{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

\section[Foreign]{Foreign calls}
-}

{-# LANGUAGE DeriveDataTypeable #-}

module GHC.Types.ForeignCall (
        ForeignCall(..), isSafeForeignCall,
        Safety(..), playSafe, playInterruptible,

        CExportSpec(..), CLabelString, isCLabelString, pprCLabelString,
        CCallSpec(..),
        CCallTarget(..), isDynamicTarget,
        CCallConv(..), defaultCCallConv, ccallConvAttribute,

        Header(..), CType(..),
    ) where

import GHC.Prelude

import GHC.Data.FastString
import GHC.Utils.Binary
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Unit.Module
import GHC.Types.SourceText ( SourceText, pprWithSourceText )

import Data.Char
import Data.Data

{-
************************************************************************
*                                                                      *
\subsubsection{Data types}
*                                                                      *
************************************************************************
-}

newtype ForeignCall = CCall CCallSpec
  deriving ForeignCall -> ForeignCall -> Bool
(ForeignCall -> ForeignCall -> Bool)
-> (ForeignCall -> ForeignCall -> Bool) -> Eq ForeignCall
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: ForeignCall -> ForeignCall -> Bool
== :: ForeignCall -> ForeignCall -> Bool
$c/= :: ForeignCall -> ForeignCall -> Bool
/= :: ForeignCall -> ForeignCall -> Bool
Eq

isSafeForeignCall :: ForeignCall -> Bool
isSafeForeignCall :: ForeignCall -> Bool
isSafeForeignCall (CCall (CCallSpec CCallTarget
_ CCallConv
_ Safety
safe)) = Safety -> Bool
playSafe Safety
safe

-- We may need more clues to distinguish foreign calls
-- but this simple printer will do for now
instance Outputable ForeignCall where
  ppr :: ForeignCall -> SDoc
ppr (CCall CCallSpec
cc)  = CCallSpec -> SDoc
forall a. Outputable a => a -> SDoc
ppr CCallSpec
cc

data Safety
  = PlaySafe          -- ^ Might invoke Haskell GC, or do a call back, or
                      --   switch threads, etc.  So make sure things are
                      --   tidy before the call. Additionally, in the threaded
                      --   RTS we arrange for the external call to be executed
                      --   by a separate OS thread, i.e., _concurrently_ to the
                      --   execution of other Haskell threads.

  | PlayInterruptible -- ^ Like PlaySafe, but additionally
                      --   the worker thread running this foreign call may
                      --   be unceremoniously killed, so it must be scheduled
                      --   on an unbound thread.

  | PlayRisky         -- ^ None of the above can happen; the call will return
                      --   without interacting with the runtime system at all.
                      --   Specifically:
                      --
                      --     * No GC
                      --     * No call backs
                      --     * No blocking
                      --     * No precise exceptions
                      --
  deriving ( Safety -> Safety -> Bool
(Safety -> Safety -> Bool)
-> (Safety -> Safety -> Bool) -> Eq Safety
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: Safety -> Safety -> Bool
== :: Safety -> Safety -> Bool
$c/= :: Safety -> Safety -> Bool
/= :: Safety -> Safety -> Bool
Eq, Int -> Safety -> ShowS
[Safety] -> ShowS
Safety -> String
(Int -> Safety -> ShowS)
-> (Safety -> String) -> ([Safety] -> ShowS) -> Show Safety
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
$cshowsPrec :: Int -> Safety -> ShowS
showsPrec :: Int -> Safety -> ShowS
$cshow :: Safety -> String
show :: Safety -> String
$cshowList :: [Safety] -> ShowS
showList :: [Safety] -> ShowS
Show, Typeable Safety
Typeable Safety =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> Safety -> c Safety)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c Safety)
-> (Safety -> Constr)
-> (Safety -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c Safety))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety))
-> ((forall b. Data b => b -> b) -> Safety -> Safety)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Safety -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Safety -> r)
-> (forall u. (forall d. Data d => d -> u) -> Safety -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Safety -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Safety -> m Safety)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Safety -> m Safety)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Safety -> m Safety)
-> Data Safety
Safety -> Constr
Safety -> DataType
(forall b. Data b => b -> b) -> Safety -> Safety
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Safety -> u
forall u. (forall d. Data d => d -> u) -> Safety -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Safety
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Safety -> c Safety
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Safety)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Safety -> c Safety
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Safety -> c Safety
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Safety
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Safety
$ctoConstr :: Safety -> Constr
toConstr :: Safety -> Constr
$cdataTypeOf :: Safety -> DataType
dataTypeOf :: Safety -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Safety)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Safety)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety)
$cgmapT :: (forall b. Data b => b -> b) -> Safety -> Safety
gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety
$cgmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r
$cgmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Safety -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> Safety -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Safety -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Safety -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Safety -> m Safety
Data, Int -> Safety
Safety -> Int
Safety -> [Safety]
Safety -> Safety
Safety -> Safety -> [Safety]
Safety -> Safety -> Safety -> [Safety]
(Safety -> Safety)
-> (Safety -> Safety)
-> (Int -> Safety)
-> (Safety -> Int)
-> (Safety -> [Safety])
-> (Safety -> Safety -> [Safety])
-> (Safety -> Safety -> [Safety])
-> (Safety -> Safety -> Safety -> [Safety])
-> Enum Safety
forall a.
(a -> a)
-> (a -> a)
-> (Int -> a)
-> (a -> Int)
-> (a -> [a])
-> (a -> a -> [a])
-> (a -> a -> [a])
-> (a -> a -> a -> [a])
-> Enum a
$csucc :: Safety -> Safety
succ :: Safety -> Safety
$cpred :: Safety -> Safety
pred :: Safety -> Safety
$ctoEnum :: Int -> Safety
toEnum :: Int -> Safety
$cfromEnum :: Safety -> Int
fromEnum :: Safety -> Int
$cenumFrom :: Safety -> [Safety]
enumFrom :: Safety -> [Safety]
$cenumFromThen :: Safety -> Safety -> [Safety]
enumFromThen :: Safety -> Safety -> [Safety]
$cenumFromTo :: Safety -> Safety -> [Safety]
enumFromTo :: Safety -> Safety -> [Safety]
$cenumFromThenTo :: Safety -> Safety -> Safety -> [Safety]
enumFromThenTo :: Safety -> Safety -> Safety -> [Safety]
Enum )
        -- Show used just for Show Lex.Token, I think

instance Outputable Safety where
  ppr :: Safety -> SDoc
ppr Safety
PlaySafe = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"safe"
  ppr Safety
PlayInterruptible = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"interruptible"
  ppr Safety
PlayRisky = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"unsafe"

playSafe :: Safety -> Bool
playSafe :: Safety -> Bool
playSafe Safety
PlaySafe = Bool
True
playSafe Safety
PlayInterruptible = Bool
True
playSafe Safety
PlayRisky = Bool
False

playInterruptible :: Safety -> Bool
playInterruptible :: Safety -> Bool
playInterruptible Safety
PlayInterruptible = Bool
True
playInterruptible Safety
_ = Bool
False

{-
************************************************************************
*                                                                      *
\subsubsection{Calling C}
*                                                                      *
************************************************************************
-}

data CExportSpec
  = CExportStatic               -- foreign export ccall foo :: ty
        SourceText              -- of the CLabelString.
                                -- See Note [Pragma source text] in "GHC.Types.SourceText"
        CLabelString            -- C Name of exported function
        CCallConv
  deriving Typeable CExportSpec
Typeable CExportSpec =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> CExportSpec -> c CExportSpec)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c CExportSpec)
-> (CExportSpec -> Constr)
-> (CExportSpec -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c CExportSpec))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c CExportSpec))
-> ((forall b. Data b => b -> b) -> CExportSpec -> CExportSpec)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> CExportSpec -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> CExportSpec -> r)
-> (forall u. (forall d. Data d => d -> u) -> CExportSpec -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> CExportSpec -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec)
-> Data CExportSpec
CExportSpec -> Constr
CExportSpec -> DataType
(forall b. Data b => b -> b) -> CExportSpec -> CExportSpec
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> CExportSpec -> u
forall u. (forall d. Data d => d -> u) -> CExportSpec -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CExportSpec -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CExportSpec -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CExportSpec
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CExportSpec -> c CExportSpec
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CExportSpec)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CExportSpec)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CExportSpec -> c CExportSpec
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CExportSpec -> c CExportSpec
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CExportSpec
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CExportSpec
$ctoConstr :: CExportSpec -> Constr
toConstr :: CExportSpec -> Constr
$cdataTypeOf :: CExportSpec -> DataType
dataTypeOf :: CExportSpec -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CExportSpec)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CExportSpec)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CExportSpec)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CExportSpec)
$cgmapT :: (forall b. Data b => b -> b) -> CExportSpec -> CExportSpec
gmapT :: (forall b. Data b => b -> b) -> CExportSpec -> CExportSpec
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CExportSpec -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CExportSpec -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CExportSpec -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CExportSpec -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> CExportSpec -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> CExportSpec -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CExportSpec -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CExportSpec -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CExportSpec -> m CExportSpec
Data

data CCallSpec
  =  CCallSpec  CCallTarget     -- What to call
                CCallConv       -- Calling convention to use.
                Safety
  deriving( CCallSpec -> CCallSpec -> Bool
(CCallSpec -> CCallSpec -> Bool)
-> (CCallSpec -> CCallSpec -> Bool) -> Eq CCallSpec
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: CCallSpec -> CCallSpec -> Bool
== :: CCallSpec -> CCallSpec -> Bool
$c/= :: CCallSpec -> CCallSpec -> Bool
/= :: CCallSpec -> CCallSpec -> Bool
Eq )

-- The call target:

-- | How to call a particular function in C-land.
data CCallTarget
  -- An "unboxed" ccall# to named function in a particular package.
  = StaticTarget
        SourceText                -- of the CLabelString.
                                  -- See Note [Pragma source text] in "GHC.Types.SourceText"
        CLabelString                    -- C-land name of label.

        (Maybe Unit)                    -- What package the function is in.
                                        -- If Nothing, then it's taken to be in the current package.
                                        -- Note: This information is only used for PrimCalls on Windows.
                                        --       See CLabel.labelDynamic and CoreToStg.coreToStgApp
                                        --       for the difference in representation between PrimCalls
                                        --       and ForeignCalls. If the CCallTarget is representing
                                        --       a regular ForeignCall then it's safe to set this to Nothing.

  -- The first argument of the import is the name of a function pointer (an Addr#).
  --    Used when importing a label as "foreign import ccall "dynamic" ..."
        Bool                            -- True => really a function
                                        -- False => a value; only
                                        -- allowed in CAPI imports
  | DynamicTarget

  deriving( CCallTarget -> CCallTarget -> Bool
(CCallTarget -> CCallTarget -> Bool)
-> (CCallTarget -> CCallTarget -> Bool) -> Eq CCallTarget
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: CCallTarget -> CCallTarget -> Bool
== :: CCallTarget -> CCallTarget -> Bool
$c/= :: CCallTarget -> CCallTarget -> Bool
/= :: CCallTarget -> CCallTarget -> Bool
Eq, Typeable CCallTarget
Typeable CCallTarget =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> CCallTarget -> c CCallTarget)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c CCallTarget)
-> (CCallTarget -> Constr)
-> (CCallTarget -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c CCallTarget))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c CCallTarget))
-> ((forall b. Data b => b -> b) -> CCallTarget -> CCallTarget)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> CCallTarget -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> CCallTarget -> r)
-> (forall u. (forall d. Data d => d -> u) -> CCallTarget -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> CCallTarget -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget)
-> Data CCallTarget
CCallTarget -> Constr
CCallTarget -> DataType
(forall b. Data b => b -> b) -> CCallTarget -> CCallTarget
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> CCallTarget -> u
forall u. (forall d. Data d => d -> u) -> CCallTarget -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CCallTarget -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CCallTarget -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CCallTarget
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CCallTarget -> c CCallTarget
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CCallTarget)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CCallTarget)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CCallTarget -> c CCallTarget
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CCallTarget -> c CCallTarget
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CCallTarget
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CCallTarget
$ctoConstr :: CCallTarget -> Constr
toConstr :: CCallTarget -> Constr
$cdataTypeOf :: CCallTarget -> DataType
dataTypeOf :: CCallTarget -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CCallTarget)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CCallTarget)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CCallTarget)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c CCallTarget)
$cgmapT :: (forall b. Data b => b -> b) -> CCallTarget -> CCallTarget
gmapT :: (forall b. Data b => b -> b) -> CCallTarget -> CCallTarget
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CCallTarget -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CCallTarget -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CCallTarget -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CCallTarget -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> CCallTarget -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> CCallTarget -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CCallTarget -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CCallTarget -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallTarget -> m CCallTarget
Data )

isDynamicTarget :: CCallTarget -> Bool
isDynamicTarget :: CCallTarget -> Bool
isDynamicTarget CCallTarget
DynamicTarget = Bool
True
isDynamicTarget CCallTarget
_             = Bool
False

{-
Stuff to do with calling convention:

ccall:          Caller allocates parameters, *and* deallocates them.

See: http://www.programmersheaven.com/2/Calling-conventions
-}

-- any changes here should be replicated in the Callconv type in template haskell
data CCallConv
  = CCallConv
  | CApiConv
  | StdCallConv
  | PrimCallConv
  | JavaScriptCallConv
  deriving (CCallConv -> CCallConv -> Bool
(CCallConv -> CCallConv -> Bool)
-> (CCallConv -> CCallConv -> Bool) -> Eq CCallConv
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: CCallConv -> CCallConv -> Bool
== :: CCallConv -> CCallConv -> Bool
$c/= :: CCallConv -> CCallConv -> Bool
/= :: CCallConv -> CCallConv -> Bool
Eq, Typeable CCallConv
Typeable CCallConv =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> CCallConv -> c CCallConv)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c CCallConv)
-> (CCallConv -> Constr)
-> (CCallConv -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c CCallConv))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CCallConv))
-> ((forall b. Data b => b -> b) -> CCallConv -> CCallConv)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> CCallConv -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> CCallConv -> r)
-> (forall u. (forall d. Data d => d -> u) -> CCallConv -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> CCallConv -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> CCallConv -> m CCallConv)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CCallConv -> m CCallConv)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CCallConv -> m CCallConv)
-> Data CCallConv
CCallConv -> Constr
CCallConv -> DataType
(forall b. Data b => b -> b) -> CCallConv -> CCallConv
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> CCallConv -> u
forall u. (forall d. Data d => d -> u) -> CCallConv -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CCallConv -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CCallConv -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CCallConv
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CCallConv -> c CCallConv
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CCallConv)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CCallConv)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CCallConv -> c CCallConv
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CCallConv -> c CCallConv
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CCallConv
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CCallConv
$ctoConstr :: CCallConv -> Constr
toConstr :: CCallConv -> Constr
$cdataTypeOf :: CCallConv -> DataType
dataTypeOf :: CCallConv -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CCallConv)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CCallConv)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CCallConv)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CCallConv)
$cgmapT :: (forall b. Data b => b -> b) -> CCallConv -> CCallConv
gmapT :: (forall b. Data b => b -> b) -> CCallConv -> CCallConv
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CCallConv -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CCallConv -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CCallConv -> r
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CCallConv -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> CCallConv -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> CCallConv -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CCallConv -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CCallConv -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CCallConv -> m CCallConv
Data, Int -> CCallConv
CCallConv -> Int
CCallConv -> [CCallConv]
CCallConv -> CCallConv
CCallConv -> CCallConv -> [CCallConv]
CCallConv -> CCallConv -> CCallConv -> [CCallConv]
(CCallConv -> CCallConv)
-> (CCallConv -> CCallConv)
-> (Int -> CCallConv)
-> (CCallConv -> Int)
-> (CCallConv -> [CCallConv])
-> (CCallConv -> CCallConv -> [CCallConv])
-> (CCallConv -> CCallConv -> [CCallConv])
-> (CCallConv -> CCallConv -> CCallConv -> [CCallConv])
-> Enum CCallConv
forall a.
(a -> a)
-> (a -> a)
-> (Int -> a)
-> (a -> Int)
-> (a -> [a])
-> (a -> a -> [a])
-> (a -> a -> [a])
-> (a -> a -> a -> [a])
-> Enum a
$csucc :: CCallConv -> CCallConv
succ :: CCallConv -> CCallConv
$cpred :: CCallConv -> CCallConv
pred :: CCallConv -> CCallConv
$ctoEnum :: Int -> CCallConv
toEnum :: Int -> CCallConv
$cfromEnum :: CCallConv -> Int
fromEnum :: CCallConv -> Int
$cenumFrom :: CCallConv -> [CCallConv]
enumFrom :: CCallConv -> [CCallConv]
$cenumFromThen :: CCallConv -> CCallConv -> [CCallConv]
enumFromThen :: CCallConv -> CCallConv -> [CCallConv]
$cenumFromTo :: CCallConv -> CCallConv -> [CCallConv]
enumFromTo :: CCallConv -> CCallConv -> [CCallConv]
$cenumFromThenTo :: CCallConv -> CCallConv -> CCallConv -> [CCallConv]
enumFromThenTo :: CCallConv -> CCallConv -> CCallConv -> [CCallConv]
Enum)

instance Outputable CCallConv where
  ppr :: CCallConv -> SDoc
ppr CCallConv
StdCallConv = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"stdcall"
  ppr CCallConv
CCallConv   = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"ccall"
  ppr CCallConv
CApiConv    = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"capi"
  ppr CCallConv
PrimCallConv = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"prim"
  ppr CCallConv
JavaScriptCallConv = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"javascript"

defaultCCallConv :: CCallConv
defaultCCallConv :: CCallConv
defaultCCallConv = CCallConv
CCallConv

{-
Generate the gcc attribute corresponding to the given
calling convention (used by PprAbsC):
-}

ccallConvAttribute :: CCallConv -> SDoc
ccallConvAttribute :: CCallConv -> SDoc
ccallConvAttribute CCallConv
StdCallConv       = String -> SDoc
forall a. HasCallStack => String -> a
panic String
"ccallConvAttribute StdCallConv"
ccallConvAttribute CCallConv
CCallConv         = SDoc
forall doc. IsOutput doc => doc
empty
ccallConvAttribute CCallConv
CApiConv          = SDoc
forall doc. IsOutput doc => doc
empty
ccallConvAttribute (PrimCallConv {}) = String -> SDoc
forall a. HasCallStack => String -> a
panic String
"ccallConvAttribute PrimCallConv"
ccallConvAttribute CCallConv
JavaScriptCallConv = SDoc
forall doc. IsOutput doc => doc
empty

type CLabelString = FastString          -- A C label, completely unencoded

pprCLabelString :: CLabelString -> SDoc
pprCLabelString :: CLabelString -> SDoc
pprCLabelString CLabelString
lbl = CLabelString -> SDoc
forall doc. IsLine doc => CLabelString -> doc
ftext CLabelString
lbl

isCLabelString :: CLabelString -> Bool  -- Checks to see if this is a valid C label
isCLabelString :: CLabelString -> Bool
isCLabelString CLabelString
lbl
  = (Char -> Bool) -> String -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all Char -> Bool
ok (CLabelString -> String
unpackFS CLabelString
lbl)
  where
    ok :: Char -> Bool
ok Char
c = Char -> Bool
isAlphaNum Char
c Bool -> Bool -> Bool
|| Char
c Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== Char
'_' Bool -> Bool -> Bool
|| Char
c Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== Char
'.' Bool -> Bool -> Bool
|| Char
c Char -> Char -> Bool
forall a. Eq a => a -> a -> Bool
== Char
'@'
        -- The '.' appears in e.g. "foo.so" in the
        -- module part of a ExtName.  Maybe it should be separate

-- Printing into C files:

instance Outputable CExportSpec where
  ppr :: CExportSpec -> SDoc
ppr (CExportStatic SourceText
_ CLabelString
str CCallConv
_) = CLabelString -> SDoc
pprCLabelString CLabelString
str

instance Outputable CCallSpec where
  ppr :: CCallSpec -> SDoc
ppr (CCallSpec CCallTarget
fun CCallConv
cconv Safety
safety)
    = [SDoc] -> SDoc
forall doc. IsLine doc => [doc] -> doc
hcat [ SDoc -> SDoc
forall doc. IsOutput doc => doc -> doc
whenPprDebug SDoc
callconv, CCallTarget -> SDoc
ppr_fun CCallTarget
fun, String -> SDoc
forall doc. IsLine doc => String -> doc
text String
" ::" ]
    where
      callconv :: SDoc
callconv = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"{-" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> CCallConv -> SDoc
forall a. Outputable a => a -> SDoc
ppr CCallConv
cconv SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"-}"

      gc_suf :: SDoc
gc_suf | Safety -> Bool
playSafe Safety
safety = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"_safe"
             | Bool
otherwise       = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"_unsafe"

      ppr_fun :: CCallTarget -> SDoc
ppr_fun (StaticTarget SourceText
st CLabelString
lbl Maybe Unit
mPkgId Bool
isFun)
        = (if Bool
isFun then String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"__ffi_static_ccall"
                    else String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"__ffi_static_ccall_value")
       SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
gc_suf
       SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> (case Maybe Unit
mPkgId of
            Maybe Unit
Nothing -> SDoc
forall doc. IsOutput doc => doc
empty
            Just Unit
pkgId -> Unit -> SDoc
forall a. Outputable a => a -> SDoc
ppr Unit
pkgId)
       SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
":"
       SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> CLabelString -> SDoc
forall a. Outputable a => a -> SDoc
ppr CLabelString
lbl
       SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> (SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
st SDoc
forall doc. IsOutput doc => doc
empty)

      ppr_fun CCallTarget
DynamicTarget
        = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"__ffi_dyn_ccall" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<> SDoc
gc_suf SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"\"\""

-- The filename for a C header file
-- See Note [Pragma source text] in "GHC.Types.SourceText"
data Header = Header SourceText FastString
    deriving (Header -> Header -> Bool
(Header -> Header -> Bool)
-> (Header -> Header -> Bool) -> Eq Header
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: Header -> Header -> Bool
== :: Header -> Header -> Bool
$c/= :: Header -> Header -> Bool
/= :: Header -> Header -> Bool
Eq, Typeable Header
Typeable Header =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> Header -> c Header)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c Header)
-> (Header -> Constr)
-> (Header -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c Header))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Header))
-> ((forall b. Data b => b -> b) -> Header -> Header)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> Header -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> Header -> r)
-> (forall u. (forall d. Data d => d -> u) -> Header -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> Header -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> Header -> m Header)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Header -> m Header)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> Header -> m Header)
-> Data Header
Header -> Constr
Header -> DataType
(forall b. Data b => b -> b) -> Header -> Header
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Header -> u
forall u. (forall d. Data d => d -> u) -> Header -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Header -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Header -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Header -> m Header
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Header -> m Header
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Header
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Header -> c Header
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Header)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Header)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Header -> c Header
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Header -> c Header
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Header
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Header
$ctoConstr :: Header -> Constr
toConstr :: Header -> Constr
$cdataTypeOf :: Header -> DataType
dataTypeOf :: Header -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Header)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Header)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Header)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Header)
$cgmapT :: (forall b. Data b => b -> b) -> Header -> Header
gmapT :: (forall b. Data b => b -> b) -> Header -> Header
$cgmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Header -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Header -> r
$cgmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Header -> r
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Header -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Header -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> Header -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Header -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Header -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Header -> m Header
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Header -> m Header
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Header -> m Header
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Header -> m Header
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Header -> m Header
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Header -> m Header
Data)

instance Outputable Header where
    ppr :: Header -> SDoc
ppr (Header SourceText
st CLabelString
h) = SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
st (SDoc -> SDoc
forall doc. IsLine doc => doc -> doc
doubleQuotes (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ CLabelString -> SDoc
forall a. Outputable a => a -> SDoc
ppr CLabelString
h)

-- | A C type, used in CAPI FFI calls
data CType = CType SourceText -- See Note [Pragma source text] in "GHC.Types.SourceText"
                   (Maybe Header) -- header to include for this type
                   (SourceText,FastString) -- the type itself
    deriving (CType -> CType -> Bool
(CType -> CType -> Bool) -> (CType -> CType -> Bool) -> Eq CType
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
$c== :: CType -> CType -> Bool
== :: CType -> CType -> Bool
$c/= :: CType -> CType -> Bool
/= :: CType -> CType -> Bool
Eq, Typeable CType
Typeable CType =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> CType -> c CType)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c CType)
-> (CType -> Constr)
-> (CType -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c CType))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CType))
-> ((forall b. Data b => b -> b) -> CType -> CType)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r)
-> (forall u. (forall d. Data d => d -> u) -> CType -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> CType -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> CType -> m CType)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CType -> m CType)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> CType -> m CType)
-> Data CType
CType -> Constr
CType -> DataType
(forall b. Data b => b -> b) -> CType -> CType
forall a.
Typeable a =>
(forall (c :: * -> *).
 (forall d b. Data d => c (d -> b) -> d -> c b)
 -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> CType -> u
forall u. (forall d. Data d => d -> u) -> CType -> [u]
forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r
forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CType -> m CType
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CType -> m CType
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CType
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CType -> c CType
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CType)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CType)
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CType -> c CType
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CType -> c CType
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CType
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c CType
$ctoConstr :: CType -> Constr
toConstr :: CType -> Constr
$cdataTypeOf :: CType -> DataType
dataTypeOf :: CType -> DataType
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CType)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c CType)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CType)
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c CType)
$cgmapT :: (forall b. Data b => b -> b) -> CType -> CType
gmapT :: (forall b. Data b => b -> b) -> CType -> CType
$cgmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r
gmapQl :: forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r
$cgmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r
gmapQr :: forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> CType -> r
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> CType -> [u]
gmapQ :: forall u. (forall d. Data d => d -> u) -> CType -> [u]
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CType -> u
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> CType -> u
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CType -> m CType
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> CType -> m CType
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CType -> m CType
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CType -> m CType
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CType -> m CType
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> CType -> m CType
Data)

instance Outputable CType where
    ppr :: CType -> SDoc
ppr (CType SourceText
stp Maybe Header
mh (SourceText
stct,CLabelString
ct))
      = SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
stp (String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"{-# CTYPE") SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc
hDoc
        SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
stct (SDoc -> SDoc
forall doc. IsLine doc => doc -> doc
doubleQuotes (CLabelString -> SDoc
forall doc. IsLine doc => CLabelString -> doc
ftext CLabelString
ct)) SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"#-}"
        where hDoc :: SDoc
hDoc = case Maybe Header
mh of
                     Maybe Header
Nothing -> SDoc
forall doc. IsOutput doc => doc
empty
                     Just Header
h -> Header -> SDoc
forall a. Outputable a => a -> SDoc
ppr Header
h

{-
************************************************************************
*                                                                      *
\subsubsection{Misc}
*                                                                      *
************************************************************************
-}

instance Binary ForeignCall where
    put_ :: WriteBinHandle -> ForeignCall -> IO ()
put_ WriteBinHandle
bh (CCall CCallSpec
aa) = WriteBinHandle -> CCallSpec -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh CCallSpec
aa
    get :: ReadBinHandle -> IO ForeignCall
get ReadBinHandle
bh = do aa <- ReadBinHandle -> IO CCallSpec
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh; return (CCall aa)

instance Binary Safety where
    put_ :: WriteBinHandle -> Safety -> IO ()
put_ WriteBinHandle
bh Safety
PlaySafe =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
0
    put_ WriteBinHandle
bh Safety
PlayInterruptible =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
1
    put_ WriteBinHandle
bh Safety
PlayRisky =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
2
    get :: ReadBinHandle -> IO Safety
get ReadBinHandle
bh = do
            h <- ReadBinHandle -> IO Word8
getByte ReadBinHandle
bh
            case h of
              Word8
0 -> Safety -> IO Safety
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Safety
PlaySafe
              Word8
1 -> Safety -> IO Safety
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Safety
PlayInterruptible
              Word8
_ -> Safety -> IO Safety
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return Safety
PlayRisky

instance Binary CExportSpec where
    put_ :: WriteBinHandle -> CExportSpec -> IO ()
put_ WriteBinHandle
bh (CExportStatic SourceText
ss CLabelString
aa CCallConv
ab) = do
            WriteBinHandle -> SourceText -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh SourceText
ss
            WriteBinHandle -> CLabelString -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh CLabelString
aa
            WriteBinHandle -> CCallConv -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh CCallConv
ab
    get :: ReadBinHandle -> IO CExportSpec
get ReadBinHandle
bh = do
          ss <- ReadBinHandle -> IO SourceText
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh
          aa <- get bh
          ab <- get bh
          return (CExportStatic ss aa ab)

instance Binary CCallSpec where
    put_ :: WriteBinHandle -> CCallSpec -> IO ()
put_ WriteBinHandle
bh (CCallSpec CCallTarget
aa CCallConv
ab Safety
ac) = do
            WriteBinHandle -> CCallTarget -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh CCallTarget
aa
            WriteBinHandle -> CCallConv -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh CCallConv
ab
            WriteBinHandle -> Safety -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh Safety
ac
    get :: ReadBinHandle -> IO CCallSpec
get ReadBinHandle
bh = do
          aa <- ReadBinHandle -> IO CCallTarget
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh
          ab <- get bh
          ac <- get bh
          return (CCallSpec aa ab ac)

instance Binary CCallTarget where
    put_ :: WriteBinHandle -> CCallTarget -> IO ()
put_ WriteBinHandle
bh (StaticTarget SourceText
ss CLabelString
aa Maybe Unit
ab Bool
ac) = do
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
0
            WriteBinHandle -> SourceText -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh SourceText
ss
            WriteBinHandle -> CLabelString -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh CLabelString
aa
            WriteBinHandle -> Maybe Unit -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh Maybe Unit
ab
            WriteBinHandle -> Bool -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh Bool
ac
    put_ WriteBinHandle
bh CCallTarget
DynamicTarget =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
1
    get :: ReadBinHandle -> IO CCallTarget
get ReadBinHandle
bh = do
            h <- ReadBinHandle -> IO Word8
getByte ReadBinHandle
bh
            case h of
              Word8
0 -> do ss <- ReadBinHandle -> IO SourceText
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh
                      aa <- get bh
                      ab <- get bh
                      ac <- get bh
                      return (StaticTarget ss aa ab ac)
              Word8
_ -> CCallTarget -> IO CCallTarget
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return CCallTarget
DynamicTarget

instance Binary CCallConv where
    put_ :: WriteBinHandle -> CCallConv -> IO ()
put_ WriteBinHandle
bh CCallConv
CCallConv =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
0
    put_ WriteBinHandle
bh CCallConv
StdCallConv =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
1
    put_ WriteBinHandle
bh CCallConv
PrimCallConv =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
2
    put_ WriteBinHandle
bh CCallConv
CApiConv =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
3
    put_ WriteBinHandle
bh CCallConv
JavaScriptCallConv =
            WriteBinHandle -> Word8 -> IO ()
putByte WriteBinHandle
bh Word8
4
    get :: ReadBinHandle -> IO CCallConv
get ReadBinHandle
bh = do
            h <- ReadBinHandle -> IO Word8
getByte ReadBinHandle
bh
            case h of
              Word8
0 -> CCallConv -> IO CCallConv
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return CCallConv
CCallConv
              Word8
1 -> CCallConv -> IO CCallConv
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return CCallConv
StdCallConv
              Word8
2 -> CCallConv -> IO CCallConv
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return CCallConv
PrimCallConv
              Word8
3 -> CCallConv -> IO CCallConv
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return CCallConv
CApiConv
              Word8
_ -> CCallConv -> IO CCallConv
forall a. a -> IO a
forall (m :: * -> *) a. Monad m => a -> m a
return CCallConv
JavaScriptCallConv

instance Binary CType where
    put_ :: WriteBinHandle -> CType -> IO ()
put_ WriteBinHandle
bh (CType SourceText
s Maybe Header
mh (SourceText, CLabelString)
fs) = do WriteBinHandle -> SourceText -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh SourceText
s
                                 WriteBinHandle -> Maybe Header -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh Maybe Header
mh
                                 WriteBinHandle -> (SourceText, CLabelString) -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh (SourceText, CLabelString)
fs
    get :: ReadBinHandle -> IO CType
get ReadBinHandle
bh = do s  <- ReadBinHandle -> IO SourceText
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh
                mh <- get bh
                fs <- get bh
                return (CType s mh fs)

instance Binary Header where
    put_ :: WriteBinHandle -> Header -> IO ()
put_ WriteBinHandle
bh (Header SourceText
s CLabelString
h) = WriteBinHandle -> SourceText -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh SourceText
s IO () -> IO () -> IO ()
forall a b. IO a -> IO b -> IO b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> WriteBinHandle -> CLabelString -> IO ()
forall a. Binary a => WriteBinHandle -> a -> IO ()
put_ WriteBinHandle
bh CLabelString
h
    get :: ReadBinHandle -> IO Header
get ReadBinHandle
bh = do s <- ReadBinHandle -> IO SourceText
forall a. Binary a => ReadBinHandle -> IO a
get ReadBinHandle
bh
                h <- get bh
                return (Header s h)