{-# LANGUAGE Safe #-}

-- |
-- Language.Haskell.TH.Lib contains lots of useful helper functions for
-- generating and manipulating Template Haskell terms

-- Note: this module mostly re-exports functions from
-- Language.Haskell.TH.Lib.Internal, but if a change occurs to Template
-- Haskell which requires breaking the API offered in this module, we opt to
-- copy the old definition here, and make the changes in
-- Language.Haskell.TH.Lib.Internal. This way, we can retain backwards
-- compatibility while still allowing GHC to make changes as it needs.

module Language.Haskell.TH.Lib (
    -- All of the exports from this module should
    -- be "public" functions.  The main module TH
    -- re-exports them all.

    -- * Library functions
    -- ** Abbreviations
        InfoQ, ExpQ, TExpQ, CodeQ, DecQ, DecsQ, ConQ, TypeQ, KindQ,
        TyLitQ, CxtQ, PredQ, DerivClauseQ, MatchQ, ClauseQ, BodyQ, GuardQ,
        StmtQ, RangeQ, SourceStrictnessQ, SourceUnpackednessQ, BangQ,
        BangTypeQ, VarBangTypeQ, StrictTypeQ, VarStrictTypeQ, FieldExpQ, PatQ,
        ArgPatQ, FieldPatQ, RuleBndrQ, TySynEqnQ, PatSynDirQ, PatSynArgsQ,
        FamilyResultSigQ, DerivStrategyQ,
        TyVarBndrUnit, TyVarBndrSpec, TyVarBndrVis,

    -- ** Constructors lifted to 'Q'
    -- *** Literals
        intPrimL, wordPrimL, floatPrimL, doublePrimL, integerL, rationalL,
        charL, stringL, stringPrimL, charPrimL, bytesPrimL, mkBytes,
    -- *** Patterns
        litP, varP, tupP, unboxedTupP, unboxedSumP, conP, uInfixP, parensP,
        infixP, tildeP, bangP, asP, wildP, recP,
        listP, sigP, viewP, typeP,
        fieldPat,

    -- *** Arg patterns
        visAP, invisAP,

    -- *** Pattern Guards
        normalB, guardedB, normalG, normalGE, patG, patGE, match, clause,

    -- *** Expressions
        dyn, varE, unboundVarE, labelE, implicitParamVarE, conE, litE, staticE,
        appE, appTypeE, uInfixE, parensE, infixE, infixApp, sectionL, sectionR,
        lamE, lam1E, lamCaseE, lamCasesE, tupE, unboxedTupE, unboxedSumE, condE,
        multiIfE, letE, caseE, appsE, listE, sigE, recConE, recUpdE, stringE,
        fieldExp, getFieldE, projectionE, typedSpliceE, typedBracketE, typeE,
    -- **** Ranges
    fromE, fromThenE, fromToE, fromThenToE,

    -- ***** Ranges with more indirection
    arithSeqE,
    fromR, fromThenR, fromToR, fromThenToR,
    -- **** Statements
    doE, mdoE, compE,
    bindS, letS, noBindS, parS, recS,

    -- *** Types
        forallT, forallVisT, varT, conT, appT, appKindT, arrowT, mulArrowT,
        infixT, uInfixT, promotedInfixT, promotedUInfixT,
        parensT, equalityT, listT, tupleT, unboxedTupleT, unboxedSumT,
        sigT, litT, wildCardT, promotedT, promotedTupleT, promotedNilT,
        promotedConsT, implicitParamT,
    -- **** Type literals
    numTyLit, strTyLit, charTyLit,
    -- **** Strictness
    noSourceUnpackedness, sourceNoUnpack, sourceUnpack,
    noSourceStrictness, sourceLazy, sourceStrict,
    isStrict, notStrict, unpacked,
    bang, bangType, varBangType, strictType, varStrictType,
    -- **** Class Contexts
    cxt, classP, equalP,
    -- **** Constructors
    normalC, recC, infixC, forallC, gadtC, recGadtC,

    -- *** Kinds
    varK, conK, tupleK, arrowK, listK, appK, starK, constraintK,

    -- *** Type variable binders
    DefaultBndrFlag(defaultBndrFlag),
    plainTV, kindedTV,
    plainInvisTV, kindedInvisTV,
    plainBndrTV, kindedBndrTV,
    specifiedSpec, inferredSpec,
    bndrReq, bndrInvis,

    -- *** Roles
    nominalR, representationalR, phantomR, inferR,

    -- *** Top Level Declarations
    -- **** Data
    valD, funD, tySynD, dataD, newtypeD, typeDataD,
    derivClause, DerivClause(..),
    stockStrategy, anyclassStrategy, newtypeStrategy,
    viaStrategy, DerivStrategy(..),
    -- **** Class
    classD, instanceD, instanceWithOverlapD, Overlap(..),
    sigD, kiSigD, standaloneDerivD, standaloneDerivWithStrategyD, defaultSigD,

    -- **** Role annotations
    roleAnnotD,
    -- **** Type Family / Data Family
    dataFamilyD, openTypeFamilyD, closedTypeFamilyD, dataInstD,
    newtypeInstD, tySynInstD,
    tySynEqn, injectivityAnn, noSig, kindSig, tyVarSig,

    -- **** Fixity
    infixLD, infixRD, infixND,

    -- **** Default declaration
    defaultD,

    -- **** Foreign Function Interface (FFI)
    cCall, stdCall, cApi, prim, javaScript,
    unsafe, safe, interruptible, forImpD,

    -- **** Functional dependencies
    funDep,

    -- **** Pragmas
    ruleVar, typedRuleVar,
    valueAnnotation, typeAnnotation, moduleAnnotation,
    pragInlD, pragSpecD, pragSpecInlD, pragSpecInstD, pragRuleD, pragAnnD,
    pragLineD, pragCompleteD,

    -- **** Pattern Synonyms
    patSynD, patSynSigD, unidir, implBidir, explBidir, prefixPatSyn,
    infixPatSyn, recordPatSyn,

    -- **** Implicit Parameters
    implicitParamBindD,

    -- ** Reify
    thisModule,

    -- ** Documentation
    withDecDoc, withDecsDoc, funD_doc, dataD_doc, newtypeD_doc,
    typeDataD_doc, dataInstD_doc, newtypeInstD_doc, patSynD_doc

   ) where

import Language.Haskell.TH.Lib.Internal hiding
  ( tySynD
  , dataD
  , newtypeD
  , typeDataD
  , classD
  , pragRuleD
  , dataInstD
  , newtypeInstD
  , dataFamilyD
  , openTypeFamilyD
  , closedTypeFamilyD
  , tySynEqn
  , forallC

  , forallT
  , sigT

  , plainTV
  , kindedTV
  , starK
  , constraintK

  , noSig
  , kindSig
  , tyVarSig

  , derivClause
  , standaloneDerivWithStrategyD

  , doE
  , mdoE
  , tupE
  , unboxedTupE

  , conP

  , Role
  , InjectivityAnn
  )
import qualified Language.Haskell.TH.Lib.Internal as Internal
import Language.Haskell.TH.Syntax

import Control.Applicative (Applicative(..))
import Foreign.ForeignPtr
import Data.Word
import Prelude hiding (Applicative(..))

-- All definitions below represent the "old" API, since their definitions are
-- different in Language.Haskell.TH.Lib.Internal. Please think carefully before
-- deciding to change the APIs of the functions below, as they represent the
-- public API (as opposed to the Internal module, which has no API promises.)

-------------------------------------------------------------------------------
-- *   Dec

tySynD :: Quote m => Name -> [TyVarBndr BndrVis] -> m Type -> m Dec
tySynD :: forall (m :: * -> *).
Quote m =>
Name -> [TyVarBndr BndrVis] -> m Type -> m Dec
tySynD Name
tc [TyVarBndr BndrVis]
tvs m Type
rhs = do { rhs1 <- m Type
rhs; return (TySynD tc tvs rhs1) }

dataD :: Quote m => m Cxt -> Name -> [TyVarBndr BndrVis] -> Maybe Kind -> [m Con] -> [m DerivClause]
      -> m Dec
dataD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [TyVarBndr BndrVis]
-> Maybe Type
-> [m Con]
-> [m DerivClause]
-> m Dec
dataD m Cxt
ctxt Name
tc [TyVarBndr BndrVis]
tvs Maybe Type
ksig [m Con]
cons [m DerivClause]
derivs =
  do
    ctxt1 <- m Cxt
ctxt
    cons1 <- sequenceA cons
    derivs1 <- sequenceA derivs
    return (DataD ctxt1 tc tvs ksig cons1 derivs1)

newtypeD :: Quote m => m Cxt -> Name -> [TyVarBndr BndrVis] -> Maybe Kind -> m Con -> [m DerivClause]
         -> m Dec
newtypeD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [TyVarBndr BndrVis]
-> Maybe Type
-> m Con
-> [m DerivClause]
-> m Dec
newtypeD m Cxt
ctxt Name
tc [TyVarBndr BndrVis]
tvs Maybe Type
ksig m Con
con [m DerivClause]
derivs =
  do
    ctxt1 <- m Cxt
ctxt
    con1 <- con
    derivs1 <- sequenceA derivs
    return (NewtypeD ctxt1 tc tvs ksig con1 derivs1)

typeDataD :: Quote m => Name -> [TyVarBndr BndrVis] -> Maybe Kind -> [m Con]
      -> m Dec
typeDataD :: forall (m :: * -> *).
Quote m =>
Name -> [TyVarBndr BndrVis] -> Maybe Type -> [m Con] -> m Dec
typeDataD Name
tc [TyVarBndr BndrVis]
tvs Maybe Type
ksig [m Con]
cons =
  do
    cons1 <- [m Con] -> m [Con]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA [m Con]
cons
    return (TypeDataD tc tvs ksig cons1)

classD :: Quote m => m Cxt -> Name -> [TyVarBndr BndrVis] -> [FunDep] -> [m Dec] -> m Dec
classD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name -> [TyVarBndr BndrVis] -> [FunDep] -> [m Dec] -> m Dec
classD m Cxt
ctxt Name
cls [TyVarBndr BndrVis]
tvs [FunDep]
fds [m Dec]
decs =
  do
    decs1 <- [m Dec] -> m [Dec]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA [m Dec]
decs
    ctxt1 <- ctxt
    return $ ClassD ctxt1 cls tvs fds decs1

pragRuleD :: Quote m => String -> [m RuleBndr] -> m Exp -> m Exp -> Phases -> m Dec
pragRuleD :: forall (m :: * -> *).
Quote m =>
String -> [m RuleBndr] -> m Exp -> m Exp -> Phases -> m Dec
pragRuleD String
n [m RuleBndr]
bndrs m Exp
lhs m Exp
rhs Phases
phases
  = do
      bndrs1 <- [m RuleBndr] -> m [RuleBndr]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA [m RuleBndr]
bndrs
      lhs1   <- lhs
      rhs1   <- rhs
      return $ PragmaD $ RuleP n Nothing bndrs1 lhs1 rhs1 phases

dataInstD :: Quote m => m Cxt -> Name -> [m Type] -> Maybe Kind -> [m Con] -> [m DerivClause]
          -> m Dec
dataInstD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [m Type]
-> Maybe Type
-> [m Con]
-> [m DerivClause]
-> m Dec
dataInstD m Cxt
ctxt Name
tc [m Type]
tys Maybe Type
ksig [m Con]
cons [m DerivClause]
derivs =
  do
    ctxt1 <- m Cxt
ctxt
    ty1 <- foldl appT (conT tc) tys
    cons1 <- sequenceA cons
    derivs1 <- sequenceA derivs
    return (DataInstD ctxt1 Nothing ty1 ksig cons1 derivs1)

newtypeInstD :: Quote m => m Cxt -> Name -> [m Type] -> Maybe Kind -> m Con -> [m DerivClause]
             -> m Dec
newtypeInstD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [m Type]
-> Maybe Type
-> m Con
-> [m DerivClause]
-> m Dec
newtypeInstD m Cxt
ctxt Name
tc [m Type]
tys Maybe Type
ksig m Con
con [m DerivClause]
derivs =
  do
    ctxt1 <- m Cxt
ctxt
    ty1 <- foldl appT (conT tc) tys
    con1  <- con
    derivs1 <- sequenceA derivs
    return (NewtypeInstD ctxt1 Nothing ty1 ksig con1 derivs1)

dataFamilyD :: Quote m => Name -> [TyVarBndr BndrVis] -> Maybe Kind -> m Dec
dataFamilyD :: forall (m :: * -> *).
Quote m =>
Name -> [TyVarBndr BndrVis] -> Maybe Type -> m Dec
dataFamilyD Name
tc [TyVarBndr BndrVis]
tvs Maybe Type
kind
    = Dec -> m Dec
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Dec -> m Dec) -> Dec -> m Dec
forall a b. (a -> b) -> a -> b
$ Name -> [TyVarBndr BndrVis] -> Maybe Type -> Dec
DataFamilyD Name
tc [TyVarBndr BndrVis]
tvs Maybe Type
kind

openTypeFamilyD :: Quote m => Name -> [TyVarBndr BndrVis] -> FamilyResultSig
                -> Maybe InjectivityAnn -> m Dec
openTypeFamilyD :: forall (m :: * -> *).
Quote m =>
Name
-> [TyVarBndr BndrVis]
-> FamilyResultSig
-> Maybe InjectivityAnn
-> m Dec
openTypeFamilyD Name
tc [TyVarBndr BndrVis]
tvs FamilyResultSig
res Maybe InjectivityAnn
inj
    = Dec -> m Dec
forall a. a -> m a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Dec -> m Dec) -> Dec -> m Dec
forall a b. (a -> b) -> a -> b
$ TypeFamilyHead -> Dec
OpenTypeFamilyD (Name
-> [TyVarBndr BndrVis]
-> FamilyResultSig
-> Maybe InjectivityAnn
-> TypeFamilyHead
TypeFamilyHead Name
tc [TyVarBndr BndrVis]
tvs FamilyResultSig
res Maybe InjectivityAnn
inj)

closedTypeFamilyD :: Quote m => Name -> [TyVarBndr BndrVis] -> FamilyResultSig
                  -> Maybe InjectivityAnn -> [m TySynEqn] -> m Dec
closedTypeFamilyD :: forall (m :: * -> *).
Quote m =>
Name
-> [TyVarBndr BndrVis]
-> FamilyResultSig
-> Maybe InjectivityAnn
-> [m TySynEqn]
-> m Dec
closedTypeFamilyD Name
tc [TyVarBndr BndrVis]
tvs FamilyResultSig
result Maybe InjectivityAnn
injectivity [m TySynEqn]
eqns =
  do eqns1 <- [m TySynEqn] -> m [TySynEqn]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA [m TySynEqn]
eqns
     return (ClosedTypeFamilyD (TypeFamilyHead tc tvs result injectivity) eqns1)

tySynEqn :: Quote m => (Maybe [TyVarBndr ()]) -> m Type -> m Type -> m TySynEqn
tySynEqn :: forall (m :: * -> *).
Quote m =>
Maybe [TyVarBndr ()] -> m Type -> m Type -> m TySynEqn
tySynEqn Maybe [TyVarBndr ()]
tvs m Type
lhs m Type
rhs =
  do
    lhs1 <- m Type
lhs
    rhs1 <- rhs
    return (TySynEqn tvs lhs1 rhs1)

forallC :: Quote m => [TyVarBndr Specificity] -> m Cxt -> m Con -> m Con
forallC :: forall (m :: * -> *).
Quote m =>
[TyVarBndr Specificity] -> m Cxt -> m Con -> m Con
forallC [TyVarBndr Specificity]
ns m Cxt
ctxt m Con
con = (Cxt -> Con -> Con) -> m Cxt -> m Con -> m Con
forall a b c. (a -> b -> c) -> m a -> m b -> m c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ([TyVarBndr Specificity] -> Cxt -> Con -> Con
ForallC [TyVarBndr Specificity]
ns) m Cxt
ctxt m Con
con

-------------------------------------------------------------------------------
-- *   Type

forallT :: Quote m => [TyVarBndr Specificity] -> m Cxt -> m Type -> m Type
forallT :: forall (m :: * -> *).
Quote m =>
[TyVarBndr Specificity] -> m Cxt -> m Type -> m Type
forallT [TyVarBndr Specificity]
tvars m Cxt
ctxt m Type
ty = do
    ctxt1 <- m Cxt
ctxt
    ty1   <- ty
    return $ ForallT tvars ctxt1 ty1

sigT :: Quote m => m Type -> Kind -> m Type
sigT :: forall (m :: * -> *). Quote m => m Type -> Type -> m Type
sigT m Type
t Type
k
  = do
      t' <- m Type
t
      return $ SigT t' k

-------------------------------------------------------------------------------
-- *   Type variable binders

class DefaultBndrFlag flag where
  defaultBndrFlag :: flag

instance DefaultBndrFlag () where
  defaultBndrFlag :: ()
defaultBndrFlag = ()

instance DefaultBndrFlag Specificity where
  defaultBndrFlag :: Specificity
defaultBndrFlag = Specificity
SpecifiedSpec

instance DefaultBndrFlag BndrVis where
  defaultBndrFlag :: BndrVis
defaultBndrFlag = BndrVis
BndrReq

plainTV :: DefaultBndrFlag flag => Name -> TyVarBndr flag
plainTV :: forall flag. DefaultBndrFlag flag => Name -> TyVarBndr flag
plainTV Name
n = Name -> flag -> TyVarBndr flag
forall flag. Name -> flag -> TyVarBndr flag
PlainTV Name
n flag
forall flag. DefaultBndrFlag flag => flag
defaultBndrFlag

kindedTV :: DefaultBndrFlag flag => Name -> Kind -> TyVarBndr flag
kindedTV :: forall flag. DefaultBndrFlag flag => Name -> Type -> TyVarBndr flag
kindedTV Name
n Type
k = Name -> flag -> Type -> TyVarBndr flag
forall flag. Name -> flag -> Type -> TyVarBndr flag
KindedTV Name
n flag
forall flag. DefaultBndrFlag flag => flag
defaultBndrFlag Type
k

-------------------------------------------------------------------------------
-- *   Kind

starK :: Kind
starK :: Type
starK = Type
StarT

constraintK :: Kind
constraintK :: Type
constraintK = Type
ConstraintT

-------------------------------------------------------------------------------
-- *   Type family result

noSig :: FamilyResultSig
noSig :: FamilyResultSig
noSig = FamilyResultSig
NoSig

kindSig :: Kind -> FamilyResultSig
kindSig :: Type -> FamilyResultSig
kindSig = Type -> FamilyResultSig
KindSig

tyVarSig :: TyVarBndr () -> FamilyResultSig
tyVarSig :: TyVarBndr () -> FamilyResultSig
tyVarSig = TyVarBndr () -> FamilyResultSig
TyVarSig

-------------------------------------------------------------------------------
-- * Top Level Declarations

derivClause :: Quote m => Maybe DerivStrategy -> [m Pred] -> m DerivClause
derivClause :: forall (m :: * -> *).
Quote m =>
Maybe DerivStrategy -> [m Type] -> m DerivClause
derivClause Maybe DerivStrategy
mds [m Type]
p = do
  p' <- [m Type] -> m Cxt
forall (m :: * -> *). Quote m => [m Type] -> m Cxt
cxt [m Type]
p
  return $ DerivClause mds p'

standaloneDerivWithStrategyD :: Quote m => Maybe DerivStrategy -> m Cxt -> m Type -> m Dec
standaloneDerivWithStrategyD :: forall (m :: * -> *).
Quote m =>
Maybe DerivStrategy -> m Cxt -> m Type -> m Dec
standaloneDerivWithStrategyD Maybe DerivStrategy
mds m Cxt
ctxt m Type
ty = do
  ctxt' <- m Cxt
ctxt
  ty'   <- ty
  return $ StandaloneDerivD mds ctxt' ty'

-------------------------------------------------------------------------------
-- * Bytes literals

-- | Create a Bytes datatype representing raw bytes to be embedded into the
-- program/library binary.
--
-- @since 2.16.0.0
mkBytes
   :: ForeignPtr Word8 -- ^ Pointer to the data
   -> Word             -- ^ Offset from the pointer
   -> Word             -- ^ Number of bytes
   -> Bytes
mkBytes :: ForeignPtr Word8 -> Word -> Word -> Bytes
mkBytes = ForeignPtr Word8 -> Word -> Word -> Bytes
Bytes

-------------------------------------------------------------------------------
-- * Tuple expressions

tupE :: Quote m => [m Exp] -> m Exp
tupE :: forall (m :: * -> *). Quote m => [m Exp] -> m Exp
tupE [m Exp]
es = do { es1 <- [m Exp] -> m [Exp]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA [m Exp]
es; return (TupE $ map Just es1)}

unboxedTupE :: Quote m => [m Exp] -> m Exp
unboxedTupE :: forall (m :: * -> *). Quote m => [m Exp] -> m Exp
unboxedTupE [m Exp]
es = do { es1 <- [m Exp] -> m [Exp]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
forall (f :: * -> *) a. Applicative f => [f a] -> f [a]
sequenceA [m Exp]
es; return (UnboxedTupE $ map Just es1)}

-------------------------------------------------------------------------------
-- * Do expressions

doE :: Quote m => [m Stmt] -> m Exp
doE :: forall (m :: * -> *). Quote m => [m Stmt] -> m Exp
doE = Maybe ModName -> [m Stmt] -> m Exp
forall (m :: * -> *). Quote m => Maybe ModName -> [m Stmt] -> m Exp
Internal.doE Maybe ModName
forall a. Maybe a
Nothing

mdoE :: Quote m => [m Stmt] -> m Exp
mdoE :: forall (m :: * -> *). Quote m => [m Stmt] -> m Exp
mdoE = Maybe ModName -> [m Stmt] -> m Exp
forall (m :: * -> *). Quote m => Maybe ModName -> [m Stmt] -> m Exp
Internal.mdoE Maybe ModName
forall a. Maybe a
Nothing

-------------------------------------------------------------------------------
-- * Patterns

conP :: Quote m => Name -> [m Pat] -> m Pat
conP :: forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP Name
n [m Pat]
xs = Name -> [m Type] -> [m Pat] -> m Pat
forall (m :: * -> *).
Quote m =>
Name -> [m Type] -> [m Pat] -> m Pat
Internal.conP Name
n [] [m Pat]
xs