transformers-0.6.1.1: Concrete functor and monad transformers
Copyright(c) Andy Gill 2001
(c) Oregon Graduate Institute of Science and Technology 2001
LicenseBSD-style (see the file LICENSE)
MaintainerR.Paterson@city.ac.uk
Stabilityexperimental
Portabilityportable
Safe HaskellSafe
LanguageHaskell2010

Control.Monad.Trans.State.Lazy

Description

Lazy state monads, passing an updatable state through a computation. See below for examples.

Some computations may not require the full power of state transformers:

In this version, sequencing of computations is lazy, so that for example the following produces a usable result:

evalState (sequence $ repeat $ do { n <- get; put (n*2); return n }) 1

For a strict version with the same interface, see Control.Monad.Trans.State.Strict.

Synopsis

The State monad

type State s = StateT s Identity Source #

A state monad parameterized by the type s of the state to carry.

The return function leaves the state unchanged, while >>= uses the final state of the first computation as the initial state of the second.

state Source #

Arguments

:: forall (m :: Type -> Type) s a. Monad m 
=> (s -> (a, s))

pure state transformer

-> StateT s m a

equivalent state-passing computation

Construct a state monad computation from a function. (The inverse of runState.)

runState Source #

Arguments

:: State s a

state-passing computation to execute

-> s

initial state

-> (a, s)

return value and final state

Unwrap a state monad computation as a function. (The inverse of state.)

evalState Source #

Arguments

:: State s a

state-passing computation to execute

-> s

initial value

-> a

return value of the state computation

Evaluate a state computation with the given initial state and return the final value, discarding the final state.

execState Source #

Arguments

:: State s a

state-passing computation to execute

-> s

initial value

-> s

final state

Evaluate a state computation with the given initial state and return the final state, discarding the final value.

mapState :: ((a, s) -> (b, s)) -> State s a -> State s b Source #

Map both the return value and final state of a computation using the given function.

withState :: (s -> s) -> State s a -> State s a Source #

withState f m executes action m on a state modified by applying f.

The StateT monad transformer

newtype StateT s (m :: Type -> Type) a Source #

A state transformer monad parameterized by:

  • s - The state.
  • m - The inner monad.

The return function leaves the state unchanged, while >>= uses the final state of the first computation as the initial state of the second.

Constructors

StateT 

Fields

Instances

Instances details
MonadTrans (StateT s) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

lift :: Monad m => m a -> StateT s m a Source #

MonadIO m => MonadIO (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

liftIO :: IO a -> StateT s m a Source #

Contravariant m => Contravariant (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

contramap :: (a' -> a) -> StateT s m a -> StateT s m a' Source #

(>$) :: b -> StateT s m b -> StateT s m a Source #

(Functor m, MonadPlus m) => Alternative (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

empty :: StateT s m a #

(<|>) :: StateT s m a -> StateT s m a -> StateT s m a #

some :: StateT s m a -> StateT s m [a] #

many :: StateT s m a -> StateT s m [a] #

(Functor m, Monad m) => Applicative (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

pure :: a -> StateT s m a #

(<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b #

liftA2 :: (a -> b -> c) -> StateT s m a -> StateT s m b -> StateT s m c #

(*>) :: StateT s m a -> StateT s m b -> StateT s m b #

(<*) :: StateT s m a -> StateT s m b -> StateT s m a #

Functor m => Functor (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

fmap :: (a -> b) -> StateT s m a -> StateT s m b #

(<$) :: a -> StateT s m b -> StateT s m a #

Monad m => Monad (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

(>>=) :: StateT s m a -> (a -> StateT s m b) -> StateT s m b #

(>>) :: StateT s m a -> StateT s m b -> StateT s m b #

return :: a -> StateT s m a #

MonadPlus m => MonadPlus (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

mzero :: StateT s m a #

mplus :: StateT s m a -> StateT s m a -> StateT s m a #

MonadFail m => MonadFail (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

fail :: String -> StateT s m a #

MonadFix m => MonadFix (StateT s m) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

mfix :: (a -> StateT s m a) -> StateT s m a #

Generic (StateT s m a) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Associated Types

type Rep (StateT s m a) 
Instance details

Defined in Control.Monad.Trans.State.Lazy

type Rep (StateT s m a) = D1 ('MetaData "StateT" "Control.Monad.Trans.State.Lazy" "transformers-0.6.1.1-02e2" 'True) (C1 ('MetaCons "StateT" 'PrefixI 'True) (S1 ('MetaSel ('Just "runStateT") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (s -> m (a, s)))))

Methods

from :: StateT s m a -> Rep (StateT s m a) x #

to :: Rep (StateT s m a) x -> StateT s m a #

type Rep (StateT s m a) Source # 
Instance details

Defined in Control.Monad.Trans.State.Lazy

type Rep (StateT s m a) = D1 ('MetaData "StateT" "Control.Monad.Trans.State.Lazy" "transformers-0.6.1.1-02e2" 'True) (C1 ('MetaCons "StateT" 'PrefixI 'True) (S1 ('MetaSel ('Just "runStateT") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (s -> m (a, s)))))

evalStateT :: Monad m => StateT s m a -> s -> m a Source #

Evaluate a state computation with the given initial state and return the final value, discarding the final state.

execStateT :: Monad m => StateT s m a -> s -> m s Source #

Evaluate a state computation with the given initial state and return the final state, discarding the final value.

mapStateT :: (m (a, s) -> n (b, s)) -> StateT s m a -> StateT s n b Source #

Map both the return value and final state of a computation using the given function.

withStateT :: forall s (m :: Type -> Type) a. (s -> s) -> StateT s m a -> StateT s m a Source #

withStateT f m executes action m on a state modified by applying f.

State operations

get :: forall (m :: Type -> Type) s. Monad m => StateT s m s Source #

Fetch the current value of the state within the monad.

put :: forall (m :: Type -> Type) s. Monad m => s -> StateT s m () Source #

put s sets the state within the monad to s.

modify :: forall (m :: Type -> Type) s. Monad m => (s -> s) -> StateT s m () Source #

modify f is an action that updates the state to the result of applying f to the current state.

modify' :: forall (m :: Type -> Type) s. Monad m => (s -> s) -> StateT s m () Source #

A variant of modify in which the computation is strict in the new state.

modifyM :: Monad m => (s -> m s) -> StateT s m () Source #

A variant of modify in which the new state is generated by a monadic action.

gets :: forall (m :: Type -> Type) s a. Monad m => (s -> a) -> StateT s m a Source #

Get a specific component of the state, using a projection function supplied.

Lifting other operations

liftCallCC :: CallCC m (a, s) (b, s) -> CallCC (StateT s m) a b Source #

Uniform lifting of a callCC operation to the new monad. This version rolls back to the original state on entering the continuation.

liftCallCC' :: CallCC m (a, s) (b, s) -> CallCC (StateT s m) a b Source #

In-situ lifting of a callCC operation to the new monad. This version uses the current state on entering the continuation. It does not satisfy the uniformity property (see Control.Monad.Signatures).

liftCatch :: Catch e m (a, s) -> Catch e (StateT s m) a Source #

Lift a catchE operation to the new monad.

liftListen :: Monad m => Listen w m (a, s) -> Listen w (StateT s m) a Source #

Lift a listen operation to the new monad.

liftPass :: Monad m => Pass w m (a, s) -> Pass w (StateT s m) a Source #

Lift a pass operation to the new monad.

Examples

State monads

Parser from ParseLib with Hugs:

type Parser a = StateT String [] a
   ==> StateT (String -> [(a,String)])

For example, item can be written as:

item = do (x:xs) <- get
       put xs
       return x

type BoringState s a = StateT s Identity a
     ==> StateT (s -> Identity (a,s))

type StateWithIO s a = StateT s IO a
     ==> StateT (s -> IO (a,s))

type StateWithErr s a = StateT s Maybe a
     ==> StateT (s -> Maybe (a,s))

Counting

A function to increment a counter. Taken from the paper "Generalising Monads to Arrows", John Hughes (http://www.cse.chalmers.se/~rjmh/), November 1998:

tick :: State Int Int
tick = do n <- get
          put (n+1)
          return n

Add one to the given number using the state monad:

plusOne :: Int -> Int
plusOne n = execState tick n

A contrived addition example. Works only with positive numbers:

plus :: Int -> Int -> Int
plus n x = execState (sequence $ replicate n tick) x

Labelling trees

An example from The Craft of Functional Programming, Simon Thompson (http://www.cs.kent.ac.uk/people/staff/sjt/), Addison-Wesley 1999: "Given an arbitrary tree, transform it to a tree of integers in which the original elements are replaced by natural numbers, starting from 0. The same element has to be replaced by the same number at every occurrence, and when we meet an as-yet-unvisited element we have to find a 'new' number to match it with:"

data Tree a = Nil | Node a (Tree a) (Tree a) deriving (Show, Eq)
type Table a = [a]
numberTree :: Eq a => Tree a -> State (Table a) (Tree Int)
numberTree Nil = return Nil
numberTree (Node x t1 t2) = do
    num <- numberNode x
    nt1 <- numberTree t1
    nt2 <- numberTree t2
    return (Node num nt1 nt2)
  where
    numberNode :: Eq a => a -> State (Table a) Int
    numberNode x = do
        table <- get
        case elemIndex x table of
            Nothing -> do
                put (table ++ [x])
                return (length table)
            Just i -> return i

numTree applies numberTree with an initial state:

numTree :: (Eq a) => Tree a -> Tree Int
numTree t = evalState (numberTree t) []
testTree = Node "Zero" (Node "One" (Node "Two" Nil Nil) (Node "One" (Node "Zero" Nil Nil) Nil)) Nil
numTree testTree => Node 0 (Node 1 (Node 2 Nil Nil) (Node 1 (Node 0 Nil Nil) Nil)) Nil