{-# LANGUAGE CPP, DeriveFunctor, TypeFamilies, ScopedTypeVariables, TypeApplications,
DerivingStrategies, GeneralizedNewtypeDeriving, ScopedTypeVariables, MultiWayIf, ViewPatterns #-}
{-# OPTIONS_GHC -Wno-incomplete-record-updates -Wno-incomplete-uni-patterns #-}
module GHC.Tc.Solver.Monad (
WorkList(..), isEmptyWorkList, emptyWorkList,
extendWorkListNonEq, extendWorkListCt,
extendWorkListCts, extendWorkListEq,
appendWorkList,
selectNextWorkItem,
workListSize,
getWorkList, updWorkListTcS, pushLevelNoWorkList,
TcS, runTcS, runTcSDeriveds, runTcSWithEvBinds, runTcSInerts,
failTcS, warnTcS, addErrTcS, wrapTcS,
runTcSEqualities,
nestTcS, nestImplicTcS, setEvBindsTcS,
emitImplicationTcS, emitTvImplicationTcS,
runTcPluginTcS, addUsedGRE, addUsedGREs, keepAlive,
matchGlobalInst, TcM.ClsInstResult(..),
QCInst(..),
panicTcS, traceTcS,
traceFireTcS, bumpStepCountTcS, csTraceTcS,
wrapErrTcS, wrapWarnTcS,
resetUnificationFlag, setUnificationFlag,
MaybeNew(..), freshGoals, isFresh, getEvExpr,
newTcEvBinds, newNoTcEvBinds,
newWantedEq, newWantedEq_SI, emitNewWantedEq,
newWanted, newWanted_SI, newWantedEvVar,
newWantedNC, newWantedEvVarNC,
newDerivedNC,
newBoundEvVarId,
unifyTyVar, reportUnifications, touchabilityTest, TouchabilityTestResult(..),
setEvBind, setWantedEq,
setWantedEvTerm, setEvBindIfWanted,
newEvVar, newGivenEvVar, newGivenEvVars,
emitNewDeriveds, emitNewDerivedEq,
checkReductionDepth,
getSolvedDicts, setSolvedDicts,
getInstEnvs, getFamInstEnvs,
getTopEnv, getGblEnv, getLclEnv,
getTcEvBindsVar, getTcLevel,
getTcEvTyCoVars, getTcEvBindsMap, setTcEvBindsMap,
tcLookupClass, tcLookupId,
InertSet(..), InertCans(..), emptyInert,
updInertTcS, updInertCans, updInertDicts, updInertIrreds,
getHasGivenEqs, setInertCans,
getInertEqs, getInertCans, getInertGivens,
getInertInsols, getInnermostGivenEqLevel,
getTcSInerts, setTcSInerts,
matchableGivens, prohibitedSuperClassSolve, mightEqualLater,
getUnsolvedInerts,
removeInertCts, getPendingGivenScs,
addInertCan, insertFunEq, addInertForAll,
emitWorkNC, emitWork,
isImprovable,
kickOutAfterUnification,
addInertSafehask, insertSafeOverlapFailureTcS, updInertSafehask,
getSafeOverlapFailures,
DictMap, emptyDictMap, lookupInertDict, findDictsByClass, addDict,
addDictsByClass, delDict, foldDicts, filterDicts, findDict,
EqualCtList(..), findTyEqs, foldTyEqs,
findEq,
addSolvedDict, lookupSolvedDict,
foldIrreds,
lookupFamAppInert, lookupFamAppCache, extendFamAppCache,
pprKicked,
findFunEq, findFunEqsByTyCon,
instDFunType,
newFlexiTcSTy, instFlexi, instFlexiX,
cloneMetaTyVar,
tcInstSkolTyVarsX,
TcLevel,
isFilledMetaTyVar_maybe, isFilledMetaTyVar,
zonkTyCoVarsAndFV, zonkTcType, zonkTcTypes, zonkTcTyVar, zonkCo,
zonkTyCoVarsAndFVList,
zonkSimples, zonkWC,
zonkTyCoVarKind,
newTcRef, readTcRef, writeTcRef, updTcRef,
getDefaultInfo, getDynFlags, getGlobalRdrEnvTcS,
matchFam, matchFamTcM,
checkWellStagedDFun,
pprEq,
breakTyEqCycle_maybe, rewriterView
) where
#include "HsVersions.h"
import GHC.Prelude
import GHC.Driver.Env
import qualified GHC.Tc.Utils.Instantiate as TcM
import GHC.Core.InstEnv
import GHC.Tc.Instance.Family as FamInst
import GHC.Core.FamInstEnv
import qualified GHC.Tc.Utils.Monad as TcM
import qualified GHC.Tc.Utils.TcMType as TcM
import qualified GHC.Tc.Instance.Class as TcM( matchGlobalInst, ClsInstResult(..) )
import qualified GHC.Tc.Utils.Env as TcM
( checkWellStaged, tcGetDefaultTys, tcLookupClass, tcLookupId, topIdLvl )
import GHC.Tc.Instance.Class( InstanceWhat(..), safeOverlap, instanceReturnsDictCon )
import GHC.Tc.Utils.TcType
import GHC.Tc.Utils.Unify ( canSolveByUnification )
import GHC.Driver.Session
import GHC.Core.Type
import qualified GHC.Core.TyCo.Rep as Rep
import GHC.Core.Coercion
import GHC.Core.Unify
import GHC.Tc.Types.Evidence
import GHC.Core.Class
import GHC.Core.TyCon
import GHC.Tc.Errors ( solverDepthErrorTcS )
import GHC.Types.Name
import GHC.Types.TyThing
import GHC.Unit.Module ( HasModule, getModule )
import GHC.Types.Name.Reader ( GlobalRdrEnv, GlobalRdrElt )
import qualified GHC.Rename.Env as TcM
import GHC.Types.Var
import GHC.Types.Var.Env
import GHC.Types.Var.Set
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Logger
import GHC.Data.Bag as Bag
import GHC.Types.Unique.Supply
import GHC.Utils.Misc
import GHC.Tc.Types
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Types.Unique.Set
import GHC.Core.TyCon.Env
import GHC.Data.Maybe
import GHC.Core.Map.Type
import GHC.Data.TrieMap
import Control.Monad
import GHC.Utils.Monad
import Data.IORef
import GHC.Exts (oneShot)
import Data.List ( partition, mapAccumL )
import Data.List.NonEmpty ( NonEmpty(..), cons, toList, nonEmpty )
import qualified Data.List.NonEmpty as NE
import Control.Arrow ( first )
#if defined(DEBUG)
import GHC.Data.Graph.Directed
#endif
data WorkList
= WL { WorkList -> [Ct]
wl_eqs :: [Ct]
, WorkList -> [Ct]
wl_rest :: [Ct]
, WorkList -> Bag Implication
wl_implics :: Bag Implication
}
appendWorkList :: WorkList -> WorkList -> WorkList
appendWorkList :: WorkList -> WorkList -> WorkList
appendWorkList
(WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs1, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest1
, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics1 })
(WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs2, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest2
, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics2 })
= WL { wl_eqs :: [Ct]
wl_eqs = [Ct]
eqs1 [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
eqs2
, wl_rest :: [Ct]
wl_rest = [Ct]
rest1 [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
rest2
, wl_implics :: Bag Implication
wl_implics = Bag Implication
implics1 Bag Implication -> Bag Implication -> Bag Implication
forall a. Bag a -> Bag a -> Bag a
`unionBags` Bag Implication
implics2 }
workListSize :: WorkList -> Int
workListSize :: WorkList -> Int
workListSize (WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest })
= [Ct] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Ct]
eqs Int -> Int -> Int
forall a. Num a => a -> a -> a
+ [Ct] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Ct]
rest
extendWorkListEq :: Ct -> WorkList -> WorkList
extendWorkListEq :: Ct -> WorkList -> WorkList
extendWorkListEq Ct
ct WorkList
wl = WorkList
wl { wl_eqs :: [Ct]
wl_eqs = Ct
ct Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: WorkList -> [Ct]
wl_eqs WorkList
wl }
extendWorkListNonEq :: Ct -> WorkList -> WorkList
extendWorkListNonEq :: Ct -> WorkList -> WorkList
extendWorkListNonEq Ct
ct WorkList
wl = WorkList
wl { wl_rest :: [Ct]
wl_rest = Ct
ct Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: WorkList -> [Ct]
wl_rest WorkList
wl }
extendWorkListDeriveds :: [CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds :: [CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds [CtEvidence]
evs WorkList
wl
= [Ct] -> WorkList -> WorkList
extendWorkListCts ((CtEvidence -> Ct) -> [CtEvidence] -> [Ct]
forall a b. (a -> b) -> [a] -> [b]
map CtEvidence -> Ct
mkNonCanonical [CtEvidence]
evs) WorkList
wl
extendWorkListImplic :: Implication -> WorkList -> WorkList
extendWorkListImplic :: Implication -> WorkList -> WorkList
extendWorkListImplic Implication
implic WorkList
wl = WorkList
wl { wl_implics :: Bag Implication
wl_implics = Implication
implic Implication -> Bag Implication -> Bag Implication
forall a. a -> Bag a -> Bag a
`consBag` WorkList -> Bag Implication
wl_implics WorkList
wl }
extendWorkListCt :: Ct -> WorkList -> WorkList
extendWorkListCt :: Ct -> WorkList -> WorkList
extendWorkListCt Ct
ct WorkList
wl
= case Type -> Pred
classifyPredType (Ct -> Type
ctPred Ct
ct) of
EqPred {}
-> Ct -> WorkList -> WorkList
extendWorkListEq Ct
ct WorkList
wl
ClassPred Class
cls [Type]
_
| Class -> Bool
isEqPredClass Class
cls
-> Ct -> WorkList -> WorkList
extendWorkListEq Ct
ct WorkList
wl
Pred
_ -> Ct -> WorkList -> WorkList
extendWorkListNonEq Ct
ct WorkList
wl
extendWorkListCts :: [Ct] -> WorkList -> WorkList
extendWorkListCts :: [Ct] -> WorkList -> WorkList
extendWorkListCts [Ct]
cts WorkList
wl = (Ct -> WorkList -> WorkList) -> WorkList -> [Ct] -> WorkList
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> WorkList -> WorkList
extendWorkListCt WorkList
wl [Ct]
cts
isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList :: WorkList -> Bool
isEmptyWorkList (WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics })
= [Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
eqs Bool -> Bool -> Bool
&& [Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
rest Bool -> Bool -> Bool
&& Bag Implication -> Bool
forall a. Bag a -> Bool
isEmptyBag Bag Implication
implics
emptyWorkList :: WorkList
emptyWorkList :: WorkList
emptyWorkList = WL { wl_eqs :: [Ct]
wl_eqs = [], wl_rest :: [Ct]
wl_rest = [], wl_implics :: Bag Implication
wl_implics = Bag Implication
forall a. Bag a
emptyBag }
selectWorkItem :: WorkList -> Maybe (Ct, WorkList)
selectWorkItem :: WorkList -> Maybe (Ct, WorkList)
selectWorkItem wl :: WorkList
wl@(WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest })
| Ct
ct:[Ct]
cts <- [Ct]
eqs = (Ct, WorkList) -> Maybe (Ct, WorkList)
forall a. a -> Maybe a
Just (Ct
ct, WorkList
wl { wl_eqs :: [Ct]
wl_eqs = [Ct]
cts })
| Ct
ct:[Ct]
cts <- [Ct]
rest = (Ct, WorkList) -> Maybe (Ct, WorkList)
forall a. a -> Maybe a
Just (Ct
ct, WorkList
wl { wl_rest :: [Ct]
wl_rest = [Ct]
cts })
| Bool
otherwise = Maybe (Ct, WorkList)
forall a. Maybe a
Nothing
getWorkList :: TcS WorkList
getWorkList :: TcS WorkList
getWorkList = do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; TcM WorkList -> TcS WorkList
forall a. TcM a -> TcS a
wrapTcS (IORef WorkList -> TcM WorkList
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef WorkList
wl_var) }
selectNextWorkItem :: TcS (Maybe Ct)
selectNextWorkItem :: TcS (Maybe Ct)
selectNextWorkItem
= do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; WorkList
wl <- IORef WorkList -> TcS WorkList
forall a. TcRef a -> TcS a
readTcRef IORef WorkList
wl_var
; case WorkList -> Maybe (Ct, WorkList)
selectWorkItem WorkList
wl of {
Maybe (Ct, WorkList)
Nothing -> Maybe Ct -> TcS (Maybe Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe Ct
forall a. Maybe a
Nothing ;
Just (Ct
ct, WorkList
new_wl) ->
do {
; IORef WorkList -> WorkList -> TcS ()
forall a. TcRef a -> a -> TcS ()
writeTcRef IORef WorkList
wl_var WorkList
new_wl
; Maybe Ct -> TcS (Maybe Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return (Ct -> Maybe Ct
forall a. a -> Maybe a
Just Ct
ct) } } }
instance Outputable WorkList where
ppr :: WorkList -> SDoc
ppr (WL { wl_eqs :: WorkList -> [Ct]
wl_eqs = [Ct]
eqs, wl_rest :: WorkList -> [Ct]
wl_rest = [Ct]
rest, wl_implics :: WorkList -> Bag Implication
wl_implics = Bag Implication
implics })
= String -> SDoc
text String
"WL" SDoc -> SDoc -> SDoc
<+> (SDoc -> SDoc
braces (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ Bool -> SDoc -> SDoc
ppUnless ([Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
eqs) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Eqs =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((Ct -> SDoc) -> [Ct] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Ct]
eqs)
, Bool -> SDoc -> SDoc
ppUnless ([Ct] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Ct]
rest) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Non-eqs =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((Ct -> SDoc) -> [Ct] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Ct]
rest)
, Bool -> SDoc -> SDoc
ppUnless (Bag Implication -> Bool
forall a. Bag a -> Bool
isEmptyBag Bag Implication
implics) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
SDoc -> SDoc -> SDoc
ifPprDebug (String -> SDoc
text String
"Implics =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((Implication -> SDoc) -> [Implication] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Implication -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Bag Implication -> [Implication]
forall a. Bag a -> [a]
bagToList Bag Implication
implics)))
(String -> SDoc
text String
"(Implics omitted)")
])
type CycleBreakerVarStack = NonEmpty [(TcTyVar, TcType)]
data InertSet
= IS { InertSet -> InertCans
inert_cans :: InertCans
, InertSet -> CycleBreakerVarStack
inert_cycle_breakers :: CycleBreakerVarStack
, InertSet -> FunEqMap (Coercion, Type)
inert_famapp_cache :: FunEqMap (TcCoercion, TcType)
, InertSet -> DictMap CtEvidence
inert_solved_dicts :: DictMap CtEvidence
}
instance Outputable InertSet where
ppr :: InertSet -> SDoc
ppr (IS { inert_cans :: InertSet -> InertCans
inert_cans = InertCans
ics
, inert_solved_dicts :: InertSet -> DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
solved_dicts })
= [SDoc] -> SDoc
vcat [ InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ics
, Bool -> SDoc -> SDoc
ppUnless ([CtEvidence] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [CtEvidence]
dicts) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Solved dicts =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((CtEvidence -> SDoc) -> [CtEvidence] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr [CtEvidence]
dicts) ]
where
dicts :: [CtEvidence]
dicts = Bag CtEvidence -> [CtEvidence]
forall a. Bag a -> [a]
bagToList (DictMap CtEvidence -> Bag CtEvidence
forall a. DictMap a -> Bag a
dictsToBag DictMap CtEvidence
solved_dicts)
emptyInertCans :: InertCans
emptyInertCans :: InertCans
emptyInertCans
= IC { inert_eqs :: InertEqs
inert_eqs = InertEqs
forall a. DVarEnv a
emptyDVarEnv
, inert_given_eq_lvl :: TcLevel
inert_given_eq_lvl = TcLevel
topTcLevel
, inert_given_eqs :: Bool
inert_given_eqs = Bool
False
, inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct
forall a. DictMap a
emptyDicts
, inert_safehask :: DictMap Ct
inert_safehask = DictMap Ct
forall a. DictMap a
emptyDicts
, inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
forall a. DictMap a
emptyFunEqs
, inert_insts :: [QCInst]
inert_insts = []
, inert_irreds :: Bag Ct
inert_irreds = Bag Ct
emptyCts
, inert_blocked :: Bag Ct
inert_blocked = Bag Ct
emptyCts }
emptyInert :: InertSet
emptyInert :: InertSet
emptyInert
= IS { inert_cans :: InertCans
inert_cans = InertCans
emptyInertCans
, inert_cycle_breakers :: CycleBreakerVarStack
inert_cycle_breakers = [] [(TcTyVar, Type)] -> [[(TcTyVar, Type)]] -> CycleBreakerVarStack
forall a. a -> [a] -> NonEmpty a
:| []
, inert_famapp_cache :: FunEqMap (Coercion, Type)
inert_famapp_cache = FunEqMap (Coercion, Type)
forall a. DictMap a
emptyFunEqs
, inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
forall a. DictMap a
emptyDictMap }
data InertCans
= IC { InertCans -> InertEqs
inert_eqs :: InertEqs
, InertCans -> FunEqMap EqualCtList
inert_funeqs :: FunEqMap EqualCtList
, InertCans -> DictMap Ct
inert_dicts :: DictMap Ct
, InertCans -> [QCInst]
inert_insts :: [QCInst]
, InertCans -> DictMap Ct
inert_safehask :: DictMap Ct
, InertCans -> Bag Ct
inert_irreds :: Cts
, InertCans -> Bag Ct
inert_blocked :: Cts
, InertCans -> TcLevel
inert_given_eq_lvl :: TcLevel
, InertCans -> Bool
inert_given_eqs :: Bool
}
type InertEqs = DTyVarEnv EqualCtList
newtype EqualCtList = EqualCtList (NonEmpty Ct)
deriving newtype EqualCtList -> SDoc
(EqualCtList -> SDoc) -> Outputable EqualCtList
forall a. (a -> SDoc) -> Outputable a
ppr :: EqualCtList -> SDoc
$cppr :: EqualCtList -> SDoc
Outputable
unitEqualCtList :: Ct -> EqualCtList
unitEqualCtList :: Ct -> EqualCtList
unitEqualCtList Ct
ct = NonEmpty Ct -> EqualCtList
EqualCtList (Ct
ct Ct -> [Ct] -> NonEmpty Ct
forall a. a -> [a] -> NonEmpty a
:| [])
addToEqualCtList :: Ct -> EqualCtList -> EqualCtList
addToEqualCtList :: Ct -> EqualCtList -> EqualCtList
addToEqualCtList Ct
ct (EqualCtList NonEmpty Ct
old_eqs)
| Ct -> Bool
isWantedCt Ct
ct
, Ct
eq1 :| [Ct]
eqs <- NonEmpty Ct
old_eqs
= NonEmpty Ct -> EqualCtList
EqualCtList (Ct
eq1 Ct -> [Ct] -> NonEmpty Ct
forall a. a -> [a] -> NonEmpty a
:| Ct
ct Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: [Ct]
eqs)
| Bool
otherwise
= NonEmpty Ct -> EqualCtList
EqualCtList (Ct
ct Ct -> NonEmpty Ct -> NonEmpty Ct
forall a. a -> NonEmpty a -> NonEmpty a
`cons` NonEmpty Ct
old_eqs)
filterEqualCtList :: (Ct -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList :: (Ct -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList Ct -> Bool
pred (EqualCtList NonEmpty Ct
cts)
= (NonEmpty Ct -> EqualCtList)
-> Maybe (NonEmpty Ct) -> Maybe EqualCtList
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap NonEmpty Ct -> EqualCtList
EqualCtList ([Ct] -> Maybe (NonEmpty Ct)
forall a. [a] -> Maybe (NonEmpty a)
nonEmpty ([Ct] -> Maybe (NonEmpty Ct)) -> [Ct] -> Maybe (NonEmpty Ct)
forall a b. (a -> b) -> a -> b
$ (Ct -> Bool) -> NonEmpty Ct -> [Ct]
forall a. (a -> Bool) -> NonEmpty a -> [a]
NE.filter Ct -> Bool
pred NonEmpty Ct
cts)
equalCtListToList :: EqualCtList -> [Ct]
equalCtListToList :: EqualCtList -> [Ct]
equalCtListToList (EqualCtList NonEmpty Ct
cts) = NonEmpty Ct -> [Ct]
forall a. NonEmpty a -> [a]
toList NonEmpty Ct
cts
listToEqualCtList :: [Ct] -> Maybe EqualCtList
listToEqualCtList :: [Ct] -> Maybe EqualCtList
listToEqualCtList [Ct]
cts = NonEmpty Ct -> EqualCtList
EqualCtList (NonEmpty Ct -> EqualCtList)
-> Maybe (NonEmpty Ct) -> Maybe EqualCtList
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [Ct] -> Maybe (NonEmpty Ct)
forall a. [a] -> Maybe (NonEmpty a)
nonEmpty [Ct]
cts
instance Outputable InertCans where
ppr :: InertCans -> SDoc
ppr (IC { inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
eqs
, inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
funeqs
, inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dicts
, inert_safehask :: InertCans -> DictMap Ct
inert_safehask = DictMap Ct
safehask
, inert_irreds :: InertCans -> Bag Ct
inert_irreds = Bag Ct
irreds
, inert_blocked :: InertCans -> Bag Ct
inert_blocked = Bag Ct
blocked
, inert_given_eq_lvl :: InertCans -> TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl
, inert_given_eqs :: InertCans -> Bool
inert_given_eqs = Bool
given_eqs
, inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
insts })
= SDoc -> SDoc
braces (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
[ Bool -> SDoc -> SDoc
ppUnless (InertEqs -> Bool
forall a. DVarEnv a -> Bool
isEmptyDVarEnv InertEqs
eqs) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Equalities:"
SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
pprCts ((EqualCtList -> Bag Ct -> Bag Ct) -> Bag Ct -> InertEqs -> Bag Ct
forall a b. (a -> b -> b) -> b -> DVarEnv a -> b
foldDVarEnv EqualCtList -> Bag Ct -> Bag Ct
folder Bag Ct
emptyCts InertEqs
eqs)
, Bool -> SDoc -> SDoc
ppUnless (FunEqMap EqualCtList -> Bool
forall a. TcAppMap a -> Bool
isEmptyTcAppMap FunEqMap EqualCtList
funeqs) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Type-function equalities =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
pprCts ((EqualCtList -> Bag Ct -> Bag Ct)
-> FunEqMap EqualCtList -> Bag Ct -> Bag Ct
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs EqualCtList -> Bag Ct -> Bag Ct
folder FunEqMap EqualCtList
funeqs Bag Ct
emptyCts)
, Bool -> SDoc -> SDoc
ppUnless (DictMap Ct -> Bool
forall a. TcAppMap a -> Bool
isEmptyTcAppMap DictMap Ct
dicts) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Dictionaries =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
pprCts (DictMap Ct -> Bag Ct
forall a. DictMap a -> Bag a
dictsToBag DictMap Ct
dicts)
, Bool -> SDoc -> SDoc
ppUnless (DictMap Ct -> Bool
forall a. TcAppMap a -> Bool
isEmptyTcAppMap DictMap Ct
safehask) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Safe Haskell unsafe overlap =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
pprCts (DictMap Ct -> Bag Ct
forall a. DictMap a -> Bag a
dictsToBag DictMap Ct
safehask)
, Bool -> SDoc -> SDoc
ppUnless (Bag Ct -> Bool
isEmptyCts Bag Ct
irreds) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Irreds =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
pprCts Bag Ct
irreds
, Bool -> SDoc -> SDoc
ppUnless (Bag Ct -> Bool
isEmptyCts Bag Ct
blocked) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Blocked =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
pprCts Bag Ct
blocked
, Bool -> SDoc -> SDoc
ppUnless ([QCInst] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [QCInst]
insts) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Given instances =" SDoc -> SDoc -> SDoc
<+> [SDoc] -> SDoc
vcat ((QCInst -> SDoc) -> [QCInst] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map QCInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr [QCInst]
insts)
, String -> SDoc
text String
"Innermost given equalities =" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
ge_lvl
, String -> SDoc
text String
"Given eqs at this level =" SDoc -> SDoc -> SDoc
<+> Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bool
given_eqs
]
where
folder :: EqualCtList -> Bag Ct -> Bag Ct
folder (EqualCtList NonEmpty Ct
eqs) Bag Ct
rest = NonEmpty Ct -> Bag Ct
forall a. NonEmpty a -> Bag a
nonEmptyToBag NonEmpty Ct
eqs Bag Ct -> Bag Ct -> Bag Ct
`andCts` Bag Ct
rest
maybeEmitShadow :: InertCans -> Ct -> TcS Ct
maybeEmitShadow :: InertCans -> Ct -> TcS Ct
maybeEmitShadow InertCans
ics Ct
ct
| let ev :: CtEvidence
ev = Ct -> CtEvidence
ctEvidence Ct
ct
, CtWanted { ctev_pred :: CtEvidence -> Type
ctev_pred = Type
pred, ctev_loc :: CtEvidence -> CtLoc
ctev_loc = CtLoc
loc
, ctev_nosh :: CtEvidence -> ShadowInfo
ctev_nosh = ShadowInfo
WDeriv } <- CtEvidence
ev
, InertEqs -> FunEqMap EqualCtList -> Ct -> Bool
shouldSplitWD (InertCans -> InertEqs
inert_eqs InertCans
ics) (InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
ics) Ct
ct
= do { String -> SDoc -> TcS ()
traceTcS String
"Emit derived shadow" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
; let derived_ev :: CtEvidence
derived_ev = CtDerived { ctev_pred :: Type
ctev_pred = Type
pred
, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc }
shadow_ct :: Ct
shadow_ct = Ct
ct { cc_ev :: CtEvidence
cc_ev = CtEvidence
derived_ev }
; [Ct] -> TcS ()
emitWork [Ct
shadow_ct]
; let ev' :: CtEvidence
ev' = CtEvidence
ev { ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
WOnly }
ct' :: Ct
ct' = Ct
ct { cc_ev :: CtEvidence
cc_ev = CtEvidence
ev' }
; Ct -> TcS Ct
forall (m :: * -> *) a. Monad m => a -> m a
return Ct
ct' }
| Bool
otherwise
= Ct -> TcS Ct
forall (m :: * -> *) a. Monad m => a -> m a
return Ct
ct
shouldSplitWD :: InertEqs -> FunEqMap EqualCtList -> Ct -> Bool
shouldSplitWD :: InertEqs -> FunEqMap EqualCtList -> Ct -> Bool
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CDictCan { cc_tyargs :: Ct -> [Type]
cc_tyargs = [Type]
tys })
= InertEqs -> FunEqMap EqualCtList -> [Type] -> Bool
should_split_match_args InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs [Type]
tys
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = TyVarLHS TcTyVar
tv, cc_rhs :: Ct -> Type
cc_rhs = Type
ty
, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel })
= TcTyVar
tv TcTyVar -> InertEqs -> Bool
forall a. TcTyVar -> DVarEnv a -> Bool
`elemDVarEnv` InertEqs
inert_eqs
Bool -> Bool -> Bool
|| EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [Type] -> Bool)
-> Type
-> Bool
anyRewritableCanEqLHS EqRel
eq_rel (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs) (FunEqMap EqualCtList -> EqRel -> TyCon -> [Type] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs) Type
ty
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CEqCan { cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel })
= EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [Type] -> Bool)
-> Type
-> Bool
anyRewritableCanEqLHS EqRel
eq_rel (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs) (FunEqMap EqualCtList -> EqRel -> TyCon -> [Type] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs)
(CtEvidence -> Type
ctEvPred CtEvidence
ev)
shouldSplitWD InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs (CIrredCan { cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev })
= EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [Type] -> Bool)
-> Type
-> Bool
anyRewritableCanEqLHS (CtEvidence -> EqRel
ctEvEqRel CtEvidence
ev) (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs)
(FunEqMap EqualCtList -> EqRel -> TyCon -> [Type] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs) (CtEvidence -> Type
ctEvPred CtEvidence
ev)
shouldSplitWD InertEqs
_ FunEqMap EqualCtList
_ Ct
_ = Bool
False
should_split_match_args :: InertEqs -> FunEqMap EqualCtList -> [TcType] -> Bool
should_split_match_args :: InertEqs -> FunEqMap EqualCtList -> [Type] -> Bool
should_split_match_args InertEqs
inert_eqs FunEqMap EqualCtList
fun_eqs [Type]
tys
= (Type -> Bool) -> [Type] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (EqRel
-> (EqRel -> TcTyVar -> Bool)
-> (EqRel -> TyCon -> [Type] -> Bool)
-> Type
-> Bool
anyRewritableCanEqLHS EqRel
NomEq (InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs) (FunEqMap EqualCtList -> EqRel -> TyCon -> [Type] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs)) [Type]
tys
canRewriteTv :: InertEqs -> EqRel -> TyVar -> Bool
canRewriteTv :: InertEqs -> EqRel -> TcTyVar -> Bool
canRewriteTv InertEqs
inert_eqs EqRel
eq_rel TcTyVar
tv
| Just (EqualCtList (Ct
ct :| [Ct]
_)) <- InertEqs -> TcTyVar -> Maybe EqualCtList
forall a. DVarEnv a -> TcTyVar -> Maybe a
lookupDVarEnv InertEqs
inert_eqs TcTyVar
tv
, CEqCan { cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel1 } <- Ct
ct
= EqRel
eq_rel1 EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
eq_rel
| Bool
otherwise
= Bool
False
canRewriteTyFam :: FunEqMap EqualCtList -> EqRel -> TyCon -> [Type] -> Bool
canRewriteTyFam :: FunEqMap EqualCtList -> EqRel -> TyCon -> [Type] -> Bool
canRewriteTyFam FunEqMap EqualCtList
fun_eqs EqRel
eq_rel TyCon
tf [Type]
args
| Just (EqualCtList (Ct
ct :| [Ct]
_)) <- FunEqMap EqualCtList -> TyCon -> [Type] -> Maybe EqualCtList
forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq FunEqMap EqualCtList
fun_eqs TyCon
tf [Type]
args
, CEqCan { cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel1 } <- Ct
ct
= EqRel
eq_rel1 EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
eq_rel
| Bool
otherwise
= Bool
False
isImprovable :: CtEvidence -> Bool
isImprovable :: CtEvidence -> Bool
isImprovable (CtWanted { ctev_nosh :: CtEvidence -> ShadowInfo
ctev_nosh = ShadowInfo
WOnly }) = Bool
False
isImprovable CtEvidence
_ = Bool
True
addTyEq :: InertEqs -> TcTyVar -> Ct -> InertEqs
addTyEq :: InertEqs -> TcTyVar -> Ct -> InertEqs
addTyEq InertEqs
old_eqs TcTyVar
tv Ct
ct
= (EqualCtList -> EqualCtList -> EqualCtList)
-> InertEqs -> TcTyVar -> EqualCtList -> InertEqs
forall a. (a -> a -> a) -> DVarEnv a -> TcTyVar -> a -> DVarEnv a
extendDVarEnv_C EqualCtList -> EqualCtList -> EqualCtList
add_eq InertEqs
old_eqs TcTyVar
tv (Ct -> EqualCtList
unitEqualCtList Ct
ct)
where
add_eq :: EqualCtList -> EqualCtList -> EqualCtList
add_eq EqualCtList
old_eqs EqualCtList
_ = Ct -> EqualCtList -> EqualCtList
addToEqualCtList Ct
ct EqualCtList
old_eqs
addCanFunEq :: FunEqMap EqualCtList -> TyCon -> [TcType] -> Ct
-> FunEqMap EqualCtList
addCanFunEq :: FunEqMap EqualCtList
-> TyCon -> [Type] -> Ct -> FunEqMap EqualCtList
addCanFunEq FunEqMap EqualCtList
old_eqs TyCon
fun_tc [Type]
fun_args Ct
ct
= FunEqMap EqualCtList
-> TyCon -> [Type] -> XT EqualCtList -> FunEqMap EqualCtList
forall a. TcAppMap a -> TyCon -> [Type] -> XT a -> TcAppMap a
alterTcApp FunEqMap EqualCtList
old_eqs TyCon
fun_tc [Type]
fun_args XT EqualCtList
upd
where
upd :: XT EqualCtList
upd (Just EqualCtList
old_equal_ct_list) = EqualCtList -> Maybe EqualCtList
forall a. a -> Maybe a
Just (EqualCtList -> Maybe EqualCtList)
-> EqualCtList -> Maybe EqualCtList
forall a b. (a -> b) -> a -> b
$ Ct -> EqualCtList -> EqualCtList
addToEqualCtList Ct
ct EqualCtList
old_equal_ct_list
upd Maybe EqualCtList
Nothing = EqualCtList -> Maybe EqualCtList
forall a. a -> Maybe a
Just (EqualCtList -> Maybe EqualCtList)
-> EqualCtList -> Maybe EqualCtList
forall a b. (a -> b) -> a -> b
$ Ct -> EqualCtList
unitEqualCtList Ct
ct
foldTyEqs :: (Ct -> b -> b) -> InertEqs -> b -> b
foldTyEqs :: forall b. (Ct -> b -> b) -> InertEqs -> b -> b
foldTyEqs Ct -> b -> b
k InertEqs
eqs b
z
= (EqualCtList -> b -> b) -> b -> InertEqs -> b
forall a b. (a -> b -> b) -> b -> DVarEnv a -> b
foldDVarEnv (\(EqualCtList NonEmpty Ct
cts) b
z -> (Ct -> b -> b) -> b -> NonEmpty Ct -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> b -> b
k b
z NonEmpty Ct
cts) b
z InertEqs
eqs
findTyEqs :: InertCans -> TyVar -> [Ct]
findTyEqs :: InertCans -> TcTyVar -> [Ct]
findTyEqs InertCans
icans TcTyVar
tv = [Ct] -> ([Ct] -> [Ct]) -> Maybe [Ct] -> [Ct]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] [Ct] -> [Ct]
forall a. a -> a
id (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap @Maybe EqualCtList -> [Ct]
equalCtListToList (Maybe EqualCtList -> Maybe [Ct])
-> Maybe EqualCtList -> Maybe [Ct]
forall a b. (a -> b) -> a -> b
$
InertEqs -> TcTyVar -> Maybe EqualCtList
forall a. DVarEnv a -> TcTyVar -> Maybe a
lookupDVarEnv (InertCans -> InertEqs
inert_eqs InertCans
icans) TcTyVar
tv)
delEq :: InertCans -> CanEqLHS -> TcType -> InertCans
delEq :: InertCans -> CanEqLHS -> Type -> InertCans
delEq InertCans
ic CanEqLHS
lhs Type
rhs = case CanEqLHS
lhs of
TyVarLHS TcTyVar
tv
-> InertCans
ic { inert_eqs :: InertEqs
inert_eqs = XT EqualCtList -> InertEqs -> TcTyVar -> InertEqs
forall a. (Maybe a -> Maybe a) -> DVarEnv a -> TcTyVar -> DVarEnv a
alterDVarEnv XT EqualCtList
upd (InertCans -> InertEqs
inert_eqs InertCans
ic) TcTyVar
tv }
TyFamLHS TyCon
tf [Type]
args
-> InertCans
ic { inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
-> TyCon -> [Type] -> XT EqualCtList -> FunEqMap EqualCtList
forall a. TcAppMap a -> TyCon -> [Type] -> XT a -> TcAppMap a
alterTcApp (InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
ic) TyCon
tf [Type]
args XT EqualCtList
upd }
where
isThisOne :: Ct -> Bool
isThisOne :: Ct -> Bool
isThisOne (CEqCan { cc_rhs :: Ct -> Type
cc_rhs = Type
t1 }) = Type -> Type -> Bool
tcEqTypeNoKindCheck Type
rhs Type
t1
isThisOne Ct
other = String -> SDoc -> Bool
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"delEq" (CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
lhs SDoc -> SDoc -> SDoc
$$ InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ic SDoc -> SDoc -> SDoc
$$ Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
other)
upd :: Maybe EqualCtList -> Maybe EqualCtList
upd :: XT EqualCtList
upd (Just EqualCtList
eq_ct_list) = (Ct -> Bool) -> EqualCtList -> Maybe EqualCtList
filterEqualCtList (Bool -> Bool
not (Bool -> Bool) -> (Ct -> Bool) -> Ct -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Ct -> Bool
isThisOne) EqualCtList
eq_ct_list
upd Maybe EqualCtList
Nothing = Maybe EqualCtList
forall a. Maybe a
Nothing
findEq :: InertCans -> CanEqLHS -> [Ct]
findEq :: InertCans -> CanEqLHS -> [Ct]
findEq InertCans
icans (TyVarLHS TcTyVar
tv) = InertCans -> TcTyVar -> [Ct]
findTyEqs InertCans
icans TcTyVar
tv
findEq InertCans
icans (TyFamLHS TyCon
fun_tc [Type]
fun_args)
= [Ct] -> ([Ct] -> [Ct]) -> Maybe [Ct] -> [Ct]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] [Ct] -> [Ct]
forall a. a -> a
id (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap @Maybe EqualCtList -> [Ct]
equalCtListToList (Maybe EqualCtList -> Maybe [Ct])
-> Maybe EqualCtList -> Maybe [Ct]
forall a b. (a -> b) -> a -> b
$
FunEqMap EqualCtList -> TyCon -> [Type] -> Maybe EqualCtList
forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq (InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
icans) TyCon
fun_tc [Type]
fun_args)
addInertForAll :: QCInst -> TcS ()
addInertForAll :: QCInst -> TcS ()
addInertForAll QCInst
new_qci
= do { InertCans
ics <- TcS InertCans
getInertCans
; InertCans
ics1 <- InertCans -> TcS InertCans
add_qci InertCans
ics
; TcLevel
tclvl <- TcS TcLevel
getTcLevel
; let pred :: Type
pred = QCInst -> Type
qci_pred QCInst
new_qci
not_equality :: Bool
not_equality = Type -> Bool
isClassPred Type
pred Bool -> Bool -> Bool
&& Bool -> Bool
not (Type -> Bool
isEqPred Type
pred)
ics2 :: InertCans
ics2 | Bool
not_equality = InertCans
ics1
| Bool
otherwise = InertCans
ics1 { inert_given_eq_lvl :: TcLevel
inert_given_eq_lvl = TcLevel
tclvl
, inert_given_eqs :: Bool
inert_given_eqs = Bool
True }
; InertCans -> TcS ()
setInertCans InertCans
ics2 }
where
add_qci :: InertCans -> TcS InertCans
add_qci :: InertCans -> TcS InertCans
add_qci ics :: InertCans
ics@(IC { inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
qcis })
| (QCInst -> Bool) -> [QCInst] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any QCInst -> Bool
same_qci [QCInst]
qcis
= do { String -> SDoc -> TcS ()
traceTcS String
"skipping duplicate quantified instance" (QCInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr QCInst
new_qci)
; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return InertCans
ics }
| Bool
otherwise
= do { String -> SDoc -> TcS ()
traceTcS String
"adding new inert quantified instance" (QCInst -> SDoc
forall a. Outputable a => a -> SDoc
ppr QCInst
new_qci)
; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return (InertCans
ics { inert_insts :: [QCInst]
inert_insts = QCInst
new_qci QCInst -> [QCInst] -> [QCInst]
forall a. a -> [a] -> [a]
: [QCInst]
qcis }) }
same_qci :: QCInst -> Bool
same_qci QCInst
old_qci = HasDebugCallStack => Type -> Type -> Bool
Type -> Type -> Bool
tcEqType (CtEvidence -> Type
ctEvPred (QCInst -> CtEvidence
qci_ev QCInst
old_qci))
(CtEvidence -> Type
ctEvPred (QCInst -> CtEvidence
qci_ev QCInst
new_qci))
addInertCan :: Ct -> TcS ()
addInertCan :: Ct -> TcS ()
addInertCan Ct
ct
= do { String -> SDoc -> TcS ()
traceTcS String
"addInertCan {" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
String -> SDoc
text String
"Trying to insert new inert item:" SDoc -> SDoc -> SDoc
<+> Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct
; InertCans
ics <- TcS InertCans
getInertCans
; Ct
ct <- InertCans -> Ct -> TcS Ct
maybeEmitShadow InertCans
ics Ct
ct
; InertCans
ics <- InertCans -> Ct -> TcS InertCans
maybeKickOut InertCans
ics Ct
ct
; TcLevel
tclvl <- TcS TcLevel
getTcLevel
; InertCans -> TcS ()
setInertCans (TcLevel -> InertCans -> Ct -> InertCans
add_item TcLevel
tclvl InertCans
ics Ct
ct)
; String -> SDoc -> TcS ()
traceTcS String
"addInertCan }" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$ SDoc
empty }
maybeKickOut :: InertCans -> Ct -> TcS InertCans
maybeKickOut :: InertCans -> Ct -> TcS InertCans
maybeKickOut InertCans
ics Ct
ct
| CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs, cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel } <- Ct
ct
= do { (Int
_, InertCans
ics') <- CtFlavourRole -> CanEqLHS -> InertCans -> TcS (Int, InertCans)
kickOutRewritable (CtEvidence -> CtFlavour
ctEvFlavour CtEvidence
ev, EqRel
eq_rel) CanEqLHS
lhs InertCans
ics
; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return InertCans
ics' }
| Bool
otherwise
= InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return InertCans
ics
add_item :: TcLevel -> InertCans -> Ct -> InertCans
add_item :: TcLevel -> InertCans -> Ct -> InertCans
add_item TcLevel
tc_lvl
ics :: InertCans
ics@(IC { inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
funeqs, inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
eqs })
item :: Ct
item@(CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs })
= TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs TcLevel
tc_lvl Ct
item (InertCans -> InertCans) -> InertCans -> InertCans
forall a b. (a -> b) -> a -> b
$
case CanEqLHS
lhs of
TyFamLHS TyCon
tc [Type]
tys -> InertCans
ics { inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
-> TyCon -> [Type] -> Ct -> FunEqMap EqualCtList
addCanFunEq FunEqMap EqualCtList
funeqs TyCon
tc [Type]
tys Ct
item }
TyVarLHS TcTyVar
tv -> InertCans
ics { inert_eqs :: InertEqs
inert_eqs = InertEqs -> TcTyVar -> Ct -> InertEqs
addTyEq InertEqs
eqs TcTyVar
tv Ct
item }
add_item TcLevel
tc_lvl ics :: InertCans
ics@(IC { inert_blocked :: InertCans -> Bag Ct
inert_blocked = Bag Ct
blocked })
item :: Ct
item@(CIrredCan { cc_reason :: Ct -> CtIrredReason
cc_reason = HoleBlockerReason {}})
= TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs TcLevel
tc_lvl Ct
item (InertCans -> InertCans) -> InertCans -> InertCans
forall a b. (a -> b) -> a -> b
$
InertCans
ics { inert_blocked :: Bag Ct
inert_blocked = Bag Ct
blocked Bag Ct -> Ct -> Bag Ct
forall a. Bag a -> a -> Bag a
`snocBag` Ct
item }
add_item TcLevel
tc_lvl ics :: InertCans
ics@(IC { inert_irreds :: InertCans -> Bag Ct
inert_irreds = Bag Ct
irreds }) item :: Ct
item@(CIrredCan {})
= TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs TcLevel
tc_lvl Ct
item (InertCans -> InertCans) -> InertCans -> InertCans
forall a b. (a -> b) -> a -> b
$
InertCans
ics { inert_irreds :: Bag Ct
inert_irreds = Bag Ct
irreds Bag Ct -> Ct -> Bag Ct
forall a. Bag a -> a -> Bag a
`Bag.snocBag` Ct
item }
add_item TcLevel
_ InertCans
ics item :: Ct
item@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [Type]
cc_tyargs = [Type]
tys })
= InertCans
ics { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct -> Class -> [Type] -> Ct -> DictMap Ct
addDictCt (InertCans -> DictMap Ct
inert_dicts InertCans
ics) Class
cls [Type]
tys Ct
item }
add_item TcLevel
_ InertCans
_ Ct
item
= String -> SDoc -> InertCans
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"upd_inert set: can't happen! Inserting " (SDoc -> InertCans) -> SDoc -> InertCans
forall a b. (a -> b) -> a -> b
$
Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
item
updateGivenEqs :: TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs :: TcLevel -> Ct -> InertCans -> InertCans
updateGivenEqs TcLevel
tclvl Ct
ct inerts :: InertCans
inerts@(IC { inert_given_eq_lvl :: InertCans -> TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl })
| Bool -> Bool
not (Ct -> Bool
isGivenCt Ct
ct) = InertCans
inerts
| Ct -> Bool
not_equality Ct
ct = InertCans
inerts
| Bool
otherwise = InertCans
inerts { inert_given_eq_lvl :: TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl'
, inert_given_eqs :: Bool
inert_given_eqs = Bool
True }
where
ge_lvl' :: TcLevel
ge_lvl' | TcLevel -> CtEvidence -> Bool
mentionsOuterVar TcLevel
tclvl (Ct -> CtEvidence
ctEvidence Ct
ct)
= TcLevel
tclvl
| Bool
otherwise
= TcLevel
ge_lvl
not_equality :: Ct -> Bool
not_equality :: Ct -> Bool
not_equality (CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = TyVarLHS TcTyVar
tv }) = Bool -> Bool
not (TcLevel -> TcTyVar -> Bool
isOuterTyVar TcLevel
tclvl TcTyVar
tv)
not_equality (CDictCan {}) = Bool
True
not_equality Ct
_ = Bool
False
kickOutRewritable :: CtFlavourRole
-> CanEqLHS
-> InertCans
-> TcS (Int, InertCans)
kickOutRewritable :: CtFlavourRole -> CanEqLHS -> InertCans -> TcS (Int, InertCans)
kickOutRewritable CtFlavourRole
new_fr CanEqLHS
new_lhs InertCans
ics
= do { let (WorkList
kicked_out, InertCans
ics') = CtFlavourRole -> CanEqLHS -> InertCans -> (WorkList, InertCans)
kick_out_rewritable CtFlavourRole
new_fr CanEqLHS
new_lhs InertCans
ics
n_kicked :: Int
n_kicked = WorkList -> Int
workListSize WorkList
kicked_out
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n_kicked Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { (WorkList -> WorkList) -> TcS ()
updWorkListTcS (WorkList -> WorkList -> WorkList
appendWorkList WorkList
kicked_out)
; let kicked_given_ev_vars :: [TcTyVar]
kicked_given_ev_vars =
[ TcTyVar
ev_var | Ct
ct <- WorkList -> [Ct]
wl_eqs WorkList
kicked_out
, CtGiven { ctev_evar :: CtEvidence -> TcTyVar
ctev_evar = TcTyVar
ev_var } <- [Ct -> CtEvidence
ctEvidence Ct
ct] ]
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (CtFlavourRole
new_fr CtFlavourRole -> CtFlavourRole -> Bool
`eqCanRewriteFR` (CtFlavour
Given, EqRel
NomEq) Bool -> Bool -> Bool
&&
Bool -> Bool
not ([TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
kicked_given_ev_vars)) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcS ()
traceTcS String
"Given(s) have been kicked out; drop from famapp-cache"
([TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
kicked_given_ev_vars)
; VarSet -> TcS ()
dropFromFamAppCache ([TcTyVar] -> VarSet
mkVarSet [TcTyVar]
kicked_given_ev_vars) }
; SDoc -> TcS ()
csTraceTcS (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Kick out, lhs =" SDoc -> SDoc -> SDoc
<+> CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
new_lhs)
Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"n-kicked =" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
n_kicked
, String -> SDoc
text String
"kicked_out =" SDoc -> SDoc -> SDoc
<+> WorkList -> SDoc
forall a. Outputable a => a -> SDoc
ppr WorkList
kicked_out
, String -> SDoc
text String
"Residual inerts =" SDoc -> SDoc -> SDoc
<+> InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ics' ]) }
; (Int, InertCans) -> TcS (Int, InertCans)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
n_kicked, InertCans
ics') }
kick_out_rewritable :: CtFlavourRole
-> CanEqLHS
-> InertCans
-> (WorkList, InertCans)
kick_out_rewritable :: CtFlavourRole -> CanEqLHS -> InertCans -> (WorkList, InertCans)
kick_out_rewritable CtFlavourRole
new_fr CanEqLHS
new_lhs
ics :: InertCans
ics@(IC { inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
tv_eqs
, inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dictmap
, inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
funeqmap
, inert_irreds :: InertCans -> Bag Ct
inert_irreds = Bag Ct
irreds
, inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
old_insts })
| Bool -> Bool
not (CtFlavourRole
new_fr CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
new_fr)
= (WorkList
emptyWorkList, InertCans
ics)
| Bool
otherwise
= (WorkList
kicked_out, InertCans
inert_cans_in)
where
inert_cans_in :: InertCans
inert_cans_in = InertCans
ics { inert_eqs :: InertEqs
inert_eqs = InertEqs
tv_eqs_in
, inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct
dicts_in
, inert_funeqs :: FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
feqs_in
, inert_irreds :: Bag Ct
inert_irreds = Bag Ct
irs_in
, inert_insts :: [QCInst]
inert_insts = [QCInst]
insts_in }
kicked_out :: WorkList
kicked_out :: WorkList
kicked_out = (Ct -> WorkList -> WorkList) -> WorkList -> Bag Ct -> WorkList
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> WorkList -> WorkList
extendWorkListCt
(WorkList
emptyWorkList { wl_eqs :: [Ct]
wl_eqs = [Ct]
tv_eqs_out [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
feqs_out })
((Bag Ct
dicts_out Bag Ct -> Bag Ct -> Bag Ct
`andCts` Bag Ct
irs_out)
Bag Ct -> [Ct] -> Bag Ct
`extendCtsList` [Ct]
insts_out)
([Ct]
tv_eqs_out, InertEqs
tv_eqs_in) = (EqualCtList -> ([Ct], InertEqs) -> ([Ct], InertEqs))
-> ([Ct], InertEqs) -> InertEqs -> ([Ct], InertEqs)
forall a b. (a -> b -> b) -> b -> DVarEnv a -> b
foldDVarEnv ((InertEqs -> CanEqLHS -> EqualCtList -> InertEqs)
-> EqualCtList -> ([Ct], InertEqs) -> ([Ct], InertEqs)
forall container.
(container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container) -> ([Ct], container)
kick_out_eqs InertEqs -> CanEqLHS -> EqualCtList -> InertEqs
extend_tv_eqs)
([], InertEqs
forall a. DVarEnv a
emptyDVarEnv) InertEqs
tv_eqs
([Ct]
feqs_out, FunEqMap EqualCtList
feqs_in) = (EqualCtList
-> ([Ct], FunEqMap EqualCtList) -> ([Ct], FunEqMap EqualCtList))
-> FunEqMap EqualCtList
-> ([Ct], FunEqMap EqualCtList)
-> ([Ct], FunEqMap EqualCtList)
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs ((FunEqMap EqualCtList
-> CanEqLHS -> EqualCtList -> FunEqMap EqualCtList)
-> EqualCtList
-> ([Ct], FunEqMap EqualCtList)
-> ([Ct], FunEqMap EqualCtList)
forall container.
(container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container) -> ([Ct], container)
kick_out_eqs FunEqMap EqualCtList
-> CanEqLHS -> EqualCtList -> FunEqMap EqualCtList
extend_fun_eqs)
FunEqMap EqualCtList
funeqmap ([], FunEqMap EqualCtList
forall a. DictMap a
emptyFunEqs)
(Bag Ct
dicts_out, DictMap Ct
dicts_in) = (Ct -> Bool) -> DictMap Ct -> (Bag Ct, DictMap Ct)
partitionDicts Ct -> Bool
kick_out_ct DictMap Ct
dictmap
(Bag Ct
irs_out, Bag Ct
irs_in) = (Ct -> Bool) -> Bag Ct -> (Bag Ct, Bag Ct)
forall a. (a -> Bool) -> Bag a -> (Bag a, Bag a)
partitionBag Ct -> Bool
kick_out_ct Bag Ct
irreds
insts_out :: [Ct]
insts_in :: [QCInst]
([Ct]
insts_out, [QCInst]
insts_in)
| CtFlavourRole -> Bool
fr_may_rewrite (CtFlavour
Given, EqRel
NomEq)
= (QCInst -> Either Ct QCInst) -> [QCInst] -> ([Ct], [QCInst])
forall a b c. (a -> Either b c) -> [a] -> ([b], [c])
partitionWith QCInst -> Either Ct QCInst
kick_out_qci [QCInst]
old_insts
| Bool
otherwise
= ([], [QCInst]
old_insts)
kick_out_qci :: QCInst -> Either Ct QCInst
kick_out_qci QCInst
qci
| let ev :: CtEvidence
ev = QCInst -> CtEvidence
qci_ev QCInst
qci
, EqRel -> Type -> Bool
fr_can_rewrite_ty EqRel
NomEq (CtEvidence -> Type
ctEvPred (QCInst -> CtEvidence
qci_ev QCInst
qci))
= Ct -> Either Ct QCInst
forall a b. a -> Either a b
Left (CtEvidence -> Ct
mkNonCanonical CtEvidence
ev)
| Bool
otherwise
= QCInst -> Either Ct QCInst
forall a b. b -> Either a b
Right QCInst
qci
(CtFlavour
_, EqRel
new_role) = CtFlavourRole
new_fr
fr_tv_can_rewrite_ty :: TyVar -> EqRel -> Type -> Bool
fr_tv_can_rewrite_ty :: TcTyVar -> EqRel -> Type -> Bool
fr_tv_can_rewrite_ty TcTyVar
new_tv EqRel
role Type
ty
= Bool -> EqRel -> (EqRel -> TcTyVar -> Bool) -> Type -> Bool
anyRewritableTyVar Bool
True EqRel
role EqRel -> TcTyVar -> Bool
can_rewrite Type
ty
where
can_rewrite :: EqRel -> TyVar -> Bool
can_rewrite :: EqRel -> TcTyVar -> Bool
can_rewrite EqRel
old_role TcTyVar
tv = EqRel
new_role EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
old_role Bool -> Bool -> Bool
&& TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
new_tv
fr_tf_can_rewrite_ty :: TyCon -> [TcType] -> EqRel -> Type -> Bool
fr_tf_can_rewrite_ty :: TyCon -> [Type] -> EqRel -> Type -> Bool
fr_tf_can_rewrite_ty TyCon
new_tf [Type]
new_tf_args EqRel
role Type
ty
= EqRel -> (EqRel -> TyCon -> [Type] -> Bool) -> Type -> Bool
anyRewritableTyFamApp EqRel
role EqRel -> TyCon -> [Type] -> Bool
can_rewrite Type
ty
where
can_rewrite :: EqRel -> TyCon -> [TcType] -> Bool
can_rewrite :: EqRel -> TyCon -> [Type] -> Bool
can_rewrite EqRel
old_role TyCon
old_tf [Type]
old_tf_args
= EqRel
new_role EqRel -> EqRel -> Bool
`eqCanRewrite` EqRel
old_role Bool -> Bool -> Bool
&&
TyCon -> [Type] -> TyCon -> [Type] -> Bool
tcEqTyConApps TyCon
new_tf [Type]
new_tf_args TyCon
old_tf [Type]
old_tf_args
{-# INLINE fr_can_rewrite_ty #-}
fr_can_rewrite_ty :: EqRel -> Type -> Bool
fr_can_rewrite_ty :: EqRel -> Type -> Bool
fr_can_rewrite_ty = case CanEqLHS
new_lhs of
TyVarLHS TcTyVar
new_tv -> TcTyVar -> EqRel -> Type -> Bool
fr_tv_can_rewrite_ty TcTyVar
new_tv
TyFamLHS TyCon
new_tf [Type]
new_tf_args -> TyCon -> [Type] -> EqRel -> Type -> Bool
fr_tf_can_rewrite_ty TyCon
new_tf [Type]
new_tf_args
fr_may_rewrite :: CtFlavourRole -> Bool
fr_may_rewrite :: CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs = CtFlavourRole
new_fr CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
fs
{-# INLINE kick_out_ct #-}
kick_out_ct :: Ct -> Bool
kick_out_ct :: Ct -> Bool
kick_out_ct = case CanEqLHS
new_lhs of
TyVarLHS TcTyVar
new_tv -> \Ct
ct -> let fs :: CtFlavourRole
fs@(CtFlavour
_,EqRel
role) = Ct -> CtFlavourRole
ctFlavourRole Ct
ct in
CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs
Bool -> Bool -> Bool
&& TcTyVar -> EqRel -> Type -> Bool
fr_tv_can_rewrite_ty TcTyVar
new_tv EqRel
role (Ct -> Type
ctPred Ct
ct)
TyFamLHS TyCon
new_tf [Type]
new_tf_args
-> \Ct
ct -> let fs :: CtFlavourRole
fs@(CtFlavour
_, EqRel
role) = Ct -> CtFlavourRole
ctFlavourRole Ct
ct in
CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs
Bool -> Bool -> Bool
&& TyCon -> [Type] -> EqRel -> Type -> Bool
fr_tf_can_rewrite_ty TyCon
new_tf [Type]
new_tf_args EqRel
role (Ct -> Type
ctPred Ct
ct)
extend_tv_eqs :: InertEqs -> CanEqLHS -> EqualCtList -> InertEqs
extend_tv_eqs :: InertEqs -> CanEqLHS -> EqualCtList -> InertEqs
extend_tv_eqs InertEqs
eqs (TyVarLHS TcTyVar
tv) EqualCtList
cts = InertEqs -> TcTyVar -> EqualCtList -> InertEqs
forall a. DVarEnv a -> TcTyVar -> a -> DVarEnv a
extendDVarEnv InertEqs
eqs TcTyVar
tv EqualCtList
cts
extend_tv_eqs InertEqs
eqs CanEqLHS
other EqualCtList
_cts = String -> SDoc -> InertEqs
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"extend_tv_eqs" (InertEqs -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertEqs
eqs SDoc -> SDoc -> SDoc
$$ CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
other)
extend_fun_eqs :: FunEqMap EqualCtList -> CanEqLHS -> EqualCtList
-> FunEqMap EqualCtList
extend_fun_eqs :: FunEqMap EqualCtList
-> CanEqLHS -> EqualCtList -> FunEqMap EqualCtList
extend_fun_eqs FunEqMap EqualCtList
eqs (TyFamLHS TyCon
fam_tc [Type]
fam_args) EqualCtList
cts
= FunEqMap EqualCtList
-> TyCon -> [Type] -> EqualCtList -> FunEqMap EqualCtList
forall a. TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp FunEqMap EqualCtList
eqs TyCon
fam_tc [Type]
fam_args EqualCtList
cts
extend_fun_eqs FunEqMap EqualCtList
eqs CanEqLHS
other EqualCtList
_cts = String -> SDoc -> FunEqMap EqualCtList
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"extend_fun_eqs" (FunEqMap EqualCtList -> SDoc
forall a. Outputable a => a -> SDoc
ppr FunEqMap EqualCtList
eqs SDoc -> SDoc -> SDoc
$$ CanEqLHS -> SDoc
forall a. Outputable a => a -> SDoc
ppr CanEqLHS
other)
kick_out_eqs :: (container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container)
-> ([Ct], container)
kick_out_eqs :: forall container.
(container -> CanEqLHS -> EqualCtList -> container)
-> EqualCtList -> ([Ct], container) -> ([Ct], container)
kick_out_eqs container -> CanEqLHS -> EqualCtList -> container
extend EqualCtList
eqs ([Ct]
acc_out, container
acc_in)
= ([Ct]
eqs_out [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
`chkAppend` [Ct]
acc_out, case [Ct] -> Maybe EqualCtList
listToEqualCtList [Ct]
eqs_in of
Maybe EqualCtList
Nothing -> container
acc_in
Just eqs_in_ecl :: EqualCtList
eqs_in_ecl@(EqualCtList (Ct
eq1 :| [Ct]
_))
-> container -> CanEqLHS -> EqualCtList -> container
extend container
acc_in (Ct -> CanEqLHS
cc_lhs Ct
eq1) EqualCtList
eqs_in_ecl)
where
([Ct]
eqs_out, [Ct]
eqs_in) = (Ct -> Bool) -> [Ct] -> ([Ct], [Ct])
forall a. (a -> Bool) -> [a] -> ([a], [a])
partition Ct -> Bool
kick_out_eq (EqualCtList -> [Ct]
equalCtListToList EqualCtList
eqs)
kick_out_eq :: Ct -> Bool
kick_out_eq (CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs, cc_rhs :: Ct -> Type
cc_rhs = Type
rhs_ty
, cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ev, cc_eq_rel :: Ct -> EqRel
cc_eq_rel = EqRel
eq_rel })
| Bool -> Bool
not (CtFlavourRole -> Bool
fr_may_rewrite CtFlavourRole
fs)
= Bool
False
| TyVarLHS TcTyVar
_ <- CanEqLHS
lhs
, CtFlavourRole
fs CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
new_fr
= Bool
False
| EqRel -> Type -> Bool
fr_can_rewrite_ty EqRel
eq_rel (CanEqLHS -> Type
canEqLHSType CanEqLHS
lhs)
= Bool
True
| Bool
kick_out_for_inertness = Bool
True
| Bool
kick_out_for_completeness = Bool
True
| Bool
otherwise = Bool
False
where
fs :: CtFlavourRole
fs = (CtEvidence -> CtFlavour
ctEvFlavour CtEvidence
ev, EqRel
eq_rel)
kick_out_for_inertness :: Bool
kick_out_for_inertness
= (CtFlavourRole
fs CtFlavourRole -> CtFlavourRole -> Bool
`eqMayRewriteFR` CtFlavourRole
fs)
Bool -> Bool -> Bool
&& EqRel -> Type -> Bool
fr_can_rewrite_ty EqRel
eq_rel Type
rhs_ty
kick_out_for_completeness :: Bool
kick_out_for_completeness
= case EqRel
eq_rel of
EqRel
NomEq -> Type
rhs_ty Type -> Type -> Bool
`eqType` CanEqLHS -> Type
canEqLHSType CanEqLHS
new_lhs
EqRel
ReprEq -> CanEqLHS -> Type -> Bool
is_can_eq_lhs_head CanEqLHS
new_lhs Type
rhs_ty
kick_out_eq Ct
ct = String -> SDoc -> Bool
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"keep_eq" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
is_can_eq_lhs_head :: CanEqLHS -> Type -> Bool
is_can_eq_lhs_head (TyVarLHS TcTyVar
tv) = Type -> Bool
go
where
go :: Type -> Bool
go (Rep.TyVarTy TcTyVar
tv') = TcTyVar
tv TcTyVar -> TcTyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TcTyVar
tv'
go (Rep.AppTy Type
fun Type
_) = Type -> Bool
go Type
fun
go (Rep.CastTy Type
ty Coercion
_) = Type -> Bool
go Type
ty
go (Rep.TyConApp {}) = Bool
False
go (Rep.LitTy {}) = Bool
False
go (Rep.ForAllTy {}) = Bool
False
go (Rep.FunTy {}) = Bool
False
go (Rep.CoercionTy {}) = Bool
False
is_can_eq_lhs_head (TyFamLHS TyCon
fun_tc [Type]
fun_args) = Type -> Bool
go
where
go :: Type -> Bool
go (Rep.TyVarTy {}) = Bool
False
go (Rep.AppTy {}) = Bool
False
go (Rep.CastTy Type
ty Coercion
_) = Type -> Bool
go Type
ty
go (Rep.TyConApp TyCon
tc [Type]
args) = TyCon -> [Type] -> TyCon -> [Type] -> Bool
tcEqTyConApps TyCon
fun_tc [Type]
fun_args TyCon
tc [Type]
args
go (Rep.LitTy {}) = Bool
False
go (Rep.ForAllTy {}) = Bool
False
go (Rep.FunTy {}) = Bool
False
go (Rep.CoercionTy {}) = Bool
False
kickOutAfterUnification :: TcTyVar -> TcS Int
kickOutAfterUnification :: TcTyVar -> TcS Int
kickOutAfterUnification TcTyVar
new_tv
= do { InertCans
ics <- TcS InertCans
getInertCans
; (Int
n_kicked, InertCans
ics2) <- CtFlavourRole -> CanEqLHS -> InertCans -> TcS (Int, InertCans)
kickOutRewritable (CtFlavour
Given,EqRel
NomEq)
(TcTyVar -> CanEqLHS
TyVarLHS TcTyVar
new_tv) InertCans
ics
; InertCans -> TcS ()
setInertCans InertCans
ics2
; Int -> TcS Int
forall (m :: * -> *) a. Monad m => a -> m a
return Int
n_kicked }
kickOutAfterFillingCoercionHole :: CoercionHole -> Coercion -> TcS ()
kickOutAfterFillingCoercionHole :: CoercionHole -> Coercion -> TcS ()
kickOutAfterFillingCoercionHole CoercionHole
hole Coercion
filled_co
= do { InertCans
ics <- TcS InertCans
getInertCans
; let (WorkList
kicked_out, InertCans
ics') = InertCans -> (WorkList, InertCans)
kick_out InertCans
ics
n_kicked :: Int
n_kicked = WorkList -> Int
workListSize WorkList
kicked_out
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (Int
n_kicked Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { (WorkList -> WorkList) -> TcS ()
updWorkListTcS (WorkList -> WorkList -> WorkList
appendWorkList WorkList
kicked_out)
; SDoc -> TcS ()
csTraceTcS (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Kick out, hole =" SDoc -> SDoc -> SDoc
<+> CoercionHole -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoercionHole
hole)
Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"n-kicked =" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
n_kicked
, String -> SDoc
text String
"kicked_out =" SDoc -> SDoc -> SDoc
<+> WorkList -> SDoc
forall a. Outputable a => a -> SDoc
ppr WorkList
kicked_out
, String -> SDoc
text String
"Residual inerts =" SDoc -> SDoc -> SDoc
<+> InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
ics' ]) }
; InertCans -> TcS ()
setInertCans InertCans
ics' }
where
holes_of_co :: UniqSet CoercionHole
holes_of_co = Coercion -> UniqSet CoercionHole
coercionHolesOfCo Coercion
filled_co
kick_out :: InertCans -> (WorkList, InertCans)
kick_out :: InertCans -> (WorkList, InertCans)
kick_out ics :: InertCans
ics@(IC { inert_blocked :: InertCans -> Bag Ct
inert_blocked = Bag Ct
blocked })
= let (Bag Ct
to_kick, Bag Ct
to_keep) = (Ct -> Either Ct Ct) -> Bag Ct -> (Bag Ct, Bag Ct)
forall a b c. (a -> Either b c) -> Bag a -> (Bag b, Bag c)
partitionBagWith Ct -> Either Ct Ct
kick_ct Bag Ct
blocked
kicked_out :: WorkList
kicked_out = [Ct] -> WorkList -> WorkList
extendWorkListCts (Bag Ct -> [Ct]
forall a. Bag a -> [a]
bagToList Bag Ct
to_kick) WorkList
emptyWorkList
ics' :: InertCans
ics' = InertCans
ics { inert_blocked :: Bag Ct
inert_blocked = Bag Ct
to_keep }
in
(WorkList
kicked_out, InertCans
ics')
kick_ct :: Ct -> Either Ct Ct
kick_ct :: Ct -> Either Ct Ct
kick_ct ct :: Ct
ct@(CIrredCan { cc_reason :: Ct -> CtIrredReason
cc_reason = HoleBlockerReason UniqSet CoercionHole
holes })
| CoercionHole
hole CoercionHole -> UniqSet CoercionHole -> Bool
forall a. Uniquable a => a -> UniqSet a -> Bool
`elementOfUniqSet` UniqSet CoercionHole
holes
= let new_holes :: UniqSet CoercionHole
new_holes = UniqSet CoercionHole
holes UniqSet CoercionHole -> CoercionHole -> UniqSet CoercionHole
forall a. Uniquable a => UniqSet a -> a -> UniqSet a
`delOneFromUniqSet` CoercionHole
hole
UniqSet CoercionHole
-> UniqSet CoercionHole -> UniqSet CoercionHole
forall a. UniqSet a -> UniqSet a -> UniqSet a
`unionUniqSets` UniqSet CoercionHole
holes_of_co
updated_ct :: Ct
updated_ct = Ct
ct { cc_reason :: CtIrredReason
cc_reason = UniqSet CoercionHole -> CtIrredReason
HoleBlockerReason UniqSet CoercionHole
new_holes }
in
if UniqSet CoercionHole -> Bool
forall a. UniqSet a -> Bool
isEmptyUniqSet UniqSet CoercionHole
new_holes
then Ct -> Either Ct Ct
forall a b. a -> Either a b
Left Ct
updated_ct
else Ct -> Either Ct Ct
forall a b. b -> Either a b
Right Ct
updated_ct
| Bool
otherwise
= Ct -> Either Ct Ct
forall a b. b -> Either a b
Right Ct
ct
kick_ct Ct
other = String -> SDoc -> Either Ct Ct
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"kickOutAfterFillingCoercionHole" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
other)
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask :: InertCans -> Ct -> InertCans
addInertSafehask InertCans
ics item :: Ct
item@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [Type]
cc_tyargs = [Type]
tys })
= InertCans
ics { inert_safehask :: DictMap Ct
inert_safehask = DictMap Ct -> Class -> [Type] -> Ct -> DictMap Ct
addDictCt (InertCans -> DictMap Ct
inert_dicts InertCans
ics) Class
cls [Type]
tys Ct
item }
addInertSafehask InertCans
_ Ct
item
= String -> SDoc -> InertCans
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"addInertSafehask: can't happen! Inserting " (SDoc -> InertCans) -> SDoc -> InertCans
forall a b. (a -> b) -> a -> b
$ Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
item
insertSafeOverlapFailureTcS :: InstanceWhat -> Ct -> TcS ()
insertSafeOverlapFailureTcS :: InstanceWhat -> Ct -> TcS ()
insertSafeOverlapFailureTcS InstanceWhat
what Ct
item
| InstanceWhat -> Bool
safeOverlap InstanceWhat
what = () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise = (InertCans -> InertCans) -> TcS ()
updInertCans (\InertCans
ics -> InertCans -> Ct -> InertCans
addInertSafehask InertCans
ics Ct
item)
getSafeOverlapFailures :: TcS Cts
getSafeOverlapFailures :: TcS (Bag Ct)
getSafeOverlapFailures
= do { IC { inert_safehask :: InertCans -> DictMap Ct
inert_safehask = DictMap Ct
safehask } <- TcS InertCans
getInertCans
; Bag Ct -> TcS (Bag Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return (Bag Ct -> TcS (Bag Ct)) -> Bag Ct -> TcS (Bag Ct)
forall a b. (a -> b) -> a -> b
$ (Ct -> Bag Ct -> Bag Ct) -> DictMap Ct -> Bag Ct -> Bag Ct
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts Ct -> Bag Ct -> Bag Ct
consCts DictMap Ct
safehask Bag Ct
emptyCts }
addSolvedDict :: InstanceWhat -> CtEvidence -> Class -> [Type] -> TcS ()
addSolvedDict :: InstanceWhat -> CtEvidence -> Class -> [Type] -> TcS ()
addSolvedDict InstanceWhat
what CtEvidence
item Class
cls [Type]
tys
| CtEvidence -> Bool
isWanted CtEvidence
item
, InstanceWhat -> Bool
instanceReturnsDictCon InstanceWhat
what
= do { String -> SDoc -> TcS ()
traceTcS String
"updSolvedSetTcs:" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$ CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
item
; (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
ics ->
InertSet
ics { inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
-> Class -> [Type] -> CtEvidence -> DictMap CtEvidence
forall a. DictMap a -> Class -> [Type] -> a -> DictMap a
addDict (InertSet -> DictMap CtEvidence
inert_solved_dicts InertSet
ics) Class
cls [Type]
tys CtEvidence
item } }
| Bool
otherwise
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
getSolvedDicts :: TcS (DictMap CtEvidence)
getSolvedDicts :: TcS (DictMap CtEvidence)
getSolvedDicts = do { InertSet
ics <- TcS InertSet
getTcSInerts; DictMap CtEvidence -> TcS (DictMap CtEvidence)
forall (m :: * -> *) a. Monad m => a -> m a
return (InertSet -> DictMap CtEvidence
inert_solved_dicts InertSet
ics) }
setSolvedDicts :: DictMap CtEvidence -> TcS ()
setSolvedDicts :: DictMap CtEvidence -> TcS ()
setSolvedDicts DictMap CtEvidence
solved_dicts
= (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
ics ->
InertSet
ics { inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
solved_dicts }
updInertTcS :: (InertSet -> InertSet) -> TcS ()
updInertTcS :: (InertSet -> InertSet) -> TcS ()
updInertTcS InertSet -> InertSet
upd_fn
= do { IORef InertSet
is_var <- TcS (IORef InertSet)
getTcSInertsRef
; TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (do { InertSet
curr_inert <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
is_var
; IORef InertSet -> InertSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef InertSet
is_var (InertSet -> InertSet
upd_fn InertSet
curr_inert) }) }
getInertCans :: TcS InertCans
getInertCans :: TcS InertCans
getInertCans = do { InertSet
inerts <- TcS InertSet
getTcSInerts; InertCans -> TcS InertCans
forall (m :: * -> *) a. Monad m => a -> m a
return (InertSet -> InertCans
inert_cans InertSet
inerts) }
setInertCans :: InertCans -> TcS ()
setInertCans :: InertCans -> TcS ()
setInertCans InertCans
ics = (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
inerts -> InertSet
inerts { inert_cans :: InertCans
inert_cans = InertCans
ics }
updRetInertCans :: (InertCans -> (a, InertCans)) -> TcS a
updRetInertCans :: forall a. (InertCans -> (a, InertCans)) -> TcS a
updRetInertCans InertCans -> (a, InertCans)
upd_fn
= do { IORef InertSet
is_var <- TcS (IORef InertSet)
getTcSInertsRef
; TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (do { InertSet
inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
is_var
; let (a
res, InertCans
cans') = InertCans -> (a, InertCans)
upd_fn (InertSet -> InertCans
inert_cans InertSet
inerts)
; IORef InertSet -> InertSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef InertSet
is_var (InertSet
inerts { inert_cans :: InertCans
inert_cans = InertCans
cans' })
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }) }
updInertCans :: (InertCans -> InertCans) -> TcS ()
updInertCans :: (InertCans -> InertCans) -> TcS ()
updInertCans InertCans -> InertCans
upd_fn
= (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertSet
inerts -> InertSet
inerts { inert_cans :: InertCans
inert_cans = InertCans -> InertCans
upd_fn (InertSet -> InertCans
inert_cans InertSet
inerts) }
updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertDicts :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertDicts DictMap Ct -> DictMap Ct
upd_fn
= (InertCans -> InertCans) -> TcS ()
updInertCans ((InertCans -> InertCans) -> TcS ())
-> (InertCans -> InertCans) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertCans
ics -> InertCans
ics { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct -> DictMap Ct
upd_fn (InertCans -> DictMap Ct
inert_dicts InertCans
ics) }
updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertSafehask :: (DictMap Ct -> DictMap Ct) -> TcS ()
updInertSafehask DictMap Ct -> DictMap Ct
upd_fn
= (InertCans -> InertCans) -> TcS ()
updInertCans ((InertCans -> InertCans) -> TcS ())
-> (InertCans -> InertCans) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertCans
ics -> InertCans
ics { inert_safehask :: DictMap Ct
inert_safehask = DictMap Ct -> DictMap Ct
upd_fn (InertCans -> DictMap Ct
inert_safehask InertCans
ics) }
updInertIrreds :: (Cts -> Cts) -> TcS ()
updInertIrreds :: (Bag Ct -> Bag Ct) -> TcS ()
updInertIrreds Bag Ct -> Bag Ct
upd_fn
= (InertCans -> InertCans) -> TcS ()
updInertCans ((InertCans -> InertCans) -> TcS ())
-> (InertCans -> InertCans) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ InertCans
ics -> InertCans
ics { inert_irreds :: Bag Ct
inert_irreds = Bag Ct -> Bag Ct
upd_fn (InertCans -> Bag Ct
inert_irreds InertCans
ics) }
getInertEqs :: TcS (DTyVarEnv EqualCtList)
getInertEqs :: TcS InertEqs
getInertEqs = do { InertCans
inert <- TcS InertCans
getInertCans; InertEqs -> TcS InertEqs
forall (m :: * -> *) a. Monad m => a -> m a
return (InertCans -> InertEqs
inert_eqs InertCans
inert) }
getInnermostGivenEqLevel :: TcS TcLevel
getInnermostGivenEqLevel :: TcS TcLevel
getInnermostGivenEqLevel = do { InertCans
inert <- TcS InertCans
getInertCans
; TcLevel -> TcS TcLevel
forall (m :: * -> *) a. Monad m => a -> m a
return (InertCans -> TcLevel
inert_given_eq_lvl InertCans
inert) }
getInertInsols :: TcS Cts
getInertInsols :: TcS (Bag Ct)
getInertInsols = do { InertCans
inert <- TcS InertCans
getInertCans
; Bag Ct -> TcS (Bag Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return ((Ct -> Bool) -> Bag Ct -> Bag Ct
forall a. (a -> Bool) -> Bag a -> Bag a
filterBag Ct -> Bool
insolubleEqCt (InertCans -> Bag Ct
inert_irreds InertCans
inert)) }
getInertGivens :: TcS [Ct]
getInertGivens :: TcS [Ct]
getInertGivens
= do { InertCans
inerts <- TcS InertCans
getInertCans
; let all_cts :: [Ct]
all_cts = (Ct -> [Ct] -> [Ct]) -> DictMap Ct -> [Ct] -> [Ct]
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts (:) (InertCans -> DictMap Ct
inert_dicts InertCans
inerts)
([Ct] -> [Ct]) -> [Ct] -> [Ct]
forall a b. (a -> b) -> a -> b
$ (EqualCtList -> [Ct] -> [Ct])
-> FunEqMap EqualCtList -> [Ct] -> [Ct]
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs (\EqualCtList
ecl [Ct]
out -> EqualCtList -> [Ct]
equalCtListToList EqualCtList
ecl [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
out)
(InertCans -> FunEqMap EqualCtList
inert_funeqs InertCans
inerts)
([Ct] -> [Ct]) -> [Ct] -> [Ct]
forall a b. (a -> b) -> a -> b
$ (EqualCtList -> [Ct]) -> [EqualCtList] -> [Ct]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap EqualCtList -> [Ct]
equalCtListToList (InertEqs -> [EqualCtList]
forall a. DVarEnv a -> [a]
dVarEnvElts (InertCans -> InertEqs
inert_eqs InertCans
inerts))
; [Ct] -> TcS [Ct]
forall (m :: * -> *) a. Monad m => a -> m a
return ((Ct -> Bool) -> [Ct] -> [Ct]
forall a. (a -> Bool) -> [a] -> [a]
filter Ct -> Bool
isGivenCt [Ct]
all_cts) }
getPendingGivenScs :: TcS [Ct]
getPendingGivenScs :: TcS [Ct]
getPendingGivenScs = do { TcLevel
lvl <- TcS TcLevel
getTcLevel
; (InertCans -> ([Ct], InertCans)) -> TcS [Ct]
forall a. (InertCans -> (a, InertCans)) -> TcS a
updRetInertCans (TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending TcLevel
lvl) }
get_sc_pending :: TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending :: TcLevel -> InertCans -> ([Ct], InertCans)
get_sc_pending TcLevel
this_lvl ic :: InertCans
ic@(IC { inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dicts, inert_insts :: InertCans -> [QCInst]
inert_insts = [QCInst]
insts })
= ASSERT2( all isGivenCt sc_pending, ppr sc_pending )
([Ct]
sc_pending, InertCans
ic { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct
dicts', inert_insts :: [QCInst]
inert_insts = [QCInst]
insts' })
where
sc_pending :: [Ct]
sc_pending = [Ct]
sc_pend_insts [Ct] -> [Ct] -> [Ct]
forall a. [a] -> [a] -> [a]
++ [Ct]
sc_pend_dicts
sc_pend_dicts :: [Ct]
sc_pend_dicts = (Ct -> [Ct] -> [Ct]) -> DictMap Ct -> [Ct] -> [Ct]
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts Ct -> [Ct] -> [Ct]
get_pending DictMap Ct
dicts []
dicts' :: DictMap Ct
dicts' = (Ct -> DictMap Ct -> DictMap Ct)
-> DictMap Ct -> [Ct] -> DictMap Ct
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> DictMap Ct -> DictMap Ct
add DictMap Ct
dicts [Ct]
sc_pend_dicts
([Ct]
sc_pend_insts, [QCInst]
insts') = ([Ct] -> QCInst -> ([Ct], QCInst))
-> [Ct] -> [QCInst] -> ([Ct], [QCInst])
forall (t :: * -> *) s a b.
Traversable t =>
(s -> a -> (s, b)) -> s -> t a -> (s, t b)
mapAccumL [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst [] [QCInst]
insts
get_pending :: Ct -> [Ct] -> [Ct]
get_pending :: Ct -> [Ct] -> [Ct]
get_pending Ct
dict [Ct]
dicts
| Just Ct
dict' <- Ct -> Maybe Ct
isPendingScDict Ct
dict
, CtEvidence -> Bool
belongs_to_this_level (Ct -> CtEvidence
ctEvidence Ct
dict)
= Ct
dict' Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: [Ct]
dicts
| Bool
otherwise
= [Ct]
dicts
add :: Ct -> DictMap Ct -> DictMap Ct
add :: Ct -> DictMap Ct -> DictMap Ct
add ct :: Ct
ct@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [Type]
cc_tyargs = [Type]
tys }) DictMap Ct
dicts
= DictMap Ct -> Class -> [Type] -> Ct -> DictMap Ct
addDictCt DictMap Ct
dicts Class
cls [Type]
tys Ct
ct
add Ct
ct DictMap Ct
_ = String -> SDoc -> DictMap Ct
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"getPendingScDicts" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
get_pending_inst :: [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst :: [Ct] -> QCInst -> ([Ct], QCInst)
get_pending_inst [Ct]
cts qci :: QCInst
qci@(QCI { qci_ev :: QCInst -> CtEvidence
qci_ev = CtEvidence
ev })
| Just QCInst
qci' <- QCInst -> Maybe QCInst
isPendingScInst QCInst
qci
, CtEvidence -> Bool
belongs_to_this_level CtEvidence
ev
= (QCInst -> Ct
CQuantCan QCInst
qci' Ct -> [Ct] -> [Ct]
forall a. a -> [a] -> [a]
: [Ct]
cts, QCInst
qci')
| Bool
otherwise
= ([Ct]
cts, QCInst
qci)
belongs_to_this_level :: CtEvidence -> Bool
belongs_to_this_level CtEvidence
ev = CtLoc -> TcLevel
ctLocLevel (CtEvidence -> CtLoc
ctEvLoc CtEvidence
ev) TcLevel -> TcLevel -> Bool
forall a. Eq a => a -> a -> Bool
== TcLevel
this_lvl
getUnsolvedInerts :: TcS ( Bag Implication
, Cts )
getUnsolvedInerts :: TcS (Bag Implication, Bag Ct)
getUnsolvedInerts
= do { IC { inert_eqs :: InertCans -> InertEqs
inert_eqs = InertEqs
tv_eqs
, inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
fun_eqs
, inert_irreds :: InertCans -> Bag Ct
inert_irreds = Bag Ct
irreds
, inert_blocked :: InertCans -> Bag Ct
inert_blocked = Bag Ct
blocked
, inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
idicts
} <- TcS InertCans
getInertCans
; let unsolved_tv_eqs :: Bag Ct
unsolved_tv_eqs = (Ct -> Bag Ct -> Bag Ct) -> InertEqs -> Bag Ct -> Bag Ct
forall b. (Ct -> b -> b) -> InertEqs -> b -> b
foldTyEqs Ct -> Bag Ct -> Bag Ct
add_if_unsolved InertEqs
tv_eqs Bag Ct
emptyCts
unsolved_fun_eqs :: Bag Ct
unsolved_fun_eqs = (EqualCtList -> Bag Ct -> Bag Ct)
-> FunEqMap EqualCtList -> Bag Ct -> Bag Ct
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs EqualCtList -> Bag Ct -> Bag Ct
add_if_unsolveds FunEqMap EqualCtList
fun_eqs Bag Ct
emptyCts
unsolved_irreds :: Bag Ct
unsolved_irreds = (Ct -> Bool) -> Bag Ct -> Bag Ct
forall a. (a -> Bool) -> Bag a -> Bag a
Bag.filterBag Ct -> Bool
is_unsolved Bag Ct
irreds
unsolved_blocked :: Bag Ct
unsolved_blocked = Bag Ct
blocked
unsolved_dicts :: Bag Ct
unsolved_dicts = (Ct -> Bag Ct -> Bag Ct) -> DictMap Ct -> Bag Ct -> Bag Ct
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts Ct -> Bag Ct -> Bag Ct
add_if_unsolved DictMap Ct
idicts Bag Ct
emptyCts
unsolved_others :: Bag Ct
unsolved_others = [Bag Ct] -> Bag Ct
forall a. [Bag a] -> Bag a
unionManyBags [ Bag Ct
unsolved_irreds
, Bag Ct
unsolved_dicts
, Bag Ct
unsolved_blocked ]
; Bag Implication
implics <- TcS (Bag Implication)
getWorkListImplics
; String -> SDoc -> TcS ()
traceTcS String
"getUnsolvedInerts" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
" tv eqs =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bag Ct
unsolved_tv_eqs
, String -> SDoc
text String
"fun eqs =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bag Ct
unsolved_fun_eqs
, String -> SDoc
text String
"others =" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bag Ct
unsolved_others
, String -> SDoc
text String
"implics =" SDoc -> SDoc -> SDoc
<+> Bag Implication -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bag Implication
implics ]
; (Bag Implication, Bag Ct) -> TcS (Bag Implication, Bag Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return ( Bag Implication
implics, Bag Ct
unsolved_tv_eqs Bag Ct -> Bag Ct -> Bag Ct
forall a. Bag a -> Bag a -> Bag a
`unionBags`
Bag Ct
unsolved_fun_eqs Bag Ct -> Bag Ct -> Bag Ct
forall a. Bag a -> Bag a -> Bag a
`unionBags`
Bag Ct
unsolved_others) }
where
add_if_unsolved :: Ct -> Cts -> Cts
add_if_unsolved :: Ct -> Bag Ct -> Bag Ct
add_if_unsolved Ct
ct Bag Ct
cts | Ct -> Bool
is_unsolved Ct
ct = Ct
ct Ct -> Bag Ct -> Bag Ct
`consCts` Bag Ct
cts
| Bool
otherwise = Bag Ct
cts
add_if_unsolveds :: EqualCtList -> Cts -> Cts
add_if_unsolveds :: EqualCtList -> Bag Ct -> Bag Ct
add_if_unsolveds EqualCtList
new_cts Bag Ct
old_cts = (Ct -> Bag Ct -> Bag Ct) -> Bag Ct -> [Ct] -> Bag Ct
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> Bag Ct -> Bag Ct
add_if_unsolved Bag Ct
old_cts
(EqualCtList -> [Ct]
equalCtListToList EqualCtList
new_cts)
is_unsolved :: Ct -> Bool
is_unsolved Ct
ct = Bool -> Bool
not (Ct -> Bool
isGivenCt Ct
ct)
getHasGivenEqs :: TcLevel
-> TcS ( HasGivenEqs
, Cts )
getHasGivenEqs :: TcLevel -> TcS (HasGivenEqs, Bag Ct)
getHasGivenEqs TcLevel
tclvl
= do { inerts :: InertCans
inerts@(IC { inert_irreds :: InertCans -> Bag Ct
inert_irreds = Bag Ct
irreds
, inert_given_eqs :: InertCans -> Bool
inert_given_eqs = Bool
given_eqs
, inert_given_eq_lvl :: InertCans -> TcLevel
inert_given_eq_lvl = TcLevel
ge_lvl })
<- TcS InertCans
getInertCans
; let insols :: Bag Ct
insols = (Ct -> Bool) -> Bag Ct -> Bag Ct
forall a. (a -> Bool) -> Bag a -> Bag a
filterBag Ct -> Bool
insolubleEqCt Bag Ct
irreds
has_ge :: HasGivenEqs
has_ge | TcLevel
ge_lvl TcLevel -> TcLevel -> Bool
forall a. Eq a => a -> a -> Bool
== TcLevel
tclvl = HasGivenEqs
MaybeGivenEqs
| Bool
given_eqs = HasGivenEqs
LocalGivenEqs
| Bool
otherwise = HasGivenEqs
NoGivenEqs
; String -> SDoc -> TcS ()
traceTcS String
"getHasGivenEqs" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"given_eqs:" SDoc -> SDoc -> SDoc
<+> Bool -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bool
given_eqs
, String -> SDoc
text String
"ge_lvl:" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
ge_lvl
, String -> SDoc
text String
"ambient level:" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl
, String -> SDoc
text String
"Inerts:" SDoc -> SDoc -> SDoc
<+> InertCans -> SDoc
forall a. Outputable a => a -> SDoc
ppr InertCans
inerts
, String -> SDoc
text String
"Insols:" SDoc -> SDoc -> SDoc
<+> Bag Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Bag Ct
insols]
; (HasGivenEqs, Bag Ct) -> TcS (HasGivenEqs, Bag Ct)
forall (m :: * -> *) a. Monad m => a -> m a
return (HasGivenEqs
has_ge, Bag Ct
insols) }
mentionsOuterVar :: TcLevel -> CtEvidence -> Bool
mentionsOuterVar :: TcLevel -> CtEvidence -> Bool
mentionsOuterVar TcLevel
tclvl CtEvidence
ev
= (TcTyVar -> Bool) -> Type -> Bool
anyFreeVarsOfType (TcLevel -> TcTyVar -> Bool
isOuterTyVar TcLevel
tclvl) (Type -> Bool) -> Type -> Bool
forall a b. (a -> b) -> a -> b
$
CtEvidence -> Type
ctEvPred CtEvidence
ev
isOuterTyVar :: TcLevel -> TyCoVar -> Bool
isOuterTyVar :: TcLevel -> TcTyVar -> Bool
isOuterTyVar TcLevel
tclvl TcTyVar
tv
| TcTyVar -> Bool
isTyVar TcTyVar
tv = ASSERT2( not (isTouchableMetaTyVar tclvl tv), ppr tv <+> ppr tclvl )
TcLevel
tclvl TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
tv
| Bool
otherwise = Bool
False
matchableGivens :: CtLoc -> PredType -> InertSet -> Cts
matchableGivens :: CtLoc -> Type -> InertSet -> Bag Ct
matchableGivens CtLoc
loc_w Type
pred_w inerts :: InertSet
inerts@(IS { inert_cans :: InertSet -> InertCans
inert_cans = InertCans
inert_cans })
= (Ct -> Bool) -> Bag Ct -> Bag Ct
forall a. (a -> Bool) -> Bag a -> Bag a
filterBag Ct -> Bool
matchable_given Bag Ct
all_relevant_givens
where
all_relevant_givens :: Cts
all_relevant_givens :: Bag Ct
all_relevant_givens
| Just (Class
clas, [Type]
_) <- Type -> Maybe (Class, [Type])
getClassPredTys_maybe Type
pred_w
= DictMap Ct -> Class -> Bag Ct
forall a. DictMap a -> Class -> Bag a
findDictsByClass (InertCans -> DictMap Ct
inert_dicts InertCans
inert_cans) Class
clas
Bag Ct -> Bag Ct -> Bag Ct
forall a. Bag a -> Bag a -> Bag a
`unionBags` InertCans -> Bag Ct
inert_irreds InertCans
inert_cans
| Bool
otherwise
= InertCans -> Bag Ct
inert_irreds InertCans
inert_cans
matchable_given :: Ct -> Bool
matchable_given :: Ct -> Bool
matchable_given Ct
ct
| CtGiven { ctev_loc :: CtEvidence -> CtLoc
ctev_loc = CtLoc
loc_g, ctev_pred :: CtEvidence -> Type
ctev_pred = Type
pred_g } <- Ct -> CtEvidence
ctEvidence Ct
ct
= InertSet -> Type -> CtLoc -> Type -> CtLoc -> Bool
mightEqualLater InertSet
inerts Type
pred_g CtLoc
loc_g Type
pred_w CtLoc
loc_w
| Bool
otherwise
= Bool
False
mightEqualLater :: InertSet -> TcPredType -> CtLoc -> TcPredType -> CtLoc -> Bool
mightEqualLater :: InertSet -> Type -> CtLoc -> Type -> CtLoc -> Bool
mightEqualLater InertSet
inert_set Type
given_pred CtLoc
given_loc Type
wanted_pred CtLoc
wanted_loc
| CtLoc -> CtLoc -> Bool
prohibitedSuperClassSolve CtLoc
given_loc CtLoc
wanted_loc
= Bool
False
| Bool
otherwise
= case BindFun -> [Type] -> [Type] -> UnifyResult
tcUnifyTysFG BindFun
bind_fun [Type
flattened_given] [Type
flattened_wanted] of
UnifyResult
SurelyApart -> Bool
False
MaybeApart MaybeApartReason
MARInfinite TCvSubst
_ -> Bool
False
UnifyResult
_ -> Bool
True
where
in_scope :: InScopeSet
in_scope = VarSet -> InScopeSet
mkInScopeSet (VarSet -> InScopeSet) -> VarSet -> InScopeSet
forall a b. (a -> b) -> a -> b
$ [Type] -> VarSet
tyCoVarsOfTypes [Type
given_pred, Type
wanted_pred]
([Type
flattened_given, Type
flattened_wanted], TyVarEnv (TyCon, [Type])
var_mapping)
= InScopeSet -> [Type] -> ([Type], TyVarEnv (TyCon, [Type]))
flattenTysX InScopeSet
in_scope [Type
given_pred, Type
wanted_pred]
bind_fun :: BindFun
bind_fun :: BindFun
bind_fun TcTyVar
tv Type
rhs_ty
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
, TcTyVar -> MetaInfo -> Type -> Bool
can_unify TcTyVar
tv (TcTyVar -> MetaInfo
metaTyVarInfo TcTyVar
tv) Type
rhs_ty
= BindFlag
BindMe
| Just (TyCon
_fam_tc, [Type]
fam_args) <- TyVarEnv (TyCon, [Type]) -> TcTyVar -> Maybe (TyCon, [Type])
forall a. VarEnv a -> TcTyVar -> Maybe a
lookupVarEnv TyVarEnv (TyCon, [Type])
var_mapping TcTyVar
tv
, (TcTyVar -> Bool) -> [Type] -> Bool
anyFreeVarsOfTypes TcTyVar -> Bool
mentions_meta_ty_var [Type]
fam_args
= BindFlag
BindMe
| Bool
otherwise
= BindFlag
Apart
mentions_meta_ty_var :: TyVar -> Bool
mentions_meta_ty_var :: TcTyVar -> Bool
mentions_meta_ty_var TcTyVar
tv
| TcTyVar -> Bool
isMetaTyVar TcTyVar
tv
= case TcTyVar -> MetaInfo
metaTyVarInfo TcTyVar
tv of
MetaInfo
CycleBreakerTv
-> (TcTyVar -> Bool) -> Type -> Bool
anyFreeVarsOfType TcTyVar -> Bool
mentions_meta_ty_var
(TcTyVar -> InertSet -> Type
lookupCycleBreakerVar TcTyVar
tv InertSet
inert_set)
MetaInfo
_ -> Bool
True
| Bool
otherwise
= Bool
False
can_unify :: TcTyVar -> MetaInfo -> Type -> Bool
can_unify :: TcTyVar -> MetaInfo -> Type -> Bool
can_unify TcTyVar
_lhs_tv MetaInfo
TyVarTv Type
rhs_ty
| Just TcTyVar
rhs_tv <- Type -> Maybe TcTyVar
tcGetTyVar_maybe Type
rhs_ty
= case TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
rhs_tv of
MetaTv { mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
TyVarTv } -> Bool
True
MetaTv {} -> Bool
False
SkolemTv {} -> Bool
True
TcTyVarDetails
RuntimeUnk -> Bool
True
| Bool
otherwise
= Bool
False
can_unify TcTyVar
lhs_tv MetaInfo
_other Type
_rhs_ty = TcTyVar -> Bool
mentions_meta_ty_var TcTyVar
lhs_tv
prohibitedSuperClassSolve :: CtLoc -> CtLoc -> Bool
prohibitedSuperClassSolve :: CtLoc -> CtLoc -> Bool
prohibitedSuperClassSolve CtLoc
from_loc CtLoc
solve_loc
| InstSCOrigin Int
_ TypeSize
given_size <- CtLoc -> CtOrigin
ctLocOrigin CtLoc
from_loc
, ScOrigin TypeSize
wanted_size <- CtLoc -> CtOrigin
ctLocOrigin CtLoc
solve_loc
= TypeSize
given_size TypeSize -> TypeSize -> Bool
forall a. Ord a => a -> a -> Bool
>= TypeSize
wanted_size
| Bool
otherwise
= Bool
False
lookupCycleBreakerVar :: TcTyVar
-> InertSet
-> TcType
lookupCycleBreakerVar :: TcTyVar -> InertSet -> Type
lookupCycleBreakerVar TcTyVar
cbv (IS { inert_cycle_breakers :: InertSet -> CycleBreakerVarStack
inert_cycle_breakers = CycleBreakerVarStack
cbvs_stack })
| Just Type
tyfam_app <- ASSERT( (isCycleBreakerTyVar cbv) )
NonEmpty (Maybe Type) -> Maybe Type
forall (f :: * -> *) a. Foldable f => f (Maybe a) -> Maybe a
firstJusts (([(TcTyVar, Type)] -> Maybe Type)
-> CycleBreakerVarStack -> NonEmpty (Maybe Type)
forall a b. (a -> b) -> NonEmpty a -> NonEmpty b
NE.map (TcTyVar -> [(TcTyVar, Type)] -> Maybe Type
forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup TcTyVar
cbv) CycleBreakerVarStack
cbvs_stack)
= Type
tyfam_app
| Bool
otherwise
= String -> SDoc -> Type
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"lookupCycleBreakerVar found an unbound cycle breaker" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
cbv SDoc -> SDoc -> SDoc
$$ CycleBreakerVarStack -> SDoc
forall a. Outputable a => a -> SDoc
ppr CycleBreakerVarStack
cbvs_stack)
pushCycleBreakerVarStack :: CycleBreakerVarStack -> CycleBreakerVarStack
pushCycleBreakerVarStack :: CycleBreakerVarStack -> CycleBreakerVarStack
pushCycleBreakerVarStack = ([] [(TcTyVar, Type)] -> CycleBreakerVarStack -> CycleBreakerVarStack
forall a. a -> NonEmpty a -> NonEmpty a
NE.<|)
insertCycleBreakerBinding :: TcTyVar
-> TcType
-> CycleBreakerVarStack -> CycleBreakerVarStack
insertCycleBreakerBinding :: TcTyVar -> Type -> CycleBreakerVarStack -> CycleBreakerVarStack
insertCycleBreakerBinding TcTyVar
cbv Type
expansion ([(TcTyVar, Type)]
top_env :| [[(TcTyVar, Type)]]
rest_envs)
= ASSERT( (isCycleBreakerTyVar cbv) )
((TcTyVar
cbv, Type
expansion) (TcTyVar, Type) -> [(TcTyVar, Type)] -> [(TcTyVar, Type)]
forall a. a -> [a] -> [a]
: [(TcTyVar, Type)]
top_env) [(TcTyVar, Type)] -> [[(TcTyVar, Type)]] -> CycleBreakerVarStack
forall a. a -> [a] -> NonEmpty a
:| [[(TcTyVar, Type)]]
rest_envs
forAllCycleBreakerBindings_ :: Monad m
=> CycleBreakerVarStack
-> (TcTyVar -> TcType -> m ()) -> m ()
forAllCycleBreakerBindings_ :: forall (m :: * -> *).
Monad m =>
CycleBreakerVarStack -> (TcTyVar -> Type -> m ()) -> m ()
forAllCycleBreakerBindings_ ([(TcTyVar, Type)]
top_env :| [[(TcTyVar, Type)]]
_rest_envs) TcTyVar -> Type -> m ()
action
= [(TcTyVar, Type)] -> ((TcTyVar, Type) -> m ()) -> m ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [(TcTyVar, Type)]
top_env ((TcTyVar -> Type -> m ()) -> (TcTyVar, Type) -> m ()
forall a b c. (a -> b -> c) -> (a, b) -> c
uncurry TcTyVar -> Type -> m ()
action)
{-# INLINABLE forAllCycleBreakerBindings_ #-}
removeInertCts :: [Ct] -> InertCans -> InertCans
removeInertCts :: [Ct] -> InertCans -> InertCans
removeInertCts [Ct]
cts InertCans
icans = (InertCans -> Ct -> InertCans) -> InertCans -> [Ct] -> InertCans
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' InertCans -> Ct -> InertCans
removeInertCt InertCans
icans [Ct]
cts
removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt :: InertCans -> Ct -> InertCans
removeInertCt InertCans
is Ct
ct =
case Ct
ct of
CDictCan { cc_class :: Ct -> Class
cc_class = Class
cl, cc_tyargs :: Ct -> [Type]
cc_tyargs = [Type]
tys } ->
InertCans
is { inert_dicts :: DictMap Ct
inert_dicts = DictMap Ct -> Class -> [Type] -> DictMap Ct
forall a. DictMap a -> Class -> [Type] -> DictMap a
delDict (InertCans -> DictMap Ct
inert_dicts InertCans
is) Class
cl [Type]
tys }
CEqCan { cc_lhs :: Ct -> CanEqLHS
cc_lhs = CanEqLHS
lhs, cc_rhs :: Ct -> Type
cc_rhs = Type
rhs } -> InertCans -> CanEqLHS -> Type -> InertCans
delEq InertCans
is CanEqLHS
lhs Type
rhs
CQuantCan {} -> String -> InertCans
forall a. String -> a
panic String
"removeInertCt: CQuantCan"
CIrredCan {} -> String -> InertCans
forall a. String -> a
panic String
"removeInertCt: CIrredEvCan"
CNonCanonical {} -> String -> InertCans
forall a. String -> a
panic String
"removeInertCt: CNonCanonical"
lookupFamAppInert :: TyCon -> [Type] -> TcS (Maybe (TcCoercion, TcType, CtFlavourRole))
lookupFamAppInert :: TyCon -> [Type] -> TcS (Maybe (Coercion, Type, CtFlavourRole))
lookupFamAppInert TyCon
fam_tc [Type]
tys
= do { IS { inert_cans :: InertSet -> InertCans
inert_cans = IC { inert_funeqs :: InertCans -> FunEqMap EqualCtList
inert_funeqs = FunEqMap EqualCtList
inert_funeqs } } <- TcS InertSet
getTcSInerts
; Maybe (Coercion, Type, CtFlavourRole)
-> TcS (Maybe (Coercion, Type, CtFlavourRole))
forall (m :: * -> *) a. Monad m => a -> m a
return (FunEqMap EqualCtList -> Maybe (Coercion, Type, CtFlavourRole)
lookup_inerts FunEqMap EqualCtList
inert_funeqs) }
where
lookup_inerts :: FunEqMap EqualCtList -> Maybe (Coercion, Type, CtFlavourRole)
lookup_inerts FunEqMap EqualCtList
inert_funeqs
| Just (EqualCtList (CEqCan { cc_ev :: Ct -> CtEvidence
cc_ev = CtEvidence
ctev, cc_rhs :: Ct -> Type
cc_rhs = Type
rhs } :| [Ct]
_))
<- FunEqMap EqualCtList -> TyCon -> [Type] -> Maybe EqualCtList
forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq FunEqMap EqualCtList
inert_funeqs TyCon
fam_tc [Type]
tys
= (Coercion, Type, CtFlavourRole)
-> Maybe (Coercion, Type, CtFlavourRole)
forall a. a -> Maybe a
Just (HasDebugCallStack => CtEvidence -> Coercion
CtEvidence -> Coercion
ctEvCoercion CtEvidence
ctev, Type
rhs, CtEvidence -> CtFlavourRole
ctEvFlavourRole CtEvidence
ctev)
| Bool
otherwise = Maybe (Coercion, Type, CtFlavourRole)
forall a. Maybe a
Nothing
lookupInInerts :: CtLoc -> TcPredType -> TcS (Maybe CtEvidence)
lookupInInerts :: CtLoc -> Type -> TcS (Maybe CtEvidence)
lookupInInerts CtLoc
loc Type
pty
| ClassPred Class
cls [Type]
tys <- Type -> Pred
classifyPredType Type
pty
= do { InertSet
inerts <- TcS InertSet
getTcSInerts
; Maybe CtEvidence -> TcS (Maybe CtEvidence)
forall (m :: * -> *) a. Monad m => a -> m a
return (InertSet -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
lookupSolvedDict InertSet
inerts CtLoc
loc Class
cls [Type]
tys Maybe CtEvidence -> Maybe CtEvidence -> Maybe CtEvidence
forall (m :: * -> *) a. MonadPlus m => m a -> m a -> m a
`mplus`
(Ct -> CtEvidence) -> Maybe Ct -> Maybe CtEvidence
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap Ct -> CtEvidence
ctEvidence (InertCans -> CtLoc -> Class -> [Type] -> Maybe Ct
lookupInertDict (InertSet -> InertCans
inert_cans InertSet
inerts) CtLoc
loc Class
cls [Type]
tys)) }
| Bool
otherwise
= Maybe CtEvidence -> TcS (Maybe CtEvidence)
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe CtEvidence
forall a. Maybe a
Nothing
lookupInertDict :: InertCans -> CtLoc -> Class -> [Type] -> Maybe Ct
lookupInertDict :: InertCans -> CtLoc -> Class -> [Type] -> Maybe Ct
lookupInertDict (IC { inert_dicts :: InertCans -> DictMap Ct
inert_dicts = DictMap Ct
dicts }) CtLoc
loc Class
cls [Type]
tys
= case DictMap Ct -> CtLoc -> Class -> [Type] -> Maybe Ct
forall a. DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict DictMap Ct
dicts CtLoc
loc Class
cls [Type]
tys of
Just Ct
ct -> Ct -> Maybe Ct
forall a. a -> Maybe a
Just Ct
ct
Maybe Ct
_ -> Maybe Ct
forall a. Maybe a
Nothing
lookupSolvedDict :: InertSet -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
lookupSolvedDict :: InertSet -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
lookupSolvedDict (IS { inert_solved_dicts :: InertSet -> DictMap CtEvidence
inert_solved_dicts = DictMap CtEvidence
solved }) CtLoc
loc Class
cls [Type]
tys
= case DictMap CtEvidence -> CtLoc -> Class -> [Type] -> Maybe CtEvidence
forall a. DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict DictMap CtEvidence
solved CtLoc
loc Class
cls [Type]
tys of
Just CtEvidence
ev -> CtEvidence -> Maybe CtEvidence
forall a. a -> Maybe a
Just CtEvidence
ev
Maybe CtEvidence
_ -> Maybe CtEvidence
forall a. Maybe a
Nothing
lookupFamAppCache :: TyCon -> [Type] -> TcS (Maybe (TcCoercion, TcType))
lookupFamAppCache :: TyCon -> [Type] -> TcS (Maybe (Coercion, Type))
lookupFamAppCache TyCon
fam_tc [Type]
tys
= do { IS { inert_famapp_cache :: InertSet -> FunEqMap (Coercion, Type)
inert_famapp_cache = FunEqMap (Coercion, Type)
famapp_cache } <- TcS InertSet
getTcSInerts
; case FunEqMap (Coercion, Type)
-> TyCon -> [Type] -> Maybe (Coercion, Type)
forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq FunEqMap (Coercion, Type)
famapp_cache TyCon
fam_tc [Type]
tys of
result :: Maybe (Coercion, Type)
result@(Just (Coercion
co, Type
ty)) ->
do { String -> SDoc -> TcS ()
traceTcS String
"famapp_cache hit" ([SDoc] -> SDoc
vcat [ Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> [Type] -> Type
mkTyConApp TyCon
fam_tc [Type]
tys)
, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty
, Coercion -> SDoc
forall a. Outputable a => a -> SDoc
ppr Coercion
co ])
; Maybe (Coercion, Type) -> TcS (Maybe (Coercion, Type))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (Coercion, Type)
result }
Maybe (Coercion, Type)
Nothing -> Maybe (Coercion, Type) -> TcS (Maybe (Coercion, Type))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (Coercion, Type)
forall a. Maybe a
Nothing }
extendFamAppCache :: TyCon -> [Type] -> (TcCoercion, TcType) -> TcS ()
extendFamAppCache :: TyCon -> [Type] -> (Coercion, Type) -> TcS ()
extendFamAppCache TyCon
tc [Type]
xi_args stuff :: (Coercion, Type)
stuff@(Coercion
_, Type
ty)
= do { DynFlags
dflags <- TcS DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_FamAppCache DynFlags
dflags) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { String -> SDoc -> TcS ()
traceTcS String
"extendFamAppCache" ([SDoc] -> SDoc
vcat [ TyCon -> SDoc
forall a. Outputable a => a -> SDoc
ppr TyCon
tc SDoc -> SDoc -> SDoc
<+> [Type] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Type]
xi_args
, Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty ])
; (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ is :: InertSet
is@(IS { inert_famapp_cache :: InertSet -> FunEqMap (Coercion, Type)
inert_famapp_cache = FunEqMap (Coercion, Type)
fc }) ->
InertSet
is { inert_famapp_cache :: FunEqMap (Coercion, Type)
inert_famapp_cache = FunEqMap (Coercion, Type)
-> TyCon -> [Type] -> (Coercion, Type) -> FunEqMap (Coercion, Type)
forall a. TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertFunEq FunEqMap (Coercion, Type)
fc TyCon
tc [Type]
xi_args (Coercion, Type)
stuff } } }
dropFromFamAppCache :: VarSet -> TcS ()
dropFromFamAppCache :: VarSet -> TcS ()
dropFromFamAppCache VarSet
varset
= do { inerts :: InertSet
inerts@(IS { inert_famapp_cache :: InertSet -> FunEqMap (Coercion, Type)
inert_famapp_cache = FunEqMap (Coercion, Type)
famapp_cache }) <- TcS InertSet
getTcSInerts
; let filtered :: FunEqMap (Coercion, Type)
filtered = ((Coercion, Type) -> Bool)
-> FunEqMap (Coercion, Type) -> FunEqMap (Coercion, Type)
forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap (Coercion, Type) -> Bool
check FunEqMap (Coercion, Type)
famapp_cache
; InertSet -> TcS ()
setTcSInerts (InertSet -> TcS ()) -> InertSet -> TcS ()
forall a b. (a -> b) -> a -> b
$ InertSet
inerts { inert_famapp_cache :: FunEqMap (Coercion, Type)
inert_famapp_cache = FunEqMap (Coercion, Type)
filtered } }
where
check :: (TcCoercion, TcType) -> Bool
check :: (Coercion, Type) -> Bool
check (Coercion
co, Type
_) = Bool -> Bool
not ((TcTyVar -> Bool) -> Coercion -> Bool
anyFreeVarsOfCo (TcTyVar -> VarSet -> Bool
`elemVarSet` VarSet
varset) Coercion
co)
foldIrreds :: (Ct -> b -> b) -> Cts -> b -> b
foldIrreds :: forall b. (Ct -> b -> b) -> Bag Ct -> b -> b
foldIrreds Ct -> b -> b
k Bag Ct
irreds b
z = (Ct -> b -> b) -> b -> Bag Ct -> b
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> b -> b
k b
z Bag Ct
irreds
type TcAppMap a = DTyConEnv (ListMap LooseTypeMap a)
isEmptyTcAppMap :: TcAppMap a -> Bool
isEmptyTcAppMap :: forall a. TcAppMap a -> Bool
isEmptyTcAppMap TcAppMap a
m = TcAppMap a -> Bool
forall a. DTyConEnv a -> Bool
isEmptyDTyConEnv TcAppMap a
m
emptyTcAppMap :: TcAppMap a
emptyTcAppMap :: forall a. DictMap a
emptyTcAppMap = DTyConEnv (ListMap LooseTypeMap a)
forall a. DTyConEnv a
emptyDTyConEnv
findTcApp :: TcAppMap a -> TyCon -> [Type] -> Maybe a
findTcApp :: forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findTcApp TcAppMap a
m TyCon
tc [Type]
tys = do { ListMap LooseTypeMap a
tys_map <- TcAppMap a -> TyCon -> Maybe (ListMap LooseTypeMap a)
forall a. DTyConEnv a -> TyCon -> Maybe a
lookupDTyConEnv TcAppMap a
m TyCon
tc
; Key (ListMap LooseTypeMap) -> ListMap LooseTypeMap a -> Maybe a
forall (m :: * -> *) b. TrieMap m => Key m -> m b -> Maybe b
lookupTM [Type]
Key (ListMap LooseTypeMap)
tys ListMap LooseTypeMap a
tys_map }
delTcApp :: TcAppMap a -> TyCon -> [Type] -> TcAppMap a
delTcApp :: forall a. TcAppMap a -> TyCon -> [Type] -> TcAppMap a
delTcApp TcAppMap a
m TyCon
tc [Type]
tys = (ListMap LooseTypeMap a -> ListMap LooseTypeMap a)
-> TcAppMap a -> TyCon -> TcAppMap a
forall a. (a -> a) -> DTyConEnv a -> TyCon -> DTyConEnv a
adjustDTyConEnv (Key (ListMap LooseTypeMap)
-> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => Key m -> m a -> m a
deleteTM [Type]
Key (ListMap LooseTypeMap)
tys) TcAppMap a
m TyCon
tc
insertTcApp :: TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp :: forall a. TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp TcAppMap a
m TyCon
tc [Type]
tys a
ct = (Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a))
-> TcAppMap a -> TyCon -> TcAppMap a
forall a.
(Maybe a -> Maybe a) -> DTyConEnv a -> TyCon -> DTyConEnv a
alterDTyConEnv Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm TcAppMap a
m TyCon
tc
where
alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm Maybe (ListMap LooseTypeMap a)
mb_tm = ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
forall a. a -> Maybe a
Just (Key (ListMap LooseTypeMap)
-> a -> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => Key m -> a -> m a -> m a
insertTM [Type]
Key (ListMap LooseTypeMap)
tys a
ct (Maybe (ListMap LooseTypeMap a)
mb_tm Maybe (ListMap LooseTypeMap a)
-> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall a. Maybe a -> a -> a
`orElse` ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => m a
emptyTM))
alterTcApp :: forall a. TcAppMap a -> TyCon -> [Type] -> XT a -> TcAppMap a
alterTcApp :: forall a. TcAppMap a -> TyCon -> [Type] -> XT a -> TcAppMap a
alterTcApp TcAppMap a
m TyCon
tc [Type]
tys XT a
upd = (Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a))
-> TcAppMap a -> TyCon -> TcAppMap a
forall a.
(Maybe a -> Maybe a) -> DTyConEnv a -> TyCon -> DTyConEnv a
alterDTyConEnv Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm TcAppMap a
m TyCon
tc
where
alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm :: Maybe (ListMap LooseTypeMap a) -> Maybe (ListMap LooseTypeMap a)
alter_tm Maybe (ListMap LooseTypeMap a)
m_elt = ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
forall a. a -> Maybe a
Just (Key (ListMap LooseTypeMap)
-> XT a -> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall (m :: * -> *) b. TrieMap m => Key m -> XT b -> m b -> m b
alterTM [Type]
Key (ListMap LooseTypeMap)
tys XT a
upd (Maybe (ListMap LooseTypeMap a)
m_elt Maybe (ListMap LooseTypeMap a)
-> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall a. Maybe a -> a -> a
`orElse` ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => m a
emptyTM))
filterTcAppMap :: forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap :: forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap a -> Bool
f TcAppMap a
m = (ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a))
-> TcAppMap a -> TcAppMap a
forall a b. (a -> Maybe b) -> DTyConEnv a -> DTyConEnv b
mapMaybeDTyConEnv ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
one_tycon TcAppMap a
m
where
one_tycon :: ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
one_tycon :: ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
one_tycon ListMap LooseTypeMap a
tm
| ListMap LooseTypeMap a -> Bool
forall (m :: * -> *) a. TrieMap m => m a -> Bool
isEmptyTM ListMap LooseTypeMap a
filtered_tm = Maybe (ListMap LooseTypeMap a)
forall a. Maybe a
Nothing
| Bool
otherwise = ListMap LooseTypeMap a -> Maybe (ListMap LooseTypeMap a)
forall a. a -> Maybe a
Just ListMap LooseTypeMap a
filtered_tm
where
filtered_tm :: ListMap LooseTypeMap a
filtered_tm = (a -> Bool) -> ListMap LooseTypeMap a -> ListMap LooseTypeMap a
forall (m :: * -> *) a. TrieMap m => (a -> Bool) -> m a -> m a
filterTM a -> Bool
f ListMap LooseTypeMap a
tm
tcAppMapToBag :: TcAppMap a -> Bag a
tcAppMapToBag :: forall a. DictMap a -> Bag a
tcAppMapToBag TcAppMap a
m = (a -> Bag a -> Bag a) -> TcAppMap a -> Bag a -> Bag a
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap a -> Bag a -> Bag a
forall a. a -> Bag a -> Bag a
consBag TcAppMap a
m Bag a
forall a. Bag a
emptyBag
foldTcAppMap :: (a -> b -> b) -> TcAppMap a -> b -> b
foldTcAppMap :: forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap a -> b -> b
k TcAppMap a
m b
z = (ListMap LooseTypeMap a -> b -> b) -> b -> TcAppMap a -> b
forall elt a. (elt -> a -> a) -> a -> DTyConEnv elt -> a
foldDTyConEnv ((a -> b -> b) -> ListMap LooseTypeMap a -> b -> b
forall (m :: * -> *) a b.
TrieMap m =>
(a -> b -> b) -> m a -> b -> b
foldTM a -> b -> b
k) b
z TcAppMap a
m
type DictMap a = TcAppMap a
emptyDictMap :: DictMap a
emptyDictMap :: forall a. DictMap a
emptyDictMap = TcAppMap a
forall a. DictMap a
emptyTcAppMap
findDict :: DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict :: forall a. DictMap a -> CtLoc -> Class -> [Type] -> Maybe a
findDict DictMap a
m CtLoc
loc Class
cls [Type]
tys
| Class -> [Type] -> Bool
hasIPSuperClasses Class
cls [Type]
tys
= Maybe a
forall a. Maybe a
Nothing
| Just {} <- Class -> [Type] -> Maybe FastString
isCallStackPred Class
cls [Type]
tys
, OccurrenceOf {} <- CtLoc -> CtOrigin
ctLocOrigin CtLoc
loc
= Maybe a
forall a. Maybe a
Nothing
| Bool
otherwise
= DictMap a -> TyCon -> [Type] -> Maybe a
forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findTcApp DictMap a
m (Class -> TyCon
classTyCon Class
cls) [Type]
tys
findDictsByClass :: DictMap a -> Class -> Bag a
findDictsByClass :: forall a. DictMap a -> Class -> Bag a
findDictsByClass DictMap a
m Class
cls
| Just ListMap LooseTypeMap a
tm <- DictMap a -> TyCon -> Maybe (ListMap LooseTypeMap a)
forall a. DTyConEnv a -> TyCon -> Maybe a
lookupDTyConEnv DictMap a
m (Class -> TyCon
classTyCon Class
cls) = (a -> Bag a -> Bag a) -> ListMap LooseTypeMap a -> Bag a -> Bag a
forall (m :: * -> *) a b.
TrieMap m =>
(a -> b -> b) -> m a -> b -> b
foldTM a -> Bag a -> Bag a
forall a. a -> Bag a -> Bag a
consBag ListMap LooseTypeMap a
tm Bag a
forall a. Bag a
emptyBag
| Bool
otherwise = Bag a
forall a. Bag a
emptyBag
delDict :: DictMap a -> Class -> [Type] -> DictMap a
delDict :: forall a. DictMap a -> Class -> [Type] -> DictMap a
delDict DictMap a
m Class
cls [Type]
tys = DictMap a -> TyCon -> [Type] -> DictMap a
forall a. TcAppMap a -> TyCon -> [Type] -> TcAppMap a
delTcApp DictMap a
m (Class -> TyCon
classTyCon Class
cls) [Type]
tys
addDict :: DictMap a -> Class -> [Type] -> a -> DictMap a
addDict :: forall a. DictMap a -> Class -> [Type] -> a -> DictMap a
addDict DictMap a
m Class
cls [Type]
tys a
item = DictMap a -> TyCon -> [Type] -> a -> DictMap a
forall a. TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp DictMap a
m (Class -> TyCon
classTyCon Class
cls) [Type]
tys a
item
addDictCt :: DictMap Ct -> Class -> [Type] -> Ct -> DictMap Ct
addDictCt :: DictMap Ct -> Class -> [Type] -> Ct -> DictMap Ct
addDictCt DictMap Ct
m Class
cls [Type]
tys Ct
new_ct = DictMap Ct -> TyCon -> [Type] -> XT Ct -> DictMap Ct
forall a. TcAppMap a -> TyCon -> [Type] -> XT a -> TcAppMap a
alterTcApp DictMap Ct
m (Class -> TyCon
classTyCon Class
cls) [Type]
tys XT Ct
xt_ct
where
new_ct_ev :: CtEvidence
new_ct_ev = Ct -> CtEvidence
ctEvidence Ct
new_ct
xt_ct :: Maybe Ct -> Maybe Ct
xt_ct :: XT Ct
xt_ct (Just Ct
old_ct)
| CtWanted { ctev_nosh :: CtEvidence -> ShadowInfo
ctev_nosh = ShadowInfo
WOnly } <- CtEvidence
old_ct_ev
, CtDerived {} <- CtEvidence
new_ct_ev
= Ct -> Maybe Ct
forall a. a -> Maybe a
Just (Ct
old_ct { cc_ev :: CtEvidence
cc_ev = CtEvidence
old_ct_ev { ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
WDeriv }})
| CtDerived {} <- CtEvidence
old_ct_ev
, CtWanted { ctev_nosh :: CtEvidence -> ShadowInfo
ctev_nosh = ShadowInfo
WOnly } <- CtEvidence
new_ct_ev
= Ct -> Maybe Ct
forall a. a -> Maybe a
Just (Ct
new_ct { cc_ev :: CtEvidence
cc_ev = CtEvidence
new_ct_ev { ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
WDeriv }})
where
old_ct_ev :: CtEvidence
old_ct_ev = Ct -> CtEvidence
ctEvidence Ct
old_ct
xt_ct Maybe Ct
_ = Ct -> Maybe Ct
forall a. a -> Maybe a
Just Ct
new_ct
addDictsByClass :: DictMap Ct -> Class -> Bag Ct -> DictMap Ct
addDictsByClass :: DictMap Ct -> Class -> Bag Ct -> DictMap Ct
addDictsByClass DictMap Ct
m Class
cls Bag Ct
items
= DictMap Ct -> TyCon -> ListMap LooseTypeMap Ct -> DictMap Ct
forall a. DTyConEnv a -> TyCon -> a -> DTyConEnv a
extendDTyConEnv DictMap Ct
m (Class -> TyCon
classTyCon Class
cls) ((Ct -> ListMap LooseTypeMap Ct -> ListMap LooseTypeMap Ct)
-> ListMap LooseTypeMap Ct -> Bag Ct -> ListMap LooseTypeMap Ct
forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ct -> ListMap LooseTypeMap Ct -> ListMap LooseTypeMap Ct
forall {m :: * -> *}.
(Key m ~ [Type], TrieMap m) =>
Ct -> m Ct -> m Ct
add ListMap LooseTypeMap Ct
forall (m :: * -> *) a. TrieMap m => m a
emptyTM Bag Ct
items)
where
add :: Ct -> m Ct -> m Ct
add ct :: Ct
ct@(CDictCan { cc_tyargs :: Ct -> [Type]
cc_tyargs = [Type]
tys }) m Ct
tm = Key m -> Ct -> m Ct -> m Ct
forall (m :: * -> *) a. TrieMap m => Key m -> a -> m a -> m a
insertTM [Type]
Key m
tys Ct
ct m Ct
tm
add Ct
ct m Ct
_ = String -> SDoc -> m Ct
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"addDictsByClass" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
filterDicts :: (Ct -> Bool) -> DictMap Ct -> DictMap Ct
filterDicts :: (Ct -> Bool) -> DictMap Ct -> DictMap Ct
filterDicts Ct -> Bool
f DictMap Ct
m = (Ct -> Bool) -> DictMap Ct -> DictMap Ct
forall a. (a -> Bool) -> TcAppMap a -> TcAppMap a
filterTcAppMap Ct -> Bool
f DictMap Ct
m
partitionDicts :: (Ct -> Bool) -> DictMap Ct -> (Bag Ct, DictMap Ct)
partitionDicts :: (Ct -> Bool) -> DictMap Ct -> (Bag Ct, DictMap Ct)
partitionDicts Ct -> Bool
f DictMap Ct
m = (Ct -> (Bag Ct, DictMap Ct) -> (Bag Ct, DictMap Ct))
-> DictMap Ct -> (Bag Ct, DictMap Ct) -> (Bag Ct, DictMap Ct)
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap Ct -> (Bag Ct, DictMap Ct) -> (Bag Ct, DictMap Ct)
k DictMap Ct
m (Bag Ct
forall a. Bag a
emptyBag, DictMap Ct
forall a. DictMap a
emptyDicts)
where
k :: Ct -> (Bag Ct, DictMap Ct) -> (Bag Ct, DictMap Ct)
k Ct
ct (Bag Ct
yeses, DictMap Ct
noes) | Ct -> Bool
f Ct
ct = (Ct
ct Ct -> Bag Ct -> Bag Ct
forall a. a -> Bag a -> Bag a
`consBag` Bag Ct
yeses, DictMap Ct
noes)
| Bool
otherwise = (Bag Ct
yeses, Ct -> DictMap Ct -> DictMap Ct
add Ct
ct DictMap Ct
noes)
add :: Ct -> DictMap Ct -> DictMap Ct
add ct :: Ct
ct@(CDictCan { cc_class :: Ct -> Class
cc_class = Class
cls, cc_tyargs :: Ct -> [Type]
cc_tyargs = [Type]
tys }) DictMap Ct
m
= DictMap Ct -> Class -> [Type] -> Ct -> DictMap Ct
forall a. DictMap a -> Class -> [Type] -> a -> DictMap a
addDict DictMap Ct
m Class
cls [Type]
tys Ct
ct
add Ct
ct DictMap Ct
_ = String -> SDoc -> DictMap Ct
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"partitionDicts" (Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr Ct
ct)
dictsToBag :: DictMap a -> Bag a
dictsToBag :: forall a. DictMap a -> Bag a
dictsToBag = TcAppMap a -> Bag a
forall a. DictMap a -> Bag a
tcAppMapToBag
foldDicts :: (a -> b -> b) -> DictMap a -> b -> b
foldDicts :: forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldDicts = (a -> b -> b) -> TcAppMap a -> b -> b
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap
emptyDicts :: DictMap a
emptyDicts :: forall a. DictMap a
emptyDicts = TcAppMap a
forall a. DictMap a
emptyTcAppMap
type FunEqMap a = TcAppMap a
emptyFunEqs :: TcAppMap a
emptyFunEqs :: forall a. DictMap a
emptyFunEqs = TcAppMap a
forall a. DictMap a
emptyTcAppMap
findFunEq :: FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq :: forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findFunEq FunEqMap a
m TyCon
tc [Type]
tys = FunEqMap a -> TyCon -> [Type] -> Maybe a
forall a. FunEqMap a -> TyCon -> [Type] -> Maybe a
findTcApp FunEqMap a
m TyCon
tc [Type]
tys
findFunEqsByTyCon :: FunEqMap a -> TyCon -> [a]
findFunEqsByTyCon :: forall a. FunEqMap a -> TyCon -> [a]
findFunEqsByTyCon FunEqMap a
m TyCon
tc
| Just ListMap LooseTypeMap a
tm <- FunEqMap a -> TyCon -> Maybe (ListMap LooseTypeMap a)
forall a. DTyConEnv a -> TyCon -> Maybe a
lookupDTyConEnv FunEqMap a
m TyCon
tc = (a -> [a] -> [a]) -> ListMap LooseTypeMap a -> [a] -> [a]
forall (m :: * -> *) a b.
TrieMap m =>
(a -> b -> b) -> m a -> b -> b
foldTM (:) ListMap LooseTypeMap a
tm []
| Bool
otherwise = []
foldFunEqs :: (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs :: forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldFunEqs = (a -> b -> b) -> TcAppMap a -> b -> b
forall a b. (a -> b -> b) -> FunEqMap a -> b -> b
foldTcAppMap
insertFunEq :: FunEqMap a -> TyCon -> [Type] -> a -> FunEqMap a
insertFunEq :: forall a. TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertFunEq FunEqMap a
m TyCon
tc [Type]
tys a
val = FunEqMap a -> TyCon -> [Type] -> a -> FunEqMap a
forall a. TcAppMap a -> TyCon -> [Type] -> a -> TcAppMap a
insertTcApp FunEqMap a
m TyCon
tc [Type]
tys a
val
data TcSEnv
= TcSEnv {
TcSEnv -> EvBindsVar
tcs_ev_binds :: EvBindsVar,
TcSEnv -> IORef Int
tcs_unified :: IORef Int,
TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl :: IORef (Maybe TcLevel),
TcSEnv -> IORef Int
tcs_count :: IORef Int,
TcSEnv -> IORef InertSet
tcs_inerts :: IORef InertSet,
TcSEnv -> IORef WorkList
tcs_worklist :: IORef WorkList
}
newtype TcS a = TcS { forall a. TcS a -> TcSEnv -> TcM a
unTcS :: TcSEnv -> TcM a } deriving ((forall a b. (a -> b) -> TcS a -> TcS b)
-> (forall a b. a -> TcS b -> TcS a) -> Functor TcS
forall a b. a -> TcS b -> TcS a
forall a b. (a -> b) -> TcS a -> TcS b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> TcS b -> TcS a
$c<$ :: forall a b. a -> TcS b -> TcS a
fmap :: forall a b. (a -> b) -> TcS a -> TcS b
$cfmap :: forall a b. (a -> b) -> TcS a -> TcS b
Functor)
mkTcS :: (TcSEnv -> TcM a) -> TcS a
mkTcS :: forall a. (TcSEnv -> TcM a) -> TcS a
mkTcS TcSEnv -> TcM a
f = (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcSEnv -> TcM a
oneShot TcSEnv -> TcM a
f)
instance Applicative TcS where
pure :: forall a. a -> TcS a
pure a
x = (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
mkTcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \TcSEnv
_ -> a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
x
<*> :: forall a b. TcS (a -> b) -> TcS a -> TcS b
(<*>) = TcS (a -> b) -> TcS a -> TcS b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap
instance Monad TcS where
TcS a
m >>= :: forall a b. TcS a -> (a -> TcS b) -> TcS b
>>= a -> TcS b
k = (TcSEnv -> TcM b) -> TcS b
forall a. (TcSEnv -> TcM a) -> TcS a
mkTcS ((TcSEnv -> TcM b) -> TcS b) -> (TcSEnv -> TcM b) -> TcS b
forall a b. (a -> b) -> a -> b
$ \TcSEnv
ebs -> do
TcS a -> TcSEnv -> TcM a
forall a. TcS a -> TcSEnv -> TcM a
unTcS TcS a
m TcSEnv
ebs TcM a -> (a -> TcM b) -> TcM b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (\a
r -> TcS b -> TcSEnv -> TcM b
forall a. TcS a -> TcSEnv -> TcM a
unTcS (a -> TcS b
k a
r) TcSEnv
ebs)
instance MonadFail TcS where
fail :: forall a. String -> TcS a
fail String
err = (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
mkTcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \TcSEnv
_ -> String -> TcM a
forall (m :: * -> *) a. MonadFail m => String -> m a
fail String
err
instance MonadUnique TcS where
getUniqueSupplyM :: TcS UniqSupply
getUniqueSupplyM = TcM UniqSupply -> TcS UniqSupply
forall a. TcM a -> TcS a
wrapTcS TcM UniqSupply
forall (m :: * -> *). MonadUnique m => m UniqSupply
getUniqueSupplyM
instance HasModule TcS where
getModule :: TcS Module
getModule = TcM Module -> TcS Module
forall a. TcM a -> TcS a
wrapTcS TcM Module
forall (m :: * -> *). HasModule m => m Module
getModule
instance MonadThings TcS where
lookupThing :: Name -> TcS TyThing
lookupThing Name
n = TcM TyThing -> TcS TyThing
forall a. TcM a -> TcS a
wrapTcS (Name -> TcM TyThing
forall (m :: * -> *). MonadThings m => Name -> m TyThing
lookupThing Name
n)
wrapTcS :: TcM a -> TcS a
wrapTcS :: forall a. TcM a -> TcS a
wrapTcS TcM a
action = (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
mkTcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \TcSEnv
_env -> TcM a
action
wrapErrTcS :: TcM a -> TcS a
wrapErrTcS :: forall a. TcM a -> TcS a
wrapErrTcS = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS
wrapWarnTcS :: TcM a -> TcS a
wrapWarnTcS :: forall a. TcM a -> TcS a
wrapWarnTcS = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS
failTcS, panicTcS :: SDoc -> TcS a
warnTcS :: WarningFlag -> SDoc -> TcS ()
addErrTcS :: SDoc -> TcS ()
failTcS :: forall a. SDoc -> TcS a
failTcS = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (TcM a -> TcS a) -> (SDoc -> TcM a) -> SDoc -> TcS a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SDoc -> TcM a
forall a. SDoc -> TcRn a
TcM.failWith
warnTcS :: WarningFlag -> SDoc -> TcS ()
warnTcS WarningFlag
flag = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> (SDoc -> TcM ()) -> SDoc -> TcS ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WarnReason -> SDoc -> TcM ()
TcM.addWarn (WarningFlag -> WarnReason
Reason WarningFlag
flag)
addErrTcS :: SDoc -> TcS ()
addErrTcS = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> (SDoc -> TcM ()) -> SDoc -> TcS ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SDoc -> TcM ()
TcM.addErr
panicTcS :: forall a. SDoc -> TcS a
panicTcS SDoc
doc = String -> SDoc -> TcS a
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"GHC.Tc.Solver.Canonical" SDoc
doc
traceTcS :: String -> SDoc -> TcS ()
traceTcS :: String -> SDoc -> TcS ()
traceTcS String
herald SDoc
doc = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (String -> SDoc -> TcM ()
TcM.traceTc String
herald SDoc
doc)
{-# INLINE traceTcS #-}
runTcPluginTcS :: TcPluginM a -> TcS a
runTcPluginTcS :: forall a. TcPluginM a -> TcS a
runTcPluginTcS TcPluginM a
m = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (TcM a -> TcS a) -> (EvBindsVar -> TcM a) -> EvBindsVar -> TcS a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcPluginM a -> EvBindsVar -> TcM a
forall a. TcPluginM a -> EvBindsVar -> TcM a
runTcPluginM TcPluginM a
m (EvBindsVar -> TcS a) -> TcS EvBindsVar -> TcS a
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< TcS EvBindsVar
getTcEvBindsVar
instance HasDynFlags TcS where
getDynFlags :: TcS DynFlags
getDynFlags = TcM DynFlags -> TcS DynFlags
forall a. TcM a -> TcS a
wrapTcS TcM DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS :: TcS GlobalRdrEnv
getGlobalRdrEnvTcS = TcM GlobalRdrEnv -> TcS GlobalRdrEnv
forall a. TcM a -> TcS a
wrapTcS TcM GlobalRdrEnv
TcM.getGlobalRdrEnv
bumpStepCountTcS :: TcS ()
bumpStepCountTcS :: TcS ()
bumpStepCountTcS = (TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
mkTcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env ->
do { let ref :: IORef Int
ref = TcSEnv -> IORef Int
tcs_count TcSEnv
env
; Int
n <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef Int
ref
; IORef Int -> Int -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef Int
ref (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) }
csTraceTcS :: SDoc -> TcS ()
csTraceTcS :: SDoc -> TcS ()
csTraceTcS SDoc
doc
= TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ TcM SDoc -> TcM ()
csTraceTcM (SDoc -> TcM SDoc
forall (m :: * -> *) a. Monad m => a -> m a
return SDoc
doc)
{-# INLINE csTraceTcS #-}
traceFireTcS :: CtEvidence -> SDoc -> TcS ()
traceFireTcS :: CtEvidence -> SDoc -> TcS ()
traceFireTcS CtEvidence
ev SDoc
doc
= (TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
mkTcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env -> TcM SDoc -> TcM ()
csTraceTcM (TcM SDoc -> TcM ()) -> TcM SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
do { Int
n <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef (TcSEnv -> IORef Int
tcs_count TcSEnv
env)
; TcLevel
tclvl <- TcM TcLevel
TcM.getTcLevel
; SDoc -> TcM SDoc
forall (m :: * -> *) a. Monad m => a -> m a
return (SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Step" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
n
SDoc -> SDoc -> SDoc
<> SDoc -> SDoc
brackets (String -> SDoc
text String
"l:" SDoc -> SDoc -> SDoc
<> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
tclvl SDoc -> SDoc -> SDoc
<> SDoc
comma SDoc -> SDoc -> SDoc
<>
String -> SDoc
text String
"d:" SDoc -> SDoc -> SDoc
<> SubGoalDepth -> SDoc
forall a. Outputable a => a -> SDoc
ppr (CtLoc -> SubGoalDepth
ctLocDepth (CtEvidence -> CtLoc
ctEvLoc CtEvidence
ev)))
SDoc -> SDoc -> SDoc
<+> SDoc
doc SDoc -> SDoc -> SDoc
<> SDoc
colon)
Int
4 (CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
ev)) }
{-# INLINE traceFireTcS #-}
csTraceTcM :: TcM SDoc -> TcM ()
csTraceTcM :: TcM SDoc -> TcM ()
csTraceTcM TcM SDoc
mk_doc
= do { DynFlags
dflags <- TcM DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when ( DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_cs_trace DynFlags
dflags
Bool -> Bool -> Bool
|| DumpFlag -> DynFlags -> Bool
dopt DumpFlag
Opt_D_dump_tc_trace DynFlags
dflags )
( do { SDoc
msg <- TcM SDoc
mk_doc
; Bool -> DumpFlag -> String -> DumpFormat -> SDoc -> TcM ()
TcM.dumpTcRn Bool
False
DumpFlag
Opt_D_dump_cs_trace
String
"" DumpFormat
FormatText
SDoc
msg }) }
{-# INLINE csTraceTcM #-}
runTcS :: TcS a
-> TcM (a, EvBindMap)
runTcS :: forall a. TcS a -> TcM (a, EvBindMap)
runTcS TcS a
tcs
= do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
; a
res <- EvBindsVar -> TcS a -> TcM a
forall a. EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds EvBindsVar
ev_binds_var TcS a
tcs
; EvBindMap
ev_binds <- EvBindsVar -> TcM EvBindMap
TcM.getTcEvBindsMap EvBindsVar
ev_binds_var
; (a, EvBindMap) -> TcM (a, EvBindMap)
forall (m :: * -> *) a. Monad m => a -> m a
return (a
res, EvBindMap
ev_binds) }
runTcSDeriveds :: TcS a -> TcM a
runTcSDeriveds :: forall a. TcS a -> TcM a
runTcSDeriveds TcS a
tcs
= do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
; EvBindsVar -> TcS a -> TcM a
forall a. EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds EvBindsVar
ev_binds_var TcS a
tcs }
runTcSEqualities :: TcS a -> TcM a
runTcSEqualities :: forall a. TcS a -> TcM a
runTcSEqualities TcS a
thing_inside
= do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newNoTcEvBinds
; EvBindsVar -> TcS a -> TcM a
forall a. EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds EvBindsVar
ev_binds_var TcS a
thing_inside }
runTcSInerts :: InertSet -> TcS a -> TcM (a, InertSet)
runTcSInerts :: forall a. InertSet -> TcS a -> TcM (a, InertSet)
runTcSInerts InertSet
inerts TcS a
tcs = do
EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
Bool -> EvBindsVar -> TcS (a, InertSet) -> TcM (a, InertSet)
forall a. Bool -> EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds' Bool
False EvBindsVar
ev_binds_var (TcS (a, InertSet) -> TcM (a, InertSet))
-> TcS (a, InertSet) -> TcM (a, InertSet)
forall a b. (a -> b) -> a -> b
$ do
InertSet -> TcS ()
setTcSInerts InertSet
inerts
a
a <- TcS a
tcs
InertSet
new_inerts <- TcS InertSet
getTcSInerts
(a, InertSet) -> TcS (a, InertSet)
forall (m :: * -> *) a. Monad m => a -> m a
return (a
a, InertSet
new_inerts)
runTcSWithEvBinds :: EvBindsVar
-> TcS a
-> TcM a
runTcSWithEvBinds :: forall a. EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds = Bool -> EvBindsVar -> TcS a -> TcM a
forall a. Bool -> EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds' Bool
True
runTcSWithEvBinds' :: Bool
-> EvBindsVar
-> TcS a
-> TcM a
runTcSWithEvBinds' :: forall a. Bool -> EvBindsVar -> TcS a -> TcM a
runTcSWithEvBinds' Bool
restore_cycles EvBindsVar
ev_binds_var TcS a
tcs
= do { IORef Int
unified_var <- Int -> TcRnIf TcGblEnv TcLclEnv (IORef Int)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Int
0
; IORef Int
step_count <- Int -> TcRnIf TcGblEnv TcLclEnv (IORef Int)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Int
0
; IORef InertSet
inert_var <- InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef InertSet
emptyInert
; IORef WorkList
wl_var <- WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef WorkList
emptyWorkList
; IORef (Maybe TcLevel)
unif_lvl_var <- Maybe TcLevel -> TcRnIf TcGblEnv TcLclEnv (IORef (Maybe TcLevel))
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Maybe TcLevel
forall a. Maybe a
Nothing
; let env :: TcSEnv
env = TcSEnv { tcs_ev_binds :: EvBindsVar
tcs_ev_binds = EvBindsVar
ev_binds_var
, tcs_unified :: IORef Int
tcs_unified = IORef Int
unified_var
, tcs_unif_lvl :: IORef (Maybe TcLevel)
tcs_unif_lvl = IORef (Maybe TcLevel)
unif_lvl_var
, tcs_count :: IORef Int
tcs_count = IORef Int
step_count
, tcs_inerts :: IORef InertSet
tcs_inerts = IORef InertSet
inert_var
, tcs_worklist :: IORef WorkList
tcs_worklist = IORef WorkList
wl_var }
; a
res <- TcS a -> TcSEnv -> TcM a
forall a. TcS a -> TcSEnv -> TcM a
unTcS TcS a
tcs TcSEnv
env
; Int
count <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef Int
step_count
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Int
count Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
0) (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
TcM SDoc -> TcM ()
csTraceTcM (TcM SDoc -> TcM ()) -> TcM SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$ SDoc -> TcM SDoc
forall (m :: * -> *) a. Monad m => a -> m a
return (String -> SDoc
text String
"Constraint solver steps =" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
int Int
count)
; Bool -> TcM () -> TcM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when Bool
restore_cycles (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
do { InertSet
inert_set <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
inert_var
; InertSet -> TcM ()
restoreTyVarCycles InertSet
inert_set }
#if defined(DEBUG)
; ev_binds <- TcM.getTcEvBindsMap ev_binds_var
; checkForCyclicBinds ev_binds
#endif
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }
#if defined(DEBUG)
checkForCyclicBinds :: EvBindMap -> TcM ()
checkForCyclicBinds ev_binds_map
| null cycles
= return ()
| null coercion_cycles
= TcM.traceTc "Cycle in evidence binds" $ ppr cycles
| otherwise
= pprPanic "Cycle in coercion bindings" $ ppr coercion_cycles
where
ev_binds = evBindMapBinds ev_binds_map
cycles :: [[EvBind]]
cycles = [c | CyclicSCC c <- stronglyConnCompFromEdgedVerticesUniq edges]
coercion_cycles = [c | c <- cycles, any is_co_bind c]
is_co_bind (EvBind { eb_lhs = b }) = isEqPrimPred (varType b)
edges :: [ Node EvVar EvBind ]
edges = [ DigraphNode bind bndr (nonDetEltsUniqSet (evVarsOfTerm rhs))
| bind@(EvBind { eb_lhs = bndr, eb_rhs = rhs}) <- bagToList ev_binds ]
#endif
setEvBindsTcS :: EvBindsVar -> TcS a -> TcS a
setEvBindsTcS :: forall a. EvBindsVar -> TcS a -> TcS a
setEvBindsTcS EvBindsVar
ref (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \ TcSEnv
env -> TcSEnv -> TcM a
thing_inside (TcSEnv
env { tcs_ev_binds :: EvBindsVar
tcs_ev_binds = EvBindsVar
ref })
nestImplicTcS :: EvBindsVar
-> TcLevel -> TcS a
-> TcS a
nestImplicTcS :: forall a. EvBindsVar -> TcLevel -> TcS a -> TcS a
nestImplicTcS EvBindsVar
ref TcLevel
inner_tclvl (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \ TcSEnv { tcs_unified :: TcSEnv -> IORef Int
tcs_unified = IORef Int
unified_var
, tcs_inerts :: TcSEnv -> IORef InertSet
tcs_inerts = IORef InertSet
old_inert_var
, tcs_count :: TcSEnv -> IORef Int
tcs_count = IORef Int
count
, tcs_unif_lvl :: TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl = IORef (Maybe TcLevel)
unif_lvl
} ->
do { InertSet
inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
old_inert_var
; let nest_inert :: InertSet
nest_inert = InertSet
inerts { inert_cycle_breakers :: CycleBreakerVarStack
inert_cycle_breakers = CycleBreakerVarStack -> CycleBreakerVarStack
pushCycleBreakerVarStack
(InertSet -> CycleBreakerVarStack
inert_cycle_breakers InertSet
inerts)
, inert_cans :: InertCans
inert_cans = (InertSet -> InertCans
inert_cans InertSet
inerts)
{ inert_given_eqs :: Bool
inert_given_eqs = Bool
False } }
; IORef InertSet
new_inert_var <- InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef InertSet
nest_inert
; IORef WorkList
new_wl_var <- WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef WorkList
emptyWorkList
; let nest_env :: TcSEnv
nest_env = TcSEnv { tcs_count :: IORef Int
tcs_count = IORef Int
count
, tcs_unif_lvl :: IORef (Maybe TcLevel)
tcs_unif_lvl = IORef (Maybe TcLevel)
unif_lvl
, tcs_ev_binds :: EvBindsVar
tcs_ev_binds = EvBindsVar
ref
, tcs_unified :: IORef Int
tcs_unified = IORef Int
unified_var
, tcs_inerts :: IORef InertSet
tcs_inerts = IORef InertSet
new_inert_var
, tcs_worklist :: IORef WorkList
tcs_worklist = IORef WorkList
new_wl_var }
; a
res <- TcLevel -> TcM a -> TcM a
forall a. TcLevel -> TcM a -> TcM a
TcM.setTcLevel TcLevel
inner_tclvl (TcM a -> TcM a) -> TcM a -> TcM a
forall a b. (a -> b) -> a -> b
$
TcSEnv -> TcM a
thing_inside TcSEnv
nest_env
; InertSet
out_inert_set <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
new_inert_var
; InertSet -> TcM ()
restoreTyVarCycles InertSet
out_inert_set
#if defined(DEBUG)
; ev_binds <- TcM.getTcEvBindsMap ref
; checkForCyclicBinds ev_binds
#endif
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }
nestTcS :: TcS a -> TcS a
nestTcS :: forall a. TcS a -> TcS a
nestTcS (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM a) -> TcS a
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM a) -> TcS a) -> (TcSEnv -> TcM a) -> TcS a
forall a b. (a -> b) -> a -> b
$ \ env :: TcSEnv
env@(TcSEnv { tcs_inerts :: TcSEnv -> IORef InertSet
tcs_inerts = IORef InertSet
inerts_var }) ->
do { InertSet
inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
inerts_var
; IORef InertSet
new_inert_var <- InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef InertSet
inerts
; IORef WorkList
new_wl_var <- WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef WorkList
emptyWorkList
; let nest_env :: TcSEnv
nest_env = TcSEnv
env { tcs_inerts :: IORef InertSet
tcs_inerts = IORef InertSet
new_inert_var
, tcs_worklist :: IORef WorkList
tcs_worklist = IORef WorkList
new_wl_var }
; a
res <- TcSEnv -> TcM a
thing_inside TcSEnv
nest_env
; InertSet
new_inerts <- IORef InertSet -> TcRnIf TcGblEnv TcLclEnv InertSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef InertSet
new_inert_var
; let old_ic :: InertCans
old_ic = InertSet -> InertCans
inert_cans InertSet
inerts
new_ic :: InertCans
new_ic = InertSet -> InertCans
inert_cans InertSet
new_inerts
nxt_ic :: InertCans
nxt_ic = InertCans
old_ic { inert_safehask :: DictMap Ct
inert_safehask = InertCans -> DictMap Ct
inert_safehask InertCans
new_ic }
; IORef InertSet -> InertSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef InertSet
inerts_var
(InertSet
inerts { inert_solved_dicts :: DictMap CtEvidence
inert_solved_dicts = InertSet -> DictMap CtEvidence
inert_solved_dicts InertSet
new_inerts
, inert_cans :: InertCans
inert_cans = InertCans
nxt_ic })
; a -> TcM a
forall (m :: * -> *) a. Monad m => a -> m a
return a
res }
emitImplicationTcS :: TcLevel -> SkolemInfo
-> [TcTyVar]
-> [EvVar]
-> Cts
-> TcS TcEvBinds
emitImplicationTcS :: TcLevel
-> SkolemInfo -> [TcTyVar] -> [TcTyVar] -> Bag Ct -> TcS TcEvBinds
emitImplicationTcS TcLevel
new_tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs [TcTyVar]
givens Bag Ct
wanteds
= do { let wc :: WantedConstraints
wc = WantedConstraints
emptyWC { wc_simple :: Bag Ct
wc_simple = Bag Ct
wanteds }
; Implication
imp <- TcM Implication -> TcS Implication
forall a. TcM a -> TcS a
wrapTcS (TcM Implication -> TcS Implication)
-> TcM Implication -> TcS Implication
forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newTcEvBinds
; Implication
imp <- TcM Implication
TcM.newImplication
; Implication -> TcM Implication
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication
imp { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
new_tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_given :: [TcTyVar]
ic_given = [TcTyVar]
givens
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wc
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds_var
, ic_info :: SkolemInfo
ic_info = SkolemInfo
skol_info }) }
; Implication -> TcS ()
emitImplication Implication
imp
; TcEvBinds -> TcS TcEvBinds
forall (m :: * -> *) a. Monad m => a -> m a
return (EvBindsVar -> TcEvBinds
TcEvBinds (Implication -> EvBindsVar
ic_binds Implication
imp)) }
emitTvImplicationTcS :: TcLevel -> SkolemInfo
-> [TcTyVar]
-> Cts
-> TcS ()
emitTvImplicationTcS :: TcLevel -> SkolemInfo -> [TcTyVar] -> Bag Ct -> TcS ()
emitTvImplicationTcS TcLevel
new_tclvl SkolemInfo
skol_info [TcTyVar]
skol_tvs Bag Ct
wanteds
= do { let wc :: WantedConstraints
wc = WantedConstraints
emptyWC { wc_simple :: Bag Ct
wc_simple = Bag Ct
wanteds }
; Implication
imp <- TcM Implication -> TcS Implication
forall a. TcM a -> TcS a
wrapTcS (TcM Implication -> TcS Implication)
-> TcM Implication -> TcS Implication
forall a b. (a -> b) -> a -> b
$
do { EvBindsVar
ev_binds_var <- TcM EvBindsVar
TcM.newNoTcEvBinds
; Implication
imp <- TcM Implication
TcM.newImplication
; Implication -> TcM Implication
forall (m :: * -> *) a. Monad m => a -> m a
return (Implication
imp { ic_tclvl :: TcLevel
ic_tclvl = TcLevel
new_tclvl
, ic_skols :: [TcTyVar]
ic_skols = [TcTyVar]
skol_tvs
, ic_wanted :: WantedConstraints
ic_wanted = WantedConstraints
wc
, ic_binds :: EvBindsVar
ic_binds = EvBindsVar
ev_binds_var
, ic_info :: SkolemInfo
ic_info = SkolemInfo
skol_info }) }
; Implication -> TcS ()
emitImplication Implication
imp }
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef :: TcS (IORef InertSet)
getTcSInertsRef = (TcSEnv -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet))
-> TcS (IORef InertSet)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (IORef InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall (m :: * -> *) a. Monad m => a -> m a
return (IORef InertSet -> TcRnIf TcGblEnv TcLclEnv (IORef InertSet))
-> (TcSEnv -> IORef InertSet)
-> TcSEnv
-> TcRnIf TcGblEnv TcLclEnv (IORef InertSet)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcSEnv -> IORef InertSet
tcs_inerts)
getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef :: TcS (IORef WorkList)
getTcSWorkListRef = (TcSEnv -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList))
-> TcS (IORef WorkList)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (IORef WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall (m :: * -> *) a. Monad m => a -> m a
return (IORef WorkList -> TcRnIf TcGblEnv TcLclEnv (IORef WorkList))
-> (TcSEnv -> IORef WorkList)
-> TcSEnv
-> TcRnIf TcGblEnv TcLclEnv (IORef WorkList)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcSEnv -> IORef WorkList
tcs_worklist)
getTcSInerts :: TcS InertSet
getTcSInerts :: TcS InertSet
getTcSInerts = TcS (IORef InertSet)
getTcSInertsRef TcS (IORef InertSet)
-> (IORef InertSet -> TcS InertSet) -> TcS InertSet
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= IORef InertSet -> TcS InertSet
forall a. TcRef a -> TcS a
readTcRef
setTcSInerts :: InertSet -> TcS ()
setTcSInerts :: InertSet -> TcS ()
setTcSInerts InertSet
ics = do { IORef InertSet
r <- TcS (IORef InertSet)
getTcSInertsRef; IORef InertSet -> InertSet -> TcS ()
forall a. TcRef a -> a -> TcS ()
writeTcRef IORef InertSet
r InertSet
ics }
getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics :: TcS (Bag Implication)
getWorkListImplics
= do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; WorkList
wl_curr <- IORef WorkList -> TcS WorkList
forall a. TcRef a -> TcS a
readTcRef IORef WorkList
wl_var
; Bag Implication -> TcS (Bag Implication)
forall (m :: * -> *) a. Monad m => a -> m a
return (WorkList -> Bag Implication
wl_implics WorkList
wl_curr) }
pushLevelNoWorkList :: SDoc -> TcS a -> TcS (TcLevel, a)
#if defined(DEBUG)
pushLevelNoWorkList err_doc (TcS thing_inside)
= TcS (\env -> TcM.pushTcLevelM $
thing_inside (env { tcs_worklist = wl_panic })
)
where
wl_panic = pprPanic "GHC.Tc.Solver.Monad.buildImplication" err_doc
#else
pushLevelNoWorkList :: forall a. SDoc -> TcS a -> TcS (TcLevel, a)
pushLevelNoWorkList SDoc
_ (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM (TcLevel, a)) -> TcS (TcLevel, a)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (\TcSEnv
env -> TcM a -> TcM (TcLevel, a)
forall a. TcM a -> TcM (TcLevel, a)
TcM.pushTcLevelM (TcSEnv -> TcM a
thing_inside TcSEnv
env))
#endif
updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS :: (WorkList -> WorkList) -> TcS ()
updWorkListTcS WorkList -> WorkList
f
= do { IORef WorkList
wl_var <- TcS (IORef WorkList)
getTcSWorkListRef
; IORef WorkList -> (WorkList -> WorkList) -> TcS ()
forall a. TcRef a -> (a -> a) -> TcS ()
updTcRef IORef WorkList
wl_var WorkList -> WorkList
f }
emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC :: [CtEvidence] -> TcS ()
emitWorkNC [CtEvidence]
evs
| [CtEvidence] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [CtEvidence]
evs
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise
= [Ct] -> TcS ()
emitWork ((CtEvidence -> Ct) -> [CtEvidence] -> [Ct]
forall a b. (a -> b) -> [a] -> [b]
map CtEvidence -> Ct
mkNonCanonical [CtEvidence]
evs)
emitWork :: [Ct] -> TcS ()
emitWork :: [Ct] -> TcS ()
emitWork [] = () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
emitWork [Ct]
cts
= do { String -> SDoc -> TcS ()
traceTcS String
"Emitting fresh work" ([SDoc] -> SDoc
vcat ((Ct -> SDoc) -> [Ct] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Ct -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Ct]
cts))
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS ([Ct] -> WorkList -> WorkList
extendWorkListCts [Ct]
cts) }
emitImplication :: Implication -> TcS ()
emitImplication :: Implication -> TcS ()
emitImplication Implication
implic
= (WorkList -> WorkList) -> TcS ()
updWorkListTcS (Implication -> WorkList -> WorkList
extendWorkListImplic Implication
implic)
newTcRef :: a -> TcS (TcRef a)
newTcRef :: forall a. a -> TcS (TcRef a)
newTcRef a
x = TcM (TcRef a) -> TcS (TcRef a)
forall a. TcM a -> TcS a
wrapTcS (a -> TcM (TcRef a)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef a
x)
readTcRef :: TcRef a -> TcS a
readTcRef :: forall a. TcRef a -> TcS a
readTcRef TcRef a
ref = TcM a -> TcS a
forall a. TcM a -> TcS a
wrapTcS (TcRef a -> TcM a
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef TcRef a
ref)
writeTcRef :: TcRef a -> a -> TcS ()
writeTcRef :: forall a. TcRef a -> a -> TcS ()
writeTcRef TcRef a
ref a
val = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcRef a -> a -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef TcRef a
ref a
val)
updTcRef :: TcRef a -> (a->a) -> TcS ()
updTcRef :: forall a. TcRef a -> (a -> a) -> TcS ()
updTcRef TcRef a
ref a -> a
upd_fn = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcRef a -> (a -> a) -> TcM ()
forall a gbl lcl. TcRef a -> (a -> a) -> TcRnIf gbl lcl ()
TcM.updTcRef TcRef a
ref a -> a
upd_fn)
getTcEvBindsVar :: TcS EvBindsVar
getTcEvBindsVar :: TcS EvBindsVar
getTcEvBindsVar = (TcSEnv -> TcM EvBindsVar) -> TcS EvBindsVar
forall a. (TcSEnv -> TcM a) -> TcS a
TcS (EvBindsVar -> TcM EvBindsVar
forall (m :: * -> *) a. Monad m => a -> m a
return (EvBindsVar -> TcM EvBindsVar)
-> (TcSEnv -> EvBindsVar) -> TcSEnv -> TcM EvBindsVar
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TcSEnv -> EvBindsVar
tcs_ev_binds)
getTcLevel :: TcS TcLevel
getTcLevel :: TcS TcLevel
getTcLevel = TcM TcLevel -> TcS TcLevel
forall a. TcM a -> TcS a
wrapTcS TcM TcLevel
TcM.getTcLevel
getTcEvTyCoVars :: EvBindsVar -> TcS TyCoVarSet
getTcEvTyCoVars :: EvBindsVar -> TcS VarSet
getTcEvTyCoVars EvBindsVar
ev_binds_var
= TcM VarSet -> TcS VarSet
forall a. TcM a -> TcS a
wrapTcS (TcM VarSet -> TcS VarSet) -> TcM VarSet -> TcS VarSet
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> TcM VarSet
TcM.getTcEvTyCoVars EvBindsVar
ev_binds_var
getTcEvBindsMap :: EvBindsVar -> TcS EvBindMap
getTcEvBindsMap :: EvBindsVar -> TcS EvBindMap
getTcEvBindsMap EvBindsVar
ev_binds_var
= TcM EvBindMap -> TcS EvBindMap
forall a. TcM a -> TcS a
wrapTcS (TcM EvBindMap -> TcS EvBindMap) -> TcM EvBindMap -> TcS EvBindMap
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> TcM EvBindMap
TcM.getTcEvBindsMap EvBindsVar
ev_binds_var
setTcEvBindsMap :: EvBindsVar -> EvBindMap -> TcS ()
setTcEvBindsMap :: EvBindsVar -> EvBindMap -> TcS ()
setTcEvBindsMap EvBindsVar
ev_binds_var EvBindMap
binds
= TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> EvBindMap -> TcM ()
TcM.setTcEvBindsMap EvBindsVar
ev_binds_var EvBindMap
binds
unifyTyVar :: TcTyVar -> TcType -> TcS ()
unifyTyVar :: TcTyVar -> Type -> TcS ()
unifyTyVar TcTyVar
tv Type
ty
= ASSERT2( isMetaTyVar tv, ppr tv )
(TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \ TcSEnv
env ->
do { String -> SDoc -> TcM ()
TcM.traceTc String
"unifyTyVar" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
tv SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
":=" SDoc -> SDoc -> SDoc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty)
; TcTyVar -> Type -> TcM ()
TcM.writeMetaTyVar TcTyVar
tv Type
ty
; IORef Int -> (Int -> Int) -> TcM ()
forall a gbl lcl. TcRef a -> (a -> a) -> TcRnIf gbl lcl ()
TcM.updTcRef (TcSEnv -> IORef Int
tcs_unified TcSEnv
env) (Int -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) }
reportUnifications :: TcS a -> TcS (Int, a)
reportUnifications :: forall a. TcS a -> TcS (Int, a)
reportUnifications (TcS TcSEnv -> TcM a
thing_inside)
= (TcSEnv -> TcM (Int, a)) -> TcS (Int, a)
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM (Int, a)) -> TcS (Int, a))
-> (TcSEnv -> TcM (Int, a)) -> TcS (Int, a)
forall a b. (a -> b) -> a -> b
$ \ TcSEnv
env ->
do { IORef Int
inner_unified <- Int -> TcRnIf TcGblEnv TcLclEnv (IORef Int)
forall a gbl lcl. a -> TcRnIf gbl lcl (TcRef a)
TcM.newTcRef Int
0
; a
res <- TcSEnv -> TcM a
thing_inside (TcSEnv
env { tcs_unified :: IORef Int
tcs_unified = IORef Int
inner_unified })
; Int
n_unifs <- IORef Int -> TcRnIf TcGblEnv TcLclEnv Int
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef Int
inner_unified
; IORef Int -> (Int -> Int) -> TcM ()
forall a gbl lcl. TcRef a -> (a -> a) -> TcRnIf gbl lcl ()
TcM.updTcRef (TcSEnv -> IORef Int
tcs_unified TcSEnv
env) (Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
n_unifs)
; (Int, a) -> TcM (Int, a)
forall (m :: * -> *) a. Monad m => a -> m a
return (Int
n_unifs, a
res) }
data TouchabilityTestResult
= TouchableSameLevel
| TouchableOuterLevel [TcTyVar]
TcLevel
| Untouchable
instance Outputable TouchabilityTestResult where
ppr :: TouchabilityTestResult -> SDoc
ppr TouchabilityTestResult
TouchableSameLevel = String -> SDoc
text String
"TouchableSameLevel"
ppr (TouchableOuterLevel [TcTyVar]
tvs TcLevel
lvl) = String -> SDoc
text String
"TouchableOuterLevel" SDoc -> SDoc -> SDoc
<> SDoc -> SDoc
parens (TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
lvl SDoc -> SDoc -> SDoc
<+> [TcTyVar] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
tvs)
ppr TouchabilityTestResult
Untouchable = String -> SDoc
text String
"Untouchable"
touchabilityTest :: CtFlavour -> TcTyVar -> TcType -> TcS TouchabilityTestResult
touchabilityTest :: CtFlavour -> TcTyVar -> Type -> TcS TouchabilityTestResult
touchabilityTest CtFlavour
flav TcTyVar
tv1 Type
rhs
| CtFlavour
flav CtFlavour -> CtFlavour -> Bool
forall a. Eq a => a -> a -> Bool
/= CtFlavour
Given
, MetaTv { mtv_tclvl :: TcTyVarDetails -> TcLevel
mtv_tclvl = TcLevel
tv_lvl, mtv_info :: TcTyVarDetails -> MetaInfo
mtv_info = MetaInfo
info } <- TcTyVar -> TcTyVarDetails
tcTyVarDetails TcTyVar
tv1
, MetaInfo -> Type -> Bool
canSolveByUnification MetaInfo
info Type
rhs
= do { TcLevel
ambient_lvl <- TcS TcLevel
getTcLevel
; TcLevel
given_eq_lvl <- TcS TcLevel
getInnermostGivenEqLevel
; if | TcLevel
tv_lvl TcLevel -> TcLevel -> Bool
`sameDepthAs` TcLevel
ambient_lvl
-> TouchabilityTestResult -> TcS TouchabilityTestResult
forall (m :: * -> *) a. Monad m => a -> m a
return TouchabilityTestResult
TouchableSameLevel
| TcLevel
tv_lvl TcLevel -> TcLevel -> Bool
`deeperThanOrSame` TcLevel
given_eq_lvl
, (TcTyVar -> Bool) -> [TcTyVar] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (TcLevel -> TcTyVar -> Bool
does_not_escape TcLevel
tv_lvl) [TcTyVar]
free_skols
-> TouchabilityTestResult -> TcS TouchabilityTestResult
forall (m :: * -> *) a. Monad m => a -> m a
return ([TcTyVar] -> TcLevel -> TouchabilityTestResult
TouchableOuterLevel [TcTyVar]
free_metas TcLevel
tv_lvl)
| Bool
otherwise
-> TouchabilityTestResult -> TcS TouchabilityTestResult
forall (m :: * -> *) a. Monad m => a -> m a
return TouchabilityTestResult
Untouchable }
| Bool
otherwise
= TouchabilityTestResult -> TcS TouchabilityTestResult
forall (m :: * -> *) a. Monad m => a -> m a
return TouchabilityTestResult
Untouchable
where
([TcTyVar]
free_metas, [TcTyVar]
free_skols) = (TcTyVar -> Bool) -> [TcTyVar] -> ([TcTyVar], [TcTyVar])
forall a. (a -> Bool) -> [a] -> ([a], [a])
partition TcTyVar -> Bool
isPromotableMetaTyVar ([TcTyVar] -> ([TcTyVar], [TcTyVar]))
-> [TcTyVar] -> ([TcTyVar], [TcTyVar])
forall a b. (a -> b) -> a -> b
$
VarSet -> [TcTyVar]
forall elt. UniqSet elt -> [elt]
nonDetEltsUniqSet (VarSet -> [TcTyVar]) -> VarSet -> [TcTyVar]
forall a b. (a -> b) -> a -> b
$
Type -> VarSet
tyCoVarsOfType Type
rhs
does_not_escape :: TcLevel -> TcTyVar -> Bool
does_not_escape TcLevel
tv_lvl TcTyVar
fv
| TcTyVar -> Bool
isTyVar TcTyVar
fv = TcLevel
tv_lvl TcLevel -> TcLevel -> Bool
`deeperThanOrSame` TcTyVar -> TcLevel
tcTyVarLevel TcTyVar
fv
| Bool
otherwise = Bool
True
getDefaultInfo :: TcS ([Type], (Bool, Bool))
getDefaultInfo :: TcS ([Type], (Bool, Bool))
getDefaultInfo = TcM ([Type], (Bool, Bool)) -> TcS ([Type], (Bool, Bool))
forall a. TcM a -> TcS a
wrapTcS TcM ([Type], (Bool, Bool))
TcM.tcGetDefaultTys
getInstEnvs :: TcS InstEnvs
getInstEnvs :: TcS InstEnvs
getInstEnvs = TcM InstEnvs -> TcS InstEnvs
forall a. TcM a -> TcS a
wrapTcS (TcM InstEnvs -> TcS InstEnvs) -> TcM InstEnvs -> TcS InstEnvs
forall a b. (a -> b) -> a -> b
$ TcM InstEnvs
TcM.tcGetInstEnvs
getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs :: TcS (FamInstEnv, FamInstEnv)
getFamInstEnvs = TcM (FamInstEnv, FamInstEnv) -> TcS (FamInstEnv, FamInstEnv)
forall a. TcM a -> TcS a
wrapTcS (TcM (FamInstEnv, FamInstEnv) -> TcS (FamInstEnv, FamInstEnv))
-> TcM (FamInstEnv, FamInstEnv) -> TcS (FamInstEnv, FamInstEnv)
forall a b. (a -> b) -> a -> b
$ TcM (FamInstEnv, FamInstEnv)
FamInst.tcGetFamInstEnvs
getTopEnv :: TcS HscEnv
getTopEnv :: TcS HscEnv
getTopEnv = TcM HscEnv -> TcS HscEnv
forall a. TcM a -> TcS a
wrapTcS (TcM HscEnv -> TcS HscEnv) -> TcM HscEnv -> TcS HscEnv
forall a b. (a -> b) -> a -> b
$ TcM HscEnv
forall gbl lcl. TcRnIf gbl lcl HscEnv
TcM.getTopEnv
getGblEnv :: TcS TcGblEnv
getGblEnv :: TcS TcGblEnv
getGblEnv = TcM TcGblEnv -> TcS TcGblEnv
forall a. TcM a -> TcS a
wrapTcS (TcM TcGblEnv -> TcS TcGblEnv) -> TcM TcGblEnv -> TcS TcGblEnv
forall a b. (a -> b) -> a -> b
$ TcM TcGblEnv
forall gbl lcl. TcRnIf gbl lcl gbl
TcM.getGblEnv
getLclEnv :: TcS TcLclEnv
getLclEnv :: TcS TcLclEnv
getLclEnv = TcM TcLclEnv -> TcS TcLclEnv
forall a. TcM a -> TcS a
wrapTcS (TcM TcLclEnv -> TcS TcLclEnv) -> TcM TcLclEnv -> TcS TcLclEnv
forall a b. (a -> b) -> a -> b
$ TcM TcLclEnv
forall gbl lcl. TcRnIf gbl lcl lcl
TcM.getLclEnv
tcLookupClass :: Name -> TcS Class
tcLookupClass :: Name -> TcS Class
tcLookupClass Name
c = TcM Class -> TcS Class
forall a. TcM a -> TcS a
wrapTcS (TcM Class -> TcS Class) -> TcM Class -> TcS Class
forall a b. (a -> b) -> a -> b
$ Name -> TcM Class
TcM.tcLookupClass Name
c
tcLookupId :: Name -> TcS Id
tcLookupId :: Name -> TcS TcTyVar
tcLookupId Name
n = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (TcM TcTyVar -> TcS TcTyVar) -> TcM TcTyVar -> TcS TcTyVar
forall a b. (a -> b) -> a -> b
$ Name -> TcM TcTyVar
TcM.tcLookupId Name
n
addUsedGREs :: [GlobalRdrElt] -> TcS ()
addUsedGREs :: [GlobalRdrElt] -> TcS ()
addUsedGREs [GlobalRdrElt]
gres = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ [GlobalRdrElt] -> TcM ()
TcM.addUsedGREs [GlobalRdrElt]
gres
addUsedGRE :: Bool -> GlobalRdrElt -> TcS ()
addUsedGRE :: Bool -> GlobalRdrElt -> TcS ()
addUsedGRE Bool
warn_if_deprec GlobalRdrElt
gre = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ Bool -> GlobalRdrElt -> TcM ()
TcM.addUsedGRE Bool
warn_if_deprec GlobalRdrElt
gre
keepAlive :: Name -> TcS ()
keepAlive :: Name -> TcS ()
keepAlive = TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> (Name -> TcM ()) -> Name -> TcS ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name -> TcM ()
TcM.keepAlive
checkWellStagedDFun :: CtLoc -> InstanceWhat -> PredType -> TcS ()
checkWellStagedDFun :: CtLoc -> InstanceWhat -> Type -> TcS ()
checkWellStagedDFun CtLoc
loc InstanceWhat
what Type
pred
| TopLevInstance { iw_dfun_id :: InstanceWhat -> TcTyVar
iw_dfun_id = TcTyVar
dfun_id } <- InstanceWhat
what
, let bind_lvl :: Int
bind_lvl = TcTyVar -> Int
TcM.topIdLvl TcTyVar
dfun_id
, Int
bind_lvl Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
impLevel
= TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ CtLoc -> TcM () -> TcM ()
forall a. CtLoc -> TcM a -> TcM a
TcM.setCtLocM CtLoc
loc (TcM () -> TcM ()) -> TcM () -> TcM ()
forall a b. (a -> b) -> a -> b
$
do { ThStage
use_stage <- TcM ThStage
TcM.getStage
; SDoc -> Int -> Int -> TcM ()
TcM.checkWellStaged SDoc
pp_thing Int
bind_lvl (ThStage -> Int
thLevel ThStage
use_stage) }
| Bool
otherwise
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
where
pp_thing :: SDoc
pp_thing = String -> SDoc
text String
"instance for" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
pred)
pprEq :: TcType -> TcType -> SDoc
pprEq :: Type -> Type -> SDoc
pprEq Type
ty1 Type
ty2 = Type -> SDoc
pprParendType Type
ty1 SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'~' SDoc -> SDoc -> SDoc
<+> Type -> SDoc
pprParendType Type
ty2
isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe :: TcTyVar -> TcS (Maybe Type)
isFilledMetaTyVar_maybe TcTyVar
tv = TcM (Maybe Type) -> TcS (Maybe Type)
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM (Maybe Type)
TcM.isFilledMetaTyVar_maybe TcTyVar
tv)
isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar :: TcTyVar -> TcS Bool
isFilledMetaTyVar TcTyVar
tv = TcM Bool -> TcS Bool
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM Bool
TcM.isFilledMetaTyVar TcTyVar
tv)
zonkTyCoVarsAndFV :: TcTyCoVarSet -> TcS TcTyCoVarSet
zonkTyCoVarsAndFV :: VarSet -> TcS VarSet
zonkTyCoVarsAndFV VarSet
tvs = TcM VarSet -> TcS VarSet
forall a. TcM a -> TcS a
wrapTcS (VarSet -> TcM VarSet
TcM.zonkTyCoVarsAndFV VarSet
tvs)
zonkTyCoVarsAndFVList :: [TcTyCoVar] -> TcS [TcTyCoVar]
zonkTyCoVarsAndFVList :: [TcTyVar] -> TcS [TcTyVar]
zonkTyCoVarsAndFVList [TcTyVar]
tvs = TcM [TcTyVar] -> TcS [TcTyVar]
forall a. TcM a -> TcS a
wrapTcS ([TcTyVar] -> TcM [TcTyVar]
TcM.zonkTyCoVarsAndFVList [TcTyVar]
tvs)
zonkCo :: Coercion -> TcS Coercion
zonkCo :: Coercion -> TcS Coercion
zonkCo = TcM Coercion -> TcS Coercion
forall a. TcM a -> TcS a
wrapTcS (TcM Coercion -> TcS Coercion)
-> (Coercion -> TcM Coercion) -> Coercion -> TcS Coercion
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Coercion -> TcM Coercion
TcM.zonkCo
zonkTcType :: TcType -> TcS TcType
zonkTcType :: Type -> TcS Type
zonkTcType Type
ty = TcM Type -> TcS Type
forall a. TcM a -> TcS a
wrapTcS (Type -> TcM Type
TcM.zonkTcType Type
ty)
zonkTcTypes :: [TcType] -> TcS [TcType]
zonkTcTypes :: [Type] -> TcS [Type]
zonkTcTypes [Type]
tys = TcM [Type] -> TcS [Type]
forall a. TcM a -> TcS a
wrapTcS ([Type] -> TcM [Type]
TcM.zonkTcTypes [Type]
tys)
zonkTcTyVar :: TcTyVar -> TcS TcType
zonkTcTyVar :: TcTyVar -> TcS Type
zonkTcTyVar TcTyVar
tv = TcM Type -> TcS Type
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM Type
TcM.zonkTcTyVar TcTyVar
tv)
zonkSimples :: Cts -> TcS Cts
zonkSimples :: Bag Ct -> TcS (Bag Ct)
zonkSimples Bag Ct
cts = TcM (Bag Ct) -> TcS (Bag Ct)
forall a. TcM a -> TcS a
wrapTcS (Bag Ct -> TcM (Bag Ct)
TcM.zonkSimples Bag Ct
cts)
zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC :: WantedConstraints -> TcS WantedConstraints
zonkWC WantedConstraints
wc = TcM WantedConstraints -> TcS WantedConstraints
forall a. TcM a -> TcS a
wrapTcS (WantedConstraints -> TcM WantedConstraints
TcM.zonkWC WantedConstraints
wc)
zonkTyCoVarKind :: TcTyCoVar -> TcS TcTyCoVar
zonkTyCoVarKind :: TcTyVar -> TcS TcTyVar
zonkTyCoVarKind TcTyVar
tv = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM TcTyVar
TcM.zonkTyCoVarKind TcTyVar
tv)
pprKicked :: Int -> SDoc
pprKicked :: Int -> SDoc
pprKicked Int
0 = SDoc
empty
pprKicked Int
n = SDoc -> SDoc
parens (Int -> SDoc
int Int
n SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"kicked out")
resetUnificationFlag :: TcS Bool
resetUnificationFlag :: TcS Bool
resetUnificationFlag
= (TcSEnv -> TcM Bool) -> TcS Bool
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM Bool) -> TcS Bool)
-> (TcSEnv -> TcM Bool) -> TcS Bool
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env ->
do { let ref :: IORef (Maybe TcLevel)
ref = TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl TcSEnv
env
; TcLevel
ambient_lvl <- TcM TcLevel
TcM.getTcLevel
; Maybe TcLevel
mb_lvl <- IORef (Maybe TcLevel) -> TcRnIf TcGblEnv TcLclEnv (Maybe TcLevel)
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef (Maybe TcLevel)
ref
; String -> SDoc -> TcM ()
TcM.traceTc String
"resetUnificationFlag" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"ambient:" SDoc -> SDoc -> SDoc
<+> TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcLevel
ambient_lvl
, String -> SDoc
text String
"unif_lvl:" SDoc -> SDoc -> SDoc
<+> Maybe TcLevel -> SDoc
forall a. Outputable a => a -> SDoc
ppr Maybe TcLevel
mb_lvl ]
; case Maybe TcLevel
mb_lvl of
Maybe TcLevel
Nothing -> Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
Just TcLevel
unif_lvl | TcLevel
ambient_lvl TcLevel -> TcLevel -> Bool
`strictlyDeeperThan` TcLevel
unif_lvl
-> Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
| Bool
otherwise
-> do { IORef (Maybe TcLevel) -> Maybe TcLevel -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef (Maybe TcLevel)
ref Maybe TcLevel
forall a. Maybe a
Nothing
; Bool -> TcM Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True } }
setUnificationFlag :: TcLevel -> TcS ()
setUnificationFlag :: TcLevel -> TcS ()
setUnificationFlag TcLevel
lvl
= (TcSEnv -> TcM ()) -> TcS ()
forall a. (TcSEnv -> TcM a) -> TcS a
TcS ((TcSEnv -> TcM ()) -> TcS ()) -> (TcSEnv -> TcM ()) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \TcSEnv
env ->
do { let ref :: IORef (Maybe TcLevel)
ref = TcSEnv -> IORef (Maybe TcLevel)
tcs_unif_lvl TcSEnv
env
; Maybe TcLevel
mb_lvl <- IORef (Maybe TcLevel) -> TcRnIf TcGblEnv TcLclEnv (Maybe TcLevel)
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef (Maybe TcLevel)
ref
; case Maybe TcLevel
mb_lvl of
Just TcLevel
unif_lvl | TcLevel
lvl TcLevel -> TcLevel -> Bool
`deeperThanOrSame` TcLevel
unif_lvl
-> () -> TcM ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
Maybe TcLevel
_ -> IORef (Maybe TcLevel) -> Maybe TcLevel -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef (Maybe TcLevel)
ref (TcLevel -> Maybe TcLevel
forall a. a -> Maybe a
Just TcLevel
lvl) }
instDFunType :: DFunId -> [DFunInstType] -> TcS ([TcType], TcThetaType)
instDFunType :: TcTyVar -> [Maybe Type] -> TcS ([Type], [Type])
instDFunType TcTyVar
dfun_id [Maybe Type]
inst_tys
= TcM ([Type], [Type]) -> TcS ([Type], [Type])
forall a. TcM a -> TcS a
wrapTcS (TcM ([Type], [Type]) -> TcS ([Type], [Type]))
-> TcM ([Type], [Type]) -> TcS ([Type], [Type])
forall a b. (a -> b) -> a -> b
$ TcTyVar -> [Maybe Type] -> TcM ([Type], [Type])
TcM.instDFunType TcTyVar
dfun_id [Maybe Type]
inst_tys
newFlexiTcSTy :: Kind -> TcS TcType
newFlexiTcSTy :: Type -> TcS Type
newFlexiTcSTy Type
knd = TcM Type -> TcS Type
forall a. TcM a -> TcS a
wrapTcS (Type -> TcM Type
TcM.newFlexiTyVarTy Type
knd)
cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar :: TcTyVar -> TcS TcTyVar
cloneMetaTyVar TcTyVar
tv = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (TcTyVar -> TcM TcTyVar
TcM.cloneMetaTyVar TcTyVar
tv)
instFlexi :: [TKVar] -> TcS TCvSubst
instFlexi :: [TcTyVar] -> TcS TCvSubst
instFlexi = TCvSubst -> [TcTyVar] -> TcS TCvSubst
instFlexiX TCvSubst
emptyTCvSubst
instFlexiX :: TCvSubst -> [TKVar] -> TcS TCvSubst
instFlexiX :: TCvSubst -> [TcTyVar] -> TcS TCvSubst
instFlexiX TCvSubst
subst [TcTyVar]
tvs
= TcM TCvSubst -> TcS TCvSubst
forall a. TcM a -> TcS a
wrapTcS ((TCvSubst -> TcTyVar -> TcM TCvSubst)
-> TCvSubst -> [TcTyVar] -> TcM TCvSubst
forall (t :: * -> *) (m :: * -> *) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldlM TCvSubst -> TcTyVar -> TcM TCvSubst
instFlexiHelper TCvSubst
subst [TcTyVar]
tvs)
instFlexiHelper :: TCvSubst -> TKVar -> TcM TCvSubst
instFlexiHelper :: TCvSubst -> TcTyVar -> TcM TCvSubst
instFlexiHelper TCvSubst
subst TcTyVar
tv
= do { Unique
uniq <- TcRnIf TcGblEnv TcLclEnv Unique
forall gbl lcl. TcRnIf gbl lcl Unique
TcM.newUnique
; TcTyVarDetails
details <- MetaInfo -> TcM TcTyVarDetails
TcM.newMetaDetails MetaInfo
TauTv
; let name :: Name
name = Name -> Unique -> Name
setNameUnique (TcTyVar -> Name
tyVarName TcTyVar
tv) Unique
uniq
kind :: Type
kind = TCvSubst -> Type -> Type
substTyUnchecked TCvSubst
subst (TcTyVar -> Type
tyVarKind TcTyVar
tv)
ty' :: Type
ty' = TcTyVar -> Type
mkTyVarTy (Name -> Type -> TcTyVarDetails -> TcTyVar
mkTcTyVar Name
name Type
kind TcTyVarDetails
details)
; String -> SDoc -> TcM ()
TcM.traceTc String
"instFlexi" (Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
ty')
; TCvSubst -> TcM TCvSubst
forall (m :: * -> *) a. Monad m => a -> m a
return (TCvSubst -> TcTyVar -> Type -> TCvSubst
extendTvSubst TCvSubst
subst TcTyVar
tv Type
ty') }
matchGlobalInst :: DynFlags
-> Bool
-> Class -> [Type] -> TcS TcM.ClsInstResult
matchGlobalInst :: DynFlags -> Bool -> Class -> [Type] -> TcS ClsInstResult
matchGlobalInst DynFlags
dflags Bool
short_cut Class
cls [Type]
tys
= TcM ClsInstResult -> TcS ClsInstResult
forall a. TcM a -> TcS a
wrapTcS (DynFlags -> Bool -> Class -> [Type] -> TcM ClsInstResult
TcM.matchGlobalInst DynFlags
dflags Bool
short_cut Class
cls [Type]
tys)
tcInstSkolTyVarsX :: TCvSubst -> [TyVar] -> TcS (TCvSubst, [TcTyVar])
tcInstSkolTyVarsX :: TCvSubst -> [TcTyVar] -> TcS (TCvSubst, [TcTyVar])
tcInstSkolTyVarsX TCvSubst
subst [TcTyVar]
tvs = TcM (TCvSubst, [TcTyVar]) -> TcS (TCvSubst, [TcTyVar])
forall a. TcM a -> TcS a
wrapTcS (TcM (TCvSubst, [TcTyVar]) -> TcS (TCvSubst, [TcTyVar]))
-> TcM (TCvSubst, [TcTyVar]) -> TcS (TCvSubst, [TcTyVar])
forall a b. (a -> b) -> a -> b
$ TCvSubst -> [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
TcM.tcInstSkolTyVarsX TCvSubst
subst [TcTyVar]
tvs
data MaybeNew = Fresh CtEvidence | Cached EvExpr
isFresh :: MaybeNew -> Bool
isFresh :: MaybeNew -> Bool
isFresh (Fresh {}) = Bool
True
isFresh (Cached {}) = Bool
False
freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals :: [MaybeNew] -> [CtEvidence]
freshGoals [MaybeNew]
mns = [ CtEvidence
ctev | Fresh CtEvidence
ctev <- [MaybeNew]
mns ]
getEvExpr :: MaybeNew -> EvExpr
getEvExpr :: MaybeNew -> EvExpr
getEvExpr (Fresh CtEvidence
ctev) = CtEvidence -> EvExpr
ctEvExpr CtEvidence
ctev
getEvExpr (Cached EvExpr
evt) = EvExpr
evt
setEvBind :: EvBind -> TcS ()
setEvBind :: EvBind -> TcS ()
setEvBind EvBind
ev_bind
= do { EvBindsVar
evb <- TcS EvBindsVar
getTcEvBindsVar
; TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ EvBindsVar -> EvBind -> TcM ()
TcM.addTcEvBind EvBindsVar
evb EvBind
ev_bind }
useVars :: CoVarSet -> TcS ()
useVars :: VarSet -> TcS ()
useVars VarSet
co_vars
= do { EvBindsVar
ev_binds_var <- TcS EvBindsVar
getTcEvBindsVar
; let ref :: IORef VarSet
ref = EvBindsVar -> IORef VarSet
ebv_tcvs EvBindsVar
ev_binds_var
; TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$
do { VarSet
tcvs <- IORef VarSet -> TcM VarSet
forall a gbl lcl. TcRef a -> TcRnIf gbl lcl a
TcM.readTcRef IORef VarSet
ref
; let tcvs' :: VarSet
tcvs' = VarSet
tcvs VarSet -> VarSet -> VarSet
`unionVarSet` VarSet
co_vars
; IORef VarSet -> VarSet -> TcM ()
forall a gbl lcl. TcRef a -> a -> TcRnIf gbl lcl ()
TcM.writeTcRef IORef VarSet
ref VarSet
tcvs' } }
setWantedEq :: TcEvDest -> Coercion -> TcS ()
setWantedEq :: TcEvDest -> Coercion -> TcS ()
setWantedEq (HoleDest CoercionHole
hole) Coercion
co
= do { VarSet -> TcS ()
useVars (Coercion -> VarSet
coVarsOfCo Coercion
co)
; CoercionHole -> Coercion -> TcS ()
fillCoercionHole CoercionHole
hole Coercion
co }
setWantedEq (EvVarDest TcTyVar
ev) Coercion
_ = String -> SDoc -> TcS ()
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"setWantedEq" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
ev)
setWantedEvTerm :: TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm :: TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm (HoleDest CoercionHole
hole) EvTerm
tm
| Just Coercion
co <- EvTerm -> Maybe Coercion
evTermCoercion_maybe EvTerm
tm
= do { VarSet -> TcS ()
useVars (Coercion -> VarSet
coVarsOfCo Coercion
co)
; CoercionHole -> Coercion -> TcS ()
fillCoercionHole CoercionHole
hole Coercion
co }
| Bool
otherwise
=
do { let co_var :: TcTyVar
co_var = CoercionHole -> TcTyVar
coHoleCoVar CoercionHole
hole
; EvBind -> TcS ()
setEvBind (TcTyVar -> EvTerm -> EvBind
mkWantedEvBind TcTyVar
co_var EvTerm
tm)
; CoercionHole -> Coercion -> TcS ()
fillCoercionHole CoercionHole
hole (TcTyVar -> Coercion
mkTcCoVarCo TcTyVar
co_var) }
setWantedEvTerm (EvVarDest TcTyVar
ev_id) EvTerm
tm
= EvBind -> TcS ()
setEvBind (TcTyVar -> EvTerm -> EvBind
mkWantedEvBind TcTyVar
ev_id EvTerm
tm)
fillCoercionHole :: CoercionHole -> Coercion -> TcS ()
fillCoercionHole :: CoercionHole -> Coercion -> TcS ()
fillCoercionHole CoercionHole
hole Coercion
co
= do { TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$ CoercionHole -> Coercion -> TcM ()
TcM.fillCoercionHole CoercionHole
hole Coercion
co
; CoercionHole -> Coercion -> TcS ()
kickOutAfterFillingCoercionHole CoercionHole
hole Coercion
co }
setEvBindIfWanted :: CtEvidence -> EvTerm -> TcS ()
setEvBindIfWanted :: CtEvidence -> EvTerm -> TcS ()
setEvBindIfWanted CtEvidence
ev EvTerm
tm
= case CtEvidence
ev of
CtWanted { ctev_dest :: CtEvidence -> TcEvDest
ctev_dest = TcEvDest
dest } -> TcEvDest -> EvTerm -> TcS ()
setWantedEvTerm TcEvDest
dest EvTerm
tm
CtEvidence
_ -> () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
newTcEvBinds :: TcS EvBindsVar
newTcEvBinds :: TcS EvBindsVar
newTcEvBinds = TcM EvBindsVar -> TcS EvBindsVar
forall a. TcM a -> TcS a
wrapTcS TcM EvBindsVar
TcM.newTcEvBinds
newNoTcEvBinds :: TcS EvBindsVar
newNoTcEvBinds :: TcS EvBindsVar
newNoTcEvBinds = TcM EvBindsVar -> TcS EvBindsVar
forall a. TcM a -> TcS a
wrapTcS TcM EvBindsVar
TcM.newNoTcEvBinds
newEvVar :: TcPredType -> TcS EvVar
newEvVar :: Type -> TcS TcTyVar
newEvVar Type
pred = TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (Type -> TcM TcTyVar
forall gbl lcl. Type -> TcRnIf gbl lcl TcTyVar
TcM.newEvVar Type
pred)
newGivenEvVar :: CtLoc -> (TcPredType, EvTerm) -> TcS CtEvidence
newGivenEvVar :: CtLoc -> (Type, EvTerm) -> TcS CtEvidence
newGivenEvVar CtLoc
loc (Type
pred, EvTerm
rhs)
= do { TcTyVar
new_ev <- Type -> EvTerm -> TcS TcTyVar
newBoundEvVarId Type
pred EvTerm
rhs
; CtEvidence -> TcS CtEvidence
forall (m :: * -> *) a. Monad m => a -> m a
return (CtGiven { ctev_pred :: Type
ctev_pred = Type
pred, ctev_evar :: TcTyVar
ctev_evar = TcTyVar
new_ev, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc }) }
newBoundEvVarId :: TcPredType -> EvTerm -> TcS EvVar
newBoundEvVarId :: Type -> EvTerm -> TcS TcTyVar
newBoundEvVarId Type
pred EvTerm
rhs
= do { TcTyVar
new_ev <- Type -> TcS TcTyVar
newEvVar Type
pred
; EvBind -> TcS ()
setEvBind (TcTyVar -> EvTerm -> EvBind
mkGivenEvBind TcTyVar
new_ev EvTerm
rhs)
; TcTyVar -> TcS TcTyVar
forall (m :: * -> *) a. Monad m => a -> m a
return TcTyVar
new_ev }
newGivenEvVars :: CtLoc -> [(TcPredType, EvTerm)] -> TcS [CtEvidence]
newGivenEvVars :: CtLoc -> [(Type, EvTerm)] -> TcS [CtEvidence]
newGivenEvVars CtLoc
loc [(Type, EvTerm)]
pts = ((Type, EvTerm) -> TcS CtEvidence)
-> [(Type, EvTerm)] -> TcS [CtEvidence]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (CtLoc -> (Type, EvTerm) -> TcS CtEvidence
newGivenEvVar CtLoc
loc) [(Type, EvTerm)]
pts
emitNewWantedEq :: CtLoc -> Role -> TcType -> TcType -> TcS Coercion
emitNewWantedEq :: CtLoc -> Role -> Type -> Type -> TcS Coercion
emitNewWantedEq CtLoc
loc Role
role Type
ty1 Type
ty2
= do { (CtEvidence
ev, Coercion
co) <- CtLoc -> Role -> Type -> Type -> TcS (CtEvidence, Coercion)
newWantedEq CtLoc
loc Role
role Type
ty1 Type
ty2
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS (Ct -> WorkList -> WorkList
extendWorkListEq (CtEvidence -> Ct
mkNonCanonical CtEvidence
ev))
; Coercion -> TcS Coercion
forall (m :: * -> *) a. Monad m => a -> m a
return Coercion
co }
newWantedEq :: CtLoc -> Role -> TcType -> TcType
-> TcS (CtEvidence, Coercion)
newWantedEq :: CtLoc -> Role -> Type -> Type -> TcS (CtEvidence, Coercion)
newWantedEq = ShadowInfo
-> CtLoc -> Role -> Type -> Type -> TcS (CtEvidence, Coercion)
newWantedEq_SI ShadowInfo
WDeriv
newWantedEq_SI :: ShadowInfo -> CtLoc -> Role
-> TcType -> TcType
-> TcS (CtEvidence, Coercion)
newWantedEq_SI :: ShadowInfo
-> CtLoc -> Role -> Type -> Type -> TcS (CtEvidence, Coercion)
newWantedEq_SI ShadowInfo
si CtLoc
loc Role
role Type
ty1 Type
ty2
= do { CoercionHole
hole <- TcM CoercionHole -> TcS CoercionHole
forall a. TcM a -> TcS a
wrapTcS (TcM CoercionHole -> TcS CoercionHole)
-> TcM CoercionHole -> TcS CoercionHole
forall a b. (a -> b) -> a -> b
$ Type -> TcM CoercionHole
TcM.newCoercionHole Type
pty
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new coercion hole" (CoercionHole -> SDoc
forall a. Outputable a => a -> SDoc
ppr CoercionHole
hole SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
pty)
; (CtEvidence, Coercion) -> TcS (CtEvidence, Coercion)
forall (m :: * -> *) a. Monad m => a -> m a
return ( CtWanted { ctev_pred :: Type
ctev_pred = Type
pty, ctev_dest :: TcEvDest
ctev_dest = CoercionHole -> TcEvDest
HoleDest CoercionHole
hole
, ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
si
, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc}
, CoercionHole -> Coercion
mkHoleCo CoercionHole
hole ) }
where
pty :: Type
pty = Role -> Type -> Type -> Type
mkPrimEqPredRole Role
role Type
ty1 Type
ty2
newWantedEvVarNC :: CtLoc -> TcPredType -> TcS CtEvidence
newWantedEvVarNC :: CtLoc -> Type -> TcS CtEvidence
newWantedEvVarNC = ShadowInfo -> CtLoc -> Type -> TcS CtEvidence
newWantedEvVarNC_SI ShadowInfo
WDeriv
newWantedEvVarNC_SI :: ShadowInfo -> CtLoc -> TcPredType -> TcS CtEvidence
newWantedEvVarNC_SI :: ShadowInfo -> CtLoc -> Type -> TcS CtEvidence
newWantedEvVarNC_SI ShadowInfo
si CtLoc
loc Type
pty
= do { TcTyVar
new_ev <- Type -> TcS TcTyVar
newEvVar Type
pty
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new wanted" (TcTyVar -> SDoc
forall a. Outputable a => a -> SDoc
ppr TcTyVar
new_ev SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr Type
pty SDoc -> SDoc -> SDoc
$$
CtLoc -> SDoc
pprCtLoc CtLoc
loc)
; CtEvidence -> TcS CtEvidence
forall (m :: * -> *) a. Monad m => a -> m a
return (CtWanted { ctev_pred :: Type
ctev_pred = Type
pty, ctev_dest :: TcEvDest
ctev_dest = TcTyVar -> TcEvDest
EvVarDest TcTyVar
new_ev
, ctev_nosh :: ShadowInfo
ctev_nosh = ShadowInfo
si
, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc })}
newWantedEvVar :: CtLoc -> TcPredType -> TcS MaybeNew
newWantedEvVar :: CtLoc -> Type -> TcS MaybeNew
newWantedEvVar = ShadowInfo -> CtLoc -> Type -> TcS MaybeNew
newWantedEvVar_SI ShadowInfo
WDeriv
newWantedEvVar_SI :: ShadowInfo -> CtLoc -> TcPredType -> TcS MaybeNew
newWantedEvVar_SI :: ShadowInfo -> CtLoc -> Type -> TcS MaybeNew
newWantedEvVar_SI ShadowInfo
si CtLoc
loc Type
pty
= do { Maybe CtEvidence
mb_ct <- CtLoc -> Type -> TcS (Maybe CtEvidence)
lookupInInerts CtLoc
loc Type
pty
; case Maybe CtEvidence
mb_ct of
Just CtEvidence
ctev
| Bool -> Bool
not (CtEvidence -> Bool
isDerived CtEvidence
ctev)
-> do { String -> SDoc -> TcS ()
traceTcS String
"newWantedEvVar/cache hit" (SDoc -> TcS ()) -> SDoc -> TcS ()
forall a b. (a -> b) -> a -> b
$ CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
ctev
; MaybeNew -> TcS MaybeNew
forall (m :: * -> *) a. Monad m => a -> m a
return (MaybeNew -> TcS MaybeNew) -> MaybeNew -> TcS MaybeNew
forall a b. (a -> b) -> a -> b
$ EvExpr -> MaybeNew
Cached (CtEvidence -> EvExpr
ctEvExpr CtEvidence
ctev) }
Maybe CtEvidence
_ -> do { CtEvidence
ctev <- ShadowInfo -> CtLoc -> Type -> TcS CtEvidence
newWantedEvVarNC_SI ShadowInfo
si CtLoc
loc Type
pty
; MaybeNew -> TcS MaybeNew
forall (m :: * -> *) a. Monad m => a -> m a
return (CtEvidence -> MaybeNew
Fresh CtEvidence
ctev) } }
newWanted :: CtLoc -> PredType -> TcS MaybeNew
newWanted :: CtLoc -> Type -> TcS MaybeNew
newWanted = ShadowInfo -> CtLoc -> Type -> TcS MaybeNew
newWanted_SI ShadowInfo
WDeriv
newWanted_SI :: ShadowInfo -> CtLoc -> PredType -> TcS MaybeNew
newWanted_SI :: ShadowInfo -> CtLoc -> Type -> TcS MaybeNew
newWanted_SI ShadowInfo
si CtLoc
loc Type
pty
| Just (Role
role, Type
ty1, Type
ty2) <- Type -> Maybe (Role, Type, Type)
getEqPredTys_maybe Type
pty
= CtEvidence -> MaybeNew
Fresh (CtEvidence -> MaybeNew)
-> ((CtEvidence, Coercion) -> CtEvidence)
-> (CtEvidence, Coercion)
-> MaybeNew
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (CtEvidence, Coercion) -> CtEvidence
forall a b. (a, b) -> a
fst ((CtEvidence, Coercion) -> MaybeNew)
-> TcS (CtEvidence, Coercion) -> TcS MaybeNew
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ShadowInfo
-> CtLoc -> Role -> Type -> Type -> TcS (CtEvidence, Coercion)
newWantedEq_SI ShadowInfo
si CtLoc
loc Role
role Type
ty1 Type
ty2
| Bool
otherwise
= ShadowInfo -> CtLoc -> Type -> TcS MaybeNew
newWantedEvVar_SI ShadowInfo
si CtLoc
loc Type
pty
newWantedNC :: CtLoc -> PredType -> TcS CtEvidence
newWantedNC :: CtLoc -> Type -> TcS CtEvidence
newWantedNC CtLoc
loc Type
pty
| Just (Role
role, Type
ty1, Type
ty2) <- Type -> Maybe (Role, Type, Type)
getEqPredTys_maybe Type
pty
= (CtEvidence, Coercion) -> CtEvidence
forall a b. (a, b) -> a
fst ((CtEvidence, Coercion) -> CtEvidence)
-> TcS (CtEvidence, Coercion) -> TcS CtEvidence
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> CtLoc -> Role -> Type -> Type -> TcS (CtEvidence, Coercion)
newWantedEq CtLoc
loc Role
role Type
ty1 Type
ty2
| Bool
otherwise
= CtLoc -> Type -> TcS CtEvidence
newWantedEvVarNC CtLoc
loc Type
pty
emitNewDeriveds :: CtLoc -> [TcPredType] -> TcS ()
emitNewDeriveds :: CtLoc -> [Type] -> TcS ()
emitNewDeriveds CtLoc
loc [Type]
preds
| [Type] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Type]
preds
= () -> TcS ()
forall (m :: * -> *) a. Monad m => a -> m a
return ()
| Bool
otherwise
= do { [CtEvidence]
evs <- (Type -> TcS CtEvidence) -> [Type] -> TcS [CtEvidence]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (CtLoc -> Type -> TcS CtEvidence
newDerivedNC CtLoc
loc) [Type]
preds
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new deriveds" ([CtEvidence] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [CtEvidence]
evs)
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS ([CtEvidence] -> WorkList -> WorkList
extendWorkListDeriveds [CtEvidence]
evs) }
emitNewDerivedEq :: CtLoc -> Role -> TcType -> TcType -> TcS ()
emitNewDerivedEq :: CtLoc -> Role -> Type -> Type -> TcS ()
emitNewDerivedEq CtLoc
loc Role
role Type
ty1 Type
ty2
= do { CtEvidence
ev <- CtLoc -> Type -> TcS CtEvidence
newDerivedNC CtLoc
loc (Role -> Type -> Type -> Type
mkPrimEqPredRole Role
role Type
ty1 Type
ty2)
; String -> SDoc -> TcS ()
traceTcS String
"Emitting new derived equality" (CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
ev SDoc -> SDoc -> SDoc
$$ CtLoc -> SDoc
pprCtLoc CtLoc
loc)
; (WorkList -> WorkList) -> TcS ()
updWorkListTcS (Ct -> WorkList -> WorkList
extendWorkListEq (CtEvidence -> Ct
mkNonCanonical CtEvidence
ev)) }
newDerivedNC :: CtLoc -> TcPredType -> TcS CtEvidence
newDerivedNC :: CtLoc -> Type -> TcS CtEvidence
newDerivedNC CtLoc
loc Type
pred
= CtEvidence -> TcS CtEvidence
forall (m :: * -> *) a. Monad m => a -> m a
return (CtEvidence -> TcS CtEvidence) -> CtEvidence -> TcS CtEvidence
forall a b. (a -> b) -> a -> b
$ CtDerived { ctev_pred :: Type
ctev_pred = Type
pred, ctev_loc :: CtLoc
ctev_loc = CtLoc
loc }
checkReductionDepth :: CtLoc -> TcType
-> TcS ()
checkReductionDepth :: CtLoc -> Type -> TcS ()
checkReductionDepth CtLoc
loc Type
ty
= do { DynFlags
dflags <- TcS DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
; Bool -> TcS () -> TcS ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (DynFlags -> SubGoalDepth -> Bool
subGoalDepthExceeded DynFlags
dflags (CtLoc -> SubGoalDepth
ctLocDepth CtLoc
loc)) (TcS () -> TcS ()) -> TcS () -> TcS ()
forall a b. (a -> b) -> a -> b
$
TcM () -> TcS ()
forall a. TcM a -> TcS a
wrapErrTcS (TcM () -> TcS ()) -> TcM () -> TcS ()
forall a b. (a -> b) -> a -> b
$
CtLoc -> Type -> TcM ()
forall a. CtLoc -> Type -> TcM a
solverDepthErrorTcS CtLoc
loc Type
ty }
matchFam :: TyCon -> [Type] -> TcS (Maybe (CoercionN, TcType))
matchFam :: TyCon -> [Type] -> TcS (Maybe (Coercion, Type))
matchFam TyCon
tycon [Type]
args = (Maybe (Coercion, Type) -> Maybe (Coercion, Type))
-> TcS (Maybe (Coercion, Type)) -> TcS (Maybe (Coercion, Type))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (((Coercion, Type) -> (Coercion, Type))
-> Maybe (Coercion, Type) -> Maybe (Coercion, Type)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Coercion -> Coercion) -> (Coercion, Type) -> (Coercion, Type)
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first Coercion -> Coercion
mkTcSymCo)) (TcS (Maybe (Coercion, Type)) -> TcS (Maybe (Coercion, Type)))
-> TcS (Maybe (Coercion, Type)) -> TcS (Maybe (Coercion, Type))
forall a b. (a -> b) -> a -> b
$ TcM (Maybe (Coercion, Type)) -> TcS (Maybe (Coercion, Type))
forall a. TcM a -> TcS a
wrapTcS (TcM (Maybe (Coercion, Type)) -> TcS (Maybe (Coercion, Type)))
-> TcM (Maybe (Coercion, Type)) -> TcS (Maybe (Coercion, Type))
forall a b. (a -> b) -> a -> b
$ TyCon -> [Type] -> TcM (Maybe (Coercion, Type))
matchFamTcM TyCon
tycon [Type]
args
matchFamTcM :: TyCon -> [Type] -> TcM (Maybe (CoercionN, TcType))
matchFamTcM :: TyCon -> [Type] -> TcM (Maybe (Coercion, Type))
matchFamTcM TyCon
tycon [Type]
args
= do { (FamInstEnv, FamInstEnv)
fam_envs <- TcM (FamInstEnv, FamInstEnv)
FamInst.tcGetFamInstEnvs
; let match_fam_result :: Maybe (Coercion, Type)
match_fam_result
= (FamInstEnv, FamInstEnv)
-> Role -> TyCon -> [Type] -> Maybe (Coercion, Type)
reduceTyFamApp_maybe (FamInstEnv, FamInstEnv)
fam_envs Role
Nominal TyCon
tycon [Type]
args
; String -> SDoc -> TcM ()
TcM.traceTc String
"matchFamTcM" (SDoc -> TcM ()) -> SDoc -> TcM ()
forall a b. (a -> b) -> a -> b
$
[SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Matching:" SDoc -> SDoc -> SDoc
<+> Type -> SDoc
forall a. Outputable a => a -> SDoc
ppr (TyCon -> [Type] -> Type
mkTyConApp TyCon
tycon [Type]
args)
, Maybe (Coercion, Type) -> SDoc
forall {a} {a}.
(Outputable a, Outputable a) =>
Maybe (a, a) -> SDoc
ppr_res Maybe (Coercion, Type)
match_fam_result ]
; Maybe (Coercion, Type) -> TcM (Maybe (Coercion, Type))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (Coercion, Type)
match_fam_result }
where
ppr_res :: Maybe (a, a) -> SDoc
ppr_res Maybe (a, a)
Nothing = String -> SDoc
text String
"Match failed"
ppr_res (Just (a
co,a
ty)) = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"Match succeeded:")
Int
2 ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Rewrites to:" SDoc -> SDoc -> SDoc
<+> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
ty
, String -> SDoc
text String
"Coercion:" SDoc -> SDoc -> SDoc
<+> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
co ])
breakTyEqCycle_maybe :: CtEvidence
-> CheckTyEqResult
-> CanEqLHS
-> TcType
-> TcS (Maybe (CoercionN, TcType))
breakTyEqCycle_maybe :: CtEvidence
-> CheckTyEqResult
-> CanEqLHS
-> Type
-> TcS (Maybe (Coercion, Type))
breakTyEqCycle_maybe (CtLoc -> CtOrigin
ctLocOrigin (CtLoc -> CtOrigin)
-> (CtEvidence -> CtLoc) -> CtEvidence -> CtOrigin
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CtEvidence -> CtLoc
ctEvLoc -> CycleBreakerOrigin CtOrigin
_) CheckTyEqResult
_ CanEqLHS
_ Type
_
= Maybe (Coercion, Type) -> TcS (Maybe (Coercion, Type))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (Coercion, Type)
forall a. Maybe a
Nothing
breakTyEqCycle_maybe CtEvidence
ev CheckTyEqResult
cte_result CanEqLHS
lhs Type
rhs
| EqRel
NomEq <- EqRel
eq_rel
, CheckTyEqResult
cte_result CheckTyEqResult -> CheckTyEqProblem -> Bool
`cterHasOnlyProblem` CheckTyEqProblem
cteSolubleOccurs
= do { Bool
should_break <- TcS Bool
final_check
; if Bool
should_break then do { (Coercion
co, Type
new_rhs) <- Type -> TcS (Coercion, Type)
go Type
rhs
; Maybe (Coercion, Type) -> TcS (Maybe (Coercion, Type))
forall (m :: * -> *) a. Monad m => a -> m a
return ((Coercion, Type) -> Maybe (Coercion, Type)
forall a. a -> Maybe a
Just (Coercion
co, Type
new_rhs)) }
else Maybe (Coercion, Type) -> TcS (Maybe (Coercion, Type))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (Coercion, Type)
forall a. Maybe a
Nothing }
where
flavour :: CtFlavour
flavour = CtEvidence -> CtFlavour
ctEvFlavour CtEvidence
ev
eq_rel :: EqRel
eq_rel = CtEvidence -> EqRel
ctEvEqRel CtEvidence
ev
final_check :: TcS Bool
final_check
| CtFlavour
Given <- CtFlavour
flavour
= Bool -> TcS Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
| CtFlavour -> Bool
ctFlavourContainsDerived CtFlavour
flavour
, TyVarLHS TcTyVar
lhs_tv <- CanEqLHS
lhs
= do { TouchabilityTestResult
result <- CtFlavour -> TcTyVar -> Type -> TcS TouchabilityTestResult
touchabilityTest CtFlavour
Derived TcTyVar
lhs_tv Type
rhs
; Bool -> TcS Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> TcS Bool) -> Bool -> TcS Bool
forall a b. (a -> b) -> a -> b
$ case TouchabilityTestResult
result of
TouchabilityTestResult
Untouchable -> Bool
False
TouchabilityTestResult
_ -> Bool
True }
| Bool
otherwise
= Bool -> TcS Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
go :: TcType -> TcS (CoercionN, TcType)
go :: Type -> TcS (Coercion, Type)
go Type
ty | Just Type
ty' <- Type -> Maybe Type
rewriterView Type
ty = Type -> TcS (Coercion, Type)
go Type
ty'
go (Rep.TyConApp TyCon
tc [Type]
tys)
| TyCon -> Bool
isTypeFamilyTyCon TyCon
tc
= do { let ([Type]
fun_args, [Type]
extra_args) = Int -> [Type] -> ([Type], [Type])
forall a. Int -> [a] -> ([a], [a])
splitAt (TyCon -> Int
tyConArity TyCon
tc) [Type]
tys
fun_app :: Type
fun_app = TyCon -> [Type] -> Type
mkTyConApp TyCon
tc [Type]
fun_args
fun_app_kind :: Type
fun_app_kind = HasDebugCallStack => Type -> Type
Type -> Type
tcTypeKind Type
fun_app
; (Coercion
co, Type
new_ty) <- Type -> Type -> TcS (Coercion, Type)
emit_work Type
fun_app_kind Type
fun_app
; ([Coercion]
extra_args_cos, [Type]
extra_args') <- (Type -> TcS (Coercion, Type))
-> [Type] -> TcS ([Coercion], [Type])
forall (m :: * -> *) a b c.
Applicative m =>
(a -> m (b, c)) -> [a] -> m ([b], [c])
mapAndUnzipM Type -> TcS (Coercion, Type)
go [Type]
extra_args
; (Coercion, Type) -> TcS (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> [Coercion] -> Coercion
mkAppCos Coercion
co [Coercion]
extra_args_cos, Type -> [Type] -> Type
mkAppTys Type
new_ty [Type]
extra_args') }
| Bool
otherwise
= do { ([Coercion]
cos, [Type]
tys) <- (Type -> TcS (Coercion, Type))
-> [Type] -> TcS ([Coercion], [Type])
forall (m :: * -> *) a b c.
Applicative m =>
(a -> m (b, c)) -> [a] -> m ([b], [c])
mapAndUnzipM Type -> TcS (Coercion, Type)
go [Type]
tys
; (Coercion, Type) -> TcS (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal TyCon
tc [Coercion]
cos, TyCon -> [Type] -> Type
mkTyConApp TyCon
tc [Type]
tys) }
go (Rep.AppTy Type
ty1 Type
ty2)
= do { (Coercion
co1, Type
ty1') <- Type -> TcS (Coercion, Type)
go Type
ty1
; (Coercion
co2, Type
ty2') <- Type -> TcS (Coercion, Type)
go Type
ty2
; (Coercion, Type) -> TcS (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> Coercion -> Coercion
mkAppCo Coercion
co1 Coercion
co2, Type -> Type -> Type
mkAppTy Type
ty1' Type
ty2') }
go (Rep.FunTy AnonArgFlag
vis Type
w Type
arg Type
res)
= do { (Coercion
co_w, Type
w') <- Type -> TcS (Coercion, Type)
go Type
w
; (Coercion
co_arg, Type
arg') <- Type -> TcS (Coercion, Type)
go Type
arg
; (Coercion
co_res, Type
res') <- Type -> TcS (Coercion, Type)
go Type
res
; (Coercion, Type) -> TcS (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Role -> Coercion -> Coercion -> Coercion -> Coercion
mkFunCo Role
Nominal Coercion
co_w Coercion
co_arg Coercion
co_res, AnonArgFlag -> Type -> Type -> Type -> Type
mkFunTy AnonArgFlag
vis Type
w' Type
arg' Type
res') }
go (Rep.CastTy Type
ty Coercion
cast_co)
= do { (Coercion
co, Type
ty') <- Type -> TcS (Coercion, Type)
go Type
ty
; (Coercion, Type) -> TcS (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion -> Role -> Type -> Type -> Coercion -> Coercion
castCoercionKind1 Coercion
co Role
Nominal Type
ty' Type
ty Coercion
cast_co, Type -> Coercion -> Type
mkCastTy Type
ty' Coercion
cast_co) }
go ty :: Type
ty@(Rep.TyVarTy {}) = Type -> TcS (Coercion, Type)
forall {m :: * -> *}. Monad m => Type -> m (Coercion, Type)
skip Type
ty
go ty :: Type
ty@(Rep.LitTy {}) = Type -> TcS (Coercion, Type)
forall {m :: * -> *}. Monad m => Type -> m (Coercion, Type)
skip Type
ty
go ty :: Type
ty@(Rep.ForAllTy {}) = Type -> TcS (Coercion, Type)
forall {m :: * -> *}. Monad m => Type -> m (Coercion, Type)
skip Type
ty
go ty :: Type
ty@(Rep.CoercionTy {}) = Type -> TcS (Coercion, Type)
forall {m :: * -> *}. Monad m => Type -> m (Coercion, Type)
skip Type
ty
skip :: Type -> m (Coercion, Type)
skip Type
ty = (Coercion, Type) -> m (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
ty, Type
ty)
emit_work :: TcKind
-> TcType
-> TcS (CoercionN, TcType)
emit_work :: Type -> Type -> TcS (Coercion, Type)
emit_work Type
fun_app_kind Type
fun_app = case CtFlavour
flavour of
CtFlavour
Given ->
do { TcTyVar
new_tv <- TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (Type -> TcM TcTyVar
TcM.newCycleBreakerTyVar Type
fun_app_kind)
; let new_ty :: Type
new_ty = TcTyVar -> Type
mkTyVarTy TcTyVar
new_tv
given_pred :: Type
given_pred = Type -> Type -> Type -> Type -> Type
mkHeteroPrimEqPred Type
fun_app_kind Type
fun_app_kind
Type
fun_app Type
new_ty
given_term :: EvTerm
given_term = Coercion -> EvTerm
evCoercion (Coercion -> EvTerm) -> Coercion -> EvTerm
forall a b. (a -> b) -> a -> b
$ Type -> Coercion
mkNomReflCo Type
new_ty
; CtEvidence
new_given <- CtLoc -> (Type, EvTerm) -> TcS CtEvidence
newGivenEvVar CtLoc
new_loc (Type
given_pred, EvTerm
given_term)
; String -> SDoc -> TcS ()
traceTcS String
"breakTyEqCycle replacing type family in Given" (CtEvidence -> SDoc
forall a. Outputable a => a -> SDoc
ppr CtEvidence
new_given)
; [CtEvidence] -> TcS ()
emitWorkNC [CtEvidence
new_given]
; (InertSet -> InertSet) -> TcS ()
updInertTcS ((InertSet -> InertSet) -> TcS ())
-> (InertSet -> InertSet) -> TcS ()
forall a b. (a -> b) -> a -> b
$ \InertSet
is ->
InertSet
is { inert_cycle_breakers :: CycleBreakerVarStack
inert_cycle_breakers = TcTyVar -> Type -> CycleBreakerVarStack -> CycleBreakerVarStack
insertCycleBreakerBinding TcTyVar
new_tv Type
fun_app
(InertSet -> CycleBreakerVarStack
inert_cycle_breakers InertSet
is) }
; (Coercion, Type) -> TcS (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> Coercion
mkNomReflCo Type
new_ty, Type
new_ty) }
CtFlavour
_derived_or_wd ->
do { TcTyVar
new_tv <- TcM TcTyVar -> TcS TcTyVar
forall a. TcM a -> TcS a
wrapTcS (Type -> TcM TcTyVar
TcM.newFlexiTyVar Type
fun_app_kind)
; let new_ty :: Type
new_ty = TcTyVar -> Type
mkTyVarTy TcTyVar
new_tv
; Coercion
co <- CtLoc -> Role -> Type -> Type -> TcS Coercion
emitNewWantedEq CtLoc
new_loc Role
Nominal Type
new_ty Type
fun_app
; (Coercion, Type) -> TcS (Coercion, Type)
forall (m :: * -> *) a. Monad m => a -> m a
return (Coercion
co, Type
new_ty) }
new_loc :: CtLoc
new_loc = CtLoc -> (CtOrigin -> CtOrigin) -> CtLoc
updateCtLocOrigin (CtEvidence -> CtLoc
ctEvLoc CtEvidence
ev) CtOrigin -> CtOrigin
CycleBreakerOrigin
breakTyEqCycle_maybe CtEvidence
_ CheckTyEqResult
_ CanEqLHS
_ Type
_ = Maybe (Coercion, Type) -> TcS (Maybe (Coercion, Type))
forall (m :: * -> *) a. Monad m => a -> m a
return Maybe (Coercion, Type)
forall a. Maybe a
Nothing
restoreTyVarCycles :: InertSet -> TcM ()
restoreTyVarCycles :: InertSet -> TcM ()
restoreTyVarCycles InertSet
is
= CycleBreakerVarStack -> (TcTyVar -> Type -> TcM ()) -> TcM ()
forall (m :: * -> *).
Monad m =>
CycleBreakerVarStack -> (TcTyVar -> Type -> m ()) -> m ()
forAllCycleBreakerBindings_ (InertSet -> CycleBreakerVarStack
inert_cycle_breakers InertSet
is) TcTyVar -> Type -> TcM ()
TcM.writeMetaTyVar
{-# SPECIALISE forAllCycleBreakerBindings_ ::
CycleBreakerVarStack -> (TcTyVar -> TcType -> TcM ()) -> TcM () #-}
rewriterView :: TcType -> Maybe TcType
rewriterView :: Type -> Maybe Type
rewriterView ty :: Type
ty@(Rep.TyConApp TyCon
tc [Type]
_)
| TyCon -> Bool
isForgetfulSynTyCon TyCon
tc Bool -> Bool -> Bool
|| (TyCon -> Bool
isTypeSynonymTyCon TyCon
tc Bool -> Bool -> Bool
&& Bool -> Bool
not (TyCon -> Bool
isFamFreeTyCon TyCon
tc))
= Type -> Maybe Type
tcView Type
ty
rewriterView Type
_other = Maybe Type
forall a. Maybe a
Nothing