{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#ifdef __GLASGOW_HASKELL__
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
#endif
#if !defined(TESTING) && defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif

{-# OPTIONS_HADDOCK not-home #-}
{-# OPTIONS_GHC -fno-warn-incomplete-uni-patterns #-}

#include "containers.h"

-----------------------------------------------------------------------------
-- |
-- Module      :  Data.IntMap.Internal
-- Copyright   :  (c) Daan Leijen 2002
--                (c) Andriy Palamarchuk 2008
--                (c) wren romano 2016
-- License     :  BSD-style
-- Maintainer  :  libraries@haskell.org
-- Portability :  portable
--
-- = WARNING
--
-- This module is considered __internal__.
--
-- The Package Versioning Policy __does not apply__.
--
-- The contents of this module may change __in any way whatsoever__
-- and __without any warning__ between minor versions of this package.
--
-- Authors importing this module are expected to track development
-- closely.
--
-- = Description
--
-- This defines the data structures and core (hidden) manipulations
-- on representations.
--
-- @since 0.5.9
-----------------------------------------------------------------------------

-- [Note: INLINE bit fiddling]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- It is essential that the bit fiddling functions like mask, zero, branchMask
-- etc are inlined. If they do not, the memory allocation skyrockets. The GHC
-- usually gets it right, but it is disastrous if it does not. Therefore we
-- explicitly mark these functions INLINE.


-- [Note: Local 'go' functions and capturing]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- Care must be taken when using 'go' function which captures an argument.
-- Sometimes (for example when the argument is passed to a data constructor,
-- as in insert), GHC heap-allocates more than necessary. Therefore C-- code
-- must be checked for increased allocation when creating and modifying such
-- functions.


-- [Note: Order of constructors]
-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-- The order of constructors of IntMap matters when considering performance.
-- Currently in GHC 7.0, when type has 3 constructors, they are matched from
-- the first to the last -- the best performance is achieved when the
-- constructors are ordered by frequency.
-- On GHC 7.0, reordering constructors from Nil | Tip | Bin to Bin | Tip | Nil
-- improves the benchmark by circa 10%.
--

module Data.IntMap.Internal (
    -- * Map type
      IntMap(..), Key          -- instance Eq,Show

    -- * Operators
    , (!), (!?), (\\)

    -- * Query
    , null
    , size
    , member
    , notMember
    , lookup
    , findWithDefault
    , lookupLT
    , lookupGT
    , lookupLE
    , lookupGE
    , disjoint

    -- * Construction
    , empty
    , singleton

    -- ** Insertion
    , insert
    , insertWith
    , insertWithKey
    , insertLookupWithKey

    -- ** Delete\/Update
    , delete
    , adjust
    , adjustWithKey
    , update
    , updateWithKey
    , updateLookupWithKey
    , alter
    , alterF

    -- * Combine

    -- ** Union
    , union
    , unionWith
    , unionWithKey
    , unions
    , unionsWith

    -- ** Difference
    , difference
    , differenceWith
    , differenceWithKey

    -- ** Intersection
    , intersection
    , intersectionWith
    , intersectionWithKey

    -- ** Compose
    , compose

    -- ** General combining function
    , SimpleWhenMissing
    , SimpleWhenMatched
    , runWhenMatched
    , runWhenMissing
    , merge
    -- *** @WhenMatched@ tactics
    , zipWithMaybeMatched
    , zipWithMatched
    -- *** @WhenMissing@ tactics
    , mapMaybeMissing
    , dropMissing
    , preserveMissing
    , mapMissing
    , filterMissing

    -- ** Applicative general combining function
    , WhenMissing (..)
    , WhenMatched (..)
    , mergeA
    -- *** @WhenMatched@ tactics
    -- | The tactics described for 'merge' work for
    -- 'mergeA' as well. Furthermore, the following
    -- are available.
    , zipWithMaybeAMatched
    , zipWithAMatched
    -- *** @WhenMissing@ tactics
    -- | The tactics described for 'merge' work for
    -- 'mergeA' as well. Furthermore, the following
    -- are available.
    , traverseMaybeMissing
    , traverseMissing
    , filterAMissing

    -- ** Deprecated general combining function
    , mergeWithKey
    , mergeWithKey'

    -- * Traversal
    -- ** Map
    , map
    , mapWithKey
    , traverseWithKey
    , traverseMaybeWithKey
    , mapAccum
    , mapAccumWithKey
    , mapAccumRWithKey
    , mapKeys
    , mapKeysWith
    , mapKeysMonotonic

    -- * Folds
    , foldr
    , foldl
    , foldrWithKey
    , foldlWithKey
    , foldMapWithKey

    -- ** Strict folds
    , foldr'
    , foldl'
    , foldrWithKey'
    , foldlWithKey'

    -- * Conversion
    , elems
    , keys
    , assocs
    , keysSet
    , fromSet

    -- ** Lists
    , toList
    , fromList
    , fromListWith
    , fromListWithKey

    -- ** Ordered lists
    , toAscList
    , toDescList
    , fromAscList
    , fromAscListWith
    , fromAscListWithKey
    , fromDistinctAscList

    -- * Filter
    , filter
    , filterWithKey
    , restrictKeys
    , withoutKeys
    , partition
    , partitionWithKey

    , takeWhileAntitone
    , dropWhileAntitone
    , spanAntitone

    , mapMaybe
    , mapMaybeWithKey
    , mapEither
    , mapEitherWithKey

    , split
    , splitLookup
    , splitRoot

    -- * Submap
    , isSubmapOf, isSubmapOfBy
    , isProperSubmapOf, isProperSubmapOfBy

    -- * Min\/Max
    , lookupMin
    , lookupMax
    , findMin
    , findMax
    , deleteMin
    , deleteMax
    , deleteFindMin
    , deleteFindMax
    , updateMin
    , updateMax
    , updateMinWithKey
    , updateMaxWithKey
    , minView
    , maxView
    , minViewWithKey
    , maxViewWithKey

    -- * Debugging
    , showTree
    , showTreeWith

    -- * Internal types
    , Mask, Prefix, Nat

    -- * Utility
    , natFromInt
    , intFromNat
    , link
    , linkWithMask
    , bin
    , binCheckLeft
    , binCheckRight
    , zero
    , nomatch
    , match
    , mask
    , maskW
    , shorter
    , branchMask
    , highestBitMask

    -- * Used by "IntMap.Merge.Lazy" and "IntMap.Merge.Strict"
    , mapWhenMissing
    , mapWhenMatched
    , lmapWhenMissing
    , contramapFirstWhenMatched
    , contramapSecondWhenMatched
    , mapGentlyWhenMissing
    , mapGentlyWhenMatched
    ) where

import Data.Functor.Identity (Identity (..))
import Data.Semigroup (Semigroup(stimes))
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup((<>)))
#endif
import Data.Semigroup (stimesIdempotentMonoid)
import Data.Functor.Classes

import Control.DeepSeq (NFData(rnf))
import Data.Bits
import qualified Data.Foldable as Foldable
import Data.Maybe (fromMaybe)
import Utils.Containers.Internal.Prelude hiding
  (lookup, map, filter, foldr, foldl, foldl', null)
import Prelude ()

import Data.IntSet.Internal (Key)
import qualified Data.IntSet.Internal as IntSet
import Utils.Containers.Internal.BitUtil
import Utils.Containers.Internal.StrictPair

#ifdef __GLASGOW_HASKELL__
import Data.Coerce
import Data.Data (Data(..), Constr, mkConstr, constrIndex, Fixity(Prefix),
                  DataType, mkDataType, gcast1)
import GHC.Exts (build)
import qualified GHC.Exts as GHCExts
import Text.Read
import Language.Haskell.TH.Syntax (Lift)
-- See Note [ Template Haskell Dependencies ]
import Language.Haskell.TH ()
#endif
import qualified Control.Category as Category


-- A "Nat" is a natural machine word (an unsigned Int)
type Nat = Word

natFromInt :: Key -> Nat
natFromInt :: Int -> Nat
natFromInt = Int -> Nat
forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE natFromInt #-}

intFromNat :: Nat -> Key
intFromNat :: Nat -> Int
intFromNat = Nat -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE intFromNat #-}

{--------------------------------------------------------------------
  Types
--------------------------------------------------------------------}


-- | A map of integers to values @a@.

-- See Note: Order of constructors
data IntMap a = Bin {-# UNPACK #-} !Prefix
                    {-# UNPACK #-} !Mask
                    !(IntMap a)
                    !(IntMap a)
-- Fields:
--   prefix: The most significant bits shared by all keys in this Bin.
--   mask: The switching bit to determine if a key should follow the left
--         or right subtree of a 'Bin'.
-- Invariant: Nil is never found as a child of Bin.
-- Invariant: The Mask is a power of 2. It is the largest bit position at which
--            two keys of the map differ.
-- Invariant: Prefix is the common high-order bits that all elements share to
--            the left of the Mask bit.
-- Invariant: In (Bin prefix mask left right), left consists of the elements that
--            don't have the mask bit set; right is all the elements that do.
              | Tip {-# UNPACK #-} !Key a
              | Nil

type Prefix = Int
type Mask   = Int


-- Some stuff from "Data.IntSet.Internal", for 'restrictKeys' and
-- 'withoutKeys' to use.
type IntSetPrefix = Int
type IntSetBitMap = Word

-- | @since 0.6.6
deriving instance Lift a => Lift (IntMap a)

bitmapOf :: Int -> IntSetBitMap
bitmapOf :: Int -> Nat
bitmapOf Int
x = Nat -> Int -> Nat
shiftLL Nat
1 (Int
x Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.suffixBitMask)
{-# INLINE bitmapOf #-}

{--------------------------------------------------------------------
  Operators
--------------------------------------------------------------------}

-- | \(O(\min(n,W))\). Find the value at a key.
-- Calls 'error' when the element can not be found.
--
-- > fromList [(5,'a'), (3,'b')] ! 1    Error: element not in the map
-- > fromList [(5,'a'), (3,'b')] ! 5 == 'a'

(!) :: IntMap a -> Key -> a
! :: forall a. IntMap a -> Int -> a
(!) IntMap a
m Int
k = Int -> IntMap a -> a
forall a. Int -> IntMap a -> a
find Int
k IntMap a
m

-- | \(O(\min(n,W))\). Find the value at a key.
-- Returns 'Nothing' when the element can not be found.
--
-- > fromList [(5,'a'), (3,'b')] !? 1 == Nothing
-- > fromList [(5,'a'), (3,'b')] !? 5 == Just 'a'
--
-- @since 0.5.11

(!?) :: IntMap a -> Key -> Maybe a
!? :: forall a. IntMap a -> Int -> Maybe a
(!?) IntMap a
m Int
k = Int -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
lookup Int
k IntMap a
m

-- | Same as 'difference'.
(\\) :: IntMap a -> IntMap b -> IntMap a
IntMap a
m1 \\ :: forall a b. IntMap a -> IntMap b -> IntMap a
\\ IntMap b
m2 = IntMap a -> IntMap b -> IntMap a
forall a b. IntMap a -> IntMap b -> IntMap a
difference IntMap a
m1 IntMap b
m2

infixl 9 !?,\\{-This comment teaches CPP correct behaviour -}

{--------------------------------------------------------------------
  Types
--------------------------------------------------------------------}

instance Monoid (IntMap a) where
    mempty :: IntMap a
mempty  = IntMap a
forall a. IntMap a
empty
    mconcat :: [IntMap a] -> IntMap a
mconcat = [IntMap a] -> IntMap a
forall (f :: * -> *) a. Foldable f => f (IntMap a) -> IntMap a
unions
    mappend :: IntMap a -> IntMap a -> IntMap a
mappend = IntMap a -> IntMap a -> IntMap a
forall a. Semigroup a => a -> a -> a
(<>)

-- | @since 0.5.7
instance Semigroup (IntMap a) where
    <> :: IntMap a -> IntMap a -> IntMap a
(<>)    = IntMap a -> IntMap a -> IntMap a
forall a. IntMap a -> IntMap a -> IntMap a
union
    stimes :: forall b. Integral b => b -> IntMap a -> IntMap a
stimes  = b -> IntMap a -> IntMap a
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid

-- | Folds in order of increasing key.
instance Foldable.Foldable IntMap where
  fold :: forall m. Monoid m => IntMap m -> m
fold = IntMap m -> m
forall m. Monoid m => IntMap m -> m
go
    where go :: IntMap t -> t
go IntMap t
Nil = t
forall a. Monoid a => a
mempty
          go (Tip Int
_ t
v) = t
v
          go (Bin Int
_ Int
m IntMap t
l IntMap t
r)
            | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = IntMap t -> t
go IntMap t
r t -> t -> t
forall a. Monoid a => a -> a -> a
`mappend` IntMap t -> t
go IntMap t
l
            | Bool
otherwise = IntMap t -> t
go IntMap t
l t -> t -> t
forall a. Monoid a => a -> a -> a
`mappend` IntMap t -> t
go IntMap t
r
  {-# INLINABLE fold #-}
  foldr :: forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr = (a -> b -> b) -> b -> IntMap a -> b
forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr
  {-# INLINE foldr #-}
  foldl :: forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl = (b -> a -> b) -> b -> IntMap a -> b
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl
  {-# INLINE foldl #-}
  foldMap :: forall m a. Monoid m => (a -> m) -> IntMap a -> m
foldMap a -> m
f IntMap a
t = IntMap a -> m
go IntMap a
t
    where go :: IntMap a -> m
go IntMap a
Nil = m
forall a. Monoid a => a
mempty
          go (Tip Int
_ a
v) = a -> m
f a
v
          go (Bin Int
_ Int
m IntMap a
l IntMap a
r)
            | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = IntMap a -> m
go IntMap a
r m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
l
            | Bool
otherwise = IntMap a -> m
go IntMap a
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
r
  {-# INLINE foldMap #-}
  foldl' :: forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' = (b -> a -> b) -> b -> IntMap a -> b
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl'
  {-# INLINE foldl' #-}
  foldr' :: forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr' = (a -> b -> b) -> b -> IntMap a -> b
forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr'
  {-# INLINE foldr' #-}
  length :: forall a. IntMap a -> Int
length = IntMap a -> Int
forall a. IntMap a -> Int
size
  {-# INLINE length #-}
  null :: forall a. IntMap a -> Bool
null   = IntMap a -> Bool
forall a. IntMap a -> Bool
null
  {-# INLINE null #-}
  toList :: forall a. IntMap a -> [a]
toList = IntMap a -> [a]
forall a. IntMap a -> [a]
elems -- NB: Foldable.toList /= IntMap.toList
  {-# INLINE toList #-}
  elem :: forall a. Eq a => a -> IntMap a -> Bool
elem = a -> IntMap a -> Bool
forall a. Eq a => a -> IntMap a -> Bool
go
    where go :: t -> IntMap t -> Bool
go !t
_ IntMap t
Nil = Bool
False
          go t
x (Tip Int
_ t
y) = t
x t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
y
          go t
x (Bin Int
_ Int
_ IntMap t
l IntMap t
r) = t -> IntMap t -> Bool
go t
x IntMap t
l Bool -> Bool -> Bool
|| t -> IntMap t -> Bool
go t
x IntMap t
r
  {-# INLINABLE elem #-}
  maximum :: forall a. Ord a => IntMap a -> a
maximum = IntMap a -> a
forall a. Ord a => IntMap a -> a
start
    where start :: IntMap t -> t
start IntMap t
Nil = [Char] -> t
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.maximum (for Data.IntMap): empty map"
          start (Tip Int
_ t
y) = t
y
          start (Bin Int
_ Int
m IntMap t
l IntMap t
r)
            | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = t -> IntMap t -> t
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
r) IntMap t
l
            | Bool
otherwise = t -> IntMap t -> t
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
l) IntMap t
r

          go :: t -> IntMap t -> t
go !t
m IntMap t
Nil = t
m
          go t
m (Tip Int
_ t
y) = t -> t -> t
forall a. Ord a => a -> a -> a
max t
m t
y
          go t
m (Bin Int
_ Int
_ IntMap t
l IntMap t
r) = t -> IntMap t -> t
go (t -> IntMap t -> t
go t
m IntMap t
l) IntMap t
r
  {-# INLINABLE maximum #-}
  minimum :: forall a. Ord a => IntMap a -> a
minimum = IntMap a -> a
forall a. Ord a => IntMap a -> a
start
    where start :: IntMap t -> t
start IntMap t
Nil = [Char] -> t
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.minimum (for Data.IntMap): empty map"
          start (Tip Int
_ t
y) = t
y
          start (Bin Int
_ Int
m IntMap t
l IntMap t
r)
            | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = t -> IntMap t -> t
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
r) IntMap t
l
            | Bool
otherwise = t -> IntMap t -> t
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap t -> t
start IntMap t
l) IntMap t
r

          go :: t -> IntMap t -> t
go !t
m IntMap t
Nil = t
m
          go t
m (Tip Int
_ t
y) = t -> t -> t
forall a. Ord a => a -> a -> a
min t
m t
y
          go t
m (Bin Int
_ Int
_ IntMap t
l IntMap t
r) = t -> IntMap t -> t
go (t -> IntMap t -> t
go t
m IntMap t
l) IntMap t
r
  {-# INLINABLE minimum #-}
  sum :: forall a. Num a => IntMap a -> a
sum = (a -> a -> a) -> a -> IntMap a -> a
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(+) a
0
  {-# INLINABLE sum #-}
  product :: forall a. Num a => IntMap a -> a
product = (a -> a -> a) -> a -> IntMap a -> a
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(*) a
1
  {-# INLINABLE product #-}

-- | Traverses in order of increasing key.
instance Traversable IntMap where
    traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> IntMap a -> f (IntMap b)
traverse a -> f b
f = (Int -> a -> f b) -> IntMap a -> f (IntMap b)
forall (t :: * -> *) a b.
Applicative t =>
(Int -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey (\Int
_ -> a -> f b
f)
    {-# INLINE traverse #-}

instance NFData a => NFData (IntMap a) where
    rnf :: IntMap a -> ()
rnf IntMap a
Nil = ()
    rnf (Tip Int
_ a
v) = a -> ()
forall a. NFData a => a -> ()
rnf a
v
    rnf (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = IntMap a -> ()
forall a. NFData a => a -> ()
rnf IntMap a
l () -> () -> ()
forall a b. a -> b -> b
`seq` IntMap a -> ()
forall a. NFData a => a -> ()
rnf IntMap a
r

#if __GLASGOW_HASKELL__

{--------------------------------------------------------------------
  A Data instance
--------------------------------------------------------------------}

-- This instance preserves data abstraction at the cost of inefficiency.
-- We provide limited reflection services for the sake of data abstraction.

instance Data a => Data (IntMap a) where
  gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> IntMap a -> c (IntMap a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z IntMap a
im = ([(Int, a)] -> IntMap a) -> c ([(Int, a)] -> IntMap a)
forall g. g -> c g
z [(Int, a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromList c ([(Int, a)] -> IntMap a) -> [(Int, a)] -> c (IntMap a)
forall d b. Data d => c (d -> b) -> d -> c b
`f` (IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toList IntMap a
im)
  toConstr :: IntMap a -> Constr
toConstr IntMap a
_     = Constr
fromListConstr
  gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (IntMap a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c  = case Constr -> Int
constrIndex Constr
c of
    Int
1 -> c ([(Int, a)] -> IntMap a) -> c (IntMap a)
forall b r. Data b => c (b -> r) -> c r
k (([(Int, a)] -> IntMap a) -> c ([(Int, a)] -> IntMap a)
forall r. r -> c r
z [(Int, a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromList)
    Int
_ -> [Char] -> c (IntMap a)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
  dataTypeOf :: IntMap a -> DataType
dataTypeOf IntMap a
_   = DataType
intMapDataType
  dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (IntMap a))
dataCast1 forall d. Data d => c (t d)
f    = c (t a) -> Maybe (c (IntMap a))
forall {k1} {k2} (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
       (a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
f

fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
intMapDataType [Char]
"fromList" [] Fixity
Prefix

intMapDataType :: DataType
intMapDataType :: DataType
intMapDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.IntMap.Internal.IntMap" [Constr
fromListConstr]

#endif

{--------------------------------------------------------------------
  Query
--------------------------------------------------------------------}
-- | \(O(1)\). Is the map empty?
--
-- > Data.IntMap.null (empty)           == True
-- > Data.IntMap.null (singleton 1 'a') == False

null :: IntMap a -> Bool
null :: forall a. IntMap a -> Bool
null IntMap a
Nil = Bool
True
null IntMap a
_   = Bool
False
{-# INLINE null #-}

-- | \(O(n)\). Number of elements in the map.
--
-- > size empty                                   == 0
-- > size (singleton 1 'a')                       == 1
-- > size (fromList([(1,'a'), (2,'c'), (3,'b')])) == 3
size :: IntMap a -> Int
size :: forall a. IntMap a -> Int
size = Int -> IntMap a -> Int
forall {t} {a}. Num t => t -> IntMap a -> t
go Int
0
  where
    go :: t -> IntMap a -> t
go !t
acc (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = t -> IntMap a -> t
go (t -> IntMap a -> t
go t
acc IntMap a
l) IntMap a
r
    go t
acc (Tip Int
_ a
_) = t
1 t -> t -> t
forall a. Num a => a -> a -> a
+ t
acc
    go t
acc IntMap a
Nil = t
acc

-- | \(O(\min(n,W))\). Is the key a member of the map?
--
-- > member 5 (fromList [(5,'a'), (3,'b')]) == True
-- > member 1 (fromList [(5,'a'), (3,'b')]) == False

-- See Note: Local 'go' functions and capturing]
member :: Key -> IntMap a -> Bool
member :: forall a. Int -> IntMap a -> Bool
member !Int
k = IntMap a -> Bool
go
  where
    go :: IntMap a -> Bool
go (Bin Int
p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = Bool
False
                     | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> Bool
go IntMap a
l
                     | Bool
otherwise = IntMap a -> Bool
go IntMap a
r
    go (Tip Int
kx a
_) = Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx
    go IntMap a
Nil = Bool
False

-- | \(O(\min(n,W))\). Is the key not a member of the map?
--
-- > notMember 5 (fromList [(5,'a'), (3,'b')]) == False
-- > notMember 1 (fromList [(5,'a'), (3,'b')]) == True

notMember :: Key -> IntMap a -> Bool
notMember :: forall a. Int -> IntMap a -> Bool
notMember Int
k IntMap a
m = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Int -> IntMap a -> Bool
forall a. Int -> IntMap a -> Bool
member Int
k IntMap a
m

-- | \(O(\min(n,W))\). Lookup the value at a key in the map. See also 'Data.Map.lookup'.

-- See Note: Local 'go' functions and capturing
lookup :: Key -> IntMap a -> Maybe a
lookup :: forall a. Int -> IntMap a -> Maybe a
lookup !Int
k = IntMap a -> Maybe a
go
  where
    go :: IntMap a -> Maybe a
go (Bin Int
_p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> Maybe a
go IntMap a
l
                      | Bool
otherwise = IntMap a -> Maybe a
go IntMap a
r
    go (Tip Int
kx a
x) | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx   = a -> Maybe a
forall a. a -> Maybe a
Just a
x
                  | Bool
otherwise = Maybe a
forall a. Maybe a
Nothing
    go IntMap a
Nil = Maybe a
forall a. Maybe a
Nothing

-- See Note: Local 'go' functions and capturing]
find :: Key -> IntMap a -> a
find :: forall a. Int -> IntMap a -> a
find !Int
k = IntMap a -> a
go
  where
    go :: IntMap a -> a
go (Bin Int
_p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> a
go IntMap a
l
                      | Bool
otherwise = IntMap a -> a
go IntMap a
r
    go (Tip Int
kx a
x) | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx   = a
x
                  | Bool
otherwise = a
not_found
    go IntMap a
Nil = a
not_found

    not_found :: a
not_found = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char]
"IntMap.!: key " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
k [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" is not an element of the map")

-- | \(O(\min(n,W))\). The expression @('findWithDefault' def k map)@
-- returns the value at key @k@ or returns @def@ when the key is not an
-- element of the map.
--
-- > findWithDefault 'x' 1 (fromList [(5,'a'), (3,'b')]) == 'x'
-- > findWithDefault 'x' 5 (fromList [(5,'a'), (3,'b')]) == 'a'

-- See Note: Local 'go' functions and capturing]
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault :: forall a. a -> Int -> IntMap a -> a
findWithDefault a
def !Int
k = IntMap a -> a
go
  where
    go :: IntMap a -> a
go (Bin Int
p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = a
def
                     | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> a
go IntMap a
l
                     | Bool
otherwise = IntMap a -> a
go IntMap a
r
    go (Tip Int
kx a
x) | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx   = a
x
                  | Bool
otherwise = a
def
    go IntMap a
Nil = a
def

-- | \(O(\min(n,W))\). Find largest key smaller than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupLT 3 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLT 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')

-- See Note: Local 'go' functions and capturing.
lookupLT :: Key -> IntMap a -> Maybe (Key, a)
lookupLT :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupLT !Int
k IntMap a
t = case IntMap a
t of
    Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
      | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
r
      | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
    go IntMap a
def (Tip Int
ky a
y)
      | Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
ky   = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def
      | Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def

-- | \(O(\min(n,W))\). Find smallest key greater than the given one and return the
-- corresponding (key, value) pair.
--
-- > lookupGT 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGT 5 (fromList [(3,'a'), (5,'b')]) == Nothing

-- See Note: Local 'go' functions and capturing.
lookupGT :: Key -> IntMap a -> Maybe (Key, a)
lookupGT :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupGT !Int
k IntMap a
t = case IntMap a
t of
    Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
      | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
l else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
      | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
r
    go IntMap a
def (Tip Int
ky a
y)
      | Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
ky   = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
      | Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def

-- | \(O(\min(n,W))\). Find largest key smaller or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupLE 2 (fromList [(3,'a'), (5,'b')]) == Nothing
-- > lookupLE 4 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupLE 5 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')

-- See Note: Local 'go' functions and capturing.
lookupLE :: Key -> IntMap a -> Maybe (Key, a)
lookupLE :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupLE !Int
k IntMap a
t = case IntMap a
t of
    Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
      | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
r
      | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
    go IntMap a
def (Tip Int
ky a
y)
      | Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
ky    = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def
      | Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def

-- | \(O(\min(n,W))\). Find smallest key greater or equal to the given one and return
-- the corresponding (key, value) pair.
--
-- > lookupGE 3 (fromList [(3,'a'), (5,'b')]) == Just (3, 'a')
-- > lookupGE 4 (fromList [(3,'a'), (5,'b')]) == Just (5, 'b')
-- > lookupGE 6 (fromList [(3,'a'), (5,'b')]) == Nothing

-- See Note: Local 'go' functions and capturing.
lookupGE :: Key -> IntMap a -> Maybe (Key, a)
lookupGE :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupGE !Int
k IntMap a
t = case IntMap a
t of
    Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
    IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
  where
    go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
      | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
l else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
      | Int -> Int -> Bool
zero Int
k Int
m  = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l
      | Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
r
    go IntMap a
def (Tip Int
ky a
y)
      | Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
ky    = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
      | Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
    go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def


-- Helper function for lookupGE and lookupGT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMin :: IntMap a -> Maybe (Key, a)
unsafeFindMin :: forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
Nil = Maybe (Int, a)
forall a. Maybe a
Nothing
unsafeFindMin (Tip Int
ky a
y) = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
unsafeFindMin (Bin Int
_ Int
_ IntMap a
l IntMap a
_) = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
l

-- Helper function for lookupLE and lookupLT. It assumes that if a Bin node is
-- given, it has m > 0.
unsafeFindMax :: IntMap a -> Maybe (Key, a)
unsafeFindMax :: forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
Nil = Maybe (Int, a)
forall a. Maybe a
Nothing
unsafeFindMax (Tip Int
ky a
y) = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
unsafeFindMax (Bin Int
_ Int
_ IntMap a
_ IntMap a
r) = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
r

{--------------------------------------------------------------------
  Disjoint
--------------------------------------------------------------------}
-- | \(O(n+m)\). Check whether the key sets of two maps are disjoint
-- (i.e. their 'intersection' is empty).
--
-- > disjoint (fromList [(2,'a')]) (fromList [(1,()), (3,())])   == True
-- > disjoint (fromList [(2,'a')]) (fromList [(1,'a'), (2,'b')]) == False
-- > disjoint (fromList [])        (fromList [])                 == True
--
-- > disjoint a b == null (intersection a b)
--
-- @since 0.6.2.1
disjoint :: IntMap a -> IntMap b -> Bool
disjoint :: forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
Nil IntMap b
_ = Bool
True
disjoint IntMap a
_ IntMap b
Nil = Bool
True
disjoint (Tip Int
kx a
_) IntMap b
ys = Int -> IntMap b -> Bool
forall a. Int -> IntMap a -> Bool
notMember Int
kx IntMap b
ys
disjoint IntMap a
xs (Tip Int
ky b
_) = Int -> IntMap a -> Bool
forall a. Int -> IntMap a -> Bool
notMember Int
ky IntMap a
xs
disjoint t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
  | Int -> Int -> Bool
shorter Int
m1 Int
m2 = Bool
disjoint1
  | Int -> Int -> Bool
shorter Int
m2 Int
m1 = Bool
disjoint2
  | Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2      = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
l1 IntMap b
l2 Bool -> Bool -> Bool
&& IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
r1 IntMap b
r2
  | Bool
otherwise     = Bool
True
  where
    disjoint1 :: Bool
disjoint1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = Bool
True
              | Int -> Int -> Bool
zero Int
p2 Int
m1       = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
l1 IntMap b
t2
              | Bool
otherwise        = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
r1 IntMap b
t2
    disjoint2 :: Bool
disjoint2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Bool
True
              | Int -> Int -> Bool
zero Int
p1 Int
m2       = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
t1 IntMap b
l2
              | Bool
otherwise        = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
t1 IntMap b
r2

{--------------------------------------------------------------------
  Compose
--------------------------------------------------------------------}
-- | Relate the keys of one map to the values of
-- the other, by using the values of the former as keys for lookups
-- in the latter.
--
-- Complexity: \( O(n * \min(m,W)) \), where \(m\) is the size of the first argument
--
-- > compose (fromList [('a', "A"), ('b', "B")]) (fromList [(1,'a'),(2,'b'),(3,'z')]) = fromList [(1,"A"),(2,"B")]
--
-- @
-- ('compose' bc ab '!?') = (bc '!?') <=< (ab '!?')
-- @
--
-- __Note:__ Prior to v0.6.4, "Data.IntMap.Strict" exposed a version of
-- 'compose' that forced the values of the output 'IntMap'. This version does
-- not force these values.
--
-- @since 0.6.3.1
compose :: IntMap c -> IntMap Int -> IntMap c
compose :: forall c. IntMap c -> IntMap Int -> IntMap c
compose IntMap c
bc !IntMap Int
ab
  | IntMap c -> Bool
forall a. IntMap a -> Bool
null IntMap c
bc = IntMap c
forall a. IntMap a
empty
  | Bool
otherwise = (Int -> Maybe c) -> IntMap Int -> IntMap c
forall a b. (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe (IntMap c
bc IntMap c -> Int -> Maybe c
forall a. IntMap a -> Int -> Maybe a
!?) IntMap Int
ab

{--------------------------------------------------------------------
  Construction
--------------------------------------------------------------------}
-- | \(O(1)\). The empty map.
--
-- > empty      == fromList []
-- > size empty == 0

empty :: IntMap a
empty :: forall a. IntMap a
empty
  = IntMap a
forall a. IntMap a
Nil
{-# INLINE empty #-}

-- | \(O(1)\). A map of one element.
--
-- > singleton 1 'a'        == fromList [(1, 'a')]
-- > size (singleton 1 'a') == 1

singleton :: Key -> a -> IntMap a
singleton :: forall a. Int -> a -> IntMap a
singleton Int
k a
x
  = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
{-# INLINE singleton #-}

{--------------------------------------------------------------------
  Insert
--------------------------------------------------------------------}
-- | \(O(\min(n,W))\). Insert a new key\/value pair in the map.
-- If the key is already present in the map, the associated value is
-- replaced with the supplied value, i.e. 'insert' is equivalent to
-- @'insertWith' 'const'@.
--
-- > insert 5 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'x')]
-- > insert 7 'x' (fromList [(5,'a'), (3,'b')]) == fromList [(3, 'b'), (5, 'a'), (7, 'x')]
-- > insert 5 'x' empty                         == singleton 5 'x'

insert :: Key -> a -> IntMap a -> IntMap a
insert :: forall a. Int -> a -> IntMap a -> IntMap a
insert !Int
k a
x t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t
  | Int -> Int -> Bool
zero Int
k Int
m      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m (Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
insert Int
k a
x IntMap a
l) IntMap a
r
  | Bool
otherwise     = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l (Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
insert Int
k a
x IntMap a
r)
insert Int
k a
x t :: IntMap a
t@(Tip Int
ky a
_)
  | Int
kInt -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
ky         = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
  | Bool
otherwise     = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t
insert Int
k a
x IntMap a
Nil = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x

-- right-biased insertion, used by 'union'
-- | \(O(\min(n,W))\). Insert with a combining function.
-- @'insertWith' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f new_value old_value@.
--
-- > insertWith (++) 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "xxxa")]
-- > insertWith (++) 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWith (++) 5 "xxx" empty                         == singleton 5 "xxx"
--
-- Also see the performance note on 'fromListWith'.

insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith :: forall a. (a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWith a -> a -> a
f Int
k a
x IntMap a
t
  = (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey (\Int
_ a
x' a
y' -> a -> a -> a
f a
x' a
y') Int
k a
x IntMap a
t

-- | \(O(\min(n,W))\). Insert with a combining function.
-- @'insertWithKey' f key value mp@
-- will insert the pair (key, value) into @mp@ if key does
-- not exist in the map. If the key does exist, the function will
-- insert @f key new_value old_value@.
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:xxx|a")]
-- > insertWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a"), (7, "xxx")]
-- > insertWithKey f 5 "xxx" empty                         == singleton 5 "xxx"
--
-- Also see the performance note on 'fromListWith'.

insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey :: forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey Int -> a -> a -> a
f !Int
k a
x t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t
  | Int -> Int -> Bool
zero Int
k Int
m      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m ((Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
l) IntMap a
r
  | Bool
otherwise     = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l ((Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
r)
insertWithKey Int -> a -> a -> a
f Int
k a
x t :: IntMap a
t@(Tip Int
ky a
y)
  | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky       = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k (Int -> a -> a -> a
f Int
k a
x a
y)
  | Bool
otherwise     = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t
insertWithKey Int -> a -> a -> a
_ Int
k a
x IntMap a
Nil = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x

-- | \(O(\min(n,W))\). The expression (@'insertLookupWithKey' f k x map@)
-- is a pair where the first element is equal to (@'lookup' k map@)
-- and the second element equal to (@'insertWithKey' f k x map@).
--
-- > let f key new_value old_value = (show key) ++ ":" ++ new_value ++ "|" ++ old_value
-- > insertLookupWithKey f 5 "xxx" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:xxx|a")])
-- > insertLookupWithKey f 7 "xxx" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "xxx")])
-- > insertLookupWithKey f 5 "xxx" empty                         == (Nothing,  singleton 5 "xxx")
--
-- This is how to define @insertLookup@ using @insertLookupWithKey@:
--
-- > let insertLookup kx x t = insertLookupWithKey (\_ a _ -> a) kx x t
-- > insertLookup 5 "x" (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "x")])
-- > insertLookup 7 "x" (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a"), (7, "x")])
--
-- Also see the performance note on 'fromListWith'.

insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey :: forall a.
(Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Int -> a -> a -> a
f !Int
k a
x t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = (Maybe a
forall a. Maybe a
Nothing,Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t)
  | Int -> Int -> Bool
zero Int
k Int
m      = let (Maybe a
found,IntMap a
l') = (Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
l
                    in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l' IntMap a
r)
  | Bool
otherwise     = let (Maybe a
found,IntMap a
r') = (Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
r
                    in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l IntMap a
r')
insertLookupWithKey Int -> a -> a -> a
f Int
k a
x t :: IntMap a
t@(Tip Int
ky a
y)
  | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky       = (a -> Maybe a
forall a. a -> Maybe a
Just a
y,Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k (Int -> a -> a -> a
f Int
k a
x a
y))
  | Bool
otherwise     = (Maybe a
forall a. Maybe a
Nothing,Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t)
insertLookupWithKey Int -> a -> a -> a
_ Int
k a
x IntMap a
Nil = (Maybe a
forall a. Maybe a
Nothing,Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x)


{--------------------------------------------------------------------
  Deletion
--------------------------------------------------------------------}
-- | \(O(\min(n,W))\). Delete a key and its value from the map. When the key is not
-- a member of the map, the original map is returned.
--
-- > delete 5 (fromList [(5,"a"), (3,"b")]) == singleton 3 "b"
-- > delete 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > delete 5 empty                         == empty

delete :: Key -> IntMap a -> IntMap a
delete :: forall a. Int -> IntMap a -> IntMap a
delete !Int
k t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = IntMap a
t
  | Int -> Int -> Bool
zero Int
k Int
m      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
delete Int
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
delete Int
k IntMap a
r)
delete Int
k t :: IntMap a
t@(Tip Int
ky a
_)
  | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky       = IntMap a
forall a. IntMap a
Nil
  | Bool
otherwise     = IntMap a
t
delete Int
_k IntMap a
Nil = IntMap a
forall a. IntMap a
Nil

-- | \(O(\min(n,W))\). Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > adjust ("new " ++) 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > adjust ("new " ++) 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjust ("new " ++) 7 empty                         == empty

adjust ::  (a -> a) -> Key -> IntMap a -> IntMap a
adjust :: forall a. (a -> a) -> Int -> IntMap a -> IntMap a
adjust a -> a
f Int
k IntMap a
m
  = (Int -> a -> a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey (\Int
_ a
x -> a -> a
f a
x) Int
k IntMap a
m

-- | \(O(\min(n,W))\). Adjust a value at a specific key. When the key is not
-- a member of the map, the original map is returned.
--
-- > let f key x = (show key) ++ ":new " ++ x
-- > adjustWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > adjustWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > adjustWithKey f 7 empty                         == empty

adjustWithKey ::  (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey :: forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey Int -> a -> a
f !Int
k (Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Bool
zero Int
k Int
m      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m ((Int -> a -> a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey Int -> a -> a
f Int
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l ((Int -> a -> a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey Int -> a -> a
f Int
k IntMap a
r)
adjustWithKey Int -> a -> a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
  | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky       = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky (Int -> a -> a
f Int
k a
y)
  | Bool
otherwise     = IntMap a
t
adjustWithKey Int -> a -> a
_ Int
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


-- | \(O(\min(n,W))\). The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f x = if x == "a" then Just "new a" else Nothing
-- > update f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "new a")]
-- > update f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > update f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

update ::  (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update :: forall a. (a -> Maybe a) -> Int -> IntMap a -> IntMap a
update a -> Maybe a
f
  = (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey (\Int
_ a
x -> a -> Maybe a
f a
x)

-- | \(O(\min(n,W))\). The expression (@'update' f k map@) updates the value @x@
-- at @k@ (if it is in the map). If (@f k x@) is 'Nothing', the element is
-- deleted. If it is (@'Just' y@), the key @k@ is bound to the new value @y@.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateWithKey f 5 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "5:new a")]
-- > updateWithKey f 7 (fromList [(5,"a"), (3,"b")]) == fromList [(3, "b"), (5, "a")]
-- > updateWithKey f 3 (fromList [(5,"a"), (3,"b")]) == singleton 5 "a"

updateWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey :: forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey Int -> a -> Maybe a
f !Int
k (Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Bool
zero Int
k Int
m      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m ((Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey Int -> a -> Maybe a
f Int
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l ((Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey Int -> a -> Maybe a
f Int
k IntMap a
r)
updateWithKey Int -> a -> Maybe a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
  | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky       = case (Int -> a -> Maybe a
f Int
k a
y) of
                      Just a
y' -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
y'
                      Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil
  | Bool
otherwise     = IntMap a
t
updateWithKey Int -> a -> Maybe a
_ Int
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil

-- | \(O(\min(n,W))\). Lookup and update.
-- The function returns original value, if it is updated.
-- This is different behavior than 'Data.Map.updateLookupWithKey'.
-- Returns the original key value if the map entry is deleted.
--
-- > let f k x = if x == "a" then Just ((show k) ++ ":new a") else Nothing
-- > updateLookupWithKey f 5 (fromList [(5,"a"), (3,"b")]) == (Just "a", fromList [(3, "b"), (5, "5:new a")])
-- > updateLookupWithKey f 7 (fromList [(5,"a"), (3,"b")]) == (Nothing,  fromList [(3, "b"), (5, "a")])
-- > updateLookupWithKey f 3 (fromList [(5,"a"), (3,"b")]) == (Just "b", singleton 5 "a")

updateLookupWithKey ::  (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey :: forall a.
(Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Int -> a -> Maybe a
f !Int
k (Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Bool
zero Int
k Int
m      = let !(Maybe a
found,IntMap a
l') = (Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Int -> a -> Maybe a
f Int
k IntMap a
l
                    in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m IntMap a
l' IntMap a
r)
  | Bool
otherwise     = let !(Maybe a
found,IntMap a
r') = (Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Int -> a -> Maybe a
f Int
k IntMap a
r
                    in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l IntMap a
r')
updateLookupWithKey Int -> a -> Maybe a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
  | Int
kInt -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
ky         = case (Int -> a -> Maybe a
f Int
k a
y) of
                      Just a
y' -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y,Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
y')
                      Maybe a
Nothing -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y,IntMap a
forall a. IntMap a
Nil)
  | Bool
otherwise     = (Maybe a
forall a. Maybe a
Nothing,IntMap a
t)
updateLookupWithKey Int -> a -> Maybe a
_ Int
_ IntMap a
Nil = (Maybe a
forall a. Maybe a
Nothing,IntMap a
forall a. IntMap a
Nil)



-- | \(O(\min(n,W))\). The expression (@'alter' f k map@) alters the value @x@ at @k@, or absence thereof.
-- 'alter' can be used to insert, delete, or update a value in an 'IntMap'.
-- In short : @'lookup' k ('alter' f k m) = f ('lookup' k m)@.
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter :: forall a. (Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f !Int
k t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
                      Maybe a
Nothing -> IntMap a
t
                      Just a
x -> Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t
  | Int -> Int -> Bool
zero Int
k Int
m      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m ((Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f Int
k IntMap a
l) IntMap a
r
  | Bool
otherwise     = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l ((Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f Int
k IntMap a
r)
alter Maybe a -> Maybe a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
  | Int
kInt -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
ky         = case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
y) of
                      Just a
x -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
x
                      Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil
  | Bool
otherwise     = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
                      Just a
x -> Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t
                      Maybe a
Nothing -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
y
alter Maybe a -> Maybe a
f Int
k IntMap a
Nil     = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
                      Just a
x -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
                      Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil

-- | \(O(\min(n,W))\). The expression (@'alterF' f k map@) alters the value @x@ at
-- @k@, or absence thereof.  'alterF' can be used to inspect, insert, delete,
-- or update a value in an 'IntMap'.  In short : @'lookup' k <$> 'alterF' f k m = f
-- ('lookup' k m)@.
--
-- Example:
--
-- @
-- interactiveAlter :: Int -> IntMap String -> IO (IntMap String)
-- interactiveAlter k m = alterF f k m where
--   f Nothing = do
--      putStrLn $ show k ++
--          " was not found in the map. Would you like to add it?"
--      getUserResponse1 :: IO (Maybe String)
--   f (Just old) = do
--      putStrLn $ "The key is currently bound to " ++ show old ++
--          ". Would you like to change or delete it?"
--      getUserResponse2 :: IO (Maybe String)
-- @
--
-- 'alterF' is the most general operation for working with an individual
-- key that may or may not be in a given map.
--
-- Note: 'alterF' is a flipped version of the @at@ combinator from
-- @Control.Lens.At@.
--
-- @since 0.5.8

alterF :: Functor f
       => (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a)
-- This implementation was stolen from 'Control.Lens.At'.
alterF :: forall (f :: * -> *) a.
Functor f =>
(Maybe a -> f (Maybe a)) -> Int -> IntMap a -> f (IntMap a)
alterF Maybe a -> f (Maybe a)
f Int
k IntMap a
m = ((Maybe a -> IntMap a) -> f (Maybe a) -> f (IntMap a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe a -> f (Maybe a)
f Maybe a
mv) ((Maybe a -> IntMap a) -> f (IntMap a))
-> (Maybe a -> IntMap a) -> f (IntMap a)
forall a b. (a -> b) -> a -> b
$ \Maybe a
fres ->
  case Maybe a
fres of
    Maybe a
Nothing -> IntMap a -> (a -> IntMap a) -> Maybe a -> IntMap a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap a
m (IntMap a -> a -> IntMap a
forall a b. a -> b -> a
const (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
delete Int
k IntMap a
m)) Maybe a
mv
    Just a
v' -> Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
insert Int
k a
v' IntMap a
m
  where mv :: Maybe a
mv = Int -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
lookup Int
k IntMap a
m

{--------------------------------------------------------------------
  Union
--------------------------------------------------------------------}
-- | The union of a list of maps.
--
-- > unions [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "b"), (5, "a"), (7, "C")]
-- > unions [(fromList [(5, "A3"), (3, "B3")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "a"), (3, "b")])]
-- >     == fromList [(3, "B3"), (5, "A3"), (7, "C")]

unions :: Foldable f => f (IntMap a) -> IntMap a
unions :: forall (f :: * -> *) a. Foldable f => f (IntMap a) -> IntMap a
unions f (IntMap a)
xs
  = (IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> f (IntMap a) -> IntMap a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' IntMap a -> IntMap a -> IntMap a
forall a. IntMap a -> IntMap a -> IntMap a
union IntMap a
forall a. IntMap a
empty f (IntMap a)
xs

-- | The union of a list of maps, with a combining operation.
--
-- > unionsWith (++) [(fromList [(5, "a"), (3, "b")]), (fromList [(5, "A"), (7, "C")]), (fromList [(5, "A3"), (3, "B3")])]
-- >     == fromList [(3, "bB3"), (5, "aAA3"), (7, "C")]

unionsWith :: Foldable f => (a->a->a) -> f (IntMap a) -> IntMap a
unionsWith :: forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> f (IntMap a) -> IntMap a
unionsWith a -> a -> a
f f (IntMap a)
ts
  = (IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> f (IntMap a) -> IntMap a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' ((a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
forall a. (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith a -> a -> a
f) IntMap a
forall a. IntMap a
empty f (IntMap a)
ts

-- | \(O(n+m)\). The (left-biased) union of two maps.
-- It prefers the first map when duplicate keys are encountered,
-- i.e. (@'union' == 'unionWith' 'const'@).
--
-- > union (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "a"), (7, "C")]

union :: IntMap a -> IntMap a -> IntMap a
union :: forall a. IntMap a -> IntMap a -> IntMap a
union IntMap a
m1 IntMap a
m2
  = (Int -> Int -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> IntMap a
-> IntMap a
-> IntMap a
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin IntMap a -> IntMap a -> IntMap a
forall a b. a -> b -> a
const IntMap a -> IntMap a
forall a. a -> a
id IntMap a -> IntMap a
forall a. a -> a
id IntMap a
m1 IntMap a
m2

-- | \(O(n+m)\). The union with a combining function.
--
-- > unionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "aA"), (7, "C")]
--
-- Also see the performance note on 'fromListWith'.

unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith :: forall a. (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith a -> a -> a
f IntMap a
m1 IntMap a
m2
  = (Int -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey (\Int
_ a
x a
y -> a -> a -> a
f a
x a
y) IntMap a
m1 IntMap a
m2

-- | \(O(n+m)\). The union with a combining function.
--
-- > let f key left_value right_value = (show key) ++ ":" ++ left_value ++ "|" ++ right_value
-- > unionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == fromList [(3, "b"), (5, "5:a|A"), (7, "C")]
--
-- Also see the performance note on 'fromListWith'.

unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey :: forall a. (Int -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey Int -> a -> a -> a
f IntMap a
m1 IntMap a
m2
  = (Int -> Int -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> IntMap a
-> IntMap a
-> IntMap a
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin (\(Tip Int
k1 a
x1) (Tip Int
_k2 a
x2) -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k1 (Int -> a -> a -> a
f Int
k1 a
x1 a
x2)) IntMap a -> IntMap a
forall a. a -> a
id IntMap a -> IntMap a
forall a. a -> a
id IntMap a
m1 IntMap a
m2

{--------------------------------------------------------------------
  Difference
--------------------------------------------------------------------}
-- | \(O(n+m)\). Difference between two maps (based on keys).
--
-- > difference (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 3 "b"

difference :: IntMap a -> IntMap b -> IntMap a
difference :: forall a b. IntMap a -> IntMap b -> IntMap a
difference IntMap a
m1 IntMap b
m2
  = (Int -> a -> b -> Maybe a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall a b c.
(Int -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey (\Int
_ a
_ b
_ -> Maybe a
forall a. Maybe a
Nothing) IntMap a -> IntMap a
forall a. a -> a
id (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2

-- | \(O(n+m)\). Difference with a combining function.
--
-- > let f al ar = if al == "b" then Just (al ++ ":" ++ ar) else Nothing
-- > differenceWith f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (7, "C")])
-- >     == singleton 3 "b:B"

differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith :: forall a b. (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith a -> b -> Maybe a
f IntMap a
m1 IntMap b
m2
  = (Int -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
forall a b.
(Int -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey (\Int
_ a
x b
y -> a -> b -> Maybe a
f a
x b
y) IntMap a
m1 IntMap b
m2

-- | \(O(n+m)\). Difference with a combining function. When two equal keys are
-- encountered, the combining function is applied to the key and both values.
-- If it returns 'Nothing', the element is discarded (proper set difference).
-- If it returns (@'Just' y@), the element is updated with a new value @y@.
--
-- > let f k al ar = if al == "b" then Just ((show k) ++ ":" ++ al ++ "|" ++ ar) else Nothing
-- > differenceWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (3, "B"), (10, "C")])
-- >     == singleton 3 "3:b|B"

differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey :: forall a b.
(Int -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey Int -> a -> b -> Maybe a
f IntMap a
m1 IntMap b
m2
  = (Int -> a -> b -> Maybe a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall a b c.
(Int -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey Int -> a -> b -> Maybe a
f IntMap a -> IntMap a
forall a. a -> a
id (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2


-- TODO(wrengr): re-verify that asymptotic bound
-- | \(O(n+m)\). Remove all the keys in a given set from a map.
--
-- @
-- m \`withoutKeys\` s = 'filterWithKey' (\\k _ -> k ``IntSet.notMember`` s) m
-- @
--
-- @since 0.5.8
withoutKeys :: IntMap a -> IntSet.IntSet -> IntMap a
withoutKeys :: forall a. IntMap a -> IntSet -> IntMap a
withoutKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntSet
t2@(IntSet.Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
    | Int -> Int -> Bool
shorter Int
m1 Int
m2  = IntMap a
difference1
    | Int -> Int -> Bool
shorter Int
m2 Int
m1  = IntMap a
difference2
    | Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2       = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p1 Int
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
l1 IntSet
l2) (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
r1 IntSet
r2)
    | Bool
otherwise      = IntMap a
t1
    where
    difference1 :: IntMap a
difference1
        | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1  = IntMap a
t1
        | Int -> Int -> Bool
zero Int
p2 Int
m1        = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p1 Int
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
l1 IntSet
t2) IntMap a
r1
        | Bool
otherwise         = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p1 Int
m1 IntMap a
l1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
r1 IntSet
t2)
    difference2 :: IntMap a
difference2
        | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2  = IntMap a
t1
        | Int -> Int -> Bool
zero Int
p1 Int
m2        = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
t1 IntSet
l2
        | Bool
otherwise         = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
t1 IntSet
r2
withoutKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
_ IntMap a
_) (IntSet.Tip Int
p2 Nat
bm2) =
    let minbit :: Nat
minbit = Int -> Nat
bitmapOf Int
p1
        lt_minbit :: Nat
lt_minbit = Nat
minbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
        maxbit :: Nat
maxbit = Int -> Nat
bitmapOf (Int
p1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)))
        gt_maxbit :: Nat
gt_maxbit = (-Nat
maxbit) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
maxbit
    -- TODO(wrengr): should we manually inline/unroll 'updatePrefix'
    -- and 'withoutBM' here, in order to avoid redundant case analyses?
    in Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Int
p2 IntMap a
t1 ((IntMap a -> IntMap a) -> IntMap a)
-> (IntMap a -> IntMap a) -> IntMap a
forall a b. (a -> b) -> a -> b
$ Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM (Nat
bm2 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Nat
lt_minbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Nat
gt_maxbit)
withoutKeys t1 :: IntMap a
t1@(Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntSet
IntSet.Nil = IntMap a
t1
withoutKeys t1 :: IntMap a
t1@(Tip Int
k1 a
_) IntSet
t2
    | Int
k1 Int -> IntSet -> Bool
`IntSet.member` IntSet
t2 = IntMap a
forall a. IntMap a
Nil
    | Bool
otherwise = IntMap a
t1
withoutKeys IntMap a
Nil IntSet
_ = IntMap a
forall a. IntMap a
Nil


updatePrefix
    :: IntSetPrefix -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix :: forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix !Int
kp t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r) IntMap a -> IntMap a
f
    | Int
m Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.suffixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 =
        if Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp then IntMap a -> IntMap a
f IntMap a
t else IntMap a
t
    | Int -> Int -> Int -> Bool
nomatch Int
kp Int
p Int
m = IntMap a
t
    | Int -> Int -> Bool
zero Int
kp Int
m      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m (Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Int
kp IntMap a
l IntMap a -> IntMap a
f) IntMap a
r
    | Bool
otherwise      = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l (Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Int
kp IntMap a
r IntMap a -> IntMap a
f)
updatePrefix Int
kp t :: IntMap a
t@(Tip Int
kx a
_) IntMap a -> IntMap a
f
    | Int
kx Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp = IntMap a -> IntMap a
f IntMap a
t
    | Bool
otherwise = IntMap a
t
updatePrefix Int
_ IntMap a
Nil IntMap a -> IntMap a
_ = IntMap a
forall a. IntMap a
Nil


withoutBM :: IntSetBitMap -> IntMap a -> IntMap a
withoutBM :: forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
0 IntMap a
t = IntMap a
t
withoutBM Nat
bm (Bin Int
p Int
m IntMap a
l IntMap a
r) =
    let leftBits :: Nat
leftBits = Int -> Nat
bitmapOf (Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int
m) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
        bmL :: Nat
bmL = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
leftBits
        bmR :: Nat
bmR = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bmL -- = (bm .&. complement leftBits)
    in  Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
bmL IntMap a
l) (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
bmR IntMap a
r)
withoutBM Nat
bm t :: IntMap a
t@(Tip Int
k a
_)
    -- TODO(wrengr): need we manually inline 'IntSet.Member' here?
    | Int
k Int -> IntSet -> Bool
`IntSet.member` Int -> Nat -> IntSet
IntSet.Tip (Int
k Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask) Nat
bm = IntMap a
forall a. IntMap a
Nil
    | Bool
otherwise = IntMap a
t
withoutBM Nat
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


{--------------------------------------------------------------------
  Intersection
--------------------------------------------------------------------}
-- | \(O(n+m)\). The (left-biased) intersection of two maps (based on keys).
--
-- > intersection (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "a"

intersection :: IntMap a -> IntMap b -> IntMap a
intersection :: forall a b. IntMap a -> IntMap b -> IntMap a
intersection IntMap a
m1 IntMap b
m2
  = (Int -> Int -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap b -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const (IntMap a -> IntMap a -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2


-- TODO(wrengr): re-verify that asymptotic bound
-- | \(O(n+m)\). The restriction of a map to the keys in a set.
--
-- @
-- m \`restrictKeys\` s = 'filterWithKey' (\\k _ -> k ``IntSet.member`` s) m
-- @
--
-- @since 0.5.8
restrictKeys :: IntMap a -> IntSet.IntSet -> IntMap a
restrictKeys :: forall a. IntMap a -> IntSet -> IntMap a
restrictKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntSet
t2@(IntSet.Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
    | Int -> Int -> Bool
shorter Int
m1 Int
m2  = IntMap a
intersection1
    | Int -> Int -> Bool
shorter Int
m2 Int
m1  = IntMap a
intersection2
    | Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2       = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p1 Int
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
l1 IntSet
l2) (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
r1 IntSet
r2)
    | Bool
otherwise      = IntMap a
forall a. IntMap a
Nil
    where
    intersection1 :: IntMap a
intersection1
        | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1  = IntMap a
forall a. IntMap a
Nil
        | Int -> Int -> Bool
zero Int
p2 Int
m1        = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
l1 IntSet
t2
        | Bool
otherwise         = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
r1 IntSet
t2
    intersection2 :: IntMap a
intersection2
        | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2  = IntMap a
forall a. IntMap a
Nil
        | Int -> Int -> Bool
zero Int
p1 Int
m2        = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
t1 IntSet
l2
        | Bool
otherwise         = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
t1 IntSet
r2
restrictKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
_ IntMap a
_) (IntSet.Tip Int
p2 Nat
bm2) =
    let minbit :: Nat
minbit = Int -> Nat
bitmapOf Int
p1
        ge_minbit :: Nat
ge_minbit = Nat -> Nat
forall a. Bits a => a -> a
complement (Nat
minbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1)
        maxbit :: Nat
maxbit = Int -> Nat
bitmapOf (Int
p1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)))
        le_maxbit :: Nat
le_maxbit = Nat
maxbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. (Nat
maxbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1)
    -- TODO(wrengr): should we manually inline/unroll 'lookupPrefix'
    -- and 'restrictBM' here, in order to avoid redundant case analyses?
    in Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM (Nat
bm2 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
ge_minbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
le_maxbit) (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
lookupPrefix Int
p2 IntMap a
t1)
restrictKeys (Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntSet
IntSet.Nil = IntMap a
forall a. IntMap a
Nil
restrictKeys t1 :: IntMap a
t1@(Tip Int
k1 a
_) IntSet
t2
    | Int
k1 Int -> IntSet -> Bool
`IntSet.member` IntSet
t2 = IntMap a
t1
    | Bool
otherwise = IntMap a
forall a. IntMap a
Nil
restrictKeys IntMap a
Nil IntSet
_ = IntMap a
forall a. IntMap a
Nil


-- | \(O(\min(n,W))\). Restrict to the sub-map with all keys matching
-- a key prefix.
lookupPrefix :: IntSetPrefix -> IntMap a -> IntMap a
lookupPrefix :: forall a. Int -> IntMap a -> IntMap a
lookupPrefix !Int
kp t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
    | Int
m Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.suffixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 =
        if Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp then IntMap a
t else IntMap a
forall a. IntMap a
Nil
    | Int -> Int -> Int -> Bool
nomatch Int
kp Int
p Int
m = IntMap a
forall a. IntMap a
Nil
    | Int -> Int -> Bool
zero Int
kp Int
m      = Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
lookupPrefix Int
kp IntMap a
l
    | Bool
otherwise      = Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
lookupPrefix Int
kp IntMap a
r
lookupPrefix Int
kp t :: IntMap a
t@(Tip Int
kx a
_)
    | (Int
kx Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp = IntMap a
t
    | Bool
otherwise = IntMap a
forall a. IntMap a
Nil
lookupPrefix Int
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


restrictBM :: IntSetBitMap -> IntMap a -> IntMap a
restrictBM :: forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
0 IntMap a
_ = IntMap a
forall a. IntMap a
Nil
restrictBM Nat
bm (Bin Int
p Int
m IntMap a
l IntMap a
r) =
    let leftBits :: Nat
leftBits = Int -> Nat
bitmapOf (Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int
m) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
        bmL :: Nat
bmL = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
leftBits
        bmR :: Nat
bmR = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bmL -- = (bm .&. complement leftBits)
    in  Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
bmL IntMap a
l) (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
bmR IntMap a
r)
restrictBM Nat
bm t :: IntMap a
t@(Tip Int
k a
_)
    -- TODO(wrengr): need we manually inline 'IntSet.Member' here?
    | Int
k Int -> IntSet -> Bool
`IntSet.member` Int -> Nat -> IntSet
IntSet.Tip (Int
k Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask) Nat
bm = IntMap a
t
    | Bool
otherwise = IntMap a
forall a. IntMap a
Nil
restrictBM Nat
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil


-- | \(O(n+m)\). The intersection with a combining function.
--
-- > intersectionWith (++) (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "aA"

intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith :: forall a b c. (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith a -> b -> c
f IntMap a
m1 IntMap b
m2
  = (Int -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
forall a b c.
(Int -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey (\Int
_ a
x b
y -> a -> b -> c
f a
x b
y) IntMap a
m1 IntMap b
m2

-- | \(O(n+m)\). The intersection with a combining function.
--
-- > let f k al ar = (show k) ++ ":" ++ al ++ "|" ++ ar
-- > intersectionWithKey f (fromList [(5, "a"), (3, "b")]) (fromList [(5, "A"), (7, "C")]) == singleton 5 "5:a|A"

intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey :: forall a b c.
(Int -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey Int -> a -> b -> c
f IntMap a
m1 IntMap b
m2
  = (Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin (\(Tip Int
k1 a
x1) (Tip Int
_k2 b
x2) -> Int -> c -> IntMap c
forall a. Int -> a -> IntMap a
Tip Int
k1 (Int -> a -> b -> c
f Int
k1 a
x1 b
x2)) (IntMap c -> IntMap a -> IntMap c
forall a b. a -> b -> a
const IntMap c
forall a. IntMap a
Nil) (IntMap c -> IntMap b -> IntMap c
forall a b. a -> b -> a
const IntMap c
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2

{--------------------------------------------------------------------
  MergeWithKey
--------------------------------------------------------------------}

-- | \(O(n+m)\). A high-performance universal combining function. Using
-- 'mergeWithKey', all combining functions can be defined without any loss of
-- efficiency (with exception of 'union', 'difference' and 'intersection',
-- where sharing of some nodes is lost with 'mergeWithKey').
--
-- Please make sure you know what is going on when using 'mergeWithKey',
-- otherwise you can be surprised by unexpected code growth or even
-- corruption of the data structure.
--
-- When 'mergeWithKey' is given three arguments, it is inlined to the call
-- site. You should therefore use 'mergeWithKey' only to define your custom
-- combining functions. For example, you could define 'unionWithKey',
-- 'differenceWithKey' and 'intersectionWithKey' as
--
-- > myUnionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) id id m1 m2
-- > myDifferenceWithKey f m1 m2 = mergeWithKey f id (const empty) m1 m2
-- > myIntersectionWithKey f m1 m2 = mergeWithKey (\k x1 x2 -> Just (f k x1 x2)) (const empty) (const empty) m1 m2
--
-- When calling @'mergeWithKey' combine only1 only2@, a function combining two
-- 'IntMap's is created, such that
--
-- * if a key is present in both maps, it is passed with both corresponding
--   values to the @combine@ function. Depending on the result, the key is either
--   present in the result with specified value, or is left out;
--
-- * a nonempty subtree present only in the first map is passed to @only1@ and
--   the output is added to the result;
--
-- * a nonempty subtree present only in the second map is passed to @only2@ and
--   the output is added to the result.
--
-- The @only1@ and @only2@ methods /must return a map with a subset (possibly empty) of the keys of the given map/.
-- The values can be modified arbitrarily. Most common variants of @only1@ and
-- @only2@ are 'id' and @'const' 'empty'@, but for example @'map' f@ or
-- @'filterWithKey' f@ could be used for any @f@.

mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
             -> IntMap a -> IntMap b -> IntMap c
mergeWithKey :: forall a b c.
(Int -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey Int -> a -> b -> Maybe c
f IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2 = (Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin IntMap a -> IntMap b -> IntMap c
combine IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2
  where -- We use the lambda form to avoid non-exhaustive pattern matches warning.
        combine :: IntMap a -> IntMap b -> IntMap c
combine = \(Tip Int
k1 a
x1) (Tip Int
_k2 b
x2) ->
          case Int -> a -> b -> Maybe c
f Int
k1 a
x1 b
x2 of
            Maybe c
Nothing -> IntMap c
forall a. IntMap a
Nil
            Just c
x -> Int -> c -> IntMap c
forall a. Int -> a -> IntMap a
Tip Int
k1 c
x
        {-# INLINE combine #-}
{-# INLINE mergeWithKey #-}

-- Slightly more general version of mergeWithKey. It differs in the following:
--
-- * the combining function operates on maps instead of keys and values. The
--   reason is to enable sharing in union, difference and intersection.
--
-- * mergeWithKey' is given an equivalent of bin. The reason is that in union*,
--   Bin constructor can be used, because we know both subtrees are nonempty.

mergeWithKey' :: (Prefix -> Mask -> IntMap c -> IntMap c -> IntMap c)
              -> (IntMap a -> IntMap b -> IntMap c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
              -> IntMap a -> IntMap b -> IntMap c
mergeWithKey' :: forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' IntMap a -> IntMap b -> IntMap c
f IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2 = IntMap a -> IntMap b -> IntMap c
go
  where
    go :: IntMap a -> IntMap b -> IntMap c
go t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
      | Int -> Int -> Bool
shorter Int
m1 Int
m2  = IntMap c
merge1
      | Int -> Int -> Bool
shorter Int
m2 Int
m1  = IntMap c
merge2
      | Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2       = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap b -> IntMap c
go IntMap a
l1 IntMap b
l2) (IntMap a -> IntMap b -> IntMap c
go IntMap a
r1 IntMap b
r2)
      | Bool
otherwise      = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
      where
        merge1 :: IntMap c
merge1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1  = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
               | Int -> Int -> Bool
zero Int
p2 Int
m1        = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap b -> IntMap c
go IntMap a
l1 IntMap b
t2) (IntMap a -> IntMap c
g1 IntMap a
r1)
               | Bool
otherwise         = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap c
g1 IntMap a
l1) (IntMap a -> IntMap b -> IntMap c
go IntMap a
r1 IntMap b
t2)
        merge2 :: IntMap c
merge2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2  = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
               | Int -> Int -> Bool
zero Int
p1 Int
m2        = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap a -> IntMap b -> IntMap c
go IntMap a
t1 IntMap b
l2) (IntMap b -> IntMap c
g2 IntMap b
r2)
               | Bool
otherwise         = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap b -> IntMap c
g2 IntMap b
l2) (IntMap a -> IntMap b -> IntMap c
go IntMap a
t1 IntMap b
r2)

    go t1' :: IntMap a
t1'@(Bin Int
_ Int
_ IntMap a
_ IntMap a
_) t2' :: IntMap b
t2'@(Tip Int
k2' b
_) = IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2' Int
k2' IntMap a
t1'
      where
        merge0 :: IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2 Int
k2 t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1)
          | Int -> Int -> Int -> Bool
nomatch Int
k2 Int
p1 Int
m1 = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
          | Int -> Int -> Bool
zero Int
k2 Int
m1 = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2 Int
k2 IntMap a
l1) (IntMap a -> IntMap c
g1 IntMap a
r1)
          | Bool
otherwise  = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap c
g1 IntMap a
l1) (IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2 Int
k2 IntMap a
r1)
        merge0 IntMap b
t2 Int
k2 t1 :: IntMap a
t1@(Tip Int
k1 a
_)
          | Int
k1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
k2 = IntMap a -> IntMap b -> IntMap c
f IntMap a
t1 IntMap b
t2
          | Bool
otherwise = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
        merge0 IntMap b
t2 Int
_  IntMap a
Nil = IntMap b -> IntMap c
g2 IntMap b
t2

    go t1 :: IntMap a
t1@(Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntMap b
Nil = IntMap a -> IntMap c
g1 IntMap a
t1

    go t1' :: IntMap a
t1'@(Tip Int
k1' a
_) IntMap b
t2' = IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1' Int
k1' IntMap b
t2'
      where
        merge0 :: IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1 Int
k1 t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
          | Int -> Int -> Int -> Bool
nomatch Int
k1 Int
p2 Int
m2 = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
          | Int -> Int -> Bool
zero Int
k1 Int
m2 = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1 Int
k1 IntMap b
l2) (IntMap b -> IntMap c
g2 IntMap b
r2)
          | Bool
otherwise  = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap b -> IntMap c
g2 IntMap b
l2) (IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1 Int
k1 IntMap b
r2)
        merge0 IntMap a
t1 Int
k1 t2 :: IntMap b
t2@(Tip Int
k2 b
_)
          | Int
k1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
k2 = IntMap a -> IntMap b -> IntMap c
f IntMap a
t1 IntMap b
t2
          | Bool
otherwise = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
        merge0 IntMap a
t1 Int
_  IntMap b
Nil = IntMap a -> IntMap c
g1 IntMap a
t1

    go IntMap a
Nil IntMap b
t2 = IntMap b -> IntMap c
g2 IntMap b
t2

    maybe_link :: Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
_ IntMap a
Nil Int
_ IntMap a
t2 = IntMap a
t2
    maybe_link Int
_ IntMap a
t1 Int
_ IntMap a
Nil = IntMap a
t1
    maybe_link Int
p1 IntMap a
t1 Int
p2 IntMap a
t2 = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
p1 IntMap a
t1 Int
p2 IntMap a
t2
    {-# INLINE maybe_link #-}
{-# INLINE mergeWithKey' #-}


{--------------------------------------------------------------------
  mergeA
--------------------------------------------------------------------}

-- | A tactic for dealing with keys present in one map but not the
-- other in 'merge' or 'mergeA'.
--
-- A tactic of type @WhenMissing f k x z@ is an abstract representation
-- of a function of type @Key -> x -> f (Maybe z)@.
--
-- @since 0.5.9

data WhenMissing f x y = WhenMissing
  { forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree :: IntMap x -> f (IntMap y)
  , forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey :: Key -> x -> f (Maybe y)}

-- | @since 0.5.9
instance (Applicative f, Monad f) => Functor (WhenMissing f x) where
  fmap :: forall a b. (a -> b) -> WhenMissing f x a -> WhenMissing f x b
fmap = (a -> b) -> WhenMissing f x a -> WhenMissing f x b
forall (f :: * -> *) a b x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing
  {-# INLINE fmap #-}


-- | @since 0.5.9
instance (Applicative f, Monad f) => Category.Category (WhenMissing f)
  where
    id :: forall a. WhenMissing f a a
id = WhenMissing f a a
forall (f :: * -> *) x. Applicative f => WhenMissing f x x
preserveMissing
    WhenMissing f b c
f . :: forall b c a.
WhenMissing f b c -> WhenMissing f a b -> WhenMissing f a c
. WhenMissing f a b
g =
      (Int -> a -> f (Maybe c)) -> WhenMissing f a c
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Int -> a -> f (Maybe c)) -> WhenMissing f a c)
-> (Int -> a -> f (Maybe c)) -> WhenMissing f a c
forall a b. (a -> b) -> a -> b
$ \ Int
k a
x -> do
        y <- WhenMissing f a b -> Int -> a -> f (Maybe b)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f a b
g Int
k a
x
        case y of
          Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
          Just b
q  -> WhenMissing f b c -> Int -> b -> f (Maybe c)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f b c
f Int
k b
q
    {-# INLINE id #-}
    {-# INLINE (.) #-}


-- | Equivalent to @ReaderT k (ReaderT x (MaybeT f))@.
--
-- @since 0.5.9
instance (Applicative f, Monad f) => Applicative (WhenMissing f x) where
  pure :: forall a. a -> WhenMissing f x a
pure a
x = (Int -> x -> a) -> WhenMissing f x a
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> y) -> WhenMissing f x y
mapMissing (\ Int
_ x
_ -> a
x)
  WhenMissing f x (a -> b)
f <*> :: forall a b.
WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b
<*> WhenMissing f x a
g =
    (Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Int -> x -> f (Maybe b)) -> WhenMissing f x b)
-> (Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x -> do
      res1 <- WhenMissing f x (a -> b) -> Int -> x -> f (Maybe (a -> b))
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x (a -> b)
f Int
k x
x
      case res1 of
        Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a -> b
r  -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
g Int
k x
x
  {-# INLINE pure #-}
  {-# INLINE (<*>) #-}


-- | Equivalent to @ReaderT k (ReaderT x (MaybeT f))@.
--
-- @since 0.5.9
instance (Applicative f, Monad f) => Monad (WhenMissing f x) where
  WhenMissing f x a
m >>= :: forall a b.
WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b
>>= a -> WhenMissing f x b
f =
    (Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Int -> x -> f (Maybe b)) -> WhenMissing f x b)
-> (Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x -> do
      res1 <- WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
m Int
k x
x
      case res1 of
        Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a
r  -> WhenMissing f x b -> Int -> x -> f (Maybe b)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey (a -> WhenMissing f x b
f a
r) Int
k x
x
  {-# INLINE (>>=) #-}


-- | Map covariantly over a @'WhenMissing' f x@.
--
-- @since 0.5.9
mapWhenMissing
  :: (Applicative f, Monad f)
  => (a -> b)
  -> WhenMissing f x a
  -> WhenMissing f x b
mapWhenMissing :: forall (f :: * -> *) a b x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing a -> b
f WhenMissing f x a
t = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap b)
missingSubtree = \IntMap x
m -> WhenMissing f x a -> IntMap x -> f (IntMap a)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f x a
t IntMap x
m f (IntMap a) -> (IntMap a -> f (IntMap b)) -> f (IntMap b)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \IntMap a
m' -> IntMap b -> f (IntMap b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap b -> f (IntMap b)) -> IntMap b -> f (IntMap b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> IntMap a -> IntMap b
forall a b. (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f IntMap a
m'
  , missingKey :: Int -> x -> f (Maybe b)
missingKey     = \Int
k x
x -> WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
t Int
k x
x f (Maybe a) -> (Maybe a -> f (Maybe b)) -> f (Maybe b)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe a
q -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Maybe a
q) }
{-# INLINE mapWhenMissing #-}


-- | Map covariantly over a @'WhenMissing' f x@, using only a
-- 'Functor f' constraint.
mapGentlyWhenMissing
  :: Functor f
  => (a -> b)
  -> WhenMissing f x a
  -> WhenMissing f x b
mapGentlyWhenMissing :: forall (f :: * -> *) a b x.
Functor f =>
(a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapGentlyWhenMissing a -> b
f WhenMissing f x a
t = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap b)
missingSubtree = \IntMap x
m -> (a -> b) -> IntMap a -> IntMap b
forall a b. (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (IntMap a -> IntMap b) -> f (IntMap a) -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f x a -> IntMap x -> f (IntMap a)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f x a
t IntMap x
m
  , missingKey :: Int -> x -> f (Maybe b)
missingKey     = \Int
k x
x -> (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
t Int
k x
x }
{-# INLINE mapGentlyWhenMissing #-}


-- | Map covariantly over a @'WhenMatched' f k x@, using only a
-- 'Functor f' constraint.
mapGentlyWhenMatched
  :: Functor f
  => (a -> b)
  -> WhenMatched f x y a
  -> WhenMatched f x y b
mapGentlyWhenMatched :: forall (f :: * -> *) a b x y.
Functor f =>
(a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapGentlyWhenMatched a -> b
f WhenMatched f x y a
t =
  (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMatched f x y a -> Int -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
t Int
k x
x y
y
{-# INLINE mapGentlyWhenMatched #-}


-- | Map contravariantly over a @'WhenMissing' f _ x@.
--
-- @since 0.5.9
lmapWhenMissing :: (b -> a) -> WhenMissing f a x -> WhenMissing f b x
lmapWhenMissing :: forall b a (f :: * -> *) x.
(b -> a) -> WhenMissing f a x -> WhenMissing f b x
lmapWhenMissing b -> a
f WhenMissing f a x
t = WhenMissing
  { missingSubtree :: IntMap b -> f (IntMap x)
missingSubtree = \IntMap b
m -> WhenMissing f a x -> IntMap a -> f (IntMap x)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f a x
t ((b -> a) -> IntMap b -> IntMap a
forall a b. (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f IntMap b
m)
  , missingKey :: Int -> b -> f (Maybe x)
missingKey     = \Int
k b
x -> WhenMissing f a x -> Int -> a -> f (Maybe x)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f a x
t Int
k (b -> a
f b
x) }
{-# INLINE lmapWhenMissing #-}


-- | Map contravariantly over a @'WhenMatched' f _ y z@.
--
-- @since 0.5.9
contramapFirstWhenMatched
  :: (b -> a)
  -> WhenMatched f a y z
  -> WhenMatched f b y z
contramapFirstWhenMatched :: forall b a (f :: * -> *) y z.
(b -> a) -> WhenMatched f a y z -> WhenMatched f b y z
contramapFirstWhenMatched b -> a
f WhenMatched f a y z
t =
  (Int -> b -> y -> f (Maybe z)) -> WhenMatched f b y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> b -> y -> f (Maybe z)) -> WhenMatched f b y z)
-> (Int -> b -> y -> f (Maybe z)) -> WhenMatched f b y z
forall a b. (a -> b) -> a -> b
$ \Int
k b
x y
y -> WhenMatched f a y z -> Int -> a -> y -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f a y z
t Int
k (b -> a
f b
x) y
y
{-# INLINE contramapFirstWhenMatched #-}


-- | Map contravariantly over a @'WhenMatched' f x _ z@.
--
-- @since 0.5.9
contramapSecondWhenMatched
  :: (b -> a)
  -> WhenMatched f x a z
  -> WhenMatched f x b z
contramapSecondWhenMatched :: forall b a (f :: * -> *) x z.
(b -> a) -> WhenMatched f x a z -> WhenMatched f x b z
contramapSecondWhenMatched b -> a
f WhenMatched f x a z
t =
  (Int -> x -> b -> f (Maybe z)) -> WhenMatched f x b z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> b -> f (Maybe z)) -> WhenMatched f x b z)
-> (Int -> x -> b -> f (Maybe z)) -> WhenMatched f x b z
forall a b. (a -> b) -> a -> b
$ \Int
k x
x b
y -> WhenMatched f x a z -> Int -> x -> a -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x a z
t Int
k x
x (b -> a
f b
y)
{-# INLINE contramapSecondWhenMatched #-}


-- | A tactic for dealing with keys present in one map but not the
-- other in 'merge'.
--
-- A tactic of type @SimpleWhenMissing x z@ is an abstract
-- representation of a function of type @Key -> x -> Maybe z@.
--
-- @since 0.5.9
type SimpleWhenMissing = WhenMissing Identity


-- | A tactic for dealing with keys present in both maps in 'merge'
-- or 'mergeA'.
--
-- A tactic of type @WhenMatched f x y z@ is an abstract representation
-- of a function of type @Key -> x -> y -> f (Maybe z)@.
--
-- @since 0.5.9
newtype WhenMatched f x y z = WhenMatched
  { forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
matchedKey :: Key -> x -> y -> f (Maybe z) }


-- | Along with zipWithMaybeAMatched, witnesses the isomorphism
-- between @WhenMatched f x y z@ and @Key -> x -> y -> f (Maybe z)@.
--
-- @since 0.5.9
runWhenMatched :: WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched :: forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched = WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
matchedKey
{-# INLINE runWhenMatched #-}


-- | Along with traverseMaybeMissing, witnesses the isomorphism
-- between @WhenMissing f x y@ and @Key -> x -> f (Maybe y)@.
--
-- @since 0.5.9
runWhenMissing :: WhenMissing f x y -> Key-> x -> f (Maybe y)
runWhenMissing :: forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
runWhenMissing = WhenMissing f x y -> Int -> x -> f (Maybe y)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey
{-# INLINE runWhenMissing #-}


-- | @since 0.5.9
instance Functor f => Functor (WhenMatched f x y) where
  fmap :: forall a b. (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
fmap = (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
forall (f :: * -> *) a b x y.
Functor f =>
(a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched
  {-# INLINE fmap #-}


-- | @since 0.5.9
instance (Monad f, Applicative f) => Category.Category (WhenMatched f x)
  where
    id :: forall a. WhenMatched f x a a
id = (Int -> x -> a -> a) -> WhenMatched f x a a
forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched (\Int
_ x
_ a
y -> a
y)
    WhenMatched f x b c
f . :: forall b c a.
WhenMatched f x b c -> WhenMatched f x a b -> WhenMatched f x a c
. WhenMatched f x a b
g =
      (Int -> x -> a -> f (Maybe c)) -> WhenMatched f x a c
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> a -> f (Maybe c)) -> WhenMatched f x a c)
-> (Int -> x -> a -> f (Maybe c)) -> WhenMatched f x a c
forall a b. (a -> b) -> a -> b
$ \Int
k x
x a
y -> do
        res <- WhenMatched f x a b -> Int -> x -> a -> f (Maybe b)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x a b
g Int
k x
x a
y
        case res of
          Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
          Just b
r  -> WhenMatched f x b c -> Int -> x -> b -> f (Maybe c)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x b c
f Int
k x
x b
r
    {-# INLINE id #-}
    {-# INLINE (.) #-}


-- | Equivalent to @ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))@
--
-- @since 0.5.9
instance (Monad f, Applicative f) => Applicative (WhenMatched f x y) where
  pure :: forall a. a -> WhenMatched f x y a
pure a
x = (Int -> x -> y -> a) -> WhenMatched f x y a
forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched (\Int
_ x
_ y
_ -> a
x)
  WhenMatched f x y (a -> b)
fs <*> :: forall a b.
WhenMatched f x y (a -> b)
-> WhenMatched f x y a -> WhenMatched f x y b
<*> WhenMatched f x y a
xs =
    (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> do
      res <- WhenMatched f x y (a -> b) -> Int -> x -> y -> f (Maybe (a -> b))
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y (a -> b)
fs Int
k x
x y
y
      case res of
        Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a -> b
r  -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMatched f x y a -> Int -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
xs Int
k x
x y
y
  {-# INLINE pure #-}
  {-# INLINE (<*>) #-}


-- | Equivalent to @ReaderT Key (ReaderT x (ReaderT y (MaybeT f)))@
--
-- @since 0.5.9
instance (Monad f, Applicative f) => Monad (WhenMatched f x y) where
  WhenMatched f x y a
m >>= :: forall a b.
WhenMatched f x y a
-> (a -> WhenMatched f x y b) -> WhenMatched f x y b
>>= a -> WhenMatched f x y b
f =
    (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> do
      res <- WhenMatched f x y a -> Int -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
m Int
k x
x y
y
      case res of
        Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
        Just a
r  -> WhenMatched f x y b -> Int -> x -> y -> f (Maybe b)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched (a -> WhenMatched f x y b
f a
r) Int
k x
x y
y
  {-# INLINE (>>=) #-}


-- | Map covariantly over a @'WhenMatched' f x y@.
--
-- @since 0.5.9
mapWhenMatched
  :: Functor f
  => (a -> b)
  -> WhenMatched f x y a
  -> WhenMatched f x y b
mapWhenMatched :: forall (f :: * -> *) a b x y.
Functor f =>
(a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched a -> b
f (WhenMatched Int -> x -> y -> f (Maybe a)
g) =
  (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (Int -> x -> y -> f (Maybe a)
g Int
k x
x y
y)
{-# INLINE mapWhenMatched #-}


-- | A tactic for dealing with keys present in both maps in 'merge'.
--
-- A tactic of type @SimpleWhenMatched x y z@ is an abstract
-- representation of a function of type @Key -> x -> y -> Maybe z@.
--
-- @since 0.5.9
type SimpleWhenMatched = WhenMatched Identity


-- | When a key is found in both maps, apply a function to the key
-- and values and use the result in the merged map.
--
-- > zipWithMatched
-- >   :: (Key -> x -> y -> z)
-- >   -> SimpleWhenMatched x y z
--
-- @since 0.5.9
zipWithMatched
  :: Applicative f
  => (Key -> x -> y -> z)
  -> WhenMatched f x y z
zipWithMatched :: forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched Int -> x -> y -> z
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> Maybe z -> f (Maybe z)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> (z -> Maybe z) -> z -> f (Maybe z)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. z -> Maybe z
forall a. a -> Maybe a
Just (z -> f (Maybe z)) -> z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ Int -> x -> y -> z
f Int
k x
x y
y
{-# INLINE zipWithMatched #-}


-- | When a key is found in both maps, apply a function to the key
-- and values to produce an action and use its result in the merged
-- map.
--
-- @since 0.5.9
zipWithAMatched
  :: Applicative f
  => (Key -> x -> y -> f z)
  -> WhenMatched f x y z
zipWithAMatched :: forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> f z) -> WhenMatched f x y z
zipWithAMatched Int -> x -> y -> f z
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> f z -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> x -> y -> f z
f Int
k x
x y
y
{-# INLINE zipWithAMatched #-}


-- | When a key is found in both maps, apply a function to the key
-- and values and maybe use the result in the merged map.
--
-- > zipWithMaybeMatched
-- >   :: (Key -> x -> y -> Maybe z)
-- >   -> SimpleWhenMatched x y z
--
-- @since 0.5.9
zipWithMaybeMatched
  :: Applicative f
  => (Key -> x -> y -> Maybe z)
  -> WhenMatched f x y z
zipWithMaybeMatched :: forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> Maybe z) -> WhenMatched f x y z
zipWithMaybeMatched Int -> x -> y -> Maybe z
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> Maybe z -> f (Maybe z)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ Int -> x -> y -> Maybe z
f Int
k x
x y
y
{-# INLINE zipWithMaybeMatched #-}


-- | When a key is found in both maps, apply a function to the key
-- and values, perform the resulting action, and maybe use the
-- result in the merged map.
--
-- This is the fundamental 'WhenMatched' tactic.
--
-- @since 0.5.9
zipWithMaybeAMatched
  :: (Key -> x -> y -> f (Maybe z))
  -> WhenMatched f x y z
zipWithMaybeAMatched :: forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched Int -> x -> y -> f (Maybe z)
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> Int -> x -> y -> f (Maybe z)
f Int
k x
x y
y
{-# INLINE zipWithMaybeAMatched #-}


-- | Drop all the entries whose keys are missing from the other
-- map.
--
-- > dropMissing :: SimpleWhenMissing x y
--
-- prop> dropMissing = mapMaybeMissing (\_ _ -> Nothing)
--
-- but @dropMissing@ is much faster.
--
-- @since 0.5.9
dropMissing :: Applicative f => WhenMissing f x y
dropMissing :: forall (f :: * -> *) x y. Applicative f => WhenMissing f x y
dropMissing = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = f (IntMap y) -> IntMap x -> f (IntMap y)
forall a b. a -> b -> a
const (IntMap y -> f (IntMap y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap y
forall a. IntMap a
Nil)
  , missingKey :: Int -> x -> f (Maybe y)
missingKey     = \Int
_ x
_ -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe y
forall a. Maybe a
Nothing }
{-# INLINE dropMissing #-}


-- | Preserve, unchanged, the entries whose keys are missing from
-- the other map.
--
-- > preserveMissing :: SimpleWhenMissing x x
--
-- prop> preserveMissing = Merge.Lazy.mapMaybeMissing (\_ x -> Just x)
--
-- but @preserveMissing@ is much faster.
--
-- @since 0.5.9
preserveMissing :: Applicative f => WhenMissing f x x
preserveMissing :: forall (f :: * -> *) x. Applicative f => WhenMissing f x x
preserveMissing = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = IntMap x -> f (IntMap x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
  , missingKey :: Int -> x -> f (Maybe x)
missingKey     = \Int
_ x
v -> Maybe x -> f (Maybe x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (x -> Maybe x
forall a. a -> Maybe a
Just x
v) }
{-# INLINE preserveMissing #-}


-- | Map over the entries whose keys are missing from the other map.
--
-- > mapMissing :: (k -> x -> y) -> SimpleWhenMissing x y
--
-- prop> mapMissing f = mapMaybeMissing (\k x -> Just $ f k x)
--
-- but @mapMissing@ is somewhat faster.
--
-- @since 0.5.9
mapMissing :: Applicative f => (Key -> x -> y) -> WhenMissing f x y
mapMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> y) -> WhenMissing f x y
mapMissing Int -> x -> y
f = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Int -> x -> y) -> IntMap x -> IntMap y
forall a b. (Int -> a -> b) -> IntMap a -> IntMap b
mapWithKey Int -> x -> y
f IntMap x
m
  , missingKey :: Int -> x -> f (Maybe y)
missingKey     = \Int
k x
x -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$ y -> Maybe y
forall a. a -> Maybe a
Just (Int -> x -> y
f Int
k x
x) }
{-# INLINE mapMissing #-}


-- | Map over the entries whose keys are missing from the other
-- map, optionally removing some. This is the most powerful
-- 'SimpleWhenMissing' tactic, but others are usually more efficient.
--
-- > mapMaybeMissing :: (Key -> x -> Maybe y) -> SimpleWhenMissing x y
--
-- prop> mapMaybeMissing f = traverseMaybeMissing (\k x -> pure (f k x))
--
-- but @mapMaybeMissing@ uses fewer unnecessary 'Applicative'
-- operations.
--
-- @since 0.5.9
mapMaybeMissing
  :: Applicative f => (Key -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing Int -> x -> Maybe y
f = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Int -> x -> Maybe y) -> IntMap x -> IntMap y
forall a b. (Int -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey Int -> x -> Maybe y
f IntMap x
m
  , missingKey :: Int -> x -> f (Maybe y)
missingKey     = \Int
k x
x -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! Int -> x -> Maybe y
f Int
k x
x }
{-# INLINE mapMaybeMissing #-}


-- | Filter the entries whose keys are missing from the other map.
--
-- > filterMissing :: (k -> x -> Bool) -> SimpleWhenMissing x x
--
-- prop> filterMissing f = Merge.Lazy.mapMaybeMissing $ \k x -> guard (f k x) *> Just x
--
-- but this should be a little faster.
--
-- @since 0.5.9
filterMissing
  :: Applicative f => (Key -> x -> Bool) -> WhenMissing f x x
filterMissing :: forall (f :: * -> *) x.
Applicative f =>
(Int -> x -> Bool) -> WhenMissing f x x
filterMissing Int -> x -> Bool
f = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = \IntMap x
m -> IntMap x -> f (IntMap x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap x -> f (IntMap x)) -> IntMap x -> f (IntMap x)
forall a b. (a -> b) -> a -> b
$! (Int -> x -> Bool) -> IntMap x -> IntMap x
forall a. (Int -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey Int -> x -> Bool
f IntMap x
m
  , missingKey :: Int -> x -> f (Maybe x)
missingKey     = \Int
k x
x -> Maybe x -> f (Maybe x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe x -> f (Maybe x)) -> Maybe x -> f (Maybe x)
forall a b. (a -> b) -> a -> b
$! if Int -> x -> Bool
f Int
k x
x then x -> Maybe x
forall a. a -> Maybe a
Just x
x else Maybe x
forall a. Maybe a
Nothing }
{-# INLINE filterMissing #-}


-- | Filter the entries whose keys are missing from the other map
-- using some 'Applicative' action.
--
-- > filterAMissing f = Merge.Lazy.traverseMaybeMissing $
-- >   \k x -> (\b -> guard b *> Just x) <$> f k x
--
-- but this should be a little faster.
--
-- @since 0.5.9
filterAMissing
  :: Applicative f => (Key -> x -> f Bool) -> WhenMissing f x x
filterAMissing :: forall (f :: * -> *) x.
Applicative f =>
(Int -> x -> f Bool) -> WhenMissing f x x
filterAMissing Int -> x -> f Bool
f = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = \IntMap x
m -> (Int -> x -> f Bool) -> IntMap x -> f (IntMap x)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> x -> f Bool
f IntMap x
m
  , missingKey :: Int -> x -> f (Maybe x)
missingKey     = \Int
k x
x -> Maybe x -> Maybe x -> Bool -> Maybe x
forall a. a -> a -> Bool -> a
bool Maybe x
forall a. Maybe a
Nothing (x -> Maybe x
forall a. a -> Maybe a
Just x
x) (Bool -> Maybe x) -> f Bool -> f (Maybe x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> x -> f Bool
f Int
k x
x }
{-# INLINE filterAMissing #-}


-- | \(O(n)\). Filter keys and values using an 'Applicative' predicate.
filterWithKeyA
  :: Applicative f => (Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA :: forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
_ IntMap a
Nil           = IntMap a -> f (IntMap a)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap a
forall a. IntMap a
Nil
filterWithKeyA Int -> a -> f Bool
f t :: IntMap a
t@(Tip Int
k a
x)   = (\Bool
b -> if Bool
b then IntMap a
t else IntMap a
forall a. IntMap a
Nil) (Bool -> IntMap a) -> f Bool -> f (IntMap a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> f Bool
f Int
k a
x
filterWithKeyA Int -> a -> f Bool
f (Bin Int
p Int
m IntMap a
l IntMap a
r)
  | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> IntMap a -> IntMap a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m)) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
r) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
l)
  | Bool
otherwise = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
l) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
r)

-- | This wasn't in Data.Bool until 4.7.0, so we define it here
bool :: a -> a -> Bool -> a
bool :: forall a. a -> a -> Bool -> a
bool a
f a
_ Bool
False = a
f
bool a
_ a
t Bool
True  = a
t


-- | Traverse over the entries whose keys are missing from the other
-- map.
--
-- @since 0.5.9
traverseMissing
  :: Applicative f => (Key -> x -> f y) -> WhenMissing f x y
traverseMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f y) -> WhenMissing f x y
traverseMissing Int -> x -> f y
f = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Int -> x -> f y) -> IntMap x -> f (IntMap y)
forall (t :: * -> *) a b.
Applicative t =>
(Int -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey Int -> x -> f y
f
  , missingKey :: Int -> x -> f (Maybe y)
missingKey = \Int
k x
x -> y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> f y -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> x -> f y
f Int
k x
x }
{-# INLINE traverseMissing #-}


-- | Traverse over the entries whose keys are missing from the other
-- map, optionally producing values to put in the result. This is
-- the most powerful 'WhenMissing' tactic, but others are usually
-- more efficient.
--
-- @since 0.5.9
traverseMaybeMissing
  :: Applicative f => (Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing Int -> x -> f (Maybe y)
f = WhenMissing
  { missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Int -> x -> f (Maybe y)) -> IntMap x -> f (IntMap y)
forall (f :: * -> *) a b.
Applicative f =>
(Int -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey Int -> x -> f (Maybe y)
f
  , missingKey :: Int -> x -> f (Maybe y)
missingKey = Int -> x -> f (Maybe y)
f }
{-# INLINE traverseMaybeMissing #-}


-- | \(O(n)\). Traverse keys\/values and collect the 'Just' results.
--
-- @since 0.6.4
traverseMaybeWithKey
  :: Applicative f => (Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey :: forall (f :: * -> *) a b.
Applicative f =>
(Int -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey Int -> a -> f (Maybe b)
f = IntMap a -> f (IntMap b)
go
    where
    go :: IntMap a -> f (IntMap b)
go IntMap a
Nil           = IntMap b -> f (IntMap b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap b
forall a. IntMap a
Nil
    go (Tip Int
k a
x)     = IntMap b -> (b -> IntMap b) -> Maybe b -> IntMap b
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap b
forall a. IntMap a
Nil (Int -> b -> IntMap b
forall a. Int -> a -> IntMap a
Tip Int
k) (Maybe b -> IntMap b) -> f (Maybe b) -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> f (Maybe b)
f Int
k a
x
    go (Bin Int
p Int
m IntMap a
l IntMap a
r)
      | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0     = (IntMap b -> IntMap b -> IntMap b)
-> f (IntMap b) -> f (IntMap b) -> f (IntMap b)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap b -> IntMap b -> IntMap b)
-> IntMap b -> IntMap b -> IntMap b
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m)) (IntMap a -> f (IntMap b)
go IntMap a
r) (IntMap a -> f (IntMap b)
go IntMap a
l)
      | Bool
otherwise = (IntMap b -> IntMap b -> IntMap b)
-> f (IntMap b) -> f (IntMap b) -> f (IntMap b)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m) (IntMap a -> f (IntMap b)
go IntMap a
l) (IntMap a -> f (IntMap b)
go IntMap a
r)


-- | Merge two maps.
--
-- 'merge' takes two 'WhenMissing' tactics, a 'WhenMatched' tactic
-- and two maps. It uses the tactics to merge the maps. Its behavior
-- is best understood via its fundamental tactics, 'mapMaybeMissing'
-- and 'zipWithMaybeMatched'.
--
-- Consider
--
-- @
-- merge (mapMaybeMissing g1)
--              (mapMaybeMissing g2)
--              (zipWithMaybeMatched f)
--              m1 m2
-- @
--
-- Take, for example,
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'), (3, \'c\'), (4, \'d\')]
-- m2 = [(1, "one"), (2, "two"), (4, "three")]
-- @
--
-- 'merge' will first \"align\" these maps by key:
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'),               (3, \'c\'), (4, \'d\')]
-- m2 =           [(1, "one"), (2, "two"),           (4, "three")]
-- @
--
-- It will then pass the individual entries and pairs of entries
-- to @g1@, @g2@, or @f@ as appropriate:
--
-- @
-- maybes = [g1 0 \'a\', f 1 \'b\' "one", g2 2 "two", g1 3 \'c\', f 4 \'d\' "three"]
-- @
--
-- This produces a 'Maybe' for each key:
--
-- @
-- keys =     0        1          2           3        4
-- results = [Nothing, Just True, Just False, Nothing, Just True]
-- @
--
-- Finally, the @Just@ results are collected into a map:
--
-- @
-- return value = [(1, True), (2, False), (4, True)]
-- @
--
-- The other tactics below are optimizations or simplifications of
-- 'mapMaybeMissing' for special cases. Most importantly,
--
-- * 'dropMissing' drops all the keys.
-- * 'preserveMissing' leaves all the entries alone.
--
-- When 'merge' is given three arguments, it is inlined at the call
-- site. To prevent excessive inlining, you should typically use
-- 'merge' to define your custom combining functions.
--
--
-- Examples:
--
-- prop> unionWithKey f = merge preserveMissing preserveMissing (zipWithMatched f)
-- prop> intersectionWithKey f = merge dropMissing dropMissing (zipWithMatched f)
-- prop> differenceWith f = merge diffPreserve diffDrop f
-- prop> symmetricDifference = merge diffPreserve diffPreserve (\ _ _ _ -> Nothing)
-- prop> mapEachPiece f g h = merge (diffMapWithKey f) (diffMapWithKey g)
--
-- @since 0.5.9
merge
  :: SimpleWhenMissing a c -- ^ What to do with keys in @m1@ but not @m2@
  -> SimpleWhenMissing b c -- ^ What to do with keys in @m2@ but not @m1@
  -> SimpleWhenMatched a b c -- ^ What to do with keys in both @m1@ and @m2@
  -> IntMap a -- ^ Map @m1@
  -> IntMap b -- ^ Map @m2@
  -> IntMap c
merge :: forall a c b.
SimpleWhenMissing a c
-> SimpleWhenMissing b c
-> SimpleWhenMatched a b c
-> IntMap a
-> IntMap b
-> IntMap c
merge SimpleWhenMissing a c
g1 SimpleWhenMissing b c
g2 SimpleWhenMatched a b c
f IntMap a
m1 IntMap b
m2 =
  Identity (IntMap c) -> IntMap c
forall a. Identity a -> a
runIdentity (Identity (IntMap c) -> IntMap c)
-> Identity (IntMap c) -> IntMap c
forall a b. (a -> b) -> a -> b
$ SimpleWhenMissing a c
-> SimpleWhenMissing b c
-> SimpleWhenMatched a b c
-> IntMap a
-> IntMap b
-> Identity (IntMap c)
forall (f :: * -> *) a c b.
Applicative f =>
WhenMissing f a c
-> WhenMissing f b c
-> WhenMatched f a b c
-> IntMap a
-> IntMap b
-> f (IntMap c)
mergeA SimpleWhenMissing a c
g1 SimpleWhenMissing b c
g2 SimpleWhenMatched a b c
f IntMap a
m1 IntMap b
m2
{-# INLINE merge #-}


-- | An applicative version of 'merge'.
--
-- 'mergeA' takes two 'WhenMissing' tactics, a 'WhenMatched'
-- tactic and two maps. It uses the tactics to merge the maps.
-- Its behavior is best understood via its fundamental tactics,
-- 'traverseMaybeMissing' and 'zipWithMaybeAMatched'.
--
-- Consider
--
-- @
-- mergeA (traverseMaybeMissing g1)
--               (traverseMaybeMissing g2)
--               (zipWithMaybeAMatched f)
--               m1 m2
-- @
--
-- Take, for example,
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'), (3,\'c\'), (4, \'d\')]
-- m2 = [(1, "one"), (2, "two"), (4, "three")]
-- @
--
-- 'mergeA' will first \"align\" these maps by key:
--
-- @
-- m1 = [(0, \'a\'), (1, \'b\'),               (3, \'c\'), (4, \'d\')]
-- m2 =           [(1, "one"), (2, "two"),           (4, "three")]
-- @
--
-- It will then pass the individual entries and pairs of entries
-- to @g1@, @g2@, or @f@ as appropriate:
--
-- @
-- actions = [g1 0 \'a\', f 1 \'b\' "one", g2 2 "two", g1 3 \'c\', f 4 \'d\' "three"]
-- @
--
-- Next, it will perform the actions in the @actions@ list in order from
-- left to right.
--
-- @
-- keys =     0        1          2           3        4
-- results = [Nothing, Just True, Just False, Nothing, Just True]
-- @
--
-- Finally, the @Just@ results are collected into a map:
--
-- @
-- return value = [(1, True), (2, False), (4, True)]
-- @
--
-- The other tactics below are optimizations or simplifications of
-- 'traverseMaybeMissing' for special cases. Most importantly,
--
-- * 'dropMissing' drops all the keys.
-- * 'preserveMissing' leaves all the entries alone.
-- * 'mapMaybeMissing' does not use the 'Applicative' context.
--
-- When 'mergeA' is given three arguments, it is inlined at the call
-- site. To prevent excessive inlining, you should generally only use
-- 'mergeA' to define custom combining functions.
--
-- @since 0.5.9
mergeA
  :: (Applicative f)
  => WhenMissing f a c -- ^ What to do with keys in @m1@ but not @m2@
  -> WhenMissing f b c -- ^ What to do with keys in @m2@ but not @m1@
  -> WhenMatched f a b c -- ^ What to do with keys in both @m1@ and @m2@
  -> IntMap a -- ^ Map @m1@
  -> IntMap b -- ^ Map @m2@
  -> f (IntMap c)
mergeA :: forall (f :: * -> *) a c b.
Applicative f =>
WhenMissing f a c
-> WhenMissing f b c
-> WhenMatched f a b c
-> IntMap a
-> IntMap b
-> f (IntMap c)
mergeA
    WhenMissing{missingSubtree :: forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree = IntMap a -> f (IntMap c)
g1t, missingKey :: forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey = Int -> a -> f (Maybe c)
g1k}
    WhenMissing{missingSubtree :: forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree = IntMap b -> f (IntMap c)
g2t, missingKey :: forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey = Int -> b -> f (Maybe c)
g2k}
    WhenMatched{matchedKey :: forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
matchedKey = Int -> a -> b -> f (Maybe c)
f}
    = IntMap a -> IntMap b -> f (IntMap c)
go
  where
    go :: IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
t1  IntMap b
Nil = IntMap a -> f (IntMap c)
g1t IntMap a
t1
    go IntMap a
Nil IntMap b
t2  = IntMap b -> f (IntMap c)
g2t IntMap b
t2

    -- This case is already covered below.
    -- go (Tip k1 x1) (Tip k2 x2) = mergeTips k1 x1 k2 x2

    go (Tip Int
k1 a
x1) IntMap b
t2' = IntMap b -> f (IntMap c)
merge2 IntMap b
t2'
      where
        merge2 :: IntMap b -> f (IntMap c)
merge2 t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
          | Int -> Int -> Int -> Bool
nomatch Int
k1 Int
p2 Int
m2 = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
k1 ((Int -> a -> f (Maybe c)) -> Int -> a -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> a -> f (Maybe c)
g1k Int
k1 a
x1) Int
p2 (IntMap b -> f (IntMap c)
g2t IntMap b
t2)
          | Int -> Int -> Bool
zero Int
k1 Int
m2       = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p2 Int
m2 (IntMap b -> f (IntMap c)
merge2 IntMap b
l2) (IntMap b -> f (IntMap c)
g2t IntMap b
r2)
          | Bool
otherwise        = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p2 Int
m2 (IntMap b -> f (IntMap c)
g2t IntMap b
l2) (IntMap b -> f (IntMap c)
merge2 IntMap b
r2)
        merge2 (Tip Int
k2 b
x2)   = Int -> a -> Int -> b -> f (IntMap c)
mergeTips Int
k1 a
x1 Int
k2 b
x2
        merge2 IntMap b
Nil           = (Int -> a -> f (Maybe c)) -> Int -> a -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> a -> f (Maybe c)
g1k Int
k1 a
x1

    go IntMap a
t1' (Tip Int
k2 b
x2) = IntMap a -> f (IntMap c)
merge1 IntMap a
t1'
      where
        merge1 :: IntMap a -> f (IntMap c)
merge1 t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1)
          | Int -> Int -> Int -> Bool
nomatch Int
k2 Int
p1 Int
m1 = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
p1 (IntMap a -> f (IntMap c)
g1t IntMap a
t1) Int
k2 ((Int -> b -> f (Maybe c)) -> Int -> b -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> b -> f (Maybe c)
g2k Int
k2 b
x2)
          | Int -> Int -> Bool
zero Int
k2 Int
m1       = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> f (IntMap c)
merge1 IntMap a
l1) (IntMap a -> f (IntMap c)
g1t IntMap a
r1)
          | Bool
otherwise        = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> f (IntMap c)
g1t IntMap a
l1) (IntMap a -> f (IntMap c)
merge1 IntMap a
r1)
        merge1 (Tip Int
k1 a
x1)   = Int -> a -> Int -> b -> f (IntMap c)
mergeTips Int
k1 a
x1 Int
k2 b
x2
        merge1 IntMap a
Nil           = (Int -> b -> f (Maybe c)) -> Int -> b -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> b -> f (Maybe c)
g2k Int
k2 b
x2

    go t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
      | Int -> Int -> Bool
shorter Int
m1 Int
m2  = f (IntMap c)
merge1
      | Int -> Int -> Bool
shorter Int
m2 Int
m1  = f (IntMap c)
merge2
      | Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2       = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
l1 IntMap b
l2) (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
r1 IntMap b
r2)
      | Bool
otherwise      = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
p1 (IntMap a -> f (IntMap c)
g1t IntMap a
t1) Int
p2 (IntMap b -> f (IntMap c)
g2t IntMap b
t2)
      where
        merge1 :: f (IntMap c)
merge1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1