{-# LANGUAGE Safe #-} -- | -- Module : Data.Traversable -- Copyright : Conor McBride and Ross Paterson 2005 -- License : BSD-style (see the LICENSE file in the distribution) -- -- Maintainer : libraries@haskell.org -- Stability : stable -- Portability : portable -- -- Class of data structures that can be traversed from left to right, -- performing an action on each element. Instances are expected to satisfy -- the listed [laws](#laws). module Data.Traversable ( -- * The 'Traversable' class Traversable(..), -- * Utility functions for, forM, forAccumM, mapAccumL, mapAccumR, mapAccumM, -- * General definitions for superclass methods fmapDefault, foldMapDefault, -- * Overview -- $overview -- ** The 'traverse' and 'mapM' methods -- $traverse -- *** Their 'Foldable', just the effects, analogues. -- $effectful -- *** Result multiplicity -- $multiplicity -- ** The 'sequenceA' and 'sequence' methods -- $sequence -- *** Care with default method implementations -- $seqdefault -- *** Monadic short circuits -- $seqshort -- ** Example binary tree instance -- $tree_instance -- *** Pre-order and post-order tree traversal -- $tree_order -- ** Making construction intuitive -- -- $construction -- * Advanced traversals -- $advanced -- *** Coercion -- $coercion -- ** Identity: the 'fmapDefault' function -- $identity -- ** State: the 'mapAccumL', 'mapAccumR' functions -- $stateful -- ** Const: the 'foldMapDefault' function -- $phantom -- ** ZipList: transposing lists of lists -- $ziplist -- * Laws -- -- $laws -- * See also -- $also ) where import GHC.Internal.Data.Traversable -- $overview -- -- #overview# -- Traversable structures support element-wise sequencing of 'Applicative' -- effects (thus also 'Monad' effects) to construct new structures of -- __the same shape__ as the input. -- -- To illustrate what is meant by /same shape/, if the input structure is -- __@[a]@__, each output structure is a list __@[b]@__ of the same length as -- the input. If the input is a __@Tree a@__, each output __@Tree b@__ has the -- same graph of intermediate nodes and leaves. Similarly, if the input is a -- 2-tuple __@(x, a)@__, each output is a 2-tuple __@(x, b)@__, and so forth. -- -- It is in fact possible to decompose a traversable structure __@t a@__ into -- its shape (a.k.a. /spine/) of type __@t ()@__ and its element list -- __@[a]@__. The original structure can be faithfully reconstructed from its -- spine and element list. -- -- The implementation of a @Traversable@ instance for a given structure follows -- naturally from its type; see the [Construction](#construction) section for -- details. -- Instances must satisfy the laws listed in the [Laws section](#laws). -- The diverse uses of @Traversable@ structures result from the many possible -- choices of Applicative effects. -- See the [Advanced Traversals](#advanced) section for some examples. -- -- Every @Traversable@ structure is both a 'Functor' and 'Foldable' because it -- is possible to implement the requisite instances in terms of 'traverse' by -- using 'fmapDefault' for 'fmap' and 'foldMapDefault' for 'foldMap'. Direct -- fine-tuned implementations of these superclass methods can in some cases be -- more efficient. ------------------ -- $traverse -- For an 'Applicative' functor __@f@__ and a @Traversable@ functor __@t@__, -- the type signatures of 'traverse' and 'fmap' are rather similar: -- -- > fmap :: (a -> f b) -> t a -> t (f b) -- > traverse :: (a -> f b) -> t a -> f (t b) -- -- The key difference is that 'fmap' produces a structure whose elements (of -- type __@f b@__) are individual effects, while 'traverse' produces an -- aggregate effect yielding structures of type __@t b@__. -- -- For example, when __@f@__ is the __@IO@__ monad, and __@t@__ is __@List@__, -- 'fmap' yields a list of IO actions, whereas 'traverse' constructs an IO -- action that evaluates to a list of the return values of the individual -- actions performed left-to-right. -- -- > traverse :: (a -> IO b) -> [a] -> IO [b] -- -- The 'mapM' function is a specialisation of 'traverse' to the case when -- __@f@__ is a 'Monad'. For monads, 'mapM' is more idiomatic than 'traverse'. -- The two are otherwise generally identical (though 'mapM' may be specifically -- optimised for monads, and could be more efficient than using the more -- general 'traverse'). -- -- > traverse :: (Applicative f, Traversable t) => (a -> f b) -> t a -> f (t b) -- > mapM :: (Monad m, Traversable t) => (a -> m b) -> t a -> m (t b) -- -- When the traversable term is a simple variable or expression, and the -- monadic action to run is a non-trivial do block, it can be more natural to -- write the action last. This idiom is supported by 'for', 'forM', and -- 'forAccumM' which are the flipped versions of 'traverse', 'mapM', and -- 'mapAccumM' respectively. ------------------ -- $multiplicity -- -- #multiplicity# -- When 'traverse' or 'mapM' is applied to an empty structure __@ts@__ (one for -- which __@'null' ts@__ is 'True') the return value is __@pure ts@__ -- regardless of the provided function __@g :: a -> f b@__. It is not possible -- to apply the function when no values of type __@a@__ are available, but its -- type determines the relevant instance of 'pure'. -- -- prop> null ts ==> traverse g ts == pure ts -- -- Otherwise, when __@ts@__ is non-empty and at least one value of type __@b@__ -- results from each __@f a@__, the structures __@t b@__ have /the same shape/ -- (list length, graph of tree nodes, ...) as the input structure __@t a@__, -- but the slots previously occupied by elements of type __@a@__ now hold -- elements of type __@b@__. -- -- A single traversal may produce one, zero or many such structures. The zero -- case happens when one of the effects __@f a@__ sequenced as part of the -- traversal yields no replacement values. Otherwise, the many case happens -- when one of sequenced effects yields multiple values. -- -- The 'traverse' function does not perform selective filtering of slots in the -- output structure as with e.g. 'Data.Maybe.mapMaybe'. -- -- >>> let incOdd n = if odd n then Just $ n + 1 else Nothing -- >>> mapMaybe incOdd [1, 2, 3] -- [2,4] -- >>> traverse incOdd [1, 3, 5] -- Just [2,4,6] -- >>> traverse incOdd [1, 2, 3] -- Nothing -- -- In the above examples, with 'Maybe' as the 'Applicative' __@f@__, we see -- that the number of __@t b@__ structures produced by 'traverse' may differ -- from one: it is zero when the result short-circuits to __@Nothing@__. The -- same can happen when __@f@__ is __@List@__ and the result is __@[]@__, or -- __@f@__ is __@Either e@__ and the result is __@Left (x :: e)@__, or perhaps -- the 'Control.Applicative.empty' value of some -- 'Control.Applicative.Alternative' functor. -- -- When __@f@__ is e.g. __@List@__, and the map __@g :: a -> [b]@__ returns -- more than one value for some inputs __@a@__ (and at least one for all -- __@a@__), the result of __@mapM g ts@__ will contain multiple structures of -- the same shape as __@ts@__: -- -- prop> length (mapM g ts) == product (fmap (length . g) ts) -- -- For example: -- -- >>> length $ mapM (\n -> [1..n]) [1..6] -- 720 -- >>> product $ length . (\n -> [1..n]) <$> [1..6] -- 720 -- -- In other words, a traversal with a function __@g :: a -> [b]@__, over an -- input structure __@t a@__, yields a list __@[t b]@__, whose length is the -- product of the lengths of the lists that @g@ returns for each element of the -- input structure! The individual elements __@a@__ of the structure are -- replaced by each element of __@g a@__ in turn: -- -- >>> mapM (\n -> [1..n]) $ Just 3 -- [Just 1,Just 2,Just 3] -- >>> mapM (\n -> [1..n]) [1..3] -- [[1,1,1],[1,1,2],[1,1,3],[1,2,1],[1,2,2],[1,2,3]] -- -- If any element of the structure __@t a@__ is mapped by @g@ to an empty list, -- then the entire aggregate result is empty, because no value is available to -- fill one of the slots of the output structure: -- -- >>> mapM (\n -> [1..n]) $ [0..6] -- [1..0] is empty -- [] ------------------ -- $effectful -- #effectful# -- -- The 'traverse' and 'mapM' methods have analogues in the "Data.Foldable" -- module. These are 'traverse_' and 'mapM_', and their flipped variants -- 'for_' and 'forM_', respectively. The result type is __@f ()@__, they don't -- return an updated structure, and can be used to sequence effects over all -- the elements of a @Traversable@ (any 'Foldable') structure just for their -- side-effects. -- -- If the @Traversable@ structure is empty, the result is __@pure ()@__. When -- effects short-circuit, the __@f ()@__ result may, for example, be 'Nothing' -- if __@f@__ is 'Maybe', or __@'Left' e@__ when it is __@'Either' e@__. -- -- It is perhaps worth noting that 'Maybe' is not only a potential -- 'Applicative' functor for the return value of the first argument of -- 'traverse', but is also itself a 'Traversable' structure with either zero or -- one element. A convenient idiom for conditionally executing an action just -- for its effects on a 'Just' value, and doing nothing otherwise is: -- -- > -- action :: Monad m => a -> m () -- > -- mvalue :: Maybe a -- > mapM_ action mvalue -- :: m () -- -- which is more concise than: -- -- > maybe (return ()) action mvalue -- -- The 'mapM_' idiom works verbatim if the type of __@mvalue@__ is later -- refactored from __@Maybe a@__ to __@Either e a@__ (assuming it remains OK to -- silently do nothing in the 'Left' case). ------------------ -- $sequence -- -- #sequence# -- The 'sequenceA' and 'sequence' methods are useful when what you have is a -- container of pending applicative or monadic effects, and you want to combine -- them into a single effect that produces zero or more containers with the -- computed values. -- -- > sequenceA :: (Applicative f, Traversable t) => t (f a) -> f (t a) -- > sequence :: (Monad m, Traversable t) => t (m a) -> m (t a) -- > sequenceA = traverse id -- default definition -- > sequence = sequenceA -- default definition -- -- When the monad __@m@__ is 'System.IO.IO', applying 'sequence' to a list of -- IO actions, performs each in turn, returning a list of the results: -- -- > sequence [putStr "Hello ", putStrLn "World!"] -- > = (\a b -> [a,b]) <$> putStr "Hello " <*> putStrLn "World!" -- > = do u1 <- putStr "Hello " -- > u2 <- putStrLn "World!" -- > return [u1, u2] -- In this case [(), ()] -- -- For 'sequenceA', the /non-deterministic/ behaviour of @List@ is most easily -- seen in the case of a list of lists (of elements of some common fixed type). -- The result is a cross-product of all the sublists: -- -- >>> sequenceA [[0, 1, 2], [30, 40], [500]] -- [[0,30,500],[0,40,500],[1,30,500],[1,40,500],[2,30,500],[2,40,500]] -- -- Because the input list has three (sublist) elements, the result is a list of -- triples (/same shape/). ------------------ -- $seqshort -- -- #seqshort# -- When the monad __@m@__ is 'Either' or 'Maybe' (more generally any -- 'Control.Monad.MonadPlus'), the effect in question is to short-circuit the -- result on encountering 'Left' or 'Nothing' (more generally -- 'Control.Monad.mzero'). -- -- >>> sequence [Just 1,Just 2,Just 3] -- Just [1,2,3] -- >>> sequence [Just 1,Nothing,Just 3] -- Nothing -- >>> sequence [Right 1,Right 2,Right 3] -- Right [1,2,3] -- >>> sequence [Right 1,Left "sorry",Right 3] -- Left "sorry" -- -- The result of 'sequence' is all-or-nothing, either structures of exactly the -- same shape as the input or none at all. The 'sequence' function does not -- perform selective filtering as with e.g. 'Data.Maybe.catMaybes' or -- 'Data.Either.rights': -- -- >>> catMaybes [Just 1,Nothing,Just 3] -- [1,3] -- >>> rights [Right 1,Left "sorry",Right 3] -- [1,3] ------------------ -- $seqdefault -- -- #seqdefault# -- The 'traverse' method has a default implementation in terms of 'sequenceA': -- -- > traverse g = sequenceA . fmap g -- -- but relying on this default implementation is not recommended, it requires -- that the structure is already independently a 'Functor'. The definition of -- 'sequenceA' in terms of __@traverse id@__ is much simpler than 'traverse' -- expressed via a composition of 'sequenceA' and 'fmap'. Instances should -- generally implement 'traverse' explicitly. It may in some cases also make -- sense to implement a specialised 'mapM'. -- -- Because 'fmapDefault' is defined in terms of 'traverse' (whose default -- definition in terms of 'sequenceA' uses 'fmap'), you must not use -- 'fmapDefault' to define the @Functor@ instance if the @Traversable@ instance -- directly defines only 'sequenceA'. ------------------ -- $tree_instance -- -- #tree# -- The definition of a 'Traversable' instance for a binary tree is rather -- similar to the corresponding instance of 'Functor', given the data type: -- -- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) -- -- a canonical @Functor@ instance would be -- -- > instance Functor Tree where -- > fmap g Empty = Empty -- > fmap g (Leaf x) = Leaf (g x) -- > fmap g (Node l k r) = Node (fmap g l) (g k) (fmap g r) -- -- a canonical @Traversable@ instance would be -- -- > instance Traversable Tree where -- > traverse g Empty = pure Empty -- > traverse g (Leaf x) = Leaf <$> g x -- > traverse g (Node l k r) = Node <$> traverse g l <*> g k <*> traverse g r -- -- This definition works for any __@g :: a -> f b@__, with __@f@__ an -- Applicative functor, as the laws for @('<*>')@ imply the requisite -- associativity. -- -- We can add an explicit non-default 'mapM' if desired: -- -- > mapM g Empty = return Empty -- > mapM g (Leaf x) = Leaf <$> g x -- > mapM g (Node l k r) = do -- > ml <- mapM g l -- > mk <- g k -- > mr <- mapM g r -- > return $ Node ml mk mr -- -- See [Construction](#construction) below for a more detailed exploration of -- the general case, but as mentioned in [Overview](#overview) above, instance -- definitions are typically rather simple, all the interesting behaviour is a -- result of an interesting choice of 'Applicative' functor for a traversal. -- $tree_order -- -- It is perhaps worth noting that the traversal defined above gives an -- /in-order/ sequencing of the elements. If instead you want either -- /pre-order/ (parent first, then child nodes) or post-order (child nodes -- first, then parent) sequencing, you can define the instance accordingly: -- -- > inOrderNode :: Tree a -> a -> Tree a -> Tree a -- > inOrderNode l x r = Node l x r -- > -- > preOrderNode :: a -> Tree a -> Tree a -> Tree a -- > preOrderNode x l r = Node l x r -- > -- > postOrderNode :: Tree a -> Tree a -> a -> Tree a -- > postOrderNode l r x = Node l x r -- > -- > -- Traversable instance with in-order traversal -- > instance Traversable Tree where -- > traverse g t = case t of -- > Empty -> pure Empty -- > Leaf x -> Leaf <$> g x -- > Node l x r -> inOrderNode <$> traverse g l <*> g x <*> traverse g r -- > -- > -- Traversable instance with pre-order traversal -- > instance Traversable Tree where -- > traverse g t = case t of -- > Empty -> pure Empty -- > Leaf x -> Leaf <$> g x -- > Node l x r -> preOrderNode <$> g x <*> traverse g l <*> traverse g r -- > -- > -- Traversable instance with post-order traversal -- > instance Traversable Tree where -- > traverse g t = case t of -- > Empty -> pure Empty -- > Leaf x -> Leaf <$> g x -- > Node l x r -> postOrderNode <$> traverse g l <*> traverse g r <*> g x -- -- Since the same underlying Tree structure is used in all three cases, it is -- possible to use @newtype@ wrappers to make all three available at the same -- time! The user need only wrap the root of the tree in the appropriate -- @newtype@ for the desired traversal order. Tne associated instance -- definitions are shown below (see [coercion](#coercion) if unfamiliar with -- the use of 'coerce' in the sample code): -- -- > {-# LANGUAGE ScopedTypeVariables, TypeApplications #-} -- > -- > -- Default in-order traversal -- > -- > import Data.Coerce (coerce) -- > import Data.Traversable -- > -- > data Tree a = Empty | Leaf a | Node (Tree a) a (Tree a) -- > instance Functor Tree where fmap = fmapDefault -- > instance Foldable Tree where foldMap = foldMapDefault -- > -- > instance Traversable Tree where -- > traverse _ Empty = pure Empty -- > traverse g (Leaf a) = Leaf <$> g a -- > traverse g (Node l a r) = Node <$> traverse g l <*> g a <*> traverse g r -- > -- > -- Optional pre-order traversal -- > -- > newtype PreOrderTree a = PreOrderTree (Tree a) -- > instance Functor PreOrderTree where fmap = fmapDefault -- > instance Foldable PreOrderTree where foldMap = foldMapDefault -- > -- > instance Traversable PreOrderTree where -- > traverse _ (PreOrderTree Empty) = pure $ preOrderEmpty -- > traverse g (PreOrderTree (Leaf x)) = preOrderLeaf <$> g x -- > traverse g (PreOrderTree (Node l x r)) = preOrderNode -- > <$> g x -- > <*> traverse g (coerce l) -- > <*> traverse g (coerce r) -- > -- > preOrderEmpty :: forall a. PreOrderTree a -- > preOrderEmpty = coerce (Empty @a) -- > preOrderLeaf :: forall a. a -> PreOrderTree a -- > preOrderLeaf = coerce (Leaf @a) -- > preOrderNode :: a -> PreOrderTree a -> PreOrderTree a -> PreOrderTree a -- > preOrderNode x l r = coerce (Node (coerce l) x (coerce r)) -- > -- > -- Optional post-order traversal -- > -- > newtype PostOrderTree a = PostOrderTree (Tree a) -- > instance Functor PostOrderTree where fmap = fmapDefault -- > instance Foldable PostOrderTree where foldMap = foldMapDefault -- > -- > instance Traversable PostOrderTree where -- > traverse _ (PostOrderTree Empty) = pure postOrderEmpty -- > traverse g (PostOrderTree (Leaf x)) = postOrderLeaf <$> g x -- > traverse g (PostOrderTree (Node l x r)) = postOrderNode -- > <$> traverse g (coerce l) -- > <*> traverse g (coerce r) -- > <*> g x -- > -- > postOrderEmpty :: forall a. PostOrderTree a -- > postOrderEmpty = coerce (Empty @a) -- > postOrderLeaf :: forall a. a -> PostOrderTree a -- > postOrderLeaf = coerce (Leaf @a) -- > postOrderNode :: PostOrderTree a -> PostOrderTree a -> a -> PostOrderTree a -- > postOrderNode l r x = coerce (Node (coerce l) x (coerce r)) -- -- With the above, given a sample tree: -- -- > inOrder :: Tree Int -- > inOrder = Node (Node (Leaf 10) 3 (Leaf 20)) 5 (Leaf 42) -- -- we have: -- -- > import Data.Foldable (toList) -- > print $ toList inOrder -- > [10,3,20,5,42] -- > -- > print $ toList (coerce inOrder :: PreOrderTree Int) -- > [5,3,10,20,42] -- > -- > print $ toList (coerce inOrder :: PostOrderTree Int) -- > [10,20,3,42,5] -- -- You would typically define instances for additional common type classes, -- such as 'Eq', 'Ord', 'Show', etc. ------------------ -- $construction -- -- #construction# -- In order to be able to reason about how a given type of 'Applicative' -- effects will be sequenced through a general 'Traversable' structure by its -- 'traversable' and related methods, it is helpful to look more closely -- at how a general 'traverse' method is implemented. We'll look at how -- general traversals are constructed primarily with a view to being able -- to predict their behaviour as a user, even if you're not defining your -- own 'Traversable' instances. -- -- Traversable structures __@t a@__ are assembled incrementally from their -- constituent parts, perhaps by prepending or appending individual elements of -- type __@a@__, or, more generally, by recursively combining smaller composite -- traversable building blocks that contain multiple such elements. -- -- As in the [tree example](#tree) above, the components being combined are -- typically pieced together by a suitable /constructor/, i.e. a function -- taking two or more arguments that returns a composite value. -- -- The 'traverse' method enriches simple incremental construction with -- threading of 'Applicative' effects of some function __@g :: a -> f b@__. -- -- The basic building blocks we'll use to model the construction of 'traverse' -- are a hypothetical set of elementary functions, some of which may have -- direct analogues in specific @Traversable@ structures. For example, the -- __@(':')@__ constructor is an analogue for lists of @prepend@ or the more -- general @combine@. -- -- > empty :: t a -- build an empty container -- > singleton :: a -> t a -- build a one-element container -- > prepend :: a -> t a -> t a -- extend by prepending a new initial element -- > append :: t a -> a -> t a -- extend by appending a new final element -- > combine :: a1 -> a2 -> ... -> an -> t a -- combine multiple inputs -- -- * An empty structure has no elements of type __@a@__, so there's nothing -- to which __@g@__ can be applied, but since we need an output of type -- __@f (t b)@__, we just use the 'pure' instance of __@f@__ to wrap an -- empty of type __@t b@__: -- -- > traverse _ (empty :: t a) = pure (empty :: t b) -- -- With the List monad, /empty/ is __@[]@__, while with 'Maybe' it is -- 'Nothing'. With __@Either e a@__ we have an /empty/ case for each -- value of __@e@__: -- -- > traverse _ (Left e :: Either e a) = pure $ (Left e :: Either e b) -- -- * A singleton structure has just one element of type __@a@__, and -- 'traverse' can take that __@a@__, apply __@g :: a -> f b@__ getting an -- __@f b@__, then __@fmap singleton@__ over that, getting an __@f (t b)@__ -- as required: -- -- > traverse g (singleton a) = fmap singleton $ g a -- -- Note that if __@f@__ is __@List@__ and __@g@__ returns multiple values -- the result will be a list of multiple __@t b@__ singletons! -- -- Since 'Maybe' and 'Either' are either empty or singletons, we have -- -- > traverse _ Nothing = pure Nothing -- > traverse g (Just a) = Just <$> g a -- -- > traverse _ (Left e) = pure (Left e) -- > traverse g (Right a) = Right <$> g a -- -- For @List@, empty is __@[]@__ and @singleton@ is __@(:[])@__, so we have: -- -- > traverse _ [] = pure [] -- > traverse g [a] = fmap (:[]) (g a) -- > = (:) <$> (g a) <*> traverse g [] -- > = liftA2 (:) (g a) (traverse g []) -- -- * When the structure is built by adding one more element via __@prepend@__ -- or __@append@__, traversal amounts to: -- -- > traverse g (prepend a t0) = prepend <$> (g a) <*> traverse g t0 -- > = liftA2 prepend (g a) (traverse g t0) -- -- > traverse g (append t0 a) = append <$> traverse g t0 <*> g a -- > = liftA2 append (traverse g t0) (g a) -- -- The origin of the combinatorial product when __@f@__ is @List@ should now -- be apparent, when __@traverse g t0@__ has __@n@__ elements and __@g a@__ -- has __@m@__ elements, the /non-deterministic/ 'Applicative' instance of -- @List@ will produce a result with __@m * n@__ elements. -- -- * When combining larger building blocks, we again use __@('<*>')@__ to -- combine the traversals of the components. With bare elements __@a@__ -- mapped to __@f b@__ via __@g@__, and composite traversable -- sub-structures transformed via __@traverse g@__: -- -- > traverse g (combine a1 a2 ... an) = -- > combine <$> t1 <*> t2 <*> ... <*> tn -- > where -- > t1 = g a1 -- if a1 fills a slot of type @a@ -- > = traverse g a1 -- if a1 is a traversable substructure -- > ... ditto for the remaining constructor arguments ... -- -- The above definitions sequence the 'Applicative' effects of __@f@__ in the -- expected order while producing results of the expected shape __@t@__. -- -- For lists this becomes: -- -- > traverse g [] = pure [] -- > traverse g (x:xs) = liftA2 (:) (g a) (traverse g xs) -- -- The actual definition of 'traverse' for lists is an equivalent -- right fold in order to facilitate list /fusion/. -- -- > traverse g = foldr (\x r -> liftA2 (:) (g x) r) (pure []) ------------------ -- $advanced -- -- #advanced# -- In the sections below we'll examine some advanced choices of 'Applicative' -- effects that give rise to very different transformations of @Traversable@ -- structures. -- -- These examples cover the implementations of 'fmapDefault', 'foldMapDefault', -- 'mapAccumL' and 'mapAccumR' functions illustrating the use of 'Identity', -- 'Const' and stateful 'Applicative' effects. The [ZipList](#ziplist) example -- illustrates the use of a less-well known 'Applicative' instance for lists. -- -- This is optional material, which is not essential to a basic understanding of -- @Traversable@ structures. If this is your first encounter with @Traversable@ -- structures, you can come back to these at a later date. -- $coercion -- -- #coercion# -- Some of the examples make use of an advanced Haskell feature, namely -- @newtype@ /coercion/. This is done for two reasons: -- -- * Use of 'coerce' makes it possible to avoid cluttering the code with -- functions that wrap and unwrap /newtype/ terms, which at runtime are -- indistinguishable from the underlying value. Coercion is particularly -- convenient when one would have to otherwise apply multiple newtype -- constructors to function arguments, and then peel off multiple layers -- of same from the function output. -- -- * Use of 'coerce' can produce more efficient code, by reusing the original -- value, rather than allocating space for a wrapped clone. -- -- If you're not familiar with 'coerce', don't worry, it is just a shorthand -- that, e.g., given: -- -- > newtype Foo a = MkFoo { getFoo :: a } -- > newtype Bar a = MkBar { getBar :: a } -- > newtype Baz a = MkBaz { getBaz :: a } -- > f :: Baz Int -> Bar (Foo String) -- -- makes it possible to write: -- -- > x :: Int -> String -- > x = coerce f -- -- instead of -- -- > x = getFoo . getBar . f . MkBaz ------------------ -- $identity -- -- #identity# -- The simplest Applicative functor is 'Identity', which just wraps and unwraps -- pure values and function application. This allows us to define -- 'fmapDefault': -- -- > {-# LANGUAGE ScopedTypeVariables, TypeApplications #-} -- > import Data.Coercible (coerce) -- > -- > fmapDefault :: forall t a b. Traversable t => (a -> b) -> t a -> t b -- > fmapDefault = coerce (traverse @t @Identity @a @b) -- -- The use of [coercion](#coercion) avoids the need to explicitly wrap and -- unwrap terms via 'Identity' and 'runIdentity'. -- -- As noted in [Overview](#overview), 'fmapDefault' can only be used to define -- the requisite 'Functor' instance of a 'Traversable' structure when the -- 'traverse' method is explicitly implemented. An infinite loop would result -- if in addition 'traverse' were defined in terms of 'sequenceA' and 'fmap'. ------------------ -- $stateful -- -- #stateful# -- Applicative functors that thread a changing state through a computation are -- an interesting use-case for 'traverse'. The 'mapAccumL' and 'mapAccumR' -- functions in this module are each defined in terms of such traversals. -- -- We first define a simplified (not a monad transformer) version of -- 'Control.Monad.Trans.State.State' that threads a state __@s@__ through a -- chain of computations left to right. Its @('<*>')@ operator passes the -- input state first to its left argument, and then the resulting state is -- passed to its right argument, which returns the final state. -- -- > newtype StateL s a = StateL { runStateL :: s -> (s, a) } -- > -- > instance Functor (StateL s) where -- > fmap f (StateL kx) = StateL $ \ s -> -- > let (s', x) = kx s in (s', f x) -- > -- > instance Applicative (StateL s) where -- > pure a = StateL $ \s -> (s, a) -- > (StateL kf) <*> (StateL kx) = StateL $ \ s -> -- > let { (s', f) = kf s -- > ; (s'', x) = kx s' } in (s'', f x) -- > liftA2 f (StateL kx) (StateL ky) = StateL $ \ s -> -- > let { (s', x) = kx s -- > ; (s'', y) = ky s' } in (s'', f x y) -- -- With @StateL@, we can define 'mapAccumL' as follows: -- -- > {-# LANGUAGE ScopedTypeVariables, TypeApplications #-} -- > mapAccumL :: forall t s a b. Traversable t -- > => (s -> a -> (s, b)) -> s -> t a -> (s, t b) -- > mapAccumL g s ts = coerce (traverse @t @(StateL s) @a @b) (flip g) ts s -- -- The use of [coercion](#coercion) avoids the need to explicitly wrap and -- unwrap __@newtype@__ terms. -- -- The type of __@flip g@__ is coercible to __@a -> StateL b@__, which makes it -- suitable for use with 'traverse'. As part of the Applicative -- [construction](#construction) of __@StateL (t b)@__ the state updates will -- thread left-to-right along the sequence of elements of __@t a@__. -- -- While 'mapAccumR' has a type signature identical to 'mapAccumL', it differs -- in the expected order of evaluation of effects, which must take place -- right-to-left. -- -- For this we need a variant control structure @StateR@, which threads the -- state right-to-left, by passing the input state to its right argument and -- then using the resulting state as an input to its left argument: -- -- > newtype StateR s a = StateR { runStateR :: s -> (s, a) } -- > -- > instance Functor (StateR s) where -- > fmap f (StateR kx) = StateR $ \s -> -- > let (s', x) = kx s in (s', f x) -- > -- > instance Applicative (StateR s) where -- > pure a = StateR $ \s -> (s, a) -- > (StateR kf) <*> (StateR kx) = StateR $ \ s -> -- > let { (s', x) = kx s -- > ; (s'', f) = kf s' } in (s'', f x) -- > liftA2 f (StateR kx) (StateR ky) = StateR $ \ s -> -- > let { (s', y) = ky s -- > ; (s'', x) = kx s' } in (s'', f x y) -- -- With @StateR@, we can define 'mapAccumR' as follows: -- -- > {-# LANGUAGE ScopedTypeVariables, TypeApplications #-} -- > mapAccumR :: forall t s a b. Traversable t -- > => (s -> a -> (s, b)) -> s -> t a -> (s, t b) -- > mapAccumR g s0 ts = coerce (traverse @t @(StateR s) @a @b) (flip g) ts s0 -- -- The use of [coercion](#coercion) avoids the need to explicitly wrap and -- unwrap __@newtype@__ terms. -- -- Various stateful traversals can be constructed from 'mapAccumL' and -- 'mapAccumR' for suitable choices of @g@, or built directly along similar -- lines. ------------------ -- $phantom -- -- #phantom# -- The 'Const' Functor enables applications of 'traverse' that summarise the -- input structure to an output value without constructing any output values -- of the same type or shape. -- -- As noted [above](#overview), the @Foldable@ superclass constraint is -- justified by the fact that it is possible to construct 'foldMap', 'foldr', -- etc., from 'traverse'. The technique used is useful in its own right, and -- is explored below. -- -- A key feature of folds is that they can reduce the input structure to a -- summary value. Often neither the input structure nor a mutated clone is -- needed once the fold is computed, and through list fusion the input may not -- even have been memory resident in its entirety at the same time. -- -- The 'traverse' method does not at first seem to be a suitable building block -- for folds, because its return value __@f (t b)@__ appears to retain mutated -- copies of the input structure. But the presence of __@t b@__ in the type -- signature need not mean that terms of type __@t b@__ are actually embedded -- in __@f (t b)@__. The simplest way to elide the excess terms is by basing -- the Applicative functor used with 'traverse' on 'Const'. -- -- Not only does __@Const a b@__ hold just an __@a@__ value, with the __@b@__ -- parameter merely a /phantom/ type, but when __@m@__ has a 'Monoid' instance, -- __@Const m@__ is an 'Applicative' functor: -- -- > import Data.Coerce (coerce) -- > newtype Const a b = Const { getConst :: a } deriving (Eq, Ord, Show) -- etc. -- > instance Functor (Const m) where fmap = const coerce -- > instance Monoid m => Applicative (Const m) where -- > pure _ = Const mempty -- > (<*>) = coerce (mappend :: m -> m -> m) -- > liftA2 _ = coerce (mappend :: m -> m -> m) -- -- The use of [coercion](#coercion) avoids the need to explicitly wrap and -- unwrap __@newtype@__ terms. -- -- We can therefore define a specialisation of 'traverse': -- -- > {-# LANGUAGE ScopedTypeVariables, TypeApplications #-} -- > traverseC :: forall t a m. (Monoid m, Traversable t) -- > => (a -> Const m ()) -> t a -> Const m (t ()) -- > traverseC = traverse @t @(Const m) @a @() -- -- For which the Applicative [construction](#construction) of 'traverse' -- leads to: -- -- prop> null ts ==> traverseC g ts = Const mempty -- prop> traverseC g (prepend x xs) = Const (g x) <> traverseC g xs -- -- In other words, this makes it possible to define: -- -- > {-# LANGUAGE ScopedTypeVariables, TypeApplications #-} -- > foldMapDefault :: forall t a m. (Monoid m, Traversable t) => (a -> m) -> t a -> m -- > foldMapDefault = coerce (traverse @t @(Const m) @a @()) -- -- Which is sufficient to define a 'Foldable' superclass instance: -- -- The use of [coercion](#coercion) avoids the need to explicitly wrap and -- unwrap __@newtype@__ terms. -- -- > instance Traversable t => Foldable t where foldMap = foldMapDefault -- -- It may however be instructive to also directly define candidate default -- implementations of 'foldr' and 'foldl'', which take a bit more machinery -- to construct: -- -- > {-# LANGUAGE ScopedTypeVariables, TypeApplications #-} -- > import Data.Coerce (coerce) -- > import Data.Functor.Const (Const(..)) -- > import Data.Semigroup (Dual(..), Endo(..)) -- > import GHC.Exts (oneShot) -- > -- > foldrDefault :: forall t a b. Traversable t -- > => (a -> b -> b) -> b -> t a -> b -- > foldrDefault f z = \t -> -- > coerce (traverse @t @(Const (Endo b)) @a @()) f t z -- > -- > foldlDefault' :: forall t a b. Traversable t => (b -> a -> b) -> b -> t a -> b -- > foldlDefault' f z = \t -> -- > coerce (traverse @t @(Const (Dual (Endo b))) @a @()) f' t z -- > where -- > f' :: a -> b -> b -- > f' a = oneShot $ \ b -> b `seq` f b a -- -- In the above we're using the __@'Data.Monoid.Endo' b@__ 'Monoid' and its -- 'Dual' to compose a sequence of __@b -> b@__ accumulator updates in either -- left-to-right or right-to-left order. -- -- The use of 'seq' in the definition of __@foldlDefault'@__ ensures strictness -- in the accumulator. -- -- The use of [coercion](#coercion) avoids the need to explicitly wrap and -- unwrap __@newtype@__ terms. -- -- The 'GHC.Exts.oneShot' function gives a hint to the compiler that aids in -- correct optimisation of lambda terms that fire at most once (for each -- element __@a@__) and so should not try to pre-compute and re-use -- subexpressions that pay off only on repeated execution. Otherwise, it is -- just the identity function. ------------------ -- $ziplist -- -- #ziplist# -- As a warm-up for looking at the 'ZipList' 'Applicative' functor, we'll first -- look at a simpler analogue. First define a fixed width 2-element @Vec2@ -- type, whose 'Applicative' instance combines a pair of functions with a pair of -- values by applying each function to the corresponding value slot: -- -- > data Vec2 a = Vec2 a a -- > instance Functor Vec2 where -- > fmap f (Vec2 a b) = Vec2 (f a) (f b) -- > instance Applicative Vec2 where -- > pure x = Vec2 x x -- > liftA2 f (Vec2 a b) (Vec2 p q) = Vec2 (f a p) (f b q) -- > instance Foldable Vec2 where -- > foldr f z (Vec2 a b) = f a (f b z) -- > foldMap f (Vec2 a b) = f a <> f b -- > instance Traversable Vec2 where -- > traverse f (Vec2 a b) = Vec2 <$> f a <*> f b -- -- Along with a similar definition for fixed width 3-element vectors: -- -- > data Vec3 a = Vec3 a a a -- > instance Functor Vec3 where -- > fmap f (Vec3 x y z) = Vec3 (f x) (f y) (f z) -- > instance Applicative Vec3 where -- > pure x = Vec3 x x x -- > liftA2 f (Vec3 p q r) (Vec3 x y z) = Vec3 (f p x) (f q y) (f r z) -- > instance Foldable Vec3 where -- > foldr f z (Vec3 a b c) = f a (f b (f c z)) -- > foldMap f (Vec3 a b c) = f a <> f b <> f c -- > instance Traversable Vec3 where -- > traverse f (Vec3 a b c) = Vec3 <$> f a <*> f b <*> f c -- -- With the above definitions, @'sequenceA'@ (same as @'traverse' 'id'@) acts -- as a /matrix transpose/ operation on @Vec2 (Vec3 Int)@ producing a -- corresponding @Vec3 (Vec2 Int)@: -- -- Let __@t = Vec2 (Vec3 1 2 3) (Vec3 4 5 6)@__ be our 'Traversable' structure, -- and __@g = id :: Vec3 Int -> Vec3 Int@__ be the function used to traverse -- __@t@__. We then have: -- -- > traverse g t = Vec2 <$> (Vec3 1 2 3) <*> (Vec3 4 5 6) -- > = Vec3 (Vec2 1 4) (Vec2 2 5) (Vec2 3 6) -- -- This construction can be generalised from fixed width vectors to variable -- length lists via 'Control.Applicative.ZipList'. This gives a transpose -- operation that works well for lists of equal length. If some of the lists -- are longer than others, they're truncated to the longest common length. -- -- We've already looked at the standard 'Applicative' instance of @List@ for -- which applying __@m@__ functions __@f1, f2, ..., fm@__ to __@n@__ input -- values __@a1, a2, ..., an@__ produces __@m * n@__ outputs: -- -- >>> :set -XTupleSections -- >>> [("f1",), ("f2",), ("f3",)] <*> [1,2] -- [("f1",1),("f1",2),("f2",1),("f2",2),("f3",1),("f3",2)] -- -- There are however two more common ways to turn lists into 'Applicative' -- control structures. The first is via __@'Const' [a]@__, since lists are -- monoids under concatenation, and we've already seen that __@'Const' m@__ is -- an 'Applicative' functor when __@m@__ is a 'Monoid'. The second, is based -- on 'Data.List.zipWith', and is called 'Control.Applicative.ZipList': -- -- > {-# LANGUAGE GeneralizedNewtypeDeriving #-} -- > newtype ZipList a = ZipList { getZipList :: [a] } -- > deriving (Show, Eq, ..., Functor) -- > -- > instance Applicative ZipList where -- > liftA2 f (ZipList xs) (ZipList ys) = ZipList $ zipWith f xs ys -- > pure x = repeat x -- -- The 'liftA2' definition is clear enough, instead of applying __@f@__ to each -- pair __@(x, y)@__ drawn independently from the __@xs@__ and __@ys@__, only -- corresponding pairs at each index in the two lists are used. -- -- The definition of 'pure' may look surprising, but it is needed to ensure -- that the instance is lawful: -- -- prop> liftA2 f (pure x) ys == fmap (f x) ys -- -- Since __@ys@__ can have any length, we need to provide an infinite supply -- of __@x@__ values in __@pure x@__ in order to have a value to pair with -- each element __@y@__. -- -- When 'Control.Applicative.ZipList' is the 'Applicative' functor used in the -- [construction](#construction) of a traversal, a ZipList holding a partially -- built structure with __@m@__ elements is combined with a component holding -- __@n@__ elements via 'zipWith', resulting in __@min m n@__ outputs! -- -- Therefore 'traverse' with __@g :: a -> ZipList b@__ will produce a @ZipList@ -- of __@t b@__ structures whose element count is the minimum length of the -- ZipLists __@g a@__ with __@a@__ ranging over the elements of __@t@__. When -- __@t@__ is empty, the length is infinite (as expected for a minimum of an -- empty set). -- -- If the structure __@t@__ holds values of type __@ZipList a@__, we can use -- the identity function __@id :: ZipList a -> ZipList a@__ for the first -- argument of 'traverse': -- -- > traverse (id :: ZipList a -> ZipList a) :: t (ZipList a) -> ZipList (t a) -- -- The number of elements in the output @ZipList@ will be the length of the -- shortest @ZipList@ element of __@t@__. Each output __@t a@__ will have the -- /same shape/ as the input __@t (ZipList a)@__, i.e. will share its number of -- elements. -- -- If we think of the elements of __@t (ZipList a)@__ as its rows, and the -- elements of each individual @ZipList@ as the columns of that row, we see -- that our traversal implements a /transpose/ operation swapping the rows -- and columns of __@t@__, after first truncating all the rows to the column -- count of the shortest one. -- -- Since in fact __@'traverse' id@__ is just 'sequenceA' the above boils down -- to a rather concise definition of /transpose/, with [coercion](#coercion) -- used to implicitly wrap and unwrap the @ZipList@ @newtype@ as needed, giving -- a function that operates on a list of lists: -- -- >>> {-# LANGUAGE ScopedTypeVariables #-} -- >>> import Control.Applicative (ZipList(..)) -- >>> import Data.Coerce (coerce) -- >>> -- >>> transpose :: forall a. [[a]] -> [[a]] -- >>> transpose = coerce (sequenceA :: [ZipList a] -> ZipList [a]) -- >>> -- >>> transpose [[1,2,3],[4..],[7..]] -- [[1,4,7],[2,5,8],[3,6,9]] -- -- The use of [coercion](#coercion) avoids the need to explicitly wrap and -- unwrap __@ZipList@__ terms. ------------------ -- $laws -- -- #laws# -- A definition of 'traverse' must satisfy the following laws: -- -- [Naturality] -- @t . 'traverse' f = 'traverse' (t . f)@ -- for every applicative transformation @t@ -- -- [Identity] -- @'traverse' 'Identity' = 'Identity'@ -- -- [Composition] -- @'traverse' ('Data.Functor.Compose.Compose' . 'fmap' g . f) -- = 'Data.Functor.Compose.Compose' . 'fmap' ('traverse' g) . 'traverse' f@ -- -- A definition of 'sequenceA' must satisfy the following laws: -- -- [Naturality] -- @t . 'sequenceA' = 'sequenceA' . 'fmap' t@ -- for every applicative transformation @t@ -- -- [Identity] -- @'sequenceA' . 'fmap' 'Identity' = 'Identity'@ -- -- [Composition] -- @'sequenceA' . 'fmap' 'Data.Functor.Compose.Compose' -- = 'Data.Functor.Compose.Compose' . 'fmap' 'sequenceA' . 'sequenceA'@ -- -- where an /applicative transformation/ is a function -- -- @t :: (Applicative f, Applicative g) => f a -> g a@ -- -- preserving the 'Applicative' operations, i.e. -- -- @ -- t ('pure' x) = 'pure' x -- t (f '<*>' x) = t f '<*>' t x -- @ -- -- and the identity functor 'Identity' and composition functors -- 'Data.Functor.Compose.Compose' are from "Data.Functor.Identity" and -- "Data.Functor.Compose". -- -- A result of the naturality law is a purity law for 'traverse' -- -- @'traverse' 'pure' = 'pure'@ -- -- The superclass instances should satisfy the following: -- -- * In the 'Functor' instance, 'fmap' should be equivalent to traversal -- with the identity applicative functor ('fmapDefault'). -- -- * In the 'Foldable' instance, 'Data.Foldable.foldMap' should be -- equivalent to traversal with a constant applicative functor -- ('foldMapDefault'). -- -- Note: the 'Functor' superclass means that (in GHC) Traversable structures -- cannot impose any constraints on the element type. A Haskell implementation -- that supports constrained functors could make it possible to define -- constrained @Traversable@ structures. ------------------ -- $also -- -- * \"The Essence of the Iterator Pattern\", -- by Jeremy Gibbons and Bruno Oliveira, -- in /Mathematically-Structured Functional Programming/, 2006, online at -- <http://www.cs.ox.ac.uk/people/jeremy.gibbons/publications/#iterator>. -- -- * \"Applicative Programming with Effects\", -- by Conor McBride and Ross Paterson, -- /Journal of Functional Programming/ 18:1 (2008) 1-13, online at -- <http://www.soi.city.ac.uk/~ross/papers/Applicative.html>. -- -- * \"An Investigation of the Laws of Traversals\", -- by Mauro Jaskelioff and Ondrej Rypacek, -- in /Mathematically-Structured Functional Programming/, 2012, online at -- <http://arxiv.org/pdf/1202.2919>.