{-# LANGUAGE ExplicitForAll #-} {-# LANGUAGE MultiParamTypeClasses #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE BangPatterns, MagicHash, UnboxedTuples #-} -- | -- Module : Data.ByteString.Builder.RealFloat.TableGenerator -- Copyright : (c) Lawrence Wu 2021 -- License : BSD-style -- Maintainer : lawrencejwu@gmail.com -- -- Constants and overview for compile-time table generation for Ryu internals -- -- This module uses Haskell's arbitrary-precision `Integer` types to compute -- the necessary multipliers for efficient conversion to a decimal power base. -- -- It also exposes constants relevant to the 32- and 64-bit tables (e.g maximum -- number of bits required to store the table values). module Data.ByteString.Builder.RealFloat.TableGenerator ( float_pow5_inv_bitcount , float_pow5_bitcount , double_pow5_bitcount , double_pow5_inv_bitcount , float_max_split , float_max_inv_split , double_max_split , double_max_inv_split ) where import GHC.Float (int2Double) -- The basic floating point conversion algorithm is as such: -- -- Given floating point -- -- f = (-1)^s * m_f * 2^e_f -- -- which is IEEE encoded by `[s] [.. e ..] [.. m ..]`. `s` is the sign bit, `e` -- is the biased exponent, and `m` is the mantissa, let -- -- | e /= 0 | e == 0 -- -----+-------------------+----------- -- m_f | 2^len(m) + m | m -- e_f | e - bias - len(m) | 1 - bias - len(m) -- -- we compute the halfway points to the next smaller (`f-`) and larger (`f+`) -- floating point numbers as -- -- lower halfway point u * 2^e2, u = 4 * m_f - (if m == 0 then 1 else 2) -- v * 2^e2, v = 4 * m_f -- upper halfway point w * 2^e2, u = 4 * m_f + 2 -- where e2 = ef - 2 (so u, v, w are integers) -- -- -- Then we compute (a, b, c) * 10^e10 = (u, v, w) * 2^e2 which is split into -- the case of -- -- e2 >= 0 ==> e10 = 0 , (a, b, c) = (u, v, w) * 2^e2 -- e2 < 0 ==> e10 = e2, (a, b, c) = (u, v, w) * 5^-e2 -- -- And finally we find the shortest representation from integers d0 and e0 such -- that -- -- a * 10^e10 < d0 * 10^(e0+e10) < c * 10^e10 -- -- such that e0 is maximal (we allow equality to smaller or larger halfway -- point depending on rounding mode). This is found through iteratively -- dividing by 10 while a/10^j < c/10^j and doing some bookkeeping around -- zeros. -- -- -- -- -- The ryu algorithm removes the requirement for arbitrary precision arithmetic -- and improves the runtime significantly by skipping most of the iterative -- division by carefully selecting a point where certain invariants hold and -- precomputing a few tables. -- -- Specifically, define `q` such that the correspondings values of a/10^q < -- c/10^q - 1. We can prove (not shown) that -- -- if e2 >= 0, q = e2 * log_10(2) -- if e2 < 0, q = -e2 * log_10(5) -- -- Then we can compute (a, b, c) / 10^q. Starting from (u, v, w) we have -- -- (a, b, c) / 10^q (a, b, c) / 10^q -- = (u, v, w) * 2^e2 / 10^q OR = (u, v, w) * 5^-e2 / 10^q -- -- And since q < e2, -- -- = (u, v, w) * 2^e2-q / 5^q OR = (u, v, w) * 5^-e2-q / 2^q -- -- While (u, v, w) are n-bit numbers, 5^q and whatnot are significantly larger, -- but we only need the top-most n bits of the result so we can choose `k` that -- reduce the number of bits required to ~2n. We then multiply by either -- -- 2^k / 5^q OR 5^-e2-q / 2^k -- -- The required `k` is roughly linear in the exponent (we need more of the -- multiplication to be precise) but the number of bits to store the -- multiplicands above stays fixed. -- -- Since the number of bits needed is relatively small for IEEE 32- and 64-bit -- floating types, we can compute appropriate values for `k` for the -- floating-point-type-specific bounds instead of each e2. -- -- Finally, we need to do some final manual iterations potentially to do a -- final fixup of the skipped state -- | Bound for bits of @2^k / 5^q@ for floats float_pow5_inv_bitcount :: Int float_pow5_inv_bitcount :: Int float_pow5_inv_bitcount = Int 59 -- | Bound for bits of @5^-e2-q / 2^k@ for floats float_pow5_bitcount :: Int float_pow5_bitcount :: Int float_pow5_bitcount = Int 61 -- | Bound for bits of @5^-e2-q / 2^k@ for doubles double_pow5_bitcount :: Int double_pow5_bitcount :: Int double_pow5_bitcount = Int 125 -- | Bound for bits of @2^k / 5^q@ for doubles double_pow5_inv_bitcount :: Int double_pow5_inv_bitcount :: Int double_pow5_inv_bitcount = Int 125 -- NB: these tables are encoded directly into the source code in F2S and D2S -- -- -- | Number of bits in a positive integer -- blen :: Integer -> Int -- blen 0 = 0 -- blen 1 = 1 -- blen n = 1 + blen (n `quot` 2) -- -- | Used for table generation of 2^k / 5^q + 1 -- finv :: Int -> Int -> Integer -- finv bitcount i = -- let p = 5^i -- in (1 `shiftL` (blen p - 1 + bitcount)) `div` p + 1 -- -- | Used for table generation of 5^-e2-q / 2^k -- fnorm :: Int -> Int -> Integer -- fnorm bitcount i = -- let p = 5^i -- s = blen p - bitcount -- in if s < 0 then p `shiftL` (-s) else p `shiftR` s -- -- | Generates a compile-time lookup table for floats as Word64 -- gen_table_f :: Int -> (Int -> Integer) -> Q Exp -- gen_table_f n f = return $ ListE (fmap (LitE . IntegerL . f) [0..n]) -- -- -- | Generates a compile-time lookup table for doubles as Word128 -- gen_table_d :: Int -> (Int -> Integer) -> Q Exp -- gen_table_d n f = return $ ListE (fmap ff [0..n]) -- where -- ff :: Int -> Exp -- ff c = let r = f c -- hi = r `shiftR` 64 -- lo = r .&. ((1 `shiftL` 64) - 1) -- in AppE (AppE (ConE 'Word128) (LitE . IntegerL $ hi)) (LitE . IntegerL $ lo) -- Given a specific floating-point type, determine the range of q for the < 0 -- and >= 0 cases get_range :: forall ff. (RealFloat ff) => ff -> (Int, Int) get_range :: forall ff. RealFloat ff => ff -> (Int, Int) get_range ff f = let (Int emin, Int emax) = ff -> (Int, Int) forall ff. RealFloat ff => ff -> (Int, Int) floatRange ff f mantissaDigits :: Int mantissaDigits = ff -> Int forall a. RealFloat a => a -> Int floatDigits ff f emin' :: Int emin' = Int emin Int -> Int -> Int forall a. Num a => a -> a -> a - Int mantissaDigits Int -> Int -> Int forall a. Num a => a -> a -> a - Int 2 emax' :: Int emax' = Int emax Int -> Int -> Int forall a. Num a => a -> a -> a - Int mantissaDigits Int -> Int -> Int forall a. Num a => a -> a -> a - Int 2 in ( (-Int emin') Int -> Int -> Int forall a. Num a => a -> a -> a - Double -> Int forall a b. (RealFrac a, Integral b) => a -> b floor (Int -> Double int2Double (-Int emin') Double -> Double -> Double forall a. Num a => a -> a -> a * Double -> Double -> Double forall a. Floating a => a -> a -> a logBase Double 10 Double 5) , Double -> Int forall a b. (RealFrac a, Integral b) => a -> b floor (Int -> Double int2Double Int emax' Double -> Double -> Double forall a. Num a => a -> a -> a * Double -> Double -> Double forall a. Floating a => a -> a -> a logBase Double 10 Double 2)) float_max_split :: Int -- = 46 float_max_inv_split :: Int -- = 30 (Int float_max_split, Int float_max_inv_split) = Float -> (Int, Int) forall ff. RealFloat ff => ff -> (Int, Int) get_range (Float forall a. HasCallStack => a undefined :: Float) -- we take a slightly different codepath s.t we need one extra entry double_max_split :: Int -- = 325 double_max_inv_split :: Int -- = 291 (Int double_max_split, Int double_max_inv_split) = let (Int m, Int mi) = Double -> (Int, Int) forall ff. RealFloat ff => ff -> (Int, Int) get_range (Double forall a. HasCallStack => a undefined :: Double) in (Int m Int -> Int -> Int forall a. Num a => a -> a -> a + Int 1, Int mi)