoType -> TcType
checkingExpType String
"matchExpectedFunTys" ExpRhoType
v)) ([Scaled ExpRhoType] -> [Scaled ExpRhoType]
forall a. [a] -> [a]
reverse [Scaled ExpRhoType]
arg_tys)
            -- this is safe b/c we're called from "go"

-- Like 'matchExpectedFunTys', but used when you have an "actual" type,
-- for example in function application
matchActualFunTysRho :: SDoc   -- See Note [Herald for matchExpectedFunTys]
                     -> CtOrigin
                     -> Maybe (HsExpr GhcRn)   -- the thing with type TcSigmaType
                     -> Arity
                     -> TcSigmaType
                     -> TcM (HsWrapper, [Scaled TcSigmaType], TcRhoType)
-- If    matchActualFunTysRho n ty = (wrap, [t1,..,tn], res_ty)
-- then  wrap : ty ~> (t1 -> ... -> tn -> res_ty)
--       and res_ty is a RhoType
-- NB: the returned type is top-instantiated; it's a RhoType
matchActualFunTysRho :: SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> Int
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
matchActualFunTysRho SDoc
herald CtOrigin
ct_orig Maybe (HsExpr GhcRn)
mb_thing Int
n_val_args_wanted TcType
fun_ty
  = Int
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
forall {t}.
(Eq t, Num t) =>
t
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
go Int
n_val_args_wanted [] TcType
fun_ty
  where
    go :: t
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
go t
0 [Scaled TcType]
_ TcType
fun_ty
      = do { (HsWrapper
wrap, TcType
rho) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
ct_orig TcType
fun_ty
           ; (HsWrapper, [Scaled TcType], TcType)
-> TcM (HsWrapper, [Scaled TcType], TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap, [], TcType
rho) }
    go t
n [Scaled TcType]
so_far TcType
fun_ty
      = do { (HsWrapper
wrap_fun1, Scaled TcType
arg_ty1, TcType
res_ty1) <- SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> (Int, [Scaled TcType])
-> TcType
-> TcM (HsWrapper, Scaled TcType, TcType)
matchActualFunTySigma
                                                 SDoc
herald CtOrigin
ct_orig Maybe (HsExpr GhcRn)
mb_thing
                                                 (Int
n_val_args_wanted, [Scaled TcType]
so_far)
                                                 TcType
fun_ty
           ; (HsWrapper
wrap_res, [Scaled TcType]
arg_tys, TcType
res_ty)   <- t
-> [Scaled TcType]
-> TcType
-> TcM (HsWrapper, [Scaled TcType], TcType)
go (t
nt -> t -> t
forall a. Num a => a -> a -> a
-t
1) (Scaled TcType
arg_ty1Scaled TcType -> [Scaled TcType] -> [Scaled TcType]
forall a. a -> [a] -> [a]
:[Scaled TcType]
so_far) TcType
res_ty1
           ; let wrap_fun2 :: HsWrapper
wrap_fun2 = HsWrapper
-> HsWrapper -> Scaled TcType -> TcType -> SDoc -> HsWrapper
mkWpFun HsWrapper
idHsWrapper HsWrapper
wrap_res Scaled TcType
arg_ty1 TcType
res_ty SDoc
doc
           ; (HsWrapper, [Scaled TcType], TcType)
-> TcM (HsWrapper, [Scaled TcType], TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap_fun2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap_fun1, Scaled TcType
arg_ty1Scaled TcType -> [Scaled TcType] -> [Scaled TcType]
forall a. a -> [a] -> [a]
:[Scaled TcType]
arg_tys, TcType
res_ty) }
      where
        doc :: SDoc
doc = String -> SDoc
text String
"When inferring the argument type of a function with type" SDoc -> SDoc -> SDoc
<+>
              SDoc -> SDoc
quotes (TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
fun_ty)

-- | matchActualFunTySigm does looks for just one function arrow
--   returning an uninstantiated sigma-type
matchActualFunTySigma
  :: SDoc -- See Note [Herald for matchExpectedFunTys]
  -> CtOrigin
  -> Maybe (HsExpr GhcRn)   -- The thing with type TcSigmaType
  -> (Arity, [Scaled TcSigmaType]) -- Total number of value args in the call, and
                            -- types of values args to which function has
                            --   been applied already (reversed)
                            -- Both are used only for error messages)
  -> TcSigmaType            -- Type to analyse
  -> TcM (HsWrapper, Scaled TcSigmaType, TcSigmaType)
-- See Note [matchActualFunTys error handling] for all these arguments

-- If   (wrap, arg_ty, res_ty) = matchActualFunTySigma ... fun_ty
-- then wrap :: fun_ty ~> (arg_ty -> res_ty)
-- and NB: res_ty is an (uninstantiated) SigmaType

matchActualFunTySigma :: SDoc
-> CtOrigin
-> Maybe (HsExpr GhcRn)
-> (Int, [Scaled TcType])
-> TcType
-> TcM (HsWrapper, Scaled TcType, TcType)
matchActualFunTySigma SDoc
herald CtOrigin
ct_orig Maybe (HsExpr GhcRn)
mb_thing (Int, [Scaled TcType])
err_info TcType
fun_ty
  = TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
fun_ty
-- Does not allocate unnecessary meta variables: if the input already is
-- a function, we just take it apart.  Not only is this efficient,
-- it's important for higher rank: the argument might be of form
--              (forall a. ty) -> other
-- If allocated (fresh-meta-var1 -> fresh-meta-var2) and unified, we'd
-- hide the forall inside a meta-variable

-- (*) Sometimes it's necessary to call matchActualFunTys with only part
-- (that is, to the right of some arrows) of the type of the function in
-- question. (See GHC.Tc.Gen.Expr.tcArgs.) This argument is the reversed list of
-- arguments already seen (that is, not part of the TcSigmaType passed
-- in elsewhere).

  where
    go :: TcSigmaType   -- The remainder of the type as we're processing
       -> TcM (HsWrapper, Scaled TcSigmaType, TcSigmaType)
    go :: TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
ty | Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty = TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
ty'

    go TcType
ty
      | Bool -> Bool
not ([TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
tvs Bool -> Bool -> Bool
&& ThetaType -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta)
      = do { (HsWrapper
wrap1, TcType
rho) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
ct_orig TcType
ty
           ; (HsWrapper
wrap2, Scaled TcType
arg_ty, TcType
res_ty) <- TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
rho
           ; (HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap2 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap1, Scaled TcType
arg_ty, TcType
res_ty) }
      where
        ([TcTyVar]
tvs, ThetaType
theta, TcType
_) = TcType -> ([TcTyVar], ThetaType, TcType)
tcSplitSigmaTy TcType
ty

    go (FunTy { ft_af :: TcType -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_mult :: TcType -> TcType
ft_mult = TcType
w, ft_arg :: TcType -> TcType
ft_arg = TcType
arg_ty, ft_res :: TcType -> TcType
ft_res = TcType
res_ty })
      = ASSERT( af == VisArg )
        (HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
w TcType
arg_ty, TcType
res_ty)

    go ty :: TcType
ty@(TyVarTy TcTyVar
tv)
      | TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
      = do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
           ; case MetaDetails
cts of
               Indirect TcType
ty' -> TcType -> TcM (HsWrapper, Scaled TcType, TcType)
go TcType
ty'
               MetaDetails
Flexi        -> TcType -> TcM (HsWrapper, Scaled TcType, TcType)
defer TcType
ty }

       -- In all other cases we bale out into ordinary unification
       -- However unlike the meta-tyvar case, we are sure that the
       -- number of arguments doesn't match arity of the original
       -- type, so we can add a bit more context to the error message
       -- (cf #7869).
       --
       -- It is not always an error, because specialized type may have
       -- different arity, for example:
       --
       -- > f1 = f2 'a'
       -- > f2 :: Monad m => m Bool
       -- > f2 = undefined
       --
       -- But in that case we add specialized type into error context
       -- anyway, because it may be useful. See also #9605.
    go TcType
ty = (TidyEnv -> TcM (TidyEnv, SDoc))
-> TcM (HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM (TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt TcType
ty) (TcType -> TcM (HsWrapper, Scaled TcType, TcType)
defer TcType
ty)

    ------------
    defer :: TcType -> TcM (HsWrapper, Scaled TcType, TcType)
defer TcType
fun_ty
      = do { TcType
arg_ty <- IOEnv (Env TcGblEnv TcLclEnv) TcType
newOpenFlexiTyVarTy
           ; TcType
res_ty <- IOEnv (Env TcGblEnv TcLclEnv) TcType
newOpenFlexiTyVarTy
           ; TcType
mult <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
multiplicityTy
           ; let unif_fun_ty :: TcType
unif_fun_ty = TcType -> TcType -> TcType -> TcType
mkVisFunTy TcType
mult TcType
arg_ty TcType
res_ty
           ; Coercion
co <- Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
mb_thing TcType
fun_ty TcType
unif_fun_ty
           ; (HsWrapper, Scaled TcType, TcType)
-> TcM (HsWrapper, Scaled TcType, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co, TcType -> TcType -> Scaled TcType
forall a. TcType -> a -> Scaled a
Scaled TcType
mult TcType
arg_ty, TcType
res_ty) }

    ------------
    mk_ctxt :: TcType -> TidyEnv -> TcM (TidyEnv, MsgDoc)
    mk_ctxt :: TcType -> TidyEnv -> TcM (TidyEnv, SDoc)
mk_ctxt TcType
res_ty TidyEnv
env
      = do { (TidyEnv
env', TcType
ty) <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
env (TcType -> TcM (TidyEnv, TcType))
-> TcType -> TcM (TidyEnv, TcType)
forall a b. (a -> b) -> a -> b
$
                           [Scaled TcType] -> TcType -> TcType
mkVisFunTys ([Scaled TcType] -> [Scaled TcType]
forall a. [a] -> [a]
reverse [Scaled TcType]
arg_tys_so_far) TcType
res_ty
           ; (TidyEnv, SDoc) -> TcM (TidyEnv, SDoc)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
env', SDoc -> TcType -> Int -> SDoc
mk_fun_tys_msg SDoc
herald TcType
ty Int
n_val_args_in_call) }
    (Int
n_val_args_in_call, [Scaled TcType]
arg_tys_so_far) = (Int, [Scaled TcType])
err_info

mk_fun_tys_msg :: SDoc -> TcType -> Arity -> SDoc
mk_fun_tys_msg :: SDoc -> TcType -> Int -> SDoc
mk_fun_tys_msg SDoc
herald TcType
ty Int
n_args_in_call
  | Int
n_args_in_call Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
n_fun_args  -- Enough args, in the end
  = String -> SDoc
text String
"In the result of a function call"
  | Bool
otherwise
  = SDoc -> Int -> SDoc -> SDoc
hang (SDoc
herald SDoc -> SDoc -> SDoc
<+> Int -> SDoc -> SDoc
speakNOf Int
n_args_in_call (String -> SDoc
text String
"value argument") SDoc -> SDoc -> SDoc
<> SDoc
comma)
       Int
2 ([SDoc] -> SDoc
sep [ String -> SDoc
text String
"but its type" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (TcType -> SDoc
pprType TcType
ty)
              , if Int
n_fun_args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 then String -> SDoc
text String
"has none"
                else String -> SDoc
text String
"has only" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
speakN Int
n_fun_args])
  where
    ([Scaled TcType]
args, TcType
_) = TcType -> ([Scaled TcType], TcType)
tcSplitFunTys TcType
ty
    n_fun_args :: Int
n_fun_args = [Scaled TcType] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Scaled TcType]
args

{- Note [matchActualFunTys error handling]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
matchActualFunTysPart is made much more complicated by the
desire to produce good error messages. Consider the application
    f @Int x y
In GHC.Tc.Gen.Expr.tcArgs we deal with visible type arguments,
and then call matchActualFunTysPart for each individual value
argument. It, in turn, must instantiate any type/dictionary args,
before looking for an arrow type.

But if it doesn't find an arrow type, it wants to generate a message
like "f is applied to two arguments but its type only has one".
To do that, it needs to konw about the args that tcArgs has already
munched up -- hence passing in n_val_args_in_call and arg_tys_so_far;
and hence also the accumulating so_far arg to 'go'.

This allows us (in mk_ctxt) to construct f's /instantiated/ type,
with just the values-arg arrows, which is what we really want
in the error message.

Ugh!
-}

----------------------
matchExpectedListTy :: TcRhoType -> TcM (TcCoercionN, TcRhoType)
-- Special case for lists
matchExpectedListTy :: TcType -> TcM (Coercion, TcType)
matchExpectedListTy TcType
exp_ty
 = do { (Coercion
co, [TcType
elt_ty]) <- TyCon -> TcType -> TcM (Coercion, ThetaType)
matchExpectedTyConApp TyCon
listTyCon TcType
exp_ty
      ; (Coercion, TcType) -> TcM (Coercion, TcType)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, TcType
elt_ty) }

---------------------
matchExpectedTyConApp :: TyCon                -- T :: forall kv1 ... kvm. k1 -> ... -> kn -> *
                      -> TcRhoType            -- orig_ty
                      -> TcM (TcCoercionN,    -- T k1 k2 k3 a b c ~N orig_ty
                              [TcSigmaType])  -- Element types, k1 k2 k3 a b c

-- It's used for wired-in tycons, so we call checkWiredInTyCon
-- Precondition: never called with FunTyCon
-- Precondition: input type :: *
-- Postcondition: (T k1 k2 k3 a b c) is well-kinded

matchExpectedTyConApp :: TyCon -> TcType -> TcM (Coercion, ThetaType)
matchExpectedTyConApp TyCon
tc TcType
orig_ty
  = ASSERT(not $ isFunTyCon tc) go orig_ty
  where
    go :: TcType -> TcM (Coercion, ThetaType)
go TcType
ty
       | Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty
       = TcType -> TcM (Coercion, ThetaType)
go TcType
ty'

    go ty :: TcType
ty@(TyConApp TyCon
tycon ThetaType
args)
       | TyCon
tc TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tycon  -- Common case
       = (Coercion, ThetaType) -> TcM (Coercion, ThetaType)
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkTcNomReflCo TcType
ty, ThetaType
args)

    go (TyVarTy TcTyVar
tv)
       | TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
       = do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
            ; case MetaDetails
cts of
                Indirect TcType
ty -> TcType -> TcM (Coercion, ThetaType)
go TcType
ty
                MetaDetails
Flexi       -> TcM (Coercion, ThetaType)
defer }

    go TcType
_ = TcM (Coercion, ThetaType)
defer

    -- If the common case does not occur, instantiate a template
    -- T k1 .. kn t1 .. tm, and unify with the original type
    -- Doing it this way ensures that the types we return are
    -- kind-compatible with T.  For example, suppose we have
    --       matchExpectedTyConApp T (f Maybe)
    -- where data T a = MkT a
    -- Then we don't want to instantiate T's data constructors with
    --    (a::*) ~ Maybe
    -- because that'll make types that are utterly ill-kinded.
    -- This happened in #7368
    defer :: TcM (Coercion, ThetaType)
defer
      = do { (TCvSubst
_, [TcTyVar]
arg_tvs) <- [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
newMetaTyVars (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc)
           ; String -> SDoc -> TcRn ()
traceTc String
"matchExpectedTyConApp" (TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> [TcTyVar]
tyConTyVars TyCon
tc) SDoc -> SDoc -> SDoc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
arg_tvs)
           ; let args :: ThetaType
args = [TcTyVar] -> ThetaType
mkTyVarTys [TcTyVar]
arg_tvs
                 tc_template :: TcType
tc_template = TyCon -> ThetaType -> TcType
mkTyConApp TyCon
tc ThetaType
args
           ; Coercion
co <- Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing TcType
tc_template TcType
orig_ty
           ; (Coercion, ThetaType) -> TcM (Coercion, ThetaType)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, ThetaType
args) }

----------------------
matchExpectedAppTy :: TcRhoType                         -- orig_ty
                   -> TcM (TcCoercion,                   -- m a ~N orig_ty
                           (TcSigmaType, TcSigmaType))  -- Returns m, a
-- If the incoming type is a mutable type variable of kind k, then
-- matchExpectedAppTy returns a new type variable (m: * -> k); note the *.

matchExpectedAppTy :: TcType -> TcM (Coercion, (TcType, TcType))
matchExpectedAppTy TcType
orig_ty
  = TcType -> TcM (Coercion, (TcType, TcType))
go TcType
orig_ty
  where
    go :: TcType -> TcM (Coercion, (TcType, TcType))
go TcType
ty
      | Just TcType
ty' <- TcType -> Maybe TcType
tcView TcType
ty = TcType -> TcM (Coercion, (TcType, TcType))
go TcType
ty'

      | Just (TcType
fun_ty, TcType
arg_ty) <- TcType -> Maybe (TcType, TcType)
tcSplitAppTy_maybe TcType
ty
      = (Coercion, (TcType, TcType)) -> TcM (Coercion, (TcType, TcType))
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkTcNomReflCo TcType
orig_ty, (TcType
fun_ty, TcType
arg_ty))

    go (TyVarTy TcTyVar
tv)
      | TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
      = do { MetaDetails
cts <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
tv
           ; case MetaDetails
cts of
               Indirect TcType
ty -> TcType -> TcM (Coercion, (TcType, TcType))
go TcType
ty
               MetaDetails
Flexi       -> TcM (Coercion, (TcType, TcType))
defer }

    go TcType
_ = TcM (Coercion, (TcType, TcType))
defer

    -- Defer splitting by generating an equality constraint
    defer :: TcM (Coercion, (TcType, TcType))
defer
      = do { TcType
ty1 <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
kind1
           ; TcType
ty2 <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
newFlexiTyVarTy TcType
kind2
           ; Coercion
co <- Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing (TcType -> TcType -> TcType
mkAppTy TcType
ty1 TcType
ty2) TcType
orig_ty
           ; (Coercion, (TcType, TcType)) -> TcM (Coercion, (TcType, TcType))
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, (TcType
ty1, TcType
ty2)) }

    orig_kind :: TcType
orig_kind = HasDebugCallStack => TcType -> TcType
TcType -> TcType
tcTypeKind TcType
orig_ty
    kind1 :: TcType
kind1 = TcType -> TcType -> TcType
mkVisFunTyMany TcType
liftedTypeKind TcType
orig_kind
    kind2 :: TcType
kind2 = TcType
liftedTypeKind    -- m :: * -> k
                              -- arg type :: *

{-
************************************************************************
*                                                                      *
                Subsumption checking
*                                                                      *
************************************************************************

Note [Subsumption checking: tcSubType]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All the tcSubType calls have the form
                tcSubType actual_ty expected_ty
which checks
                actual_ty <= expected_ty

That is, that a value of type actual_ty is acceptable in
a place expecting a value of type expected_ty.  I.e. that

    actual ty   is more polymorphic than   expected_ty

It returns a wrapper function
        co_fn :: actual_ty ~ expected_ty
which takes an HsExpr of type actual_ty into one of type
expected_ty.
-}


-----------------
-- tcWrapResult needs both un-type-checked (for origins and error messages)
-- and type-checked (for wrapping) expressions
tcWrapResult :: HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
             -> TcM (HsExpr GhcTc)
tcWrapResult :: HsExpr GhcRn
-> HsExpr GhcTc -> TcType -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResult HsExpr GhcRn
rn_expr = CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> TcType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO (HsExpr GhcRn -> CtOrigin
exprCtOrigin HsExpr GhcRn
rn_expr) HsExpr GhcRn
rn_expr

tcWrapResultO :: CtOrigin -> HsExpr GhcRn -> HsExpr GhcTc -> TcSigmaType -> ExpRhoType
               -> TcM (HsExpr GhcTc)
tcWrapResultO :: CtOrigin
-> HsExpr GhcRn
-> HsExpr GhcTc
-> TcType
-> ExpRhoType
-> TcM (HsExpr GhcTc)
tcWrapResultO CtOrigin
orig HsExpr GhcRn
rn_expr HsExpr GhcTc
expr TcType
actual_ty ExpRhoType
res_ty
  = do { String -> SDoc -> TcRn ()
traceTc String
"tcWrapResult" ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Actual:  " SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
actual_ty
                                      , String -> SDoc
text String
"Expected:" SDoc -> SDoc -> SDoc
<+> ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
res_ty ])
       ; HsWrapper
wrap <- CtOrigin
-> UserTypeCtxt
-> Maybe (HsExpr GhcRn)
-> TcType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
GenSigCtxt (HsExpr GhcRn -> Maybe (HsExpr GhcRn)
forall a. a -> Maybe a
Just HsExpr GhcRn
rn_expr) TcType
actual_ty ExpRhoType
res_ty
       ; HsExpr GhcTc -> TcM (HsExpr GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrap HsWrapper
wrap HsExpr GhcTc
expr) }

tcWrapResultMono :: HsExpr GhcRn -> HsExpr GhcTc
                 -> TcRhoType   -- Actual -- a rho-type not a sigma-type
                 -> ExpRhoType  -- Expected
                 -> TcM (HsExpr GhcTc)
-- A version of tcWrapResult to use when the actual type is a
-- rho-type, so nothing to instantiate; just go straight to unify.
-- It means we don't need to pass in a CtOrigin
tcWrapResultMono :: HsExpr GhcRn
-> HsExpr GhcTc -> TcType -> ExpRhoType -> TcM (HsExpr GhcTc)
tcWrapResultMono HsExpr GhcRn
rn_expr HsExpr GhcTc
expr TcType
act_ty ExpRhoType
res_ty
  = ASSERT2( isRhoTy act_ty, ppr act_ty $$ ppr rn_expr )
    do { Coercion
co <- case ExpRhoType
res_ty of
                  Infer InferResult
inf_res -> TcType -> InferResult -> TcM Coercion
fillInferResult TcType
act_ty InferResult
inf_res
                  Check TcType
exp_ty  -> Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType (HsExpr GhcRn -> Maybe (HsExpr GhcRn)
forall a. a -> Maybe a
Just HsExpr GhcRn
rn_expr) TcType
act_ty TcType
exp_ty
       ; HsExpr GhcTc -> TcM (HsExpr GhcTc)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsExpr GhcTc -> HsExpr GhcTc
mkHsWrapCo Coercion
co HsExpr GhcTc
expr) }

------------------------
tcSubTypePat :: CtOrigin -> UserTypeCtxt
            -> ExpSigmaType -> TcSigmaType -> TcM HsWrapper
-- Used in patterns; polarity is backwards compared
--   to tcSubType
-- If wrap = tc_sub_type_et t1 t2
--    => wrap :: t1 ~> t2
tcSubTypePat :: CtOrigin -> UserTypeCtxt -> ExpRhoType -> TcType -> TcM HsWrapper
tcSubTypePat CtOrigin
inst_orig UserTypeCtxt
ctxt (Check TcType
ty_actual) TcType
ty_expected
  = (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type TcType -> TcType -> TcM Coercion
unifyTypeET CtOrigin
inst_orig UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected

tcSubTypePat CtOrigin
_ UserTypeCtxt
_ (Infer InferResult
inf_res) TcType
ty_expected
  = do { Coercion
co <- TcType -> InferResult -> TcM Coercion
fillInferResult TcType
ty_expected InferResult
inf_res
               -- In patterns we do not instantatiate

       ; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN (Coercion -> Coercion
mkTcSymCo Coercion
co)) }

---------------
tcSubType :: CtOrigin -> UserTypeCtxt
          -> TcSigmaType  -- Actual
          -> ExpRhoType   -- Expected
          -> TcM HsWrapper
-- Checks that 'actual' is more polymorphic than 'expected'
tcSubType :: CtOrigin -> UserTypeCtxt -> TcType -> ExpRhoType -> TcM HsWrapper
tcSubType CtOrigin
orig UserTypeCtxt
ctxt TcType
ty_actual ExpRhoType
ty_expected
  = TcType -> ExpRhoType -> TcM HsWrapper -> TcM HsWrapper
forall a. TcType -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt TcType
ty_actual ExpRhoType
ty_expected (TcM HsWrapper -> TcM HsWrapper) -> TcM HsWrapper -> TcM HsWrapper
forall a b. (a -> b) -> a -> b
$
    do { String -> SDoc -> TcRn ()
traceTc String
"tcSubType" ([SDoc] -> SDoc
vcat [UserTypeCtxt -> SDoc
pprUserTypeCtxt UserTypeCtxt
ctxt, TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual, ExpRhoType -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExpRhoType
ty_expected])
       ; CtOrigin
-> UserTypeCtxt
-> Maybe (HsExpr GhcRn)
-> TcType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
orig UserTypeCtxt
ctxt Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing TcType
ty_actual ExpRhoType
ty_expected }

tcSubTypeNC :: CtOrigin       -- Used when instantiating
            -> UserTypeCtxt   -- Used when skolemising
            -> Maybe (HsExpr GhcRn)   -- The expression that has type 'actual' (if known)
            -> TcSigmaType            -- Actual type
            -> ExpRhoType             -- Expected type
            -> TcM HsWrapper
tcSubTypeNC :: CtOrigin
-> UserTypeCtxt
-> Maybe (HsExpr GhcRn)
-> TcType
-> ExpRhoType
-> TcM HsWrapper
tcSubTypeNC CtOrigin
inst_orig UserTypeCtxt
ctxt Maybe (HsExpr GhcRn)
m_thing TcType
ty_actual ExpRhoType
res_ty
  = case ExpRhoType
res_ty of
      Check TcType
ty_expected -> (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type (Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
m_thing) CtOrigin
inst_orig UserTypeCtxt
ctxt
                                       TcType
ty_actual TcType
ty_expected

      Infer InferResult
inf_res -> do { (HsWrapper
wrap, TcType
rho) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
inst_orig TcType
ty_actual
                                   -- See Note [Instantiation of InferResult]
                          ; Coercion
co <- TcType -> InferResult -> TcM Coercion
fillInferResult TcType
rho InferResult
inf_res
                          ; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
co HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }

{- Note [Instantiation of InferResult]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We now always instantiate before filling in InferResult, so that
the result is a TcRhoType: see #17173 for discussion.

For example:

1. Consider
    f x = (*)
   We want to instantiate the type of (*) before returning, else we
   will infer the type
     f :: forall {a}. a -> forall b. Num b => b -> b -> b
   This is surely confusing for users.

   And worse, the monomorphism restriction won't work properly. The MR is
   dealt with in simplifyInfer, and simplifyInfer has no way of
   instantiating. This could perhaps be worked around, but it may be
   hard to know even when instantiation should happen.

2. Another reason.  Consider
       f :: (?x :: Int) => a -> a
       g y = let ?x = 3::Int in f
   Here want to instantiate f's type so that the ?x::Int constraint
   gets discharged by the enclosing implicit-parameter binding.

3. Suppose one defines plus = (+). If we instantiate lazily, we will
   infer plus :: forall a. Num a => a -> a -> a. However, the monomorphism
   restriction compels us to infer
      plus :: Integer -> Integer -> Integer
   (or similar monotype). Indeed, the only way to know whether to apply
   the monomorphism restriction at all is to instantiate

There is one place where we don't want to instantiate eagerly,
namely in GHC.Tc.Module.tcRnExpr, which implements GHCi's :type
command. See Note [Implementing :type] in GHC.Tc.Module.
-}

---------------
tcSubTypeSigma :: UserTypeCtxt -> TcSigmaType -> TcSigmaType -> TcM HsWrapper
-- External entry point, but no ExpTypes on either side
-- Checks that actual <= expected
-- Returns HsWrapper :: actual ~ expected
tcSubTypeSigma :: UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tcSubTypeSigma UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected
  = (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type (Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
forall a. Maybe a
Nothing) CtOrigin
eq_orig UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected
  where
    eq_orig :: CtOrigin
eq_orig = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual   = TcType
ty_actual
                           , uo_expected :: TcType
uo_expected = TcType
ty_expected
                           , uo_thing :: Maybe SDoc
uo_thing    = Maybe SDoc
forall a. Maybe a
Nothing
                           , uo_visible :: Bool
uo_visible  = Bool
True }

---------------
tc_sub_type :: (TcType -> TcType -> TcM TcCoercionN)  -- How to unify
            -> CtOrigin       -- Used when instantiating
            -> UserTypeCtxt   -- Used when skolemising
            -> TcSigmaType    -- Actual; a sigma-type
            -> TcSigmaType    -- Expected; also a sigma-type
            -> TcM HsWrapper
-- Checks that actual_ty is more polymorphic than expected_ty
-- If wrap = tc_sub_type t1 t2
--    => wrap :: t1 ~> t2
tc_sub_type :: (TcType -> TcType -> TcM Coercion)
-> CtOrigin -> UserTypeCtxt -> TcType -> TcType -> TcM HsWrapper
tc_sub_type TcType -> TcType -> TcM Coercion
unify CtOrigin
inst_orig UserTypeCtxt
ctxt TcType
ty_actual TcType
ty_expected
  | TcType -> Bool
definitely_poly TcType
ty_expected      -- See Note [Don't skolemise unnecessarily]
  , Bool -> Bool
not (TcType -> Bool
possibly_poly TcType
ty_actual)
  = do { String -> SDoc -> TcRn ()
traceTc String
"tc_sub_type (drop to equality)" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual   =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual
              , String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_expected ]
       ; Coercion -> HsWrapper
mkWpCastN (Coercion -> HsWrapper) -> TcM Coercion -> TcM HsWrapper
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
         TcType -> TcType -> TcM Coercion
unify TcType
ty_actual TcType
ty_expected }

  | Bool
otherwise   -- This is the general case
  = do { String -> SDoc -> TcRn ()
traceTc String
"tc_sub_type (general case)" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ty_actual   =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual
              , String -> SDoc
text String
"ty_expected =" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_expected ]

       ; (HsWrapper
sk_wrap, HsWrapper
inner_wrap)
           <- UserTypeCtxt
-> TcType
-> (TcType -> TcM HsWrapper)
-> TcM (HsWrapper, HsWrapper)
forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctxt TcType
ty_expected ((TcType -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper))
-> (TcType -> TcM HsWrapper) -> TcM (HsWrapper, HsWrapper)
forall a b. (a -> b) -> a -> b
$ \ TcType
sk_rho ->
              do { (HsWrapper
wrap, TcType
rho_a) <- CtOrigin -> TcType -> TcM (HsWrapper, TcType)
topInstantiate CtOrigin
inst_orig TcType
ty_actual
                 ; Coercion
cow           <- TcType -> TcType -> TcM Coercion
unify TcType
rho_a TcType
sk_rho
                 ; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> HsWrapper
mkWpCastN Coercion
cow HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
wrap) }

       ; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
sk_wrap HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
inner_wrap) }
  where
    possibly_poly :: TcType -> Bool
possibly_poly TcType
ty
      | TcType -> Bool
isForAllTy TcType
ty                        = Bool
True
      | Just (TcType
_, TcType
_, TcType
res) <- TcType -> Maybe (TcType, TcType, TcType)
splitFunTy_maybe TcType
ty = TcType -> Bool
possibly_poly TcType
res
      | Bool
otherwise                            = Bool
False
      -- NB *not* tcSplitFunTy, because here we want
      -- to decompose type-class arguments too

    definitely_poly :: TcType -> Bool
definitely_poly TcType
ty
      | ([TcTyVar]
tvs, ThetaType
theta, TcType
tau) <- TcType -> ([TcTyVar], ThetaType, TcType)
tcSplitSigmaTy TcType
ty
      , (TcTyVar
tv:[TcTyVar]
_) <- [TcTyVar]
tvs
      , ThetaType -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ThetaType
theta
      , EqRel -> TcTyVar -> TcType -> Bool
isInsolubleOccursCheck EqRel
NomEq TcTyVar
tv TcType
tau
      = Bool
True
      | Bool
otherwise
      = Bool
False

------------------------
addSubTypeCtxt :: TcType -> ExpType -> TcM a -> TcM a
addSubTypeCtxt :: forall a. TcType -> ExpRhoType -> TcM a -> TcM a
addSubTypeCtxt TcType
ty_actual ExpRhoType
ty_expected TcM a
thing_inside
 | TcType -> Bool
isRhoTy TcType
ty_actual        -- If there is no polymorphism involved, the
 , ExpRhoType -> Bool
isRhoExpTy ExpRhoType
ty_expected   -- TypeEqOrigin stuff (added by the _NC functions)
 = TcM a
thing_inside             -- gives enough context by itself
 | Bool
otherwise
 = (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
forall a. (TidyEnv -> TcM (TidyEnv, SDoc)) -> TcM a -> TcM a
addErrCtxtM TidyEnv -> TcM (TidyEnv, SDoc)
mk_msg TcM a
thing_inside
  where
    mk_msg :: TidyEnv -> TcM (TidyEnv, SDoc)
mk_msg TidyEnv
tidy_env
      = do { (TidyEnv
tidy_env, TcType
ty_actual)   <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
tidy_env TcType
ty_actual
                   -- might not be filled if we're debugging. ugh.
           ; Maybe TcType
mb_ty_expected          <- ExpRhoType -> TcM (Maybe TcType)
readExpType_maybe ExpRhoType
ty_expected
           ; (TidyEnv
tidy_env, ExpRhoType
ty_expected) <- case Maybe TcType
mb_ty_expected of
                                          Just TcType
ty -> (TcType -> ExpRhoType)
-> (TidyEnv, TcType) -> (TidyEnv, ExpRhoType)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second TcType -> ExpRhoType
mkCheckExpType ((TidyEnv, TcType) -> (TidyEnv, ExpRhoType))
-> TcM (TidyEnv, TcType)
-> IOEnv (Env TcGblEnv TcLclEnv) (TidyEnv, ExpRhoType)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
                                                     TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
tidy_env TcType
ty
                                          Maybe TcType
Nothing -> (TidyEnv, ExpRhoType)
-> IOEnv (Env TcGblEnv TcLclEnv) (TidyEnv, ExpRhoType)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env, ExpRhoType
ty_expected)
           ; TcType
ty_expected             <- ExpRhoType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
readExpType ExpRhoType
ty_expected
           ; (TidyEnv
tidy_env, TcType
ty_expected) <- TidyEnv -> TcType -> TcM (TidyEnv, TcType)
zonkTidyTcType TidyEnv
tidy_env TcType
ty_expected
           ; let msg :: SDoc
msg = [SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"When checking that:")
                                 Int
4 (TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_actual)
                            , Int -> SDoc -> SDoc
nest Int
2 (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"is more polymorphic than:")
                                         Int
2 (TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty_expected)) ]
           ; (TidyEnv, SDoc) -> TcM (TidyEnv, SDoc)
forall (m :: * -> *) a. Monad m => a -> m a
return (TidyEnv
tidy_env, SDoc
msg) }

{- Note [Don't skolemise unnecessarily]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are trying to solve
    (Char->Char) <= (forall a. a->a)
We could skolemise the 'forall a', and then complain
that (Char ~ a) is insoluble; but that's a pretty obscure
error.  It's better to say that
    (Char->Char) ~ (forall a. a->a)
fails.

So roughly:
 * if the ty_expected has an outermost forall
      (i.e. skolemisation is the next thing we'd do)
 * and the ty_actual has no top-level polymorphism (but looking deeply)
then we can revert to simple equality.  But we need to be careful.
These examples are all fine:

 * (Char -> forall a. a->a) <= (forall a. Char -> a -> a)
      Polymorphism is buried in ty_actual

 * (Char->Char) <= (forall a. Char -> Char)
      ty_expected isn't really polymorphic

 * (Char->Char) <= (forall a. (a~Char) => a -> a)
      ty_expected isn't really polymorphic

 * (Char->Char) <= (forall a. F [a] Char -> Char)
                   where type instance F [x] t = t
     ty_expected isn't really polymorphic

If we prematurely go to equality we'll reject a program we should
accept (e.g. #13752).  So the test (which is only to improve
error message) is very conservative:
 * ty_actual is /definitely/ monomorphic
 * ty_expected is /definitely/ polymorphic

Note [Settting the argument context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider we are doing the ambiguity check for the (bogus)
  f :: (forall a b. C b => a -> a) -> Int

We'll call
   tcSubType ((forall a b. C b => a->a) -> Int )
             ((forall a b. C b => a->a) -> Int )

with a UserTypeCtxt of (FunSigCtxt "f").  Then we'll do the co/contra thing
on the argument type of the (->) -- and at that point we want to switch
to a UserTypeCtxt of GenSigCtxt.  Why?

* Error messages.  If we stick with FunSigCtxt we get errors like
     * Could not deduce: C b
       from the context: C b0
        bound by the type signature for:
            f :: forall a b. C b => a->a
  But of course f does not have that type signature!
  Example tests: T10508, T7220a, Simple14

* Implications. We may decide to build an implication for the whole
  ambiguity check, but we don't need one for each level within it,
  and GHC.Tc.Utils.Unify.alwaysBuildImplication checks the UserTypeCtxt.
  See Note [When to build an implication]

Note [Wrapper returned from tcSubMult]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is no notion of multiplicity coercion in Core, therefore the wrapper
returned by tcSubMult (and derived functions such as tcCheckUsage and
checkManyPattern) is quite unlike any other wrapper: it checks whether the
coercion produced by the constraint solver is trivial, producing a type error
is it is not. This is implemented via the WpMultCoercion wrapper, as desugared
by GHC.HsToCore.Binds.dsHsWrapper, which does the reflexivity check.

This wrapper needs to be placed in the term; otherwise, checking of the
eventual coercion won't be triggered during desugaring. But it can be put
anywhere, since it doesn't affect the desugared code.

Why do we check this in the desugarer? It's a convenient place, since it's
right after all the constraints are solved. We need the constraints to be
solved to check whether they are trivial or not. Plus there is precedent for
type errors during desuraging (such as the levity polymorphism
restriction). An alternative would be to have a kind of constraint which can
only produce trivial evidence, then this check would happen in the constraint
solver.
-}

tcSubMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcSubMult :: CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcSubMult CtOrigin
origin TcType
w_actual TcType
w_expected
  | Just (TcType
w1, TcType
w2) <- TcType -> Maybe (TcType, TcType)
isMultMul TcType
w_actual =
  do { HsWrapper
w1 <- CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcSubMult CtOrigin
origin TcType
w1 TcType
w_expected
     ; HsWrapper
w2 <- CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcSubMult CtOrigin
origin TcType
w2 TcType
w_expected
     ; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
w1 HsWrapper -> HsWrapper -> HsWrapper
<.> HsWrapper
w2) }
  -- Currently, we consider p*q and sup p q to be equal.  Therefore, p*q <= r is
  -- equivalent to p <= r and q <= r.  For other cases, we approximate p <= q by p
  -- ~ q.  This is not complete, but it's sound. See also Note [Overapproximating
  -- multiplicities] in Multiplicity.
tcSubMult CtOrigin
origin TcType
w_actual TcType
w_expected =
  case TcType -> TcType -> IsSubmult
submult TcType
w_actual TcType
w_expected of
    IsSubmult
Submult -> HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return HsWrapper
WpHole
    IsSubmult
Unknown -> CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcEqMult CtOrigin
origin TcType
w_actual TcType
w_expected

tcEqMult :: CtOrigin -> Mult -> Mult -> TcM HsWrapper
tcEqMult :: CtOrigin -> TcType -> TcType -> TcM HsWrapper
tcEqMult CtOrigin
origin TcType
w_actual TcType
w_expected = do
  {
  -- Note that here we do not call to `submult`, so we check
  -- for strict equality.
  ; Coercion
coercion <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin TcType
w_actual TcType
w_expected
  ; HsWrapper -> TcM HsWrapper
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper -> TcM HsWrapper) -> HsWrapper -> TcM HsWrapper
forall a b. (a -> b) -> a -> b
$ if Coercion -> Bool
isReflCo Coercion
coercion then HsWrapper
WpHole else Coercion -> HsWrapper
WpMultCoercion Coercion
coercion }


{- *********************************************************************
*                                                                      *
                    Generalisation
*                                                                      *
********************************************************************* -}

{- Note [Skolemisation]
~~~~~~~~~~~~~~~~~~~~~~~
tcSkolemise takes "expected type" and strip off quantifiers to expose the
type underneath, binding the new skolems for the 'thing_inside'
The returned 'HsWrapper' has type (specific_ty -> expected_ty).

Note that for a nested type like
   forall a. Eq a => forall b. Ord b => blah
we still only build one implication constraint
   forall a b. (Eq a, Ord b) => <constraints>
This is just an optimisation, but it's why we use topSkolemise to
build the pieces from all the layers, before making a single call
to checkConstraints.

tcSkolemiseScoped is very similar, but differs in two ways:

* It deals specially with just the outer forall, bringing those
  type variables into lexical scope.  To my surprise, I found that
  doing this regardless (in tcSkolemise) caused a non-trivial (1%-ish)
  perf hit on the compiler.

* It always calls checkConstraints, even if there are no skolem
  variables at all.  Reason: there might be nested deferred errors
  that must not be allowed to float to top level.
  See Note [When to build an implication] below.
-}

tcSkolemise, tcSkolemiseScoped
    :: UserTypeCtxt -> TcSigmaType
    -> (TcType -> TcM result)
    -> TcM (HsWrapper, result)
        -- ^ The wrapper has type: spec_ty ~> expected_ty

tcSkolemiseScoped :: forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemiseScoped UserTypeCtxt
ctxt TcType
expected_ty TcType -> TcM result
thing_inside
  = do { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, TcType
rho_ty) <- TcType -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], TcType)
topSkolemise TcType
expected_ty
       ; let skol_tvs :: [TcTyVar]
skol_tvs  = ((Name, TcTyVar) -> TcTyVar) -> [(Name, TcTyVar)] -> [TcTyVar]
forall a b. (a -> b) -> [a] -> [b]
map (Name, TcTyVar) -> TcTyVar
forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
             skol_info :: SkolemInfo
skol_info = UserTypeCtxt -> TcType -> [(Name, TcTyVar)] -> SkolemInfo
SigSkol UserTypeCtxt
ctxt TcType
expected_ty [(Name, TcTyVar)]
tv_prs

       ; (TcEvBinds
ev_binds, result
res)
             <- SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
forall result.
SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given (TcM result -> TcM (TcEvBinds, result))
-> TcM result -> TcM (TcEvBinds, result)
forall a b. (a -> b) -> a -> b
$
                [(Name, TcTyVar)] -> TcM result -> TcM result
forall r. [(Name, TcTyVar)] -> TcM r -> TcM r
tcExtendNameTyVarEnv [(Name, TcTyVar)]
tv_prs               (TcM result -> TcM result) -> TcM result -> TcM result
forall a b. (a -> b) -> a -> b
$
                TcType -> TcM result
thing_inside TcType
rho_ty

       ; (HsWrapper, result) -> TcM (HsWrapper, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
res) }

tcSkolemise :: forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctxt TcType
expected_ty TcType -> TcM result
thing_inside
  | TcType -> Bool
isRhoTy TcType
expected_ty  -- Short cut for common case
  = do { result
res <- TcType -> TcM result
thing_inside TcType
expected_ty
       ; (HsWrapper, result) -> TcM (HsWrapper, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
idHsWrapper, result
res) }
  | Bool
otherwise
  = do  { (HsWrapper
wrap, [(Name, TcTyVar)]
tv_prs, [TcTyVar]
given, TcType
rho_ty) <- TcType -> TcM (HsWrapper, [(Name, TcTyVar)], [TcTyVar], TcType)
topSkolemise TcType
expected_ty

        ; let skol_tvs :: [TcTyVar]
skol_tvs  = ((Name, TcTyVar) -> TcTyVar) -> [(Name, TcTyVar)] -> [TcTyVar]
forall a b. (a -> b) -> [a] -> [b]
map (Name, TcTyVar) -> TcTyVar
forall a b. (a, b) -> b
snd [(Name, TcTyVar)]
tv_prs
              skol_info :: SkolemInfo
skol_info = UserTypeCtxt -> TcType -> [(Name, TcTyVar)] -> SkolemInfo
SigSkol UserTypeCtxt
ctxt TcType
expected_ty [(Name, TcTyVar)]
tv_prs

        ; (TcEvBinds
ev_binds, result
result)
              <- SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
forall result.
SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given (TcM result -> TcM (TcEvBinds, result))
-> TcM result -> TcM (TcEvBinds, result)
forall a b. (a -> b) -> a -> b
$
                 TcType -> TcM result
thing_inside TcType
rho_ty

        ; (HsWrapper, result) -> TcM (HsWrapper, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (HsWrapper
wrap HsWrapper -> HsWrapper -> HsWrapper
<.> TcEvBinds -> HsWrapper
mkWpLet TcEvBinds
ev_binds, result
result) }
          -- The ev_binds returned by checkConstraints is very
          -- often empty, in which case mkWpLet is a no-op

-- | Variant of 'tcSkolemise' that takes an ExpType
tcSkolemiseET :: UserTypeCtxt -> ExpSigmaType
              -> (ExpRhoType -> TcM result)
              -> TcM (HsWrapper, result)
tcSkolemiseET :: forall result.
UserTypeCtxt
-> ExpRhoType
-> (ExpRhoType -> TcM result)
-> TcM (HsWrapper, result)
tcSkolemiseET UserTypeCtxt
_ et :: ExpRhoType
et@(Infer {}) ExpRhoType -> TcM result
thing_inside
  = (HsWrapper
idHsWrapper, ) (result -> (HsWrapper, result))
-> TcM result -> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ExpRhoType -> TcM result
thing_inside ExpRhoType
et
tcSkolemiseET UserTypeCtxt
ctxt (Check TcType
ty) ExpRhoType -> TcM result
thing_inside
  = UserTypeCtxt
-> TcType
-> (TcType -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall result.
UserTypeCtxt
-> TcType -> (TcType -> TcM result) -> TcM (HsWrapper, result)
tcSkolemise UserTypeCtxt
ctxt TcType
ty ((TcType -> TcM result)
 -> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result))
-> (TcType -> TcM result)
-> IOEnv (Env TcGblEnv TcLclEnv) (HsWrapper, result)
forall a b. (a -> b) -> a -> b
$ \TcType
rho_ty ->
    ExpRhoType -> TcM result
thing_inside (TcType -> ExpRhoType
mkCheckExpType TcType
rho_ty)

checkConstraints :: SkolemInfo
                 -> [TcTyVar]           -- Skolems
                 -> [EvVar]             -- Given
                 -> TcM result
                 -> TcM (TcEvBinds, result)

checkConstraints :: forall result.
SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given TcM result
thing_inside
  = do { Bool
implication_needed <- SkolemInfo -> [TcTyVar] -> [TcTyVar] -> TcM Bool
implicationNeeded SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given

       ; if Bool
implication_needed
         then do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- TcM result -> TcM (TcLevel, WantedConstraints, result)
forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
                 ; (Bag Implication
implics, TcEvBinds
ev_binds) <- TcLevel
-> SkolemInfo
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
                 ; String -> SDoc -> TcRn ()
traceTc String
"checkConstraints" (TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl SDoc -> SDoc -> SDoc
$$ [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
skol_tvs)
                 ; Bag Implication -> TcRn ()
emitImplications Bag Implication
implics
                 ; (TcEvBinds, result) -> TcM (TcEvBinds, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
ev_binds, result
result) }

         else -- Fast path.  We check every function argument with tcCheckPolyExpr,
              -- which uses tcSkolemise and hence checkConstraints.
              -- So this fast path is well-exercised
              do { result
res <- TcM result
thing_inside
                 ; (TcEvBinds, result) -> TcM (TcEvBinds, result)
forall (m :: * -> *) a. Monad m => a -> m a
return (TcEvBinds
emptyTcEvBinds, result
res) } }

checkTvConstraints :: SkolemInfo
                   -> [TcTyVar]          -- Skolem tyvars
                   -> TcM result
                   -> TcM result

checkTvConstraints :: forall result. SkolemInfo -> [TcTyVar] -> TcM result -> TcM result
checkTvConstraints SkolemInfo
skol_info [TcTyVar]
skol_tvs TcM result
thing_inside
  = do { (TcLevel
tclvl, WantedConstraints
wanted, result
result) <- TcM result -> TcM (TcLevel, WantedConstraints, result)
forall a. TcM a -> TcM (TcLevel, WantedConstraints, a)
pushLevelAndCaptureConstraints TcM result
thing_inside
       ; SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcRn ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
       ; result -> TcM result
forall (m :: * -> *) a. Monad m => a -> m a
return result
result }

emitResidualTvConstraint :: SkolemInfo -> [TcTyVar]
                         -> TcLevel -> WantedConstraints -> TcM ()
emitResidualTvConstraint :: SkolemInfo -> [TcTyVar] -> TcLevel -> WantedConstraints -> TcRn ()
emitResidualTvConstraint SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
  | WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted
  = () -> TcRn ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()

  | Bool
otherwise
  = do { Implication
implic <- SkolemInfo
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
       ; Implication -> TcRn ()
emitImplication Implication
implic }

buildTvImplication :: SkolemInfo -> [TcTyVar]
                   -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication :: SkolemInfo
-> [TcTyVar] -> TcLevel -> WantedConstraints -> TcM Implication
buildTvImplication SkolemInfo
skol_info [TcTyVar]
skol_tvs TcLevel
tclvl WantedConstraints
wanted
  = do { EvBindsVar
ev_binds <- TcM EvBindsVar
newNoTcEvBinds  -- Used for equalities only, so all the constraints
                                     -- are solved by filling in coercion holes, not
                                     -- by creating a value-level evidence binding
       ; Implication
implic   <- TcM Implication
newImplication

       ; Implication -> TcM Implication
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication
implic { ic_tclvl :: TcLevel
ic_tclvl     = TcLevel
tclvl
                        , ic_skols :: [TcTyVar]
ic_skols     = [TcTyVar]
skol_tvs
                        , ic_no_eqs :: Bool
ic_no_eqs    = Bool
True
                        , ic_wanted :: WantedConstraints
ic_wanted    = WantedConstraints
wanted
                        , ic_binds :: EvBindsVar
ic_binds     = EvBindsVar
ev_binds
                        , ic_info :: SkolemInfo
ic_info      = SkolemInfo
skol_info }) }

implicationNeeded :: SkolemInfo -> [TcTyVar] -> [EvVar] -> TcM Bool
-- See Note [When to build an implication]
implicationNeeded :: SkolemInfo -> [TcTyVar] -> [TcTyVar] -> TcM Bool
implicationNeeded SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given
  | [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
skol_tvs
  , [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
  , Bool -> Bool
not (SkolemInfo -> Bool
alwaysBuildImplication SkolemInfo
skol_info)
  = -- Empty skolems and givens
    do { TcLevel
tc_lvl <- TcM TcLevel
getTcLevel
       ; if Bool -> Bool
not (TcLevel -> Bool
isTopTcLevel TcLevel
tc_lvl)  -- No implication needed if we are
         then Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False             -- already inside an implication
         else
    do { DynFlags
dflags <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags       -- If any deferral can happen,
                                     -- we must build an implication
       ; Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypeErrors DynFlags
dflags Bool -> Bool -> Bool
||
                 GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypedHoles DynFlags
dflags Bool -> Bool -> Bool
||
                 GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferOutOfScopeVariables DynFlags
dflags) } }

  | Bool
otherwise     -- Non-empty skolems or givens
  = Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True   -- Definitely need an implication

alwaysBuildImplication :: SkolemInfo -> Bool
-- See Note [When to build an implication]
alwaysBuildImplication :: SkolemInfo -> Bool
alwaysBuildImplication SkolemInfo
_ = Bool
False

{-  Commmented out for now while I figure out about error messages.
    See #14185

alwaysBuildImplication (SigSkol ctxt _ _)
  = case ctxt of
      FunSigCtxt {} -> True  -- RHS of a binding with a signature
      _             -> False
alwaysBuildImplication (RuleSkol {})      = True
alwaysBuildImplication (InstSkol {})      = True
alwaysBuildImplication (FamInstSkol {})   = True
alwaysBuildImplication _                  = False
-}

buildImplicationFor :: TcLevel -> SkolemInfo -> [TcTyVar]
                   -> [EvVar] -> WantedConstraints
                   -> TcM (Bag Implication, TcEvBinds)
buildImplicationFor :: TcLevel
-> SkolemInfo
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
given WantedConstraints
wanted
  | WantedConstraints -> Bool
isEmptyWC WantedConstraints
wanted Bool -> Bool -> Bool
&& [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
given
             -- Optimisation : if there are no wanteds, and no givens
             -- don't generate an implication at all.
             -- Reason for the (null given): we don't want to lose
             -- the "inaccessible alternative" error check
  = (Bag Implication, TcEvBinds) -> TcM (Bag Implication, TcEvBinds)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bag Implication
forall a. Bag a
emptyBag, TcEvBinds
emptyTcEvBinds)

  | Bool
otherwise
  = ASSERT2( all (isSkolemTyVar <||> isTyVarTyVar) skol_tvs, ppr skol_tvs )
      -- Why allow TyVarTvs? Because implicitly declared kind variables in
      -- non-CUSK type declarations are TyVarTvs, and we need to bring them
      -- into scope as a skolem in an implication. This is OK, though,
      -- because TyVarTvs will always remain tyvars, even after unification.
    do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
newTcEvBinds
       ; Implication
implic <- TcM Implication
newImplication
       ; let implic' :: Implication
implic' = Implication
implic { ic_tclvl :: TcLevel
ic_tclvl  = TcLevel
tclvl
                              , ic_skols :: [TcTyVar]
ic_skols  = [TcTyVar]
skol_tvs
                              , ic_given :: [TcTyVar]
ic_given  = [TcTyVar]
given
                              , ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wanted
                              , ic_binds :: EvBindsVar
ic_binds  = EvBindsVar
ev_binds_var
                              , ic_info :: SkolemInfo
ic_info   = SkolemInfo
skol_info }

       ; (Bag Implication, TcEvBinds) -> TcM (Bag Implication, TcEvBinds)
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication -> Bag Implication
forall a. a -> Bag a
unitBag Implication
implic', EvBindsVar -> TcEvBinds
TcEvBinds EvBindsVar
ev_binds_var) }

{- Note [When to build an implication]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have some 'skolems' and some 'givens', and we are
considering whether to wrap the constraints in their scope into an
implication.  We must /always/ so if either 'skolems' or 'givens' are
non-empty.  But what if both are empty?  You might think we could
always drop the implication.  Other things being equal, the fewer
implications the better.  Less clutter and overhead.  But we must
take care:

* If we have an unsolved [W] g :: a ~# b, and -fdefer-type-errors,
  we'll make a /term-level/ evidence binding for 'g = error "blah"'.
  We must have an EvBindsVar those bindings!, otherwise they end up as
  top-level unlifted bindings, which are verboten. This only matters
  at top level, so we check for that
  See also Note [Deferred errors for coercion holes] in GHC.Tc.Errors.
  cf #14149 for an example of what goes wrong.

* If you have
     f :: Int;  f = f_blah
     g :: Bool; g = g_blah
  If we don't build an implication for f or g (no tyvars, no givens),
  the constraints for f_blah and g_blah are solved together.  And that
  can yield /very/ confusing error messages, because we can get
      [W] C Int b1    -- from f_blah
      [W] C Int b2    -- from g_blan
  and fundpes can yield [D] b1 ~ b2, even though the two functions have
  literally nothing to do with each other.  #14185 is an example.
  Building an implication keeps them separage.
-}

{-
************************************************************************
*                                                                      *
                Boxy unification
*                                                                      *
************************************************************************

The exported functions are all defined as versions of some
non-exported generic functions.
-}

unifyType :: Maybe (HsExpr GhcRn)   -- ^ If present, has type 'ty1'
          -> TcTauType -> TcTauType -> TcM TcCoercionN
-- Actual and expected types
-- Returns a coercion : ty1 ~ ty2
unifyType :: Maybe (HsExpr GhcRn) -> TcType -> TcType -> TcM Coercion
unifyType Maybe (HsExpr GhcRn)
thing TcType
ty1 TcType
ty2
  = TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin TcType
ty1 TcType
ty2
  where
    origin :: CtOrigin
origin = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual   = TcType
ty1
                          , uo_expected :: TcType
uo_expected = TcType
ty2
                          , uo_thing :: Maybe SDoc
uo_thing    = HsExpr GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsExpr GhcRn -> SDoc) -> Maybe (HsExpr GhcRn) -> Maybe SDoc
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (HsExpr GhcRn)
thing
                          , uo_visible :: Bool
uo_visible  = Bool
True }

unifyTypeET :: TcTauType -> TcTauType -> TcM CoercionN
-- Like unifyType, but swap expected and actual in error messages
-- This is used when typechecking patterns
unifyTypeET :: TcType -> TcType -> TcM Coercion
unifyTypeET TcType
ty1 TcType
ty2
  = TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
TypeLevel CtOrigin
origin TcType
ty1 TcType
ty2
  where
    origin :: CtOrigin
origin = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual   = TcType
ty2   -- NB swapped
                          , uo_expected :: TcType
uo_expected = TcType
ty1   -- NB swapped
                          , uo_thing :: Maybe SDoc
uo_thing    = Maybe SDoc
forall a. Maybe a
Nothing
                          , uo_visible :: Bool
uo_visible  = Bool
True }


unifyKind :: Maybe (HsType GhcRn) -> TcKind -> TcKind -> TcM CoercionN
unifyKind :: Maybe (HsType GhcRn) -> TcType -> TcType -> TcM Coercion
unifyKind Maybe (HsType GhcRn)
thing TcType
ty1 TcType
ty2
  = TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
origin TcType
ty1 TcType
ty2
  where
    origin :: CtOrigin
origin = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual   = TcType
ty1
                          , uo_expected :: TcType
uo_expected = TcType
ty2
                          , uo_thing :: Maybe SDoc
uo_thing    = HsType GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HsType GhcRn -> SDoc) -> Maybe (HsType GhcRn) -> Maybe SDoc
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe (HsType GhcRn)
thing
                          , uo_visible :: Bool
uo_visible  = Bool
True }


{-
%************************************************************************
%*                                                                      *
                 uType and friends
%*                                                                      *
%************************************************************************

uType is the heart of the unifier.
-}

uType, uType_defer
  :: TypeOrKind
  -> CtOrigin
  -> TcType    -- ty1 is the *actual* type
  -> TcType    -- ty2 is the *expected* type
  -> TcM CoercionN

--------------
-- It is always safe to defer unification to the main constraint solver
-- See Note [Deferred unification]
uType_defer :: TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin TcType
ty1 TcType
ty2
  = do { Coercion
co <- CtOrigin -> TypeOrKind -> Role -> TcType -> TcType -> TcM Coercion
emitWantedEq CtOrigin
origin TypeOrKind
t_or_k Role
Nominal TcType
ty1 TcType
ty2

       -- Error trace only
       -- NB. do *not* call mkErrInfo unless tracing is on,
       --     because it is hugely expensive (#5631)
       ; DumpFlag -> TcRn () -> TcRn ()
forall gbl lcl. DumpFlag -> TcRnIf gbl lcl () -> TcRnIf gbl lcl ()
whenDOptM DumpFlag
Opt_D_dump_tc_trace (TcRn () -> TcRn ()) -> TcRn () -> TcRn ()
forall a b. (a -> b) -> a -> b
$ do
            { [ErrCtxt]
ctxt <- TcM [ErrCtxt]
getErrCtxt
            ; SDoc
doc <- TidyEnv -> [ErrCtxt] -> TcM SDoc
mkErrInfo TidyEnv
emptyTidyEnv [ErrCtxt]
ctxt
            ; String -> SDoc -> TcRn ()
traceTc String
"utype_defer" ([SDoc] -> SDoc
vcat [ TcType -> SDoc
debugPprType TcType
ty1
                                          , TcType -> SDoc
debugPprType TcType
ty2
                                          , CtOrigin -> SDoc
pprCtOrigin CtOrigin
origin
                                          , SDoc
doc])
            ; String -> SDoc -> TcRn ()
traceTc String
"utype_defer2" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co)
            }
       ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }

--------------
uType :: TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
orig_ty1 TcType
orig_ty2
  = do { TcLevel
tclvl <- TcM TcLevel
getTcLevel
       ; String -> SDoc -> TcRn ()
traceTc String
"u_tys" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
              [ String -> SDoc
text String
"tclvl" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl
              , [SDoc] -> SDoc
sep [ TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
orig_ty1, String -> SDoc
text String
"~", TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
orig_ty2]
              , CtOrigin -> SDoc
pprCtOrigin CtOrigin
origin]
       ; Coercion
co <- TcType -> TcType -> TcM Coercion
go TcType
orig_ty1 TcType
orig_ty2
       ; if Coercion -> Bool
isReflCo Coercion
co
            then String -> SDoc -> TcRn ()
traceTc String
"u_tys yields no coercion" SDoc
Outputable.empty
            else String -> SDoc -> TcRn ()
traceTc String
"u_tys yields coercion:" (Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co)
       ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
  where
    go :: TcType -> TcType -> TcM CoercionN
        -- The arguments to 'go' are always semantically identical
        -- to orig_ty{1,2} except for looking through type synonyms

     -- Unwrap casts before looking for variables. This way, we can easily
     -- recognize (t |> co) ~ (t |> co), which is nice. Previously, we
     -- didn't do it this way, and then the unification above was deferred.
    go :: TcType -> TcType -> TcM Coercion
go (CastTy TcType
t1 Coercion
co1) TcType
t2
      = do { Coercion
co_tys <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
t1 TcType
t2
           ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> TcType -> Coercion -> Coercion -> Coercion
mkCoherenceLeftCo Role
Nominal TcType
t1 Coercion
co1 Coercion
co_tys) }

    go TcType
t1 (CastTy TcType
t2 Coercion
co2)
      = do { Coercion
co_tys <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
t1 TcType
t2
           ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> TcType -> Coercion -> Coercion -> Coercion
mkCoherenceRightCo Role
Nominal TcType
t2 Coercion
co2 Coercion
co_tys) }

        -- Variables; go for uUnfilledVar
        -- Note that we pass in *original* (before synonym expansion),
        -- so that type variables tend to get filled in with
        -- the most informative version of the type
    go (TyVarTy TcTyVar
tv1) TcType
ty2
      = do { LookupTyVarResult
lookup_res <- TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar TcTyVar
tv1
           ; case LookupTyVarResult
lookup_res of
               Filled TcType
ty1   -> do { String -> SDoc -> TcRn ()
traceTc String
"found filled tyvar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":->" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty1)
                                  ; TcType -> TcType -> TcM Coercion
go TcType
ty1 TcType
ty2 }
               Unfilled TcTyVarDetails
_ -> CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
NotSwapped TcTyVar
tv1 TcType
ty2 }
    go TcType
ty1 (TyVarTy TcTyVar
tv2)
      = do { LookupTyVarResult
lookup_res <- TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar TcTyVar
tv2
           ; case LookupTyVarResult
lookup_res of
               Filled TcType
ty2   -> do { String -> SDoc -> TcRn ()
traceTc String
"found filled tyvar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv2 SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":->" SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty2)
                                  ; TcType -> TcType -> TcM Coercion
go TcType
ty1 TcType
ty2 }
               Unfilled TcTyVarDetails
_ -> CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
IsSwapped TcTyVar
tv2 TcType
ty1 }

      -- See Note [Expanding synonyms during unification]
    go ty1 :: TcType
ty1@(TyConApp TyCon
tc1 []) (TyConApp TyCon
tc2 [])
      | TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2
      = Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ TcType -> Coercion
mkNomReflCo TcType
ty1

        -- See Note [Expanding synonyms during unification]
        --
        -- Also NB that we recurse to 'go' so that we don't push a
        -- new item on the origin stack. As a result if we have
        --   type Foo = Int
        -- and we try to unify  Foo ~ Bool
        -- we'll end up saying "can't match Foo with Bool"
        -- rather than "can't match "Int with Bool".  See #4535.
    go TcType
ty1 TcType
ty2
      | Just TcType
ty1' <- TcType -> Maybe TcType
tcView TcType
ty1 = TcType -> TcType -> TcM Coercion
go TcType
ty1' TcType
ty2
      | Just TcType
ty2' <- TcType -> Maybe TcType
tcView TcType
ty2 = TcType -> TcType -> TcM Coercion
go TcType
ty1  TcType
ty2'

        -- Functions (or predicate functions) just check the two parts
    go (FunTy AnonArgFlag
_ TcType
w1 TcType
fun1 TcType
arg1) (FunTy AnonArgFlag
_ TcType
w2 TcType
fun2 TcType
arg2)
      = do { Coercion
co_l <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
fun1 TcType
fun2
           ; Coercion
co_r <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
arg1 TcType
arg2
           ; Coercion
co_w <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
w1 TcType
w2
           ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCo Role
Nominal Coercion
co_w Coercion
co_l Coercion
co_r }

        -- Always defer if a type synonym family (type function)
        -- is involved.  (Data families behave rigidly.)
    go ty1 :: TcType
ty1@(TyConApp TyCon
tc1 ThetaType
_) TcType
ty2
      | TyCon -> Bool
isTypeFamilyTyCon TyCon
tc1 = TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2
    go TcType
ty1 ty2 :: TcType
ty2@(TyConApp TyCon
tc2 ThetaType
_)
      | TyCon -> Bool
isTypeFamilyTyCon TyCon
tc2 = TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2

    go (TyConApp TyCon
tc1 ThetaType
tys1) (TyConApp TyCon
tc2 ThetaType
tys2)
      -- See Note [Mismatched type lists and application decomposition]
      | TyCon
tc1 TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
tc2, ThetaType -> ThetaType -> Bool
forall a b. [a] -> [b] -> Bool
equalLength ThetaType
tys1 ThetaType
tys2
      = ASSERT2( isGenerativeTyCon tc1 Nominal, ppr tc1 )
        do { [Coercion]
cos <- (CtOrigin -> TcType -> TcType -> TcM Coercion)
-> [CtOrigin]
-> ThetaType
-> ThetaType
-> IOEnv (Env TcGblEnv TcLclEnv) [Coercion]
forall (m :: * -> *) a b c d.
Monad m =>
(a -> b -> c -> m d) -> [a] -> [b] -> [c] -> m [d]
zipWith3M (TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k) [CtOrigin]
origins' ThetaType
tys1 ThetaType
tys2
           ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal TyCon
tc1 [Coercion]
cos }
      where
        origins' :: [CtOrigin]
origins' = (Bool -> CtOrigin) -> [Bool] -> [CtOrigin]
forall a b. (a -> b) -> [a] -> [b]
map (\Bool
is_vis -> if Bool
is_vis then CtOrigin
origin else CtOrigin -> CtOrigin
toInvisibleOrigin CtOrigin
origin)
                       (TyCon -> [Bool]
tcTyConVisibilities TyCon
tc1)

    go (LitTy TyLit
m) ty :: TcType
ty@(LitTy TyLit
n)
      | TyLit
m TyLit -> TyLit -> Bool
forall a. Eq a => a -> a -> Bool
== TyLit
n
      = Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ TcType -> Coercion
mkNomReflCo TcType
ty

        -- See Note [Care with type applications]
        -- Do not decompose FunTy against App;
        -- it's often a type error, so leave it for the constraint solver
    go (AppTy TcType
s1 TcType
t1) (AppTy TcType
s2 TcType
t2)
      = Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app (TcType -> Bool
isNextArgVisible TcType
s1) TcType
s1 TcType
t1 TcType
s2 TcType
t2

    go (AppTy TcType
s1 TcType
t1) (TyConApp TyCon
tc2 ThetaType
ts2)
      | Just (ThetaType
ts2', TcType
t2') <- ThetaType -> Maybe (ThetaType, TcType)
forall a. [a] -> Maybe ([a], a)
snocView ThetaType
ts2
      = ASSERT( not (mustBeSaturated tc2) )
        Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app (TyCon -> ThetaType -> Bool
isNextTyConArgVisible TyCon
tc2 ThetaType
ts2') TcType
s1 TcType
t1 (TyCon -> ThetaType -> TcType
TyConApp TyCon
tc2 ThetaType
ts2') TcType
t2'

    go (TyConApp TyCon
tc1 ThetaType
ts1) (AppTy TcType
s2 TcType
t2)
      | Just (ThetaType
ts1', TcType
t1') <- ThetaType -> Maybe (ThetaType, TcType)
forall a. [a] -> Maybe ([a], a)
snocView ThetaType
ts1
      = ASSERT( not (mustBeSaturated tc1) )
        Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app (TyCon -> ThetaType -> Bool
isNextTyConArgVisible TyCon
tc1 ThetaType
ts1') (TyCon -> ThetaType -> TcType
TyConApp TyCon
tc1 ThetaType
ts1') TcType
t1' TcType
s2 TcType
t2

    go (CoercionTy Coercion
co1) (CoercionTy Coercion
co2)
      = do { let ty1 :: TcType
ty1 = Coercion -> TcType
coercionType Coercion
co1
                 ty2 :: TcType
ty2 = Coercion -> TcType
coercionType Coercion
co2
           ; Coercion
kco <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel
                          (TcType -> Maybe TcType -> CtOrigin -> Maybe TypeOrKind -> CtOrigin
KindEqOrigin TcType
orig_ty1 (TcType -> Maybe TcType
forall a. a -> Maybe a
Just TcType
orig_ty2) CtOrigin
origin
                                        (TypeOrKind -> Maybe TypeOrKind
forall a. a -> Maybe a
Just TypeOrKind
t_or_k))
                          TcType
ty1 TcType
ty2
           ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Role -> Coercion -> Coercion -> Coercion -> Coercion
mkProofIrrelCo Role
Nominal Coercion
kco Coercion
co1 Coercion
co2 }

        -- Anything else fails
        -- E.g. unifying for-all types, which is relative unusual
    go TcType
ty1 TcType
ty2 = TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2

    ------------------
    defer :: TcType -> TcType -> TcM Coercion
defer TcType
ty1 TcType
ty2   -- See Note [Check for equality before deferring]
      | TcType
ty1 HasDebugCallStack => TcType -> TcType -> Bool
TcType -> TcType -> Bool
`tcEqType` TcType
ty2 = Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkNomReflCo TcType
ty1)
      | Bool
otherwise          = TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin TcType
ty1 TcType
ty2

    ------------------
    go_app :: Bool -> TcType -> TcType -> TcType -> TcType -> TcM Coercion
go_app Bool
vis TcType
s1 TcType
t1 TcType
s2 TcType
t2
      = do { Coercion
co_s <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
origin TcType
s1 TcType
s2
           ; let arg_origin :: CtOrigin
arg_origin
                   | Bool
vis       = CtOrigin
origin
                   | Bool
otherwise = CtOrigin -> CtOrigin
toInvisibleOrigin CtOrigin
origin
           ; Coercion
co_t <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
t_or_k CtOrigin
arg_origin TcType
t1 TcType
t2
           ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> TcM Coercion) -> Coercion -> TcM Coercion
forall a b. (a -> b) -> a -> b
$ Coercion -> Coercion -> Coercion
mkAppCo Coercion
co_s Coercion
co_t }

{- Note [Check for equality before deferring]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Particularly in ambiguity checks we can get equalities like (ty ~ ty).
If ty involves a type function we may defer, which isn't very sensible.
An egregious example of this was in test T9872a, which has a type signature
       Proxy :: Proxy (Solutions Cubes)
Doing the ambiguity check on this signature generates the equality
   Solutions Cubes ~ Solutions Cubes
and currently the constraint solver normalises both sides at vast cost.
This little short-cut in 'defer' helps quite a bit.

Note [Care with type applications]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Note: type applications need a bit of care!
They can match FunTy and TyConApp, so use splitAppTy_maybe
NB: we've already dealt with type variables and Notes,
so if one type is an App the other one jolly well better be too

Note [Mismatched type lists and application decomposition]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we find two TyConApps, you might think that the argument lists
are guaranteed equal length.  But they aren't. Consider matching
        w (T x) ~ Foo (T x y)
We do match (w ~ Foo) first, but in some circumstances we simply create
a deferred constraint; and then go ahead and match (T x ~ T x y).
This came up in #3950.

So either
   (a) either we must check for identical argument kinds
       when decomposing applications,

   (b) or we must be prepared for ill-kinded unification sub-problems

Currently we adopt (b) since it seems more robust -- no need to maintain
a global invariant.

Note [Expanding synonyms during unification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We expand synonyms during unification, but:
 * We expand *after* the variable case so that we tend to unify
   variables with un-expanded type synonym. This just makes it
   more likely that the inferred types will mention type synonyms
   understandable to the user

 * Similarly, we expand *after* the CastTy case, just in case the
   CastTy wraps a variable.

 * We expand *before* the TyConApp case.  For example, if we have
      type Phantom a = Int
   and are unifying
      Phantom Int ~ Phantom Char
   it is *wrong* to unify Int and Char.

 * The problem case immediately above can happen only with arguments
   to the tycon. So we check for nullary tycons *before* expanding.
   This is particularly helpful when checking (* ~ *), because * is
   now a type synonym.

Note [Deferred Unification]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
We may encounter a unification ty1 ~ ty2 that cannot be performed syntactically,
and yet its consistency is undetermined. Previously, there was no way to still
make it consistent. So a mismatch error was issued.

Now these unifications are deferred until constraint simplification, where type
family instances and given equations may (or may not) establish the consistency.
Deferred unifications are of the form
                F ... ~ ...
or              x ~ ...
where F is a type function and x is a type variable.
E.g.
        id :: x ~ y => x -> y
        id e = e

involves the unification x = y. It is deferred until we bring into account the
context x ~ y to establish that it holds.

If available, we defer original types (rather than those where closed type
synonyms have already been expanded via tcCoreView).  This is, as usual, to
improve error messages.


************************************************************************
*                                                                      *
                 uUnfilledVar and friends
*                                                                      *
************************************************************************

@uunfilledVar@ is called when at least one of the types being unified is a
variable.  It does {\em not} assume that the variable is a fixed point
of the substitution; rather, notice that @uVar@ (defined below) nips
back into @uTys@ if it turns out that the variable is already bound.
-}

----------
uUnfilledVar :: CtOrigin
             -> TypeOrKind
             -> SwapFlag
             -> TcTyVar        -- Tyvar 1: not necessarily a meta-tyvar
                               --    definitely not a /filled/ meta-tyvar
             -> TcTauType      -- Type 2
             -> TcM Coercion
-- "Unfilled" means that the variable is definitely not a filled-in meta tyvar
--            It might be a skolem, or untouchable, or meta

uUnfilledVar :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
  = do { TcType
ty2 <- TcType -> IOEnv (Env TcGblEnv TcLclEnv) TcType
zonkTcType TcType
ty2
             -- Zonk to expose things to the
             -- occurs check, and so that if ty2
             -- looks like a type variable then it
             -- /is/ a type variable
       ; CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar1 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2 }

----------
uUnfilledVar1 :: CtOrigin
              -> TypeOrKind
              -> SwapFlag
              -> TcTyVar        -- Tyvar 1: not necessarily a meta-tyvar
                                --    definitely not a /filled/ meta-tyvar
              -> TcTauType      -- Type 2, zonked
              -> TcM Coercion
uUnfilledVar1 :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar1 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
  | Just TcTyVar
tv2 <- TcType -> Maybe TcTyVar
tcGetTyVar_maybe TcType
ty2
  = TcTyVar -> TcM Coercion
go TcTyVar
tv2

  | Bool
otherwise
  = CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2

  where
    -- 'go' handles the case where both are
    -- tyvars so we might want to swap
    -- E.g. maybe tv2 is a meta-tyvar and tv1 is not
    go :: TcTyVar -> TcM Coercion
go TcTyVar
tv2 | TcTyVar
tv1 TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv2  -- Same type variable => no-op
           = Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkNomReflCo (TcTyVar -> TcType
mkTyVarTy TcTyVar
tv1))

           | Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
False TcTyVar
tv1 TcTyVar
tv2   -- Distinct type variables
               -- Swap meta tyvar to the left if poss
           = do { TcTyVar
tv1 <- TcTyVar -> TcM TcTyVar
zonkTyCoVarKind TcTyVar
tv1
                     -- We must zonk tv1's kind because that might
                     -- not have happened yet, and it's an invariant of
                     -- uUnfilledTyVar2 that ty2 is fully zonked
                     -- Omitting this caused #16902
                ; CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k (SwapFlag -> SwapFlag
flipSwap SwapFlag
swapped)
                           TcTyVar
tv2 (TcTyVar -> TcType
mkTyVarTy TcTyVar
tv1) }

           | Bool
otherwise
           = CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2

----------
uUnfilledVar2 :: CtOrigin
              -> TypeOrKind
              -> SwapFlag
              -> TcTyVar        -- Tyvar 1: not necessarily a meta-tyvar
                                --    definitely not a /filled/ meta-tyvar
              -> TcTauType      -- Type 2, zonked
              -> TcM Coercion
uUnfilledVar2 :: CtOrigin
-> TypeOrKind -> SwapFlag -> TcTyVar -> TcType -> TcM Coercion
uUnfilledVar2 CtOrigin
origin TypeOrKind
t_or_k SwapFlag
swapped TcTyVar
tv1 TcType
ty2
  = do { DynFlags
dflags  <- IOEnv (Env TcGblEnv TcLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
       ; TcLevel
cur_lvl <- TcM TcLevel
getTcLevel
       ; DynFlags -> TcLevel -> TcM Coercion
go DynFlags
dflags TcLevel
cur_lvl }
  where
    go :: DynFlags -> TcLevel -> TcM Coercion
go DynFlags
dflags TcLevel
cur_lvl
      | TcLevel -> TcTyVar -> TcType -> Bool
canSolveByUnification TcLevel
cur_lvl TcTyVar
tv1 TcType
ty2
      , MTVU_OK TcType
ty2' <- DynFlags -> TcTyVar -> TcType -> MetaTyVarUpdateResult TcType
metaTyVarUpdateOK DynFlags
dflags TcTyVar
tv1 TcType
ty2
      = do { Coercion
co_k <- TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
kind_origin (HasDebugCallStack => TcType -> TcType
TcType -> TcType
tcTypeKind TcType
ty2') (TcTyVar -> TcType
tyVarKind TcTyVar
tv1)
           ; String -> SDoc -> TcRn ()
traceTc String
"uUnfilledVar2 ok" (SDoc -> TcRn ()) -> SDoc -> TcRn ()
forall a b. (a -> b) -> a -> b
$
             [SDoc] -> SDoc
vcat [ TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TcTyVar -> TcType
tyVarKind TcTyVar
tv1)
                  , TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty2 SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr (HasDebugCallStack => TcType -> TcType
TcType -> TcType
tcTypeKind  TcType
ty2)
                  , Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Coercion -> Bool
isTcReflCo Coercion
co_k), Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co_k ]

           ; if Coercion -> Bool
isTcReflCo Coercion
co_k
               -- Only proceed if the kinds match
               -- NB: tv1 should still be unfilled, despite the kind unification
               --     because tv1 is not free in ty2 (or, hence, in its kind)
             then do { TcTyVar -> TcType -> TcRn ()
writeMetaTyVar TcTyVar
tv1 TcType
ty2'
                     ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkTcNomReflCo TcType
ty2') }

             else TcM Coercion
defer } -- This cannot be solved now.  See GHC.Tc.Solver.Canonical
                          -- Note [Equalities with incompatible kinds]

      | Bool
otherwise
      = do { String -> SDoc -> TcRn ()
traceTc String
"uUnfilledVar2 not ok" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv1 SDoc -> SDoc -> SDoc
$$ TcType -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcType
ty2)
               -- Occurs check or an untouchable: just defer
               -- NB: occurs check isn't necessarily fatal:
               --     eg tv1 occurred in type family parameter
            ; TcM Coercion
defer }

    ty1 :: TcType
ty1 = TcTyVar -> TcType
mkTyVarTy TcTyVar
tv1
    kind_origin :: CtOrigin
kind_origin = TcType -> Maybe TcType -> CtOrigin -> Maybe TypeOrKind -> CtOrigin
KindEqOrigin TcType
ty1 (TcType -> Maybe TcType
forall a. a -> Maybe a
Just TcType
ty2) CtOrigin
origin (TypeOrKind -> Maybe TypeOrKind
forall a. a -> Maybe a
Just TypeOrKind
t_or_k)

    defer :: TcM Coercion
defer = SwapFlag
-> (TcType -> TcType -> TcM Coercion)
-> TcType
-> TcType
-> TcM Coercion
forall a b. SwapFlag -> (a -> a -> b) -> a -> a -> b
unSwap SwapFlag
swapped (TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType_defer TypeOrKind
t_or_k CtOrigin
origin) TcType
ty1 TcType
ty2

swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars :: Bool -> TcTyVar -> TcTyVar -> Bool
swapOverTyVars Bool
is_given TcTyVar
tv1 TcTyVar
tv2
  -- See Note [Unification variables on the left]
  | Bool -> Bool
not Bool
is_given, Int
pri1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
True
  | Bool -> Bool
not Bool
is_given, Int
pri2 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0, Int
pri1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0 = Bool
False

  -- Level comparison: see Note [TyVar/TyVar orientation]
  | TcLevel
lvl1 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl2 = Bool
False
  | TcLevel
lvl2 TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
lvl1 = Bool
True

  -- Priority: see Note [TyVar/TyVar orientation]
  | Int
pri1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
pri2 = Bool
False
  | Int
pri2 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
pri1 = Bool
True

  -- Names: see Note [TyVar/TyVar orientation]
  | Name -> Bool
isSystemName Name
tv2_name, Bool -> Bool
not (Name -> Bool
isSystemName Name
tv1_name) = Bool
True

  | Bool
otherwise = Bool
False

  where
    lvl1 :: TcLevel
lvl1 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv1
    lvl2 :: TcLevel
lvl2 = TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv2
    pri1 :: Int
pri1 = TcTyVar -> Int
lhsPriority TcTyVar
tv1
    pri2 :: Int
pri2 = TcTyVar -> Int
lhsPriority TcTyVar
tv2
    tv1_name :: Name
tv1_name = TcTyVar -> Name
Var.varName TcTyVar
tv1
    tv2_name :: Name
tv2_name = TcTyVar -> Name
Var.varName TcTyVar
tv2


lhsPriority :: TcTyVar -> Int
-- Higher => more important to be on the LHS
-- See Note [TyVar/TyVar orientation]
lhsPriority :: TcTyVar -> Int
lhsPriority TcTyVar
tv
  = ASSERT2( isTyVar tv, ppr tv)
    case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
      TcTyVarDetails
RuntimeUnk  -> Int
0
      SkolemTv {} -> Int
0
      MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info } -> case MetaInfo
info of
                                     MetaInfo
FlatSkolTv -> Int
1
                                     MetaInfo
TyVarTv    -> Int
2
                                     MetaInfo
TauTv      -> Int
3
                                     MetaInfo
FlatMetaTv -> Int
4
{- Note [TyVar/TyVar orientation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given (a ~ b), should we orient the CTyEqCan as (a~b) or (b~a)?
This is a surprisingly tricky question! This is invariant (TyEq:TV).

The question is answered by swapOverTyVars, which is use
  - in the eager unifier, in GHC.Tc.Utils.Unify.uUnfilledVar1
  - in the constraint solver, in GHC.Tc.Solver.Canonical.canEqTyVarHomo

First note: only swap if you have to!
   See Note [Avoid unnecessary swaps]

So we look for a positive reason to swap, using a three-step test:

* Level comparison. If 'a' has deeper level than 'b',
  put 'a' on the left.  See Note [Deeper level on the left]

* Priority.  If the levels are the same, look at what kind of
  type variable it is, using 'lhsPriority'.

  Generally speaking we always try to put a MetaTv on the left
  in preference to SkolemTv or RuntimeUnkTv:
     a) Because the MetaTv may be touchable and can be unified
     b) Even if it's not touchable, GHC.Tc.Solver.floatEqualities
        looks for meta tyvars on the left

  Tie-breaking rules for MetaTvs:
  - FlatMetaTv = 4: always put on the left.
        See Note [Fmv Orientation Invariant]

        NB: FlatMetaTvs always have the current level, never an
        outer one.  So nothing can be deeper than a FlatMetaTv.

  - TauTv = 3: if we have  tyv_tv ~ tau_tv,
       put tau_tv on the left because there are fewer
       restrictions on updating TauTvs.  Or to say it another
       way, then we won't lose the TyVarTv flag

  - TyVarTv = 2: remember, flat-skols are *only* updated by
       the unflattener, never unified, so TyVarTvs come next

  - FlatSkolTv = 1: put on the left in preference to a SkolemTv.
       See Note [Eliminate flat-skols]

* Names. If the level and priority comparisons are all
  equal, try to eliminate a TyVars with a System Name in
  favour of ones with a Name derived from a user type signature

* Age.  At one point in the past we tried to break any remaining
  ties by eliminating the younger type variable, based on their
  Uniques.  See Note [Eliminate younger unification variables]
  (which also explains why we don't do this any more)

Note [Unification variables on the left]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For wanteds, but not givens, swap (skolem ~ meta-tv) regardless of
level, so that the unification variable is on the left.

* We /don't/ want this for Givens because if we ave
    [G] a[2] ~ alpha[1]
    [W] Bool ~ a[2]
  we want to rewrite the wanted to Bool ~ alpha[1],
  so we can float the constraint and solve it.

* But for Wanteds putting the unification variable on
  the left means an easier job when floating, and when
  reporting errors -- just fewer cases to consider.

  In particular, we get better skolem-escape messages:
  see #18114

Note [Deeper level on the left]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The most important thing is that we want to put tyvars with
the deepest level on the left.  The reason to do so differs for
Wanteds and Givens, but either way, deepest wins!  Simple.

* Wanteds.  Putting the deepest variable on the left maximise the
  chances that it's a touchable meta-tyvar which can be solved.

* Givens. Suppose we have something like
     forall a[2]. b[1] ~ a[2] => beta[1] ~ a[2]

  If we orient the Given a[2] on the left, we'll rewrite the Wanted to
  (beta[1] ~ b[1]), and that can float out of the implication.
  Otherwise it can't.  By putting the deepest variable on the left
  we maximise our changes of eliminating skolem capture.

  See also GHC.Tc.Solver.Monad Note [Let-bound skolems] for another reason
  to orient with the deepest skolem on the left.

  IMPORTANT NOTE: this test does a level-number comparison on
  skolems, so it's important that skolems have (accurate) level
  numbers.

See #15009 for an further analysis of why "deepest on the left"
is a good plan.

Note [Fmv Orientation Invariant]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   * We always orient a constraint
        fmv ~ alpha
     with fmv on the left, even if alpha is
     a touchable unification variable

Reason: doing it the other way round would unify alpha:=fmv, but that
really doesn't add any info to alpha.  But a later constraint alpha ~
Int might unlock everything.  Comment:9 of #12526 gives a detailed
example.

WARNING: I've gone to and fro on this one several times.
I'm now pretty sure that unifying alpha:=fmv is a bad idea!
So orienting with fmvs on the left is a good thing.

This example comes from IndTypesPerfMerge. (Others include
T10226, T10009.)
    From the ambiguity check for
      f :: (F a ~ a) => a
    we get:
          [G] F a ~ a
          [WD] F alpha ~ alpha, alpha ~ a

    From Givens we get
          [G] F a ~ fsk, fsk ~ a

    Now if we flatten we get
          [WD] alpha ~ fmv, F alpha ~ fmv, alpha ~ a

    Now, if we unified alpha := fmv, we'd get
          [WD] F fmv ~ fmv, [WD] fmv ~ a
    And now we are stuck.

So instead the Fmv Orientation Invariant puts the fmv on the
left, giving
      [WD] fmv ~ alpha, [WD] F alpha ~ fmv, [WD] alpha ~ a

    Now we get alpha:=a, and everything works out

Note [Eliminate flat-skols]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we have  [G] Num (F [a])
then we flatten to
     [G] Num fsk
     [G] F [a] ~ fsk
where fsk is a flatten-skolem (FlatSkolTv). Suppose we have
      type instance F [a] = a
then we'll reduce the second constraint to
     [G] a ~ fsk
and then replace all uses of 'a' with fsk.  That's bad because
in error messages instead of saying 'a' we'll say (F [a]).  In all
places, including those where the programmer wrote 'a' in the first
place.  Very confusing!  See #7862.

Solution: re-orient a~fsk to fsk~a, so that we preferentially eliminate
the fsk.

Note [Avoid unnecessary swaps]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If we swap without actually improving matters, we can get an infinite loop.
Consider
    work item:  a ~ b
   inert item:  b ~ c
We canonicalise the work-item to (a ~ c).  If we then swap it before
adding to the inert set, we'll add (c ~ a), and therefore kick out the
inert guy, so we get
   new work item:  b ~ c
   inert item:     c ~ a
And now the cycle just repeats

Note [Eliminate younger unification variables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Given a choice of unifying
     alpha := beta   or   beta := alpha
we try, if possible, to eliminate the "younger" one, as determined
by `ltUnique`.  Reason: the younger one is less likely to appear free in
an existing inert constraint, and hence we are less likely to be forced
into kicking out and rewriting inert constraints.

This is a performance optimisation only.  It turns out to fix
#14723 all by itself, but clearly not reliably so!

It's simple to implement (see nicer_to_update_tv2 in swapOverTyVars).
But, to my surprise, it didn't seem to make any significant difference
to the compiler's performance, so I didn't take it any further.  Still
it seemed to too nice to discard altogether, so I'm leaving these
notes.  SLPJ Jan 18.
-}

-- @trySpontaneousSolve wi@ solves equalities where one side is a
-- touchable unification variable.
-- Returns True <=> spontaneous solve happened
canSolveByUnification :: TcLevel -> TcTyVar -> TcType -> Bool
canSolveByUnification :: TcLevel -> TcTyVar -> TcType -> Bool
canSolveByUnification TcLevel
tclvl TcTyVar
tv TcType
xi
  | TcLevel -> TcTyVar -> Bool
isTouchableMetaTyVar TcLevel
tclvl TcTyVar
tv
  = case TcTyVar -> MetaInfo
metaTyVarInfo TcTyVar
tv of
      MetaInfo
TyVarTv -> TcType -> Bool
is_tyvar TcType
xi
      MetaInfo
_       -> Bool
True

  | Bool
otherwise    -- Untouchable
  = Bool
False
  where
    is_tyvar :: TcType -> Bool
is_tyvar TcType
xi
      = case TcType -> Maybe TcTyVar
tcGetTyVar_maybe TcType
xi of
          Maybe TcTyVar
Nothing -> Bool
False
          Just TcTyVar
tv -> case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv of
                       MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info }
                                   -> case MetaInfo
info of
                                        MetaInfo
TyVarTv -> Bool
True
                                        MetaInfo
_       -> Bool
False
                       SkolemTv {} -> Bool
True
                       TcTyVarDetails
RuntimeUnk  -> Bool
True

{- Note [Prevent unification with type families]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We prevent unification with type families because of an uneasy compromise.
It's perfectly sound to unify with type families, and it even improves the
error messages in the testsuite. It also modestly improves performance, at
least in some cases. But it's disastrous for test case perf/compiler/T3064.
Here is the problem: Suppose we have (F ty) where we also have [G] F ty ~ a.
What do we do? Do we reduce F? Or do we use the given? Hard to know what's
best. GHC reduces. This is a disaster for T3064, where the type's size
spirals out of control during reduction. (We're not helped by the fact that
the flattener re-flattens all the arguments every time around.) If we prevent
unification with type families, then the solver happens to use the equality
before expanding the type family.

It would be lovely in the future to revisit this problem and remove this
extra, unnecessary check. But we retain it for now as it seems to work
better in practice.

Note [Refactoring hazard: checkTauTvUpdate]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
I (Richard E.) have a sad story about refactoring this code, retained here
to prevent others (or a future me!) from falling into the same traps.

It all started with #11407, which was caused by the fact that the TyVarTy
case of defer_me didn't look in the kind. But it seemed reasonable to
simply remove the defer_me check instead.

It referred to two Notes (since removed) that were out of date, and the
fast_check code in occurCheckExpand seemed to do just about the same thing as
defer_me. The one piece that defer_me did that wasn't repeated by
occurCheckExpand was the type-family check. (See Note [Prevent unification
with type families].) So I checked the result of occurCheckExpand for any
type family occurrences and deferred if there were any. This was done
in commit e9bf7bb5cc9fb3f87dd05111aa23da76b86a8967 .

This approach turned out not to be performant, because the expanded
type was bigger than the original type, and tyConsOfType (needed to
see if there are any type family occurrences) looks through type
synonyms. So it then struck me that we could dispense with the
defer_me check entirely. This simplified the code nicely, and it cut
the allocations in T5030 by half. But, as documented in Note [Prevent
unification with type families], this destroyed performance in
T3064. Regardless, I missed this regression and the change was
committed as 3f5d1a13f112f34d992f6b74656d64d95a3f506d .

Bottom lines:
 * defer_me is back, but now fixed w.r.t. #11407.
 * Tread carefully before you start to refactor here. There can be
   lots of hard-to-predict consequences.

Note [Type synonyms and the occur check]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Generally speaking we try to update a variable with type synonyms not
expanded, which improves later error messages, unless looking
inside a type synonym may help resolve a spurious occurs check
error. Consider:
          type A a = ()

          f :: (A a -> a -> ()) -> ()
          f = \ _ -> ()

          x :: ()
          x = f (\ x p -> p x)

We will eventually get a constraint of the form t ~ A t. The ok function above will
properly expand the type (A t) to just (), which is ok to be unified with t. If we had
unified with the original type A t, we would lead the type checker into an infinite loop.

Hence, if the occurs check fails for a type synonym application, then (and *only* then),
the ok function expands the synonym to detect opportunities for occurs check success using
the underlying definition of the type synonym.

The same applies later on in the constraint interaction code; see GHC.Tc.Solver.Interact,
function @occ_check_ok@.

Note [Non-TcTyVars in GHC.Tc.Utils.Unify]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Because the same code is now shared between unifying types and unifying
kinds, we sometimes will see proper TyVars floating around the unifier.
Example (from test case polykinds/PolyKinds12):

    type family Apply (f :: k1 -> k2) (x :: k1) :: k2
    type instance Apply g y = g y

When checking the instance declaration, we first *kind-check* the LHS
and RHS, discovering that the instance really should be

    type instance Apply k3 k4 (g :: k3 -> k4) (y :: k3) = g y

During this kind-checking, all the tyvars will be TcTyVars. Then, however,
as a second pass, we desugar the RHS (which is done in functions prefixed
with "tc" in GHC.Tc.TyCl"). By this time, all the kind-vars are proper
TyVars, not TcTyVars, get some kind unification must happen.

Thus, we always check if a TyVar is a TcTyVar before asking if it's a
meta-tyvar.

This used to not be necessary for type-checking (that is, before * :: *)
because expressions get desugared via an algorithm separate from
type-checking (with wrappers, etc.). Types get desugared very differently,
causing this wibble in behavior seen here.
-}

data LookupTyVarResult  -- The result of a lookupTcTyVar call
  = Unfilled TcTyVarDetails     -- SkolemTv or virgin MetaTv
  | Filled   TcType

lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar :: TcTyVar -> TcM LookupTyVarResult
lookupTcTyVar TcTyVar
tyvar
  | MetaTv { mtv_ref :: TcTyVarDetails -> IORef MetaDetails
mtv_ref = IORef MetaDetails
ref } <- TcTyVarDetails
details
  = do { MetaDetails
meta_details <- IORef MetaDetails -> TcM MetaDetails
forall a env. IORef a -> IOEnv env a
readMutVar IORef MetaDetails
ref
       ; case MetaDetails
meta_details of
           Indirect TcType
ty -> LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> LookupTyVarResult
Filled TcType
ty)
           MetaDetails
Flexi -> do { Bool
is_touchable <- TcTyVar -> TcM Bool
isTouchableTcM TcTyVar
tyvar
                             -- Note [Unifying untouchables]
                       ; if Bool
is_touchable then
                            LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcTyVarDetails -> LookupTyVarResult
Unfilled TcTyVarDetails
details)
                         else
                            LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcTyVarDetails -> LookupTyVarResult
Unfilled TcTyVarDetails
vanillaSkolemTv) } }
  | Bool
otherwise
  = LookupTyVarResult -> TcM LookupTyVarResult
forall (m :: * -> *) a. Monad m => a -> m a
return (TcTyVarDetails -> LookupTyVarResult
Unfilled TcTyVarDetails
details)
  where
    details :: TcTyVarDetails
details = TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tyvar

{-
Note [Unifying untouchables]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We treat an untouchable type variable as if it was a skolem.  That
ensures it won't unify with anything.  It's a slight hack, because
we return a made-up TcTyVarDetails, but I think it works smoothly.
-}

-- | Breaks apart a function kind into its pieces.
matchExpectedFunKind
  :: Outputable fun
  => fun             -- ^ type, only for errors
  -> Arity           -- ^ n: number of desired arrows
  -> TcKind          -- ^ fun_ kind
  -> TcM Coercion    -- ^ co :: fun_kind ~ (arg1 -> ... -> argn -> res)

matchExpectedFunKind :: forall fun. Outputable fun => fun -> Int -> TcType -> TcM Coercion
matchExpectedFunKind fun
hs_ty Int
n TcType
k = Int -> TcType -> TcM Coercion
go Int
n TcType
k
  where
    go :: Int -> TcType -> TcM Coercion
go Int
0 TcType
k = Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (TcType -> Coercion
mkNomReflCo TcType
k)

    go Int
n TcType
k | Just TcType
k' <- TcType -> Maybe TcType
tcView TcType
k = Int -> TcType -> TcM Coercion
go Int
n TcType
k'

    go Int
n k :: TcType
k@(TyVarTy TcTyVar
kvar)
      | TcTyVar -> Bool
isMetaTyVar TcTyVar
kvar
      = do { MetaDetails
maybe_kind <- TcTyVar -> TcM MetaDetails
readMetaTyVar TcTyVar
kvar
           ; case MetaDetails
maybe_kind of
                Indirect TcType
fun_kind -> Int -> TcType -> TcM Coercion
go Int
n TcType
fun_kind
                MetaDetails
Flexi ->             Int -> TcType -> TcM Coercion
defer Int
n TcType
k }

    go Int
n (FunTy AnonArgFlag
_ TcType
w TcType
arg TcType
res)
      = do { Coercion
co <- Int -> TcType -> TcM Coercion
go (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
-Int
1) TcType
res
           ; Coercion -> TcM Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Coercion -> Coercion -> Coercion -> Coercion
mkTcFunCo Role
Nominal (TcType -> Coercion
mkTcNomReflCo TcType
w) (TcType -> Coercion
mkTcNomReflCo TcType
arg) Coercion
co) }

    go Int
n TcType
other
     = Int -> TcType -> TcM Coercion
defer Int
n TcType
other

    defer :: Int -> TcType -> TcM Coercion
defer Int
n TcType
k
      = do { ThetaType
arg_kinds <- Int -> TcM ThetaType
newMetaKindVars Int
n
           ; TcType
res_kind  <- IOEnv (Env TcGblEnv TcLclEnv) TcType
newMetaKindVar
           ; let new_fun :: TcType
new_fun = ThetaType -> TcType -> TcType
mkVisFunTysMany ThetaType
arg_kinds TcType
res_kind
                 origin :: CtOrigin
origin  = TypeEqOrigin :: TcType -> TcType -> Maybe SDoc -> Bool -> CtOrigin
TypeEqOrigin { uo_actual :: TcType
uo_actual   = TcType
k
                                        , uo_expected :: TcType
uo_expected = TcType
new_fun
                                        , uo_thing :: Maybe SDoc
uo_thing    = SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (fun -> SDoc
forall a. Outputable a => a -> SDoc
ppr fun
hs_ty)
                                        , uo_visible :: Bool
uo_visible  = Bool
True
                                        }
           ; TypeOrKind -> CtOrigin -> TcType -> TcType -> TcM Coercion
uType TypeOrKind
KindLevel CtOrigin
origin TcType
k TcType
new_fun }

{- *********************************************************************
*                                                                      *
                 Occurrence checking
*                                                                      *
********************************************************************* -}


{-  Note [Occurrence checking: look inside kinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Suppose we are considering unifying
   (alpha :: *)  ~  Int -> (beta :: alpha -> alpha)
This may be an error (what is that alpha doing inside beta's kind?),
but we must not make the mistake of actually unifying or we'll
build an infinite data structure.  So when looking for occurrences
of alpha in the rhs, we must look in the kinds of type variables
that occur there.

NB: we may be able to remove the problem via expansion; see
    Note [Occurs check expansion].  So we have to try that.

Note [Checking for foralls]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unless we have -XImpredicativeTypes (which is a totally unsupported
feature), we do not want to unify
    alpha ~ (forall a. a->a) -> Int
So we look for foralls hidden inside the type, and it's convenient
to do that at the same time as the occurs check (which looks for
occurrences of alpha).

However, it's not just a question of looking for foralls /anywhere/!
Consider
   (alpha :: forall k. k->*)  ~  (beta :: forall k. k->*)
This is legal; e.g. dependent/should_compile/T11635.

We don't want to reject it because of the forall in beta's kind,
but (see Note [Occurrence checking: look inside kinds]) we do
need to look in beta's kind.  So we carry a flag saying if a 'forall'
is OK, and switch the flag on when stepping inside a kind.

Why is it OK?  Why does it not count as impredicative polymorphism?
The reason foralls are bad is because we reply on "seeing" foralls
when doing implicit instantiation.  But the forall inside the kind is
fine.  We'll generate a kind equality constraint
  (forall k. k->*) ~ (forall k. k->*)
to check that the kinds of lhs and rhs are compatible.  If alpha's
kind had instead been
  (alpha :: kappa)
then this kind equality would rightly complain about unifying kappa
with (forall k. k->*)

-}

data MetaTyVarUpdateResult a
  = MTVU_OK a
  | MTVU_Bad          -- Forall, predicate, or type family
  | MTVU_HoleBlocker  -- Blocking coercion hole
        -- See Note [Equalities with incompatible kinds] in "GHC.Tc.Solver.Canonical"
  | MTVU_Occurs
    deriving ((forall a b.
 (a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b)
-> (forall a b.
    a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a)
-> Functor MetaTyVarUpdateResult
forall a b. a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a
forall a b.
(a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a
$c<$ :: forall a b. a -> MetaTyVarUpdateResult b -> MetaTyVarUpdateResult a
fmap :: forall a b.
(a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
$cfmap :: forall a b.
(a -> b) -> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
Functor)

instance Applicative MetaTyVarUpdateResult where
      pure :: forall a. a -> MetaTyVarUpdateResult a
pure = a -> MetaTyVarUpdateResult a
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK
      <*> :: forall a b.
MetaTyVarUpdateResult (a -> b)
-> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
(<*>) = MetaTyVarUpdateResult (a -> b)
-> MetaTyVarUpdateResult a -> MetaTyVarUpdateResult b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap

instance Monad MetaTyVarUpdateResult where
  MTVU_OK a
x        >>= :: forall a b.
MetaTyVarUpdateResult a
-> (a -> MetaTyVarUpdateResult b) -> MetaTyVarUpdateResult b
>>= a -> MetaTyVarUpdateResult b
k = a -> MetaTyVarUpdateResult b
k a
x
  MetaTyVarUpdateResult a
MTVU_Bad         >>= a -> MetaTyVarUpdateResult b
_ = MetaTyVarUpdateResult b
forall a. MetaTyVarUpdateResult a
MTVU_Bad
  MetaTyVarUpdateResult a
MTVU_HoleBlocker >>= a -> MetaTyVarUpdateResult b
_ = MetaTyVarUpdateResult b
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker
  MetaTyVarUpdateResult a
MTVU_Occurs      >>= a -> MetaTyVarUpdateResult b
_ = MetaTyVarUpdateResult b
forall a. MetaTyVarUpdateResult a
MTVU_Occurs

instance Outputable a => Outputable (MetaTyVarUpdateResult a) where
  ppr :: MetaTyVarUpdateResult a -> SDoc
ppr (MTVU_OK a
a)      = String -> SDoc
text String
"MTVU_OK" SDoc -> SDoc -> SDoc
<+> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
a
  ppr MetaTyVarUpdateResult a
MTVU_Bad         = String -> SDoc
text String
"MTVU_Bad"
  ppr MetaTyVarUpdateResult a
MTVU_HoleBlocker = String -> SDoc
text String
"MTVU_HoleBlocker"
  ppr MetaTyVarUpdateResult a
MTVU_Occurs      = String -> SDoc
text String
"MTVU_Occurs"

occCheckForErrors :: DynFlags -> TcTyVar -> Type -> MetaTyVarUpdateResult ()
-- Just for error-message generation; so we return MetaTyVarUpdateResult
-- so the caller can report the right kind of error
-- Check whether
--   a) the given variable occurs in the given type.
--   b) there is a forall in the type (unless we have -XImpredicativeTypes)
occCheckForErrors :: DynFlags -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
occCheckForErrors DynFlags
dflags TcTyVar
tv TcType
ty
  = case DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
preCheck DynFlags
dflags Bool
True TcTyVar
tv TcType
ty of
      MTVU_OK ()
_        -> () -> MetaTyVarUpdateResult ()
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK ()
      MetaTyVarUpdateResult ()
MTVU_Bad         -> MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
      MetaTyVarUpdateResult ()
MTVU_HoleBlocker -> MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker
      MetaTyVarUpdateResult ()
MTVU_Occurs      -> case [TcTyVar] -> TcType -> Maybe TcType
occCheckExpand [TcTyVar
tv] TcType
ty of
                            Maybe TcType
Nothing -> MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
                            Just TcType
_  -> () -> MetaTyVarUpdateResult ()
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK ()

----------------
metaTyVarUpdateOK :: DynFlags
                  -> TcTyVar             -- tv :: k1
                  -> TcType              -- ty :: k2
                  -> MetaTyVarUpdateResult TcType        -- possibly-expanded ty
-- (metaTyVarUpdateOK tv ty)
-- We are about to update the meta-tyvar tv with ty
-- Check (a) that tv doesn't occur in ty (occurs check)
--       (b) that ty does not have any foralls
--           (in the impredicative case), or type functions
--       (c) that ty does not have any blocking coercion holes
--           See Note [Equalities with incompatible kinds] in "GHC.Tc.Solver.Canonical"
--
-- We have two possible outcomes:
-- (1) Return the type to update the type variable with,
--        [we know the update is ok]
-- (2) Return Nothing,
--        [the update might be dodgy]
--
-- Note that "Nothing" does not mean "definite error".  For example
--   type family F a
--   type instance F Int = Int
-- consider
--   a ~ F a
-- This is perfectly reasonable, if we later get a ~ Int.  For now, though,
-- we return Nothing, leaving it to the later constraint simplifier to
-- sort matters out.
--
-- See Note [Refactoring hazard: checkTauTvUpdate]

metaTyVarUpdateOK :: DynFlags -> TcTyVar -> TcType -> MetaTyVarUpdateResult TcType
metaTyVarUpdateOK DynFlags
dflags TcTyVar
tv TcType
ty
  = case DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
preCheck DynFlags
dflags Bool
False TcTyVar
tv TcType
ty of
         -- False <=> type families not ok
         -- See Note [Prevent unification with type families]
      MTVU_OK ()
_        -> TcType -> MetaTyVarUpdateResult TcType
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK TcType
ty
      MetaTyVarUpdateResult ()
MTVU_Bad         -> MetaTyVarUpdateResult TcType
forall a. MetaTyVarUpdateResult a
MTVU_Bad          -- forall, predicate, type function
      MetaTyVarUpdateResult ()
MTVU_HoleBlocker -> MetaTyVarUpdateResult TcType
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker  -- coercion hole
      MetaTyVarUpdateResult ()
MTVU_Occurs      -> case [TcTyVar] -> TcType -> Maybe TcType
occCheckExpand [TcTyVar
tv] TcType
ty of
                            Just TcType
expanded_ty -> TcType -> MetaTyVarUpdateResult TcType
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK TcType
expanded_ty
                            Maybe TcType
Nothing          -> MetaTyVarUpdateResult TcType
forall a. MetaTyVarUpdateResult a
MTVU_Occurs

preCheck :: DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
-- A quick check for
--   (a) a forall type (unless -XImpredicativeTypes)
--   (b) a predicate type (unless -XImpredicativeTypes)
--   (c) a type family
--   (d) a blocking coercion hole
--   (e) an occurrence of the type variable (occurs check)
--
-- For (a), (b), and (c) we check only the top level of the type, NOT
-- inside the kinds of variables it mentions.  For (d) we look deeply
-- in coercions, and for (e) we do look in the kinds of course.

preCheck :: DynFlags -> Bool -> TcTyVar -> TcType -> MetaTyVarUpdateResult ()
preCheck DynFlags
dflags Bool
ty_fam_ok TcTyVar
tv TcType
ty
  = TcType -> MetaTyVarUpdateResult ()
fast_check TcType
ty
  where
    details :: TcTyVarDetails
details          = TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv
    impredicative_ok :: Bool
impredicative_ok = DynFlags -> TcTyVarDetails -> Bool
canUnifyWithPolyType DynFlags
dflags TcTyVarDetails
details

    ok :: MetaTyVarUpdateResult ()
    ok :: MetaTyVarUpdateResult ()
ok = () -> MetaTyVarUpdateResult ()
forall a. a -> MetaTyVarUpdateResult a
MTVU_OK ()

    fast_check :: TcType -> MetaTyVarUpdateResult ()
    fast_check :: TcType -> MetaTyVarUpdateResult ()
fast_check (TyVarTy TcTyVar
tv')
      | TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv' = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
      | Bool
otherwise = TcType -> MetaTyVarUpdateResult ()
fast_check_occ (TcTyVar -> TcType
tyVarKind TcTyVar
tv')
           -- See Note [Occurrence checking: look inside kinds]

    fast_check (TyConApp TyCon
tc ThetaType
tys)
      | TyCon -> Bool
bad_tc TyCon
tc              = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
      | Bool
otherwise              = (TcType -> MetaTyVarUpdateResult ())
-> ThetaType -> MetaTyVarUpdateResult [()]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM TcType -> MetaTyVarUpdateResult ()
fast_check ThetaType
tys MetaTyVarUpdateResult [()]
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> MetaTyVarUpdateResult ()
ok
    fast_check (LitTy {})      = MetaTyVarUpdateResult ()
ok
    fast_check (FunTy{ft_af :: TcType -> AnonArgFlag
ft_af = AnonArgFlag
af, ft_mult :: TcType -> TcType
ft_mult = TcType
w, ft_arg :: TcType -> TcType
ft_arg = TcType
a, ft_res :: TcType -> TcType
ft_res = TcType
r})
      | AnonArgFlag
InvisArg <- AnonArgFlag
af
      , Bool -> Bool
not Bool
impredicative_ok   = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
      | Bool
otherwise              = TcType -> MetaTyVarUpdateResult ()
fast_check TcType
w   MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> TcType -> MetaTyVarUpdateResult ()
fast_check TcType
a MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> TcType -> MetaTyVarUpdateResult ()
fast_check TcType
r
    fast_check (AppTy TcType
fun TcType
arg) = TcType -> MetaTyVarUpdateResult ()
fast_check TcType
fun MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> TcType -> MetaTyVarUpdateResult ()
fast_check TcType
arg
    fast_check (CastTy TcType
ty Coercion
co)  = TcType -> MetaTyVarUpdateResult ()
fast_check TcType
ty  MetaTyVarUpdateResult ()
-> MetaTyVarUpdateResult () -> MetaTyVarUpdateResult ()
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Coercion -> MetaTyVarUpdateResult ()
fast_check_co Coercion
co
    fast_check (CoercionTy Coercion
co) = Coercion -> MetaTyVarUpdateResult ()
fast_check_co Coercion
co
    fast_check (ForAllTy (Bndr TcTyVar
tv' ArgFlag
_) TcType
ty)
       | Bool -> Bool
not Bool
impredicative_ok = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Bad
       | TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv'            = MetaTyVarUpdateResult ()
ok
       | Bool
otherwise = do { TcType -> MetaTyVarUpdateResult ()
fast_check_occ (TcTyVar -> TcType
tyVarKind TcTyVar
tv')
                        ; TcType -> MetaTyVarUpdateResult ()
fast_check_occ TcType
ty }
       -- Under a forall we look only for occurrences of
       -- the type variable

     -- For kinds, we only do an occurs check; we do not worry
     -- about type families or foralls
     -- See Note [Checking for foralls]
    fast_check_occ :: TcType -> MetaTyVarUpdateResult ()
fast_check_occ TcType
k | TcTyVar
tv TcTyVar -> VarSet -> Bool
`elemVarSet` TcType -> VarSet
tyCoVarsOfType TcType
k = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
                     | Bool
otherwise                        = MetaTyVarUpdateResult ()
ok

     -- no bother about impredicativity in coercions, as they're
     -- inferred
    fast_check_co :: Coercion -> MetaTyVarUpdateResult ()
fast_check_co Coercion
co | Bool -> Bool
not (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_DeferTypeErrors DynFlags
dflags)
                     , Coercion -> Bool
badCoercionHoleCo Coercion
co            = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_HoleBlocker
        -- Wrinkle (4b) in "GHC.Tc.Solver.Canonical" Note [Equalities with incompatible kinds]

                     | TcTyVar
tv TcTyVar -> VarSet -> Bool
`elemVarSet` Coercion -> VarSet
tyCoVarsOfCo Coercion
co = MetaTyVarUpdateResult ()
forall a. MetaTyVarUpdateResult a
MTVU_Occurs
                     | Bool
otherwise                       = MetaTyVarUpdateResult ()
ok

    bad_tc :: TyCon -> Bool
    bad_tc :: TyCon -> Bool
bad_tc TyCon
tc
      | Bool -> Bool
not (Bool
impredicative_ok Bool -> Bool -> Bool
|| TyCon -> Bool
isTauTyCon TyCon
tc)     = Bool
True
      | Bool -> Bool
not (Bool
ty_fam_ok        Bool -> Bool -> Bool
|| TyCon -> Bool
isFamFreeTyCon TyCon
tc) = Bool
True
      | Bool
otherwise                                   = Bool
False

canUnifyWithPolyType :: DynFlags -> TcTyVarDetails -> Bool
canUnifyWithPolyType :: DynFlags -> TcTyVarDetails -> Bool
canUnifyWithPolyType DynFlags
dflags TcTyVarDetails
details
  = case TcTyVarDetails
details of
      MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
TyVarTv }    -> Bool
False
      MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
TauTv }      -> Extension -> DynFlags -> Bool
xopt Extension
LangExt.ImpredicativeTypes DynFlags
dflags
      TcTyVarDetails
_other                           -> Bool
True
          -- We can have non-meta tyvars in given constraints