Copyright | (c) The University of Glasgow 2003 |
---|---|
License | BSD-style (see the file libraries/base/LICENSE) |
Maintainer | libraries@haskell.org |
Stability | experimental |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
Abstract syntax definitions for Template Haskell.
Synopsis
- data Foreign
- data Type
- = ForallT [TyVarBndr Specificity] Cxt Type
- | ForallVisT [TyVarBndr ()] Type
- | AppT Type Type
- | AppKindT Type Kind
- | SigT Type Kind
- | VarT Name
- | ConT Name
- | PromotedT Name
- | InfixT Type Name Type
- | UInfixT Type Name Type
- | PromotedInfixT Type Name Type
- | PromotedUInfixT Type Name Type
- | ParensT Type
- | TupleT Int
- | UnboxedTupleT Int
- | UnboxedSumT SumArity
- | ArrowT
- | MulArrowT
- | EqualityT
- | ListT
- | PromotedTupleT Int
- | PromotedNilT
- | PromotedConsT
- | StarT
- | ConstraintT
- | LitT TyLit
- | WildCardT
- | ImplicitParamT String Type
- data Module = Module PkgName ModName
- type Unlifted = Bool
- data Con
- data DecidedStrictness
- data SourceStrictness
- data SourceUnpackedness
- data Fixity = Fixity Int FixityDirection
- type Strict = Bang
- newtype Q a = Q {}
- class Monad m => Quote m where
- data Loc = Loc {}
- data Info
- data ModuleInfo = ModuleInfo [Module]
- type InstanceDec = Dec
- type ParentName = Name
- type SumAlt = Int
- type SumArity = Int
- type Arity = Int
- data AnnLookup
- newtype TExp (a :: TYPE (r :: RuntimeRep)) = TExp {}
- newtype Code m (a :: TYPE (r :: RuntimeRep)) = Code {
- examineCode :: m (TExp a)
- data Name = Name OccName NameFlavour
- data NameSpace
- data Dec
- = FunD Name [Clause]
- | ValD Pat Body [Dec]
- | DataD Cxt Name [TyVarBndr ()] (Maybe Kind) [Con] [DerivClause]
- | NewtypeD Cxt Name [TyVarBndr ()] (Maybe Kind) Con [DerivClause]
- | TySynD Name [TyVarBndr ()] Type
- | ClassD Cxt Name [TyVarBndr ()] [FunDep] [Dec]
- | InstanceD (Maybe Overlap) Cxt Type [Dec]
- | SigD Name Type
- | KiSigD Name Kind
- | ForeignD Foreign
- | InfixD Fixity Name
- | DefaultD [Type]
- | PragmaD Pragma
- | DataFamilyD Name [TyVarBndr ()] (Maybe Kind)
- | DataInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) [Con] [DerivClause]
- | NewtypeInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) Con [DerivClause]
- | TySynInstD TySynEqn
- | OpenTypeFamilyD TypeFamilyHead
- | ClosedTypeFamilyD TypeFamilyHead [TySynEqn]
- | RoleAnnotD Name [Role]
- | StandaloneDerivD (Maybe DerivStrategy) Cxt Type
- | DefaultSigD Name Type
- | PatSynD Name PatSynArgs PatSynDir Pat
- | PatSynSigD Name PatSynType
- | ImplicitParamBindD String Exp
- data Clause = Clause [Pat] Body [Dec]
- data Bang = Bang SourceUnpackedness SourceStrictness
- data Callconv
- = CCall
- | StdCall
- | CApi
- | Prim
- | JavaScript
- data Safety
- = Unsafe
- | Safe
- | Interruptible
- data Pragma
- data Inline
- data RuleMatch
- data Phases
- data RuleBndr
- data AnnTarget
- data FunDep = FunDep [Name] [Name]
- data TySynEqn = TySynEqn (Maybe [TyVarBndr ()]) Type Type
- data TypeFamilyHead = TypeFamilyHead Name [TyVarBndr ()] FamilyResultSig (Maybe InjectivityAnn)
- data FixityDirection
- data PatSynDir
- data PatSynArgs
- = PrefixPatSyn [Name]
- | InfixPatSyn Name Name
- | RecordPatSyn [Name]
- data Exp
- = VarE Name
- | ConE Name
- | LitE Lit
- | AppE Exp Exp
- | AppTypeE Exp Type
- | InfixE (Maybe Exp) Exp (Maybe Exp)
- | UInfixE Exp Exp Exp
- | ParensE Exp
- | LamE [Pat] Exp
- | LamCaseE [Match]
- | LamCasesE [Clause]
- | TupE [Maybe Exp]
- | UnboxedTupE [Maybe Exp]
- | UnboxedSumE Exp SumAlt SumArity
- | CondE Exp Exp Exp
- | MultiIfE [(Guard, Exp)]
- | LetE [Dec] Exp
- | CaseE Exp [Match]
- | DoE (Maybe ModName) [Stmt]
- | MDoE (Maybe ModName) [Stmt]
- | CompE [Stmt]
- | ArithSeqE Range
- | ListE [Exp]
- | SigE Exp Type
- | RecConE Name [FieldExp]
- | RecUpdE Exp [FieldExp]
- | StaticE Exp
- | UnboundVarE Name
- | LabelE String
- | ImplicitParamVarE String
- | GetFieldE Exp String
- | ProjectionE (NonEmpty String)
- data Match = Match Pat Body [Dec]
- data Body
- data Guard
- data Stmt
- data Range
- data Lit
- data Pat
- type FieldExp = (Name, Exp)
- type FieldPat = (Name, Pat)
- data TyVarBndr flag
- data TyLit
- type Kind = Type
- type Cxt = [Pred]
- type Pred = Type
- data Role
- data Specificity
- data FamilyResultSig
- data InjectivityAnn = InjectivityAnn Name [Name]
- type PatSynType = Type
- type BangType = (Bang, Type)
- type VarBangType = (Name, Bang, Type)
- data DocLoc
- data DerivClause = DerivClause (Maybe DerivStrategy) Cxt
- data DerivStrategy
- data Overlap
- type Uniq = Integer
- data NameFlavour
- data NameIs
- class (MonadIO m, MonadFail m) => Quasi m where
- qNewName :: String -> m Name
- qReport :: Bool -> String -> m ()
- qRecover :: m a -> m a -> m a
- qLookupName :: Bool -> String -> m (Maybe Name)
- qReify :: Name -> m Info
- qReifyFixity :: Name -> m (Maybe Fixity)
- qReifyType :: Name -> m Type
- qReifyInstances :: Name -> [Type] -> m [Dec]
- qReifyRoles :: Name -> m [Role]
- qReifyAnnotations :: Data a => AnnLookup -> m [a]
- qReifyModule :: Module -> m ModuleInfo
- qReifyConStrictness :: Name -> m [DecidedStrictness]
- qLocation :: m Loc
- qRunIO :: IO a -> m a
- qGetPackageRoot :: m FilePath
- qAddDependentFile :: FilePath -> m ()
- qAddTempFile :: String -> m FilePath
- qAddTopDecls :: [Dec] -> m ()
- qAddForeignFilePath :: ForeignSrcLang -> String -> m ()
- qAddModFinalizer :: Q () -> m ()
- qAddCorePlugin :: String -> m ()
- qGetQ :: Typeable a => m (Maybe a)
- qPutQ :: Typeable a => a -> m ()
- qIsExtEnabled :: Extension -> m Bool
- qExtsEnabled :: m [Extension]
- qPutDoc :: DocLoc -> String -> m ()
- qGetDoc :: DocLoc -> m (Maybe String)
- class Lift (t :: TYPE r) where
- data Bytes = Bytes {
- bytesPtr :: ForeignPtr Word8
- bytesOffset :: Word
- bytesSize :: Word
- newtype ModName = ModName String
- newtype PkgName = PkgName String
- newtype OccName = OccName String
- type CharPos = (Int, Int)
- type StrictType = BangType
- type VarStrictType = VarBangType
- recover :: Q a -> Q a -> Q a
- reportError :: String -> Q ()
- runIO :: IO a -> Q a
- runQ :: Quasi m => Q a -> m a
- reportWarning :: String -> Q ()
- report :: Bool -> String -> Q ()
- location :: Q Loc
- reify :: Name -> Q Info
- reifyModule :: Module -> Q ModuleInfo
- newDeclarationGroup :: Q [Dec]
- extsEnabled :: Q [Extension]
- isExtEnabled :: Extension -> Q Bool
- lookupTypeName :: String -> Q (Maybe Name)
- lookupValueName :: String -> Q (Maybe Name)
- reifyFixity :: Name -> Q (Maybe Fixity)
- reifyType :: Name -> Q Type
- reifyInstances :: Name -> [Type] -> Q [InstanceDec]
- isInstance :: Name -> [Type] -> Q Bool
- reifyRoles :: Name -> Q [Role]
- reifyAnnotations :: Data a => AnnLookup -> Q [a]
- reifyConStrictness :: Name -> Q [DecidedStrictness]
- unTypeCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => Code m a -> m Exp
- unsafeCodeCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m Exp -> Code m a
- hoistCode :: forall m n (r :: RuntimeRep) (a :: TYPE r). Monad m => (forall x. m x -> n x) -> Code m a -> Code n a
- bindCode :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> (a -> Code m b) -> Code m b
- bindCode_ :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> Code m b -> Code m b
- joinCode :: forall m (r :: RuntimeRep) (a :: TYPE r). Monad m => m (Code m a) -> Code m a
- liftCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. m (TExp a) -> Code m a
- mkName :: String -> Name
- nameBase :: Name -> String
- nameModule :: Name -> Maybe String
- namePackage :: Name -> Maybe String
- nameSpace :: Name -> Maybe NameSpace
- tupleTypeName :: Int -> Name
- tupleDataName :: Int -> Name
- unboxedTupleTypeName :: Int -> Name
- unboxedTupleDataName :: Int -> Name
- unboxedSumTypeName :: SumArity -> Name
- unboxedSumDataName :: SumAlt -> SumArity -> Name
- defaultFixity :: Fixity
- maxPrecedence :: Int
- putDoc :: DocLoc -> String -> Q ()
- getDoc :: DocLoc -> Q (Maybe String)
- showName' :: NameIs -> Name -> String
- dataToQa :: forall m a k q. (Quote m, Data a) => (Name -> k) -> (Lit -> m q) -> (k -> [m q] -> m q) -> (forall b. Data b => b -> Maybe (m q)) -> a -> m q
- dataToExpQ :: (Quote m, Data a) => (forall b. Data b => b -> Maybe (m Exp)) -> a -> m Exp
- dataToPatQ :: (Quote m, Data a) => (forall b. Data b => b -> Maybe (m Pat)) -> a -> m Pat
- newNameIO :: String -> IO Name
- badIO :: String -> IO a
- counter :: IORef Uniq
- mkNameU :: String -> Uniq -> Name
- unTypeQ :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m (TExp a) -> m Exp
- unsafeTExpCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m Exp -> m (TExp a)
- lookupName :: Bool -> String -> Q (Maybe Name)
- getPackageRoot :: Q FilePath
- makeRelativeToProject :: FilePath -> Q FilePath
- addDependentFile :: FilePath -> Q ()
- addTempFile :: String -> Q FilePath
- addTopDecls :: [Dec] -> Q ()
- addForeignFile :: ForeignSrcLang -> String -> Q ()
- addForeignSource :: ForeignSrcLang -> String -> Q ()
- addForeignFilePath :: ForeignSrcLang -> FilePath -> Q ()
- addModFinalizer :: Q () -> Q ()
- addCorePlugin :: String -> Q ()
- getQ :: Typeable a => Q (Maybe a)
- putQ :: Typeable a => a -> Q ()
- sequenceQ :: forall m. Monad m => forall a. [m a] -> m [a]
- trueName :: Name
- falseName :: Name
- addrToByteArrayName :: Name
- mkNameG_v :: String -> String -> String -> Name
- addrToByteArray :: Int -> Addr# -> ByteArray
- nothingName :: Name
- justName :: Name
- leftName :: Name
- rightName :: Name
- liftString :: Quote m => String -> m Exp
- nonemptyName :: Name
- mkNameG :: NameSpace -> String -> String -> String -> Name
- oneName :: Name
- manyName :: Name
- mkOccName :: String -> OccName
- mkPkgName :: String -> PkgName
- mkModName :: String -> ModName
- mkNameG_d :: String -> String -> String -> Name
- showName :: Name -> String
- liftData :: (Quote m, Data a) => a -> m Exp
- modString :: ModName -> String
- pkgString :: PkgName -> String
- occString :: OccName -> String
- thenCmp :: Ordering -> Ordering -> Ordering
- mkNameL :: String -> Uniq -> Name
- mkNameS :: String -> Name
- mkNameG_tc :: String -> String -> String -> Name
- mk_tup_name :: Int -> NameSpace -> Bool -> Name
- eqBytes :: Bytes -> Bytes -> Bool
- compareBytes :: Bytes -> Bytes -> Ordering
- memcmp :: Ptr a -> Ptr b -> CSize -> IO CInt
- cmpEq :: Ordering -> Bool
- module Language.Haskell.TH.LanguageExtensions
- data ForeignSrcLang
Documentation
Instances
ForallT [TyVarBndr Specificity] Cxt Type | forall <vars>. <ctxt> => <type> |
ForallVisT [TyVarBndr ()] Type | forall <vars> -> <type> |
AppT Type Type | T a b |
AppKindT Type Kind | T @k t |
SigT Type Kind | t :: k |
VarT Name | a |
ConT Name | T |
PromotedT Name | 'T |
InfixT Type Name Type | T + T |
UInfixT Type Name Type | T + T |
PromotedInfixT Type Name Type | T :+: T |
PromotedUInfixT Type Name Type | T :+: T |
ParensT Type | (T) |
TupleT Int | (,), (,,), etc. |
UnboxedTupleT Int | (#,#), (#,,#), etc. |
UnboxedSumT SumArity | (#|#), (#||#), etc. |
ArrowT | -> |
MulArrowT | %n -> Generalised arrow type with multiplicity argument |
EqualityT | ~ |
ListT | [] |
PromotedTupleT Int | '(), '(,), '(,,), etc. |
PromotedNilT | '[] |
PromotedConsT | (':) |
StarT | * |
ConstraintT | Constraint |
LitT TyLit | 0,1,2, etc. |
WildCardT | _ |
ImplicitParamT String Type | ?x :: t |
Instances
Obtained from reifyModule
and thisModule
.
Instances
Data Module Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Module -> c Module Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Module Source # toConstr :: Module -> Constr Source # dataTypeOf :: Module -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Module) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Module) Source # gmapT :: (forall b. Data b => b -> b) -> Module -> Module Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Module -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Module -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Module -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Module -> m Module Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Module -> m Module Source # | |
Generic Module Source # | |
Show Module Source # | |
Eq Module Source # | |
Ord Module Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Module Source # | |
type Rep Module Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Module = D1 ('MetaData "Module" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Module" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 PkgName) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 ModName))) |
In PrimTyConI
, is the type constructor unlifted?
A single data constructor.
The constructors for Con
can roughly be divided up into two categories:
those for constructors with "vanilla" syntax (NormalC
, RecC
, and
InfixC
), and those for constructors with GADT syntax (GadtC
and
RecGadtC
). The ForallC
constructor, which quantifies additional type
variables and class contexts, can surround either variety of constructor.
However, the type variables that it quantifies are different depending
on what constructor syntax is used:
- If a
ForallC
surrounds a constructor with vanilla syntax, then theForallC
will only quantify existential type variables. For example:
data Foo a = forall b. MkFoo a b
In MkFoo
, ForallC
will quantify b
, but not a
.
- If a
ForallC
surrounds a constructor with GADT syntax, then theForallC
will quantify all type variables used in the constructor. For example:
data Bar a b where MkBar :: (a ~ b) => c -> MkBar a b
In MkBar
, ForallC
will quantify a
, b
, and c
.
Multiplicity annotations for data types are currently not supported in Template Haskell (i.e. all fields represented by Template Haskell will be linear).
NormalC Name [BangType] | C Int a |
RecC Name [VarBangType] | C { v :: Int, w :: a } |
InfixC BangType Name BangType | Int :+ a |
ForallC [TyVarBndr Specificity] Cxt Con | forall a. Eq a => C [a] |
GadtC [Name] [BangType] Type | C :: a -> b -> T b Int |
RecGadtC [Name] [VarBangType] Type | C :: { v :: Int } -> T b Int |
Instances
data DecidedStrictness Source #
Unlike SourceStrictness
and SourceUnpackedness
, DecidedStrictness
refers to the strictness that the compiler chooses for a data constructor
field, which may be different from what is written in source code. See
reifyConStrictness
for more information.
Instances
data SourceStrictness Source #
NoSourceStrictness | C a |
SourceLazy | C {~}a |
SourceStrict | C {!}a |
Instances
data SourceUnpackedness Source #
NoSourceUnpackedness | C a |
SourceNoUnpack | C { {-# NOUNPACK #-} } a |
SourceUnpack | C { {-# UNPACK #-} } a |
Instances
Instances
Data Fixity Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fixity -> c Fixity Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Fixity Source # toConstr :: Fixity -> Constr Source # dataTypeOf :: Fixity -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Fixity) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Fixity) Source # gmapT :: (forall b. Data b => b -> b) -> Fixity -> Fixity Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fixity -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Fixity -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Fixity -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fixity -> m Fixity Source # | |
Generic Fixity Source # | |
Show Fixity Source # | |
Eq Fixity Source # | |
Ord Fixity Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Fixity Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Fixity = D1 ('MetaData "Fixity" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Fixity" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 FixityDirection))) |
Instances
class Monad m => Quote m where Source #
The Quote
class implements the minimal interface which is necessary for
desugaring quotations.
- The
Monad m
superclass is needed to stitch together the different AST fragments. newName
is used when desugaring binding structures such as lambdas to generate fresh names.
Therefore the type of an untyped quotation in GHC is `Quote m => m Exp`
For many years the type of a quotation was fixed to be `Q Exp` but by
more precisely specifying the minimal interface it enables the Exp
to
be extracted purely from the quotation without interacting with Q
.
newName :: String -> m Name Source #
Generate a fresh name, which cannot be captured.
For example, this:
f = $(do nm1 <- newName "x" let nm2 =mkName
"x" return (LamE
[VarP
nm1] (LamE [VarP nm2] (VarE
nm1))) )
will produce the splice
f = \x0 -> \x -> x0
In particular, the occurrence VarE nm1
refers to the binding VarP nm1
,
and is not captured by the binding VarP nm2
.
Although names generated by newName
cannot be captured, they can
capture other names. For example, this:
g = $(do nm1 <- newName "x" let nm2 = mkName "x" return (LamE [VarP nm2] (LamE [VarP nm1] (VarE nm2))) )
will produce the splice
g = \x -> \x0 -> x0
since the occurrence VarE nm2
is captured by the innermost binding
of x
, namely VarP nm1
.
Loc | |
|
Instances
Data Loc Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Loc -> c Loc Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Loc Source # toConstr :: Loc -> Constr Source # dataTypeOf :: Loc -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Loc) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Loc) Source # gmapT :: (forall b. Data b => b -> b) -> Loc -> Loc Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Loc -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Loc -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Loc -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Loc -> m Loc Source # | |
Generic Loc Source # | |
Show Loc Source # | |
Eq Loc Source # | |
Ord Loc Source # | |
Ppr Loc Source # | |
type Rep Loc Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Loc = D1 ('MetaData "Loc" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Loc" 'PrefixI 'True) ((S1 ('MetaSel ('Just "loc_filename") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: S1 ('MetaSel ('Just "loc_package") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :*: (S1 ('MetaSel ('Just "loc_module") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String) :*: (S1 ('MetaSel ('Just "loc_start") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos) :*: S1 ('MetaSel ('Just "loc_end") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 CharPos))))) |
ClassI Dec [InstanceDec] | A class, with a list of its visible instances |
ClassOpI Name Type ParentName | A class method |
TyConI Dec | A "plain" type constructor. "Fancier" type constructors are returned
using |
FamilyI Dec [InstanceDec] | A type or data family, with a list of its visible instances. A closed type family is returned with 0 instances. |
PrimTyConI Name Arity Unlifted | A "primitive" type constructor, which can't be expressed with a |
DataConI Name Type ParentName | A data constructor |
PatSynI Name PatSynType | A pattern synonym |
VarI Name Type (Maybe Dec) | A "value" variable (as opposed to a type variable, see The |
TyVarI Name Type | A type variable. The |
Instances
data ModuleInfo Source #
Obtained from reifyModule
in the Q
Monad.
ModuleInfo [Module] | Contains the import list of the module. |
Instances
type InstanceDec = Dec Source #
InstanceDec
describes a single instance of a class or type function.
It is just a Dec
, but guaranteed to be one of the following:
InstanceD
(with empty[
)Dec
]DataInstD
orNewtypeInstD
(with empty derived[
)Name
]TySynInstD
In UnboxedSumE
and UnboxedSumP
, the number associated with a
particular data constructor. SumAlt
s are one-indexed and should never
exceed the value of its corresponding SumArity
. For example:
In UnboxedSumE
, UnboxedSumT
, and UnboxedSumP
, the total number of
SumAlt
s. For example, (#|#)
has a SumArity
of 2.
In PrimTyConI
, arity of the type constructor
Annotation target for reifyAnnotations
Instances
Data AnnLookup Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnLookup -> c AnnLookup Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnLookup Source # toConstr :: AnnLookup -> Constr Source # dataTypeOf :: AnnLookup -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnLookup) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnLookup) Source # gmapT :: (forall b. Data b => b -> b) -> AnnLookup -> AnnLookup Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnLookup -> r Source # gmapQ :: (forall d. Data d => d -> u) -> AnnLookup -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnLookup -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnLookup -> m AnnLookup Source # | |
Generic AnnLookup Source # | |
Show AnnLookup Source # | |
Eq AnnLookup Source # | |
Ord AnnLookup Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep AnnLookup Source # | |
Defined in Language.Haskell.TH.Syntax type Rep AnnLookup = D1 ('MetaData "AnnLookup" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "AnnLookupModule" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Module)) :+: C1 ('MetaCons "AnnLookupName" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name))) |
newtype TExp (a :: TYPE (r :: RuntimeRep)) Source #
Represents an expression which has type a
. Built on top of Exp
, typed
expressions allow for type-safe splicing via:
- typed quotes, written as
[|| ... ||]
where...
is an expression; if that expression has typea
, then the quotation has typeQ
(TExp
a) - typed splices inside of typed quotes, written as
$$(...)
where...
is an arbitrary expression of typeQ
(TExp
a)
Traditional expression quotes and splices let us construct ill-typed expressions:
>>>
fmap ppr $ runQ [| True == $( [| "foo" |] ) |]
GHC.Types.True GHC.Classes.== "foo">>>
GHC.Types.True GHC.Classes.== "foo"
<interactive> error: • Couldn't match expected type ‘Bool’ with actual type ‘[Char]’ • In the second argument of ‘(==)’, namely ‘"foo"’ In the expression: True == "foo" In an equation for ‘it’: it = True == "foo"
With typed expressions, the type error occurs when constructing the Template Haskell expression:
>>>
fmap ppr $ runQ [|| True == $$( [|| "foo" ||] ) ||]
<interactive> error: • Couldn't match type ‘[Char]’ with ‘Bool’ Expected type: Q (TExp Bool) Actual type: Q (TExp [Char]) • In the Template Haskell quotation [|| "foo" ||] In the expression: [|| "foo" ||] In the Template Haskell splice $$([|| "foo" ||])
Representation-polymorphic since template-haskell-2.16.0.0.
newtype Code m (a :: TYPE (r :: RuntimeRep)) Source #
Code | |
|
An abstract type representing names in the syntax tree.
Name
s can be constructed in several ways, which come with different
name-capture guarantees (see Language.Haskell.TH.Syntax for
an explanation of name capture):
- the built-in syntax
'f
and''T
can be used to construct names, The expression'f
gives aName
which refers to the valuef
currently in scope, and''T
gives aName
which refers to the typeT
currently in scope. These names can never be captured. lookupValueName
andlookupTypeName
are similar to'f
and''T
respectively, but theName
s are looked up at the point where the current splice is being run. These names can never be captured.newName
monadically generates a new name, which can never be captured.mkName
generates a capturable name.
Names constructed using newName
and mkName
may be used in bindings
(such as let x = ...
or x -> ...
), but names constructed using
lookupValueName
, lookupTypeName
, 'f
, ''T
may not.
Instances
Data Name Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Name -> c Name Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Name Source # toConstr :: Name -> Constr Source # dataTypeOf :: Name -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Name) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Name) Source # gmapT :: (forall b. Data b => b -> b) -> Name -> Name Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Name -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Name -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Name -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Name -> m Name Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Name -> m Name Source # | |
Generic Name Source # | |
Show Name Source # | |
Eq Name Source # | |
Ord Name Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Name Source # | |
type Rep Name Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Name = D1 ('MetaData "Name" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Name" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 OccName) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 NameFlavour))) |
VarName | Variables |
DataName | Data constructors |
TcClsName | Type constructors and classes; Haskell has them in the same name space for now. |
Instances
Data NameSpace Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> NameSpace -> c NameSpace Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c NameSpace Source # toConstr :: NameSpace -> Constr Source # dataTypeOf :: NameSpace -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c NameSpace) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c NameSpace) Source # gmapT :: (forall b. Data b => b -> b) -> NameSpace -> NameSpace Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> NameSpace -> r Source # gmapQ :: (forall d. Data d => d -> u) -> NameSpace -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> NameSpace -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> NameSpace -> m NameSpace Source # | |
Generic NameSpace Source # | |
Show NameSpace Source # | |
Eq NameSpace Source # | |
Ord NameSpace Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep NameSpace Source # | |
Defined in Language.Haskell.TH.Syntax type Rep NameSpace = D1 ('MetaData "NameSpace" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "VarName" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "DataName" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "TcClsName" 'PrefixI 'False) (U1 :: Type -> Type))) |
FunD Name [Clause] | { f p1 p2 = b where decs } |
ValD Pat Body [Dec] | { p = b where decs } |
DataD Cxt Name [TyVarBndr ()] (Maybe Kind) [Con] [DerivClause] | { data Cxt x => T x = A x | B (T x) deriving (Z,W) deriving stock Eq } |
NewtypeD Cxt Name [TyVarBndr ()] (Maybe Kind) Con [DerivClause] | { newtype Cxt x => T x = A (B x) deriving (Z,W Q) deriving stock Eq } |
TySynD Name [TyVarBndr ()] Type | { type T x = (x,x) } |
ClassD Cxt Name [TyVarBndr ()] [FunDep] [Dec] | { class Eq a => Ord a where ds } |
InstanceD (Maybe Overlap) Cxt Type [Dec] | { instance {-# OVERLAPS #-} Show w => Show [w] where ds } |
SigD Name Type | { length :: [a] -> Int } |
KiSigD Name Kind | { type TypeRep :: k -> Type } |
ForeignD Foreign | { foreign import ... } { foreign export ... } |
InfixD Fixity Name | { infix 3 foo } |
DefaultD [Type] | { default (Integer, Double) } |
PragmaD | pragmas |
| |
DataFamilyD | data families (may also appear in [Dec] of |
DataInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) [Con] [DerivClause] | { data instance Cxt x => T [x] = A x | B (T x) deriving (Z,W) deriving stock Eq } |
NewtypeInstD Cxt (Maybe [TyVarBndr ()]) Type (Maybe Kind) Con [DerivClause] | { newtype instance Cxt x => T [x] = A (B x) deriving (Z,W) deriving stock Eq } |
TySynInstD TySynEqn | { type instance ... } |
OpenTypeFamilyD | open type families (may also appear in [Dec] of |
| |
ClosedTypeFamilyD TypeFamilyHead [TySynEqn] | { type family F a b = (r :: *) | r -> a where ... } |
RoleAnnotD Name [Role] | { type role T nominal representational } |
StandaloneDerivD (Maybe DerivStrategy) Cxt Type | { deriving stock instance Ord a => Ord (Foo a) } |
DefaultSigD Name Type | { default size :: Data a => a -> Int } |
PatSynD | Pattern Synonyms |
| |
PatSynSigD Name PatSynType | A pattern synonym's type signature. |
ImplicitParamBindD String Exp | { ?x = expr } Implicit parameter binding declaration. Can only be used in let and where clauses which consist entirely of implicit bindings. |
Instances
Instances
Data Clause Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Clause -> c Clause Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Clause Source # toConstr :: Clause -> Constr Source # dataTypeOf :: Clause -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Clause) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Clause) Source # gmapT :: (forall b. Data b => b -> b) -> Clause -> Clause Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Clause -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Clause -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Clause -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Clause -> m Clause Source # | |
Generic Clause Source # | |
Show Clause Source # | |
Eq Clause Source # | |
Ord Clause Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Clause Source # | |
type Rep Clause Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Clause = D1 ('MetaData "Clause" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Clause" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Pat]) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) |
Bang SourceUnpackedness SourceStrictness | C { {-# UNPACK #-} !}a |
Instances
Data Bang Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bang -> c Bang Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bang Source # toConstr :: Bang -> Constr Source # dataTypeOf :: Bang -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bang) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bang) Source # gmapT :: (forall b. Data b => b -> b) -> Bang -> Bang Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bang -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Bang -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bang -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bang -> m Bang Source # | |
Generic Bang Source # | |
Show Bang Source # | |
Eq Bang Source # | |
Ord Bang Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Bang Source # | |
type Rep Bang Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Bang = D1 ('MetaData "Bang" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Bang" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceUnpackedness) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 SourceStrictness))) |
Instances
Data Callconv Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Callconv -> c Callconv Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Callconv Source # toConstr :: Callconv -> Constr Source # dataTypeOf :: Callconv -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Callconv) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Callconv) Source # gmapT :: (forall b. Data b => b -> b) -> Callconv -> Callconv Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Callconv -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Callconv -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Callconv -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Callconv -> m Callconv Source # | |
Generic Callconv Source # | |
Show Callconv Source # | |
Eq Callconv Source # | |
Ord Callconv Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Callconv Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Callconv = D1 ('MetaData "Callconv" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "CCall" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "StdCall" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "CApi" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "Prim" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "JavaScript" 'PrefixI 'False) (U1 :: Type -> Type)))) |
Instances
Data Safety Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Safety -> c Safety Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Safety Source # toConstr :: Safety -> Constr Source # dataTypeOf :: Safety -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Safety) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Safety) Source # gmapT :: (forall b. Data b => b -> b) -> Safety -> Safety Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Safety -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Safety -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Safety -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Safety -> m Safety Source # | |
Generic Safety Source # | |
Show Safety Source # | |
Eq Safety Source # | |
Ord Safety Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Safety Source # | |
Defined in Language.Haskell.TH.Syntax |
InlineP Name Inline RuleMatch Phases | |
OpaqueP Name | |
SpecialiseP Name Type (Maybe Inline) Phases | |
SpecialiseInstP Type | |
RuleP String (Maybe [TyVarBndr ()]) [RuleBndr] Exp Exp Phases | |
AnnP AnnTarget Exp | |
LineP Int String | |
CompleteP [Name] (Maybe Name) | { {-# COMPLETE C_1, ..., C_i [ :: T ] #-} } |
Instances
Instances
Data Inline Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Inline -> c Inline Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Inline Source # toConstr :: Inline -> Constr Source # dataTypeOf :: Inline -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Inline) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Inline) Source # gmapT :: (forall b. Data b => b -> b) -> Inline -> Inline Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Inline -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Inline -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Inline -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Inline -> m Inline Source # | |
Generic Inline Source # | |
Show Inline Source # | |
Eq Inline Source # | |
Ord Inline Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Inline Source # | |
type Rep Inline Source # | |
Defined in Language.Haskell.TH.Syntax |
Instances
Data RuleMatch Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> RuleMatch -> c RuleMatch Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c RuleMatch Source # toConstr :: RuleMatch -> Constr Source # dataTypeOf :: RuleMatch -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c RuleMatch) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c RuleMatch) Source # gmapT :: (forall b. Data b => b -> b) -> RuleMatch -> RuleMatch Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> RuleMatch -> r Source # gmapQ :: (forall d. Data d => d -> u) -> RuleMatch -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> RuleMatch -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> RuleMatch -> m RuleMatch Source # | |
Generic RuleMatch Source # | |
Show RuleMatch Source # | |
Eq RuleMatch Source # | |
Ord RuleMatch Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr RuleMatch Source # | |
type Rep RuleMatch Source # | |
Instances
Data Phases Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Phases -> c Phases Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Phases Source # toConstr :: Phases -> Constr Source # dataTypeOf :: Phases -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Phases) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Phases) Source # gmapT :: (forall b. Data b => b -> b) -> Phases -> Phases Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Phases -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Phases -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Phases -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Phases -> m Phases Source # | |
Generic Phases Source # | |
Show Phases Source # | |
Eq Phases Source # | |
Ord Phases Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Phases Source # | |
type Rep Phases Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Phases = D1 ('MetaData "Phases" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "AllPhases" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "FromPhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)) :+: C1 ('MetaCons "BeforePhase" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Int)))) |
Instances
Instances
Data AnnTarget Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> AnnTarget -> c AnnTarget Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c AnnTarget Source # toConstr :: AnnTarget -> Constr Source # dataTypeOf :: AnnTarget -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c AnnTarget) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c AnnTarget) Source # gmapT :: (forall b. Data b => b -> b) -> AnnTarget -> AnnTarget Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> AnnTarget -> r Source # gmapQ :: (forall d. Data d => d -> u) -> AnnTarget -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> AnnTarget -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> AnnTarget -> m AnnTarget Source # | |
Generic AnnTarget Source # | |
Show AnnTarget Source # | |
Eq AnnTarget Source # | |
Ord AnnTarget Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep AnnTarget Source # | |
Defined in Language.Haskell.TH.Syntax type Rep AnnTarget = D1 ('MetaData "AnnTarget" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "ModuleAnnotation" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "TypeAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)) :+: C1 ('MetaCons "ValueAnnotation" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Name)))) |
Instances
Data FunDep Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> FunDep -> c FunDep Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c FunDep Source # toConstr :: FunDep -> Constr Source # dataTypeOf :: FunDep -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c FunDep) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c FunDep) Source # gmapT :: (forall b. Data b => b -> b) -> FunDep -> FunDep Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> FunDep -> r Source # gmapQ :: (forall d. Data d => d -> u) -> FunDep -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> FunDep -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> FunDep -> m FunDep Source # | |
Generic FunDep Source # | |
Show FunDep Source # | |
Eq FunDep Source # | |
Ord FunDep Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr FunDep Source # | |
type Rep FunDep Source # | |
Defined in Language.Haskell.TH.Syntax type Rep FunDep = D1 ('MetaData "FunDep" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "FunDep" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Name]))) |
One equation of a type family instance or closed type family. The arguments are the left-hand-side type and the right-hand-side result.
For instance, if you had the following type family:
type family Foo (a :: k) :: k where forall k (a :: k). Foo @k a = a
The Foo @k a = a
equation would be represented as follows:
TySynEqn
(Just
[PlainTV
k,KindedTV
a (VarT
k)]) (AppT
(AppKindT
(ConT
''Foo) (VarT
k)) (VarT
a)) (VarT
a)
Instances
data TypeFamilyHead Source #
Common elements of OpenTypeFamilyD
and ClosedTypeFamilyD
. By
analogy with "head" for type classes and type class instances as
defined in Type classes: an exploration of the design space, the
TypeFamilyHead
is defined to be the elements of the declaration
between type family
and where
.
Instances
data FixityDirection Source #
Instances
A pattern synonym's directionality.
Unidir | pattern P x {<-} p |
ImplBidir | pattern P x {=} p |
ExplBidir [Clause] | pattern P x {<-} p where P x = e |
Instances
Data PatSynDir Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PatSynDir -> c PatSynDir Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PatSynDir Source # toConstr :: PatSynDir -> Constr Source # dataTypeOf :: PatSynDir -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PatSynDir) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PatSynDir) Source # gmapT :: (forall b. Data b => b -> b) -> PatSynDir -> PatSynDir Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PatSynDir -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PatSynDir -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PatSynDir -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PatSynDir -> m PatSynDir Source # | |
Generic PatSynDir Source # | |
Show PatSynDir Source # | |
Eq PatSynDir Source # | |
Ord PatSynDir Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr PatSynDir Source # | |
type Rep PatSynDir Source # | |
Defined in Language.Haskell.TH.Syntax type Rep PatSynDir = D1 ('MetaData "PatSynDir" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Unidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "ImplBidir" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "ExplBidir" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Clause])))) |
data PatSynArgs Source #
A pattern synonym's argument type.
PrefixPatSyn [Name] | pattern P {x y z} = p |
InfixPatSyn Name Name | pattern {x P y} = p |
RecordPatSyn [Name] | pattern P { {x,y,z} } = p |
Instances
VarE Name | { x } |
ConE Name | data T1 = C1 t1 t2; p = {C1} e1 e2 |
LitE Lit | { 5 or 'c'} |
AppE Exp Exp | { f x } |
AppTypeE Exp Type | { f @Int } |
InfixE (Maybe Exp) Exp (Maybe Exp) | {x + y} or {(x+)} or {(+ x)} or {(+)} |
UInfixE Exp Exp Exp | {x + y} |
ParensE Exp | { (e) } |
LamE [Pat] Exp | { \ p1 p2 -> e } |
LamCaseE [Match] | { \case m1; m2 } |
LamCasesE [Clause] | { \cases m1; m2 } |
TupE [Maybe Exp] | { (e1,e2) } The (1,) translates to TupE [Just (LitE (IntegerL 1)),Nothing] |
UnboxedTupE [Maybe Exp] | { (# e1,e2 #) } The (# 'c', #) translates to UnboxedTupE [Just (LitE (CharL 'c')),Nothing] |
UnboxedSumE Exp SumAlt SumArity | { (#|e|#) } |
CondE Exp Exp Exp | { if e1 then e2 else e3 } |
MultiIfE [(Guard, Exp)] | { if | g1 -> e1 | g2 -> e2 } |
LetE [Dec] Exp | { let { x=e1; y=e2 } in e3 } |
CaseE Exp [Match] | { case e of m1; m2 } |
DoE (Maybe ModName) [Stmt] |
|
MDoE (Maybe ModName) [Stmt] |
|
CompE [Stmt] | { [ (x,y) | x <- xs, y <- ys ] } The result expression of the comprehension is
the last of the E.g. translation: [ f x | x <- xs ] CompE [BindS (VarP x) (VarE xs), NoBindS (AppE (VarE f) (VarE x))] |
ArithSeqE Range | { [ 1 ,2 .. 10 ] } |
ListE [Exp] | { [1,2,3] } |
SigE Exp Type | { e :: t } |
RecConE Name [FieldExp] | { T { x = y, z = w } } |
RecUpdE Exp [FieldExp] | { (f x) { z = w } } |
StaticE Exp | { static e } |
UnboundVarE Name | { _x } This is used for holes or unresolved identifiers in AST quotes. Note that it could either have a variable name or constructor name. |
LabelE String |
|
ImplicitParamVarE String |
|
GetFieldE Exp String |
|
ProjectionE (NonEmpty String) |
|
Instances
Instances
Data Match Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Match -> c Match Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Match Source # toConstr :: Match -> Constr Source # dataTypeOf :: Match -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Match) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Match) Source # gmapT :: (forall b. Data b => b -> b) -> Match -> Match Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Match -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Match -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Match -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Match -> m Match Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Match -> m Match Source # | |
Generic Match Source # | |
Show Match Source # | |
Eq Match Source # | |
Ord Match Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Match Source # | |
type Rep Match Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Match = D1 ('MetaData "Match" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Match" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Pat) :*: (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Body) :*: S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Dec])))) |
Instances
Data Body Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Body -> c Body Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Body Source # toConstr :: Body -> Constr Source # dataTypeOf :: Body -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Body) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Body) Source # gmapT :: (forall b. Data b => b -> b) -> Body -> Body Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Body -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Body -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Body -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Body -> m Body Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Body -> m Body Source # | |
Generic Body Source # | |
Show Body Source # | |
Eq Body Source # | |
Ord Body Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Body Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Body = D1 ('MetaData "Body" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "GuardedB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [(Guard, Exp)])) :+: C1 ('MetaCons "NormalB" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp))) |
Instances
Data Guard Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Guard -> c Guard Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Guard Source # toConstr :: Guard -> Constr Source # dataTypeOf :: Guard -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Guard) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Guard) Source # gmapT :: (forall b. Data b => b -> b) -> Guard -> Guard Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Guard -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Guard -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Guard -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Guard -> m Guard Source # | |
Generic Guard Source # | |
Show Guard Source # | |
Eq Guard Source # | |
Ord Guard Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Guard Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Guard = D1 ('MetaData "Guard" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NormalG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Exp)) :+: C1 ('MetaCons "PatG" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 [Stmt]))) |
BindS Pat Exp | p <- e |
LetS [Dec] | { let { x=e1; y=e2 } } |
NoBindS Exp | e |
ParS [[Stmt]] |
|
RecS [Stmt] | rec { s1; s2 } |
Instances
Instances
CharL Char | |
StringL String | |
IntegerL Integer | Used for overloaded and non-overloaded literals. We don't have a good way to represent non-overloaded literals at the moment. Maybe that doesn't matter? |
RationalL Rational | |
IntPrimL Integer | |
WordPrimL Integer | |
FloatPrimL Rational | |
DoublePrimL Rational | |
StringPrimL [Word8] | A primitive C-style string, type |
BytesPrimL Bytes | Some raw bytes, type |
CharPrimL Char |
Instances
Pattern in Haskell given in {}
LitP Lit | { 5 or 'c' } |
VarP Name | { x } |
TupP [Pat] | { (p1,p2) } |
UnboxedTupP [Pat] | { (# p1,p2 #) } |
UnboxedSumP Pat SumAlt SumArity | { (#|p|#) } |
ConP Name [Type] [Pat] | data T1 = C1 t1 t2; {C1 @ty1 p1 p2} = e |
InfixP Pat Name Pat | foo ({x :+ y}) = e |
UInfixP Pat Name Pat | foo ({x :+ y}) = e |
ParensP Pat | {(p)} |
TildeP Pat | { ~p } |
BangP Pat | { !p } |
AsP Name Pat | { x @ p } |
WildP | { _ } |
RecP Name [FieldPat] | f (Pt { pointx = x }) = g x |
ListP [Pat] | { [1,2,3] } |
SigP Pat Type | { p :: t } |
ViewP Exp Pat | { e -> p } |
Instances
Instances
Instances
Data TyLit Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> TyLit -> c TyLit Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c TyLit Source # toConstr :: TyLit -> Constr Source # dataTypeOf :: TyLit -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c TyLit) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TyLit) Source # gmapT :: (forall b. Data b => b -> b) -> TyLit -> TyLit Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> TyLit -> r Source # gmapQ :: (forall d. Data d => d -> u) -> TyLit -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> TyLit -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> TyLit -> m TyLit Source # | |
Generic TyLit Source # | |
Show TyLit Source # | |
Eq TyLit Source # | |
Ord TyLit Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr TyLit Source # | |
type Rep TyLit Source # | |
Defined in Language.Haskell.TH.Syntax type Rep TyLit = D1 ('MetaData "TyLit" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "NumTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Integer)) :+: (C1 ('MetaCons "StrTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 String)) :+: C1 ('MetaCons "CharTyLit" 'PrefixI 'False) (S1 ('MetaSel ('Nothing :: Maybe Symbol) 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Char)))) |
To avoid duplication between kinds and types, they
are defined to be the same. Naturally, you would never
have a type be StarT
and you would never have a kind
be SigT
, but many of the other constructors are shared.
Note that the kind Bool
is denoted with ConT
, not
PromotedT
. Similarly, tuple kinds are made with TupleT
,
not PromotedTupleT
.
Since the advent of ConstraintKinds
, constraints are really just types.
Equality constraints use the EqualityT
constructor. Constraints may also
be tuples of other constraints.
Role annotations
NominalR | nominal |
RepresentationalR | representational |
PhantomR | phantom |
InferR | _ |
Instances
Data Role Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Role -> c Role Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Role Source # toConstr :: Role -> Constr Source # dataTypeOf :: Role -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Role) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Role) Source # gmapT :: (forall b. Data b => b -> b) -> Role -> Role Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Role -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Role -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Role -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Role -> m Role Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Role -> m Role Source # | |
Generic Role Source # | |
Show Role Source # | |
Eq Role Source # | |
Ord Role Source # | |
Defined in Language.Haskell.TH.Syntax | |
Ppr Role Source # | |
type Rep Role Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Role = D1 ('MetaData "Role" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "NominalR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RepresentationalR" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "PhantomR" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "InferR" 'PrefixI 'False) (U1 :: Type -> Type))) |
data Specificity Source #
Instances
data FamilyResultSig Source #
Type family result signature
Instances
data InjectivityAnn Source #
Injectivity annotation
Instances
type PatSynType = Type Source #
A pattern synonym's type. Note that a pattern synonym's fully specified type has a peculiar shape coming with two forall quantifiers and two constraint contexts. For example, consider the pattern synonym
pattern P x1 x2 ... xn = <some-pattern>
P's complete type is of the following form
pattern P :: forall universals. required constraints => forall existentials. provided constraints => t1 -> t2 -> ... -> tn -> t
consisting of four parts:
- the (possibly empty lists of) universally quantified type variables and required constraints on them.
- the (possibly empty lists of) existentially quantified type variables and the provided constraints on them.
- the types
t1
,t2
, ..,tn
ofx1
,x2
, ..,xn
, respectively - the type
t
of<some-pattern>
, mentioning only universals.
Pattern synonym types interact with TH when (a) reifying a pattern synonym, (b) pretty printing, or (c) specifying a pattern synonym's type signature explicitly:
- Reification always returns a pattern synonym's fully specified type in abstract syntax.
- Pretty printing via
pprPatSynType
abbreviates a pattern synonym's type unambiguously in concrete syntax: The rule of thumb is to print initial empty universals and the required context as() =>
, if existentials and a provided context follow. If only universals and their required context, but no existentials are specified, only the universals and their required context are printed. If both or none are specified, so both (or none) are printed. - When specifying a pattern synonym's type explicitly with
PatSynSigD
either one of the universals, the existentials, or their contexts may be left empty.
See the GHC user's guide for more information on pattern synonyms and their types: https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/glasgow_exts.html#pattern-synonyms.
A location at which to attach Haddock documentation.
Note that adding documentation to a Name
defined oustide of the current
module will cause an error.
ModuleDoc | At the current module's header. |
DeclDoc Name | At a declaration, not necessarily top level. |
ArgDoc Name Int | At a specific argument of a function, indexed by its position. |
InstDoc Type | At a class or family instance. |
Instances
data DerivClause Source #
A single deriving
clause at the end of a datatype.
DerivClause (Maybe DerivStrategy) Cxt | { deriving stock (Eq, Ord) } |
Instances
data DerivStrategy Source #
What the user explicitly requests when deriving an instance.
StockStrategy | A "standard" derived instance |
AnyclassStrategy | -XDeriveAnyClass |
NewtypeStrategy | -XGeneralizedNewtypeDeriving |
ViaStrategy Type | -XDerivingVia |
Instances
Varieties of allowed instance overlap.
Overlappable | May be overlapped by more specific instances |
Overlapping | May overlap a more general instance |
Overlaps | Both |
Incoherent | Both |
Instances
Data Overlap Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Overlap -> c Overlap Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Overlap Source # toConstr :: Overlap -> Constr Source # dataTypeOf :: Overlap -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Overlap) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Overlap) Source # gmapT :: (forall b. Data b => b -> b) -> Overlap -> Overlap Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Overlap -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Overlap -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Overlap -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Overlap -> m Overlap Source # | |
Generic Overlap Source # | |
Show Overlap Source # | |
Eq Overlap Source # | |
Ord Overlap Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Overlap Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Overlap = D1 ('MetaData "Overlap" "Language.Haskell.TH.Syntax" "template-haskell" 'False) ((C1 ('MetaCons "Overlappable" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Overlapping" 'PrefixI 'False) (U1 :: Type -> Type)) :+: (C1 ('MetaCons "Overlaps" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "Incoherent" 'PrefixI 'False) (U1 :: Type -> Type))) |
data NameFlavour Source #
NameS | An unqualified name; dynamically bound |
NameQ ModName | A qualified name; dynamically bound |
NameU !Uniq | A unique local name |
NameL !Uniq | Local name bound outside of the TH AST |
NameG NameSpace PkgName ModName | Global name bound outside of the TH AST: An original name (occurrences only, not binders) Need the namespace too to be sure which thing we are naming |
Instances
class (MonadIO m, MonadFail m) => Quasi m where Source #
qNewName, qReport, qRecover, qLookupName, qReify, qReifyFixity, qReifyType, qReifyInstances, qReifyRoles, qReifyAnnotations, qReifyModule, qReifyConStrictness, qLocation, qGetPackageRoot, qAddDependentFile, qAddTempFile, qAddTopDecls, qAddForeignFilePath, qAddModFinalizer, qAddCorePlugin, qGetQ, qPutQ, qIsExtEnabled, qExtsEnabled, qPutDoc, qGetDoc
:: Bool | |
-> String | |
-> m () | Report an error (True) or warning (False)
...but carry on; use |
:: m a | the error handler |
-> m a | action which may fail |
-> m a | Recover from the monadic |
qLookupName :: Bool -> String -> m (Maybe Name) Source #
qReify :: Name -> m Info Source #
qReifyFixity :: Name -> m (Maybe Fixity) Source #
qReifyType :: Name -> m Type Source #
qReifyInstances :: Name -> [Type] -> m [Dec] Source #
qReifyRoles :: Name -> m [Role] Source #
qReifyAnnotations :: Data a => AnnLookup -> m [a] Source #
qReifyModule :: Module -> m ModuleInfo Source #
qReifyConStrictness :: Name -> m [DecidedStrictness] Source #
qRunIO :: IO a -> m a Source #
qGetPackageRoot :: m FilePath Source #
qAddDependentFile :: FilePath -> m () Source #
qAddTempFile :: String -> m FilePath Source #
qAddTopDecls :: [Dec] -> m () Source #
qAddForeignFilePath :: ForeignSrcLang -> String -> m () Source #
qAddModFinalizer :: Q () -> m () Source #
qAddCorePlugin :: String -> m () Source #
qGetQ :: Typeable a => m (Maybe a) Source #
qPutQ :: Typeable a => a -> m () Source #
qIsExtEnabled :: Extension -> m Bool Source #
qExtsEnabled :: m [Extension] Source #
Instances
class Lift (t :: TYPE r) where Source #
A Lift
instance can have any of its values turned into a Template
Haskell expression. This is needed when a value used within a Template
Haskell quotation is bound outside the Oxford brackets ([| ... |]
or
[|| ... ||]
) but not at the top level. As an example:
add1 :: Int -> Q (TExp Int) add1 x = [|| x + 1 ||]
Template Haskell has no way of knowing what value x
will take on at
splice-time, so it requires the type of x
to be an instance of Lift
.
A Lift
instance must satisfy $(lift x) ≡ x
and $$(liftTyped x) ≡ x
for all x
, where $(...)
and $$(...)
are Template Haskell splices.
It is additionally expected that
.lift
x ≡ unTypeQ
(liftTyped
x)
Lift
instances can be derived automatically by use of the -XDeriveLift
GHC language extension:
{-# LANGUAGE DeriveLift #-} module Foo where import Language.Haskell.TH.Syntax data Bar a = Bar1 a (Bar a) | Bar2 String deriving Lift
Representation-polymorphic since template-haskell-2.16.0.0.
lift :: Quote m => t -> m Exp Source #
Turn a value into a Template Haskell expression, suitable for use in a splice.
liftTyped :: Quote m => t -> Code m t Source #
Turn a value into a Template Haskell typed expression, suitable for use in a typed splice.
Since: template-haskell-2.16.0.0
Instances
Lift Addr# Source # | Produces an Since: template-haskell-2.16.0.0 |
Lift Double# Source # | Since: template-haskell-2.16.0.0 |
Lift Float# Source # | Since: template-haskell-2.16.0.0 |
Lift Int# Source # | Since: template-haskell-2.16.0.0 |
Lift ByteArray Source # | Since: template-haskell-2.19.0.0 |
Lift Void Source # | Since: template-haskell-2.15.0.0 |
Lift Int16 Source # | |
Lift Int32 Source # | |
Lift Int64 Source # | |
Lift Int8 Source # | |
Lift Word16 Source # | |
Lift Word32 Source # | |
Lift Word64 Source # | |
Lift Word8 Source # | |
Lift Integer Source # | |
Lift Natural Source # | |
Lift () Source # | |
Lift Bool Source # | |
Lift Char Source # | |
Lift Double Source # | |
Lift Float Source # | |
Lift Int Source # | |
Lift Word Source # | |
Lift Char# Source # | Since: template-haskell-2.16.0.0 |
Lift Word# Source # | Since: template-haskell-2.16.0.0 |
Lift (# #) Source # | Since: template-haskell-2.16.0.0 |
Integral a => Lift (Ratio a :: Type) Source # | |
Lift a => Lift (NonEmpty a :: Type) Source # | Since: template-haskell-2.15.0.0 |
Lift a => Lift (Maybe a :: Type) Source # | |
Lift a => Lift ([a] :: Type) Source # | |
(Lift a, Lift b) => Lift (Either a b :: Type) Source # | |
(Lift a, Lift b) => Lift ((a, b) :: Type) Source # | |
(Lift a, Lift b, Lift c) => Lift ((a, b, c) :: Type) Source # | |
(Lift a, Lift b, Lift c, Lift d) => Lift ((a, b, c, d) :: Type) Source # | |
(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift ((a, b, c, d, e) :: Type) Source # | |
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift ((a, b, c, d, e, f) :: Type) Source # | |
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift ((a, b, c, d, e, f, g) :: Type) Source # | |
Lift a => Lift ((# a #) :: TYPE ('TupleRep '[LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b) => Lift ((# a | b #) :: TYPE ('SumRep '[LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b) => Lift ((# a, b #) :: TYPE ('TupleRep '[LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c) => Lift ((# a | b | c #) :: TYPE ('SumRep '[LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c) => Lift ((# a, b, c #) :: TYPE ('TupleRep '[LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d) => Lift ((# a | b | c | d #) :: TYPE ('SumRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d) => Lift ((# a, b, c, d #) :: TYPE ('TupleRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift ((# a | b | c | d | e #) :: TYPE ('SumRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d, Lift e) => Lift ((# a, b, c, d, e #) :: TYPE ('TupleRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift ((# a | b | c | d | e | f #) :: TYPE ('SumRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f) => Lift ((# a, b, c, d, e, f #) :: TYPE ('TupleRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift ((# a | b | c | d | e | f | g #) :: TYPE ('SumRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
(Lift a, Lift b, Lift c, Lift d, Lift e, Lift f, Lift g) => Lift ((# a, b, c, d, e, f, g #) :: TYPE ('TupleRep '[LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep, LiftedRep])) Source # | Since: template-haskell-2.16.0.0 |
Raw bytes embedded into the binary.
Avoid using Bytes constructor directly as it is likely to change in the
future. Use helpers such as mkBytes
in Language.Haskell.TH.Lib instead.
Bytes | |
|
Instances
Data Bytes Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Bytes -> c Bytes Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Bytes Source # toConstr :: Bytes -> Constr Source # dataTypeOf :: Bytes -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Bytes) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Bytes) Source # gmapT :: (forall b. Data b => b -> b) -> Bytes -> Bytes Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Bytes -> r Source # gmapQ :: (forall d. Data d => d -> u) -> Bytes -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> Bytes -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Bytes -> m Bytes Source # | |
Generic Bytes Source # | |
Show Bytes Source # | |
Eq Bytes Source # | |
Ord Bytes Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep Bytes Source # | |
Defined in Language.Haskell.TH.Syntax type Rep Bytes = D1 ('MetaData "Bytes" "Language.Haskell.TH.Syntax" "template-haskell" 'False) (C1 ('MetaCons "Bytes" 'PrefixI 'True) (S1 ('MetaSel ('Just "bytesPtr") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 (ForeignPtr Word8)) :*: (S1 ('MetaSel ('Just "bytesOffset") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word) :*: S1 ('MetaSel ('Just "bytesSize") 'NoSourceUnpackedness 'NoSourceStrictness 'DecidedLazy) (Rec0 Word)))) |
Instances
Data ModName Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> ModName -> c ModName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ModName Source # toConstr :: ModName -> Constr Source # dataTypeOf :: ModName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ModName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ModName) Source # gmapT :: (forall b. Data b => b -> b) -> ModName -> ModName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> ModName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> ModName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> ModName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> ModName -> m ModName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> ModName -> m ModName Source # | |
Generic ModName Source # | |
Show ModName Source # | |
Eq ModName Source # | |
Ord ModName Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep ModName Source # | |
Defined in Language.Haskell.TH.Syntax |
Instances
Data PkgName Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> PkgName -> c PkgName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c PkgName Source # toConstr :: PkgName -> Constr Source # dataTypeOf :: PkgName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c PkgName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c PkgName) Source # gmapT :: (forall b. Data b => b -> b) -> PkgName -> PkgName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> PkgName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> PkgName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> PkgName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> PkgName -> m PkgName Source # | |
Generic PkgName Source # | |
Show PkgName Source # | |
Eq PkgName Source # | |
Ord PkgName Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep PkgName Source # | |
Defined in Language.Haskell.TH.Syntax |
Instances
Data OccName Source # | |
Defined in Language.Haskell.TH.Syntax gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> OccName -> c OccName Source # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c OccName Source # toConstr :: OccName -> Constr Source # dataTypeOf :: OccName -> DataType Source # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c OccName) Source # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c OccName) Source # gmapT :: (forall b. Data b => b -> b) -> OccName -> OccName Source # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQr :: forall r r'. (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> OccName -> r Source # gmapQ :: (forall d. Data d => d -> u) -> OccName -> [u] Source # gmapQi :: Int -> (forall d. Data d => d -> u) -> OccName -> u Source # gmapM :: Monad m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> OccName -> m OccName Source # | |
Generic OccName Source # | |
Show OccName Source # | |
Eq OccName Source # | |
Ord OccName Source # | |
Defined in Language.Haskell.TH.Syntax | |
type Rep OccName Source # | |
Defined in Language.Haskell.TH.Syntax |
type StrictType = BangType Source #
As of template-haskell-2.11.0.0
, StrictType
has been replaced by
BangType
.
type VarStrictType = VarBangType Source #
As of template-haskell-2.11.0.0
, VarStrictType
has been replaced by
VarBangType
.
Recover from errors raised by reportError
or fail
.
reportError :: String -> Q () Source #
Report an error to the user, but allow the current splice's computation to carry on. To abort the computation, use fail
.
The runIO
function lets you run an I/O computation in the Q
monad.
Take care: you are guaranteed the ordering of calls to runIO
within
a single Q
computation, but not about the order in which splices are run.
Note: for various murky reasons, stdout and stderr handles are not necessarily flushed when the compiler finishes running, so you should flush them yourself.
reportWarning :: String -> Q () Source #
Report a warning to the user, and carry on.
report :: Bool -> String -> Q () Source #
Deprecated: Use reportError or reportWarning instead
Report an error (True) or warning (False),
but carry on; use fail
to stop.
reify :: Name -> Q Info Source #
reify
looks up information about the Name
. It will fail with
a compile error if the Name
is not visible. A Name
is visible if it is
imported or defined in a prior top-level declaration group. See the
documentation for newDeclarationGroup
for more details.
It is sometimes useful to construct the argument name using lookupTypeName
or lookupValueName
to ensure that we are reifying from the right namespace. For instance, in this context:
data D = D
which D
does reify (mkName "D")
return information about? (Answer: D
-the-type, but don't rely on it.)
To ensure we get information about D
-the-value, use lookupValueName
:
do Just nm <- lookupValueName "D" reify nm
and to get information about D
-the-type, use lookupTypeName
.
reifyModule :: Module -> Q ModuleInfo Source #
reifyModule mod
looks up information about module mod
. To
look up the current module, call this function with the return
value of thisModule
.
newDeclarationGroup :: Q [Dec] Source #
Template Haskell is capable of reifying information about types and terms defined in previous declaration groups. Top-level declaration splices break up declaration groups.
For an example, consider this code block. We define a datatype X
and
then try to call reify
on the datatype.
module Check where data X = X deriving Eq $(do info <- reify ''X runIO $ print info )
This code fails to compile, noting that X
is not available for reification at the site of reify
. We can fix this by creating a new declaration group using an empty top-level splice:
data X = X deriving Eq $(pure []) $(do info <- reify ''X runIO $ print info )
We provide newDeclarationGroup
as a means of documenting this behavior
and providing a name for the pattern.
Since top level splices infer the presence of the $( ... )
brackets, we can also write:
data X = X deriving Eq newDeclarationGroup $(do info <- reify ''X runIO $ print info )
extsEnabled :: Q [Extension] Source #
List all enabled language extensions.
isExtEnabled :: Extension -> Q Bool Source #
Determine whether the given language extension is enabled in the Q
monad.
lookupTypeName :: String -> Q (Maybe Name) Source #
Look up the given name in the (type namespace of the) current splice's scope. See Language.Haskell.TH.Syntax for more details.
lookupValueName :: String -> Q (Maybe Name) Source #
Look up the given name in the (value namespace of the) current splice's scope. See Language.Haskell.TH.Syntax for more details.
reifyFixity :: Name -> Q (Maybe Fixity) Source #
reifyFixity nm
attempts to find a fixity declaration for nm
. For
example, if the function foo
has the fixity declaration infixr 7 foo
, then
reifyFixity 'foo
would return
. If the function
Just
(Fixity
7 InfixR
)bar
does not have a fixity declaration, then reifyFixity 'bar
returns
Nothing
, so you may assume bar
has defaultFixity
.
reifyType :: Name -> Q Type Source #
reifyType nm
attempts to find the type or kind of nm
. For example,
reifyType 'not
returns Bool -> Bool
, and
reifyType ''Bool
returns Type
.
This works even if there's no explicit signature and the type or kind is inferred.
reifyInstances :: Name -> [Type] -> Q [InstanceDec] Source #
reifyInstances nm tys
returns a list of visible instances of nm tys
. That is,
if nm
is the name of a type class, then all instances of this class at the types tys
are returned. Alternatively, if nm
is the name of a data family or type family,
all instances of this family at the types tys
are returned.
Note that this is a "shallow" test; the declarations returned merely have
instance heads which unify with nm tys
, they need not actually be satisfiable.
reifyInstances ''Eq [
contains theTupleT
2 `AppT
`ConT
''A `AppT
`ConT
''B ]instance (Eq a, Eq b) => Eq (a, b)
regardless of whetherA
andB
themselves implementEq
reifyInstances ''Show [
produces every available instance ofVarT
(mkName
"a") ]Eq
There is one edge case: reifyInstances ''Typeable tys
currently always
produces an empty list (no matter what tys
are given).
An instance is visible if it is imported or defined in a prior top-level
declaration group. See the documentation for newDeclarationGroup
for more details.
isInstance :: Name -> [Type] -> Q Bool Source #
Is the list of instances returned by reifyInstances
nonempty?
If you're confused by an instance not being visible despite being
defined in the same module and above the splice in question, see the
docs for newDeclarationGroup
for a possible explanation.
reifyRoles :: Name -> Q [Role] Source #
reifyRoles nm
returns the list of roles associated with the parameters
(both visible and invisible) of
the tycon nm
. Fails if nm
cannot be found or is not a tycon.
The returned list should never contain InferR
.
An invisible parameter to a tycon is often a kind parameter. For example, if we have
type Proxy :: forall k. k -> Type data Proxy a = MkProxy
and reifyRoles Proxy
, we will get [
. The NominalR
, PhantomR
]NominalR
is
the role of the invisible k
parameter. Kind parameters are always nominal.
reifyAnnotations :: Data a => AnnLookup -> Q [a] Source #
reifyAnnotations target
returns the list of annotations
associated with target
. Only the annotations that are
appropriately typed is returned. So if you have Int
and String
annotations for the same target, you have to call this function twice.
reifyConStrictness :: Name -> Q [DecidedStrictness] Source #
reifyConStrictness nm
looks up the strictness information for the fields
of the constructor with the name nm
. Note that the strictness information
that reifyConStrictness
returns may not correspond to what is written in
the source code. For example, in the following data declaration:
data Pair a = Pair a a
reifyConStrictness
would return [
under most
circumstances, but it would return DecidedLazy
, DecidedLazy][
if the
DecidedStrict
, DecidedStrict]-XStrictData
language extension was enabled.
unTypeCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => Code m a -> m Exp Source #
Extract the untyped representation from the typed representation
unsafeCodeCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m Exp -> Code m a Source #
Unsafely convert an untyped code representation into a typed code representation.
hoistCode :: forall m n (r :: RuntimeRep) (a :: TYPE r). Monad m => (forall x. m x -> n x) -> Code m a -> Code n a Source #
Modify the ambient monad used during code generation. For example, you
can use hoistCode
to handle a state effect:
handleState :: Code (StateT Int Q) a -> Code Q a
handleState = hoistCode (flip runState 0)
bindCode :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> (a -> Code m b) -> Code m b Source #
Variant of (>>=) which allows effectful computations to be injected into code generation.
bindCode_ :: forall m a (r :: RuntimeRep) (b :: TYPE r). Monad m => m a -> Code m b -> Code m b Source #
Variant of (>>) which allows effectful computations to be injected into code generation.
joinCode :: forall m (r :: RuntimeRep) (a :: TYPE r). Monad m => m (Code m a) -> Code m a Source #
A useful combinator for embedding monadic actions into Code
myCode :: ... => Code m a
myCode = joinCode $ do
x <- someSideEffect
return (makeCodeWith x)
liftCode :: forall (r :: RuntimeRep) (a :: TYPE r) m. m (TExp a) -> Code m a Source #
Lift a monadic action producing code into the typed Code
representation
mkName :: String -> Name Source #
Generate a capturable name. Occurrences of such names will be resolved according to the Haskell scoping rules at the occurrence site.
For example:
f = [| pi + $(varE (mkName "pi")) |] ... g = let pi = 3 in $f
In this case, g
is desugared to
g = Prelude.pi + 3
Note that mkName
may be used with qualified names:
mkName "Prelude.pi"
See also dyn
for a useful combinator. The above example could
be rewritten using dyn
as
f = [| pi + $(dyn "pi") |]
nameBase :: Name -> String Source #
The name without its module prefix.
Examples
>>>
nameBase ''Data.Either.Either
"Either">>>
nameBase (mkName "foo")
"foo">>>
nameBase (mkName "Module.foo")
"foo"
nameModule :: Name -> Maybe String Source #
Module prefix of a name, if it exists.
Examples
>>>
nameModule ''Data.Either.Either
Just "Data.Either">>>
nameModule (mkName "foo")
Nothing>>>
nameModule (mkName "Module.foo")
Just "Module"
namePackage :: Name -> Maybe String Source #
A name's package, if it exists.
Examples
>>>
namePackage ''Data.Either.Either
Just "base">>>
namePackage (mkName "foo")
Nothing>>>
namePackage (mkName "Module.foo")
Nothing
nameSpace :: Name -> Maybe NameSpace Source #
Returns whether a name represents an occurrence of a top-level variable
(VarName
), data constructor (DataName
), type constructor, or type class
(TcClsName
). If we can't be sure, it returns Nothing
.
Examples
>>>
nameSpace 'Prelude.id
Just VarName>>>
nameSpace (mkName "id")
Nothing -- only works for top-level variable names>>>
nameSpace 'Data.Maybe.Just
Just DataName>>>
nameSpace ''Data.Maybe.Maybe
Just TcClsName>>>
nameSpace ''Data.Ord.Ord
Just TcClsName
tupleTypeName :: Int -> Name Source #
Tuple type constructor
tupleDataName :: Int -> Name Source #
Tuple data constructor
unboxedTupleTypeName :: Int -> Name Source #
Unboxed tuple type constructor
unboxedTupleDataName :: Int -> Name Source #
Unboxed tuple data constructor
unboxedSumTypeName :: SumArity -> Name Source #
Unboxed sum type constructor
defaultFixity :: Fixity Source #
Default fixity: infixl 9
maxPrecedence :: Int Source #
Highest allowed operator precedence for Fixity
constructor (answer: 9)
putDoc :: DocLoc -> String -> Q () Source #
Add Haddock documentation to the specified location. This will overwrite
any documentation at the location if it already exists. This will reify the
specified name, so it must be in scope when you call it. If you want to add
documentation to something that you are currently splicing, you can use
addModFinalizer
e.g.
do let nm = mkName "x" addModFinalizer $ putDoc (DeclDoc nm) "Hello" [d| $(varP nm) = 42 |]
The helper functions withDecDoc
and withDecsDoc
will do this for you, as
will the funD_doc
and other _doc
combinators.
You most likely want to have the -haddock
flag turned on when using this.
Adding documentation to anything outside of the current module will cause an
error.
getDoc :: DocLoc -> Q (Maybe String) Source #
Retreives the Haddock documentation at the specified location, if one
exists.
It can be used to read documentation on things defined outside of the current
module, provided that those modules were compiled with the -haddock
flag.
dataToQa :: forall m a k q. (Quote m, Data a) => (Name -> k) -> (Lit -> m q) -> (k -> [m q] -> m q) -> (forall b. Data b => b -> Maybe (m q)) -> a -> m q Source #
dataToQa
is an internal utility function for constructing generic
conversion functions from types with Data
instances to various
quasi-quoting representations. See the source of dataToExpQ
and
dataToPatQ
for two example usages: mkCon
, mkLit
and appQ
are overloadable to account for different syntax for
expressions and patterns; antiQ
allows you to override type-specific
cases, a common usage is just const Nothing
, which results in
no overloading.
dataToExpQ :: (Quote m, Data a) => (forall b. Data b => b -> Maybe (m Exp)) -> a -> m Exp Source #
dataToExpQ
converts a value to a Exp
representation of the
same value, in the SYB style. It is generalized to take a function
override type-specific cases; see liftData
for a more commonly
used variant.
dataToPatQ :: (Quote m, Data a) => (forall b. Data b => b -> Maybe (m Pat)) -> a -> m Pat Source #
dataToPatQ
converts a value to a Pat
representation of the same
value, in the SYB style. It takes a function to handle type-specific cases,
alternatively, pass const Nothing
to get default behavior.
unTypeQ :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m (TExp a) -> m Exp Source #
Discard the type annotation and produce a plain Template Haskell expression
Representation-polymorphic since template-haskell-2.16.0.0.
unsafeTExpCoerce :: forall (r :: RuntimeRep) (a :: TYPE r) m. Quote m => m Exp -> m (TExp a) Source #
Annotate the Template Haskell expression with a type
This is unsafe because GHC cannot check for you that the expression really does have the type you claim it has.
Representation-polymorphic since template-haskell-2.16.0.0.
getPackageRoot :: Q FilePath Source #
Get the package root for the current package which is being compiled. This can be set explicitly with the -package-root flag but is normally just the current working directory.
The motivation for this flag is to provide a principled means to remove the assumption from splices that they will be executed in the directory where the cabal file resides. Projects such as haskell-language-server can't and don't change directory when compiling files but instead set the -package-root flag appropiately.
makeRelativeToProject :: FilePath -> Q FilePath Source #
The input is a filepath, which if relative is offset by the package root.
addDependentFile :: FilePath -> Q () Source #
Record external files that runIO is using (dependent upon). The compiler can then recognize that it should re-compile the Haskell file when an external file changes.
Expects an absolute file path.
Notes:
- ghc -M does not know about these dependencies - it does not execute TH.
- The dependency is based on file content, not a modification time
addTempFile :: String -> Q FilePath Source #
Obtain a temporary file path with the given suffix. The compiler will delete this file after compilation.
addTopDecls :: [Dec] -> Q () Source #
Add additional top-level declarations. The added declarations will be type checked along with the current declaration group.
addForeignFile :: ForeignSrcLang -> String -> Q () Source #
Deprecated: Use addForeignSource
instead
addForeignSource :: ForeignSrcLang -> String -> Q () Source #
Emit a foreign file which will be compiled and linked to the object for the current module. Currently only languages that can be compiled with the C compiler are supported, and the flags passed as part of -optc will be also applied to the C compiler invocation that will compile them.
Note that for non-C languages (for example C++) extern C
directives
must be used to get symbols that we can access from Haskell.
To get better errors, it is recommended to use #line pragmas when emitting C files, e.g.
{-# LANGUAGE CPP #-} ... addForeignSource LangC $ unlines [ "#line " ++ show (803 + 1) ++ " " ++ show "libraries/template-haskell/Language/Haskell/TH/Syntax.hs" , ... ]
addForeignFilePath :: ForeignSrcLang -> FilePath -> Q () Source #
Same as addForeignSource
, but expects to receive a path pointing to the
foreign file instead of a String
of its contents. Consider using this in
conjunction with addTempFile
.
This is a good alternative to addForeignSource
when you are trying to
directly link in an object file.
addModFinalizer :: Q () -> Q () Source #
Add a finalizer that will run in the Q monad after the current module has been type checked. This only makes sense when run within a top-level splice.
The finalizer is given the local type environment at the splice point. Thus
reify
is able to find the local definitions when executed inside the
finalizer.
addCorePlugin :: String -> Q () Source #
Adds a core plugin to the compilation pipeline.
addCorePlugin m
has almost the same effect as passing -fplugin=m
to ghc
in the command line. The major difference is that the plugin module m
must not belong to the current package. When TH executes, it is too late
to tell the compiler that we needed to compile first a plugin module in the
current package.
getQ :: Typeable a => Q (Maybe a) Source #
Get state from the Q
monad. Note that the state is local to the
Haskell module in which the Template Haskell expression is executed.
putQ :: Typeable a => a -> Q () Source #
Replace the state in the Q
monad. Note that the state is local to the
Haskell module in which the Template Haskell expression is executed.
nothingName :: Name Source #
nonemptyName :: Name Source #
mkNameG :: NameSpace -> String -> String -> String -> Name Source #
Used for 'x etc, but not available to the programmer
Language extensions
data ForeignSrcLang Source #
Foreign formats supported by GHC via TH
LangC | C |
LangCxx | C++ |
LangObjc | Objective C |
LangObjcxx | Objective C++ |
LangAsm | Assembly language (.s) |
RawObject | Object (.o) |
Instances
Generic ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type from :: ForeignSrcLang -> Rep ForeignSrcLang x Source # to :: Rep ForeignSrcLang x -> ForeignSrcLang Source # | |
Show ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type | |
Eq ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type (==) :: ForeignSrcLang -> ForeignSrcLang -> Bool Source # (/=) :: ForeignSrcLang -> ForeignSrcLang -> Bool Source # | |
type Rep ForeignSrcLang | |
Defined in GHC.ForeignSrcLang.Type type Rep ForeignSrcLang = D1 ('MetaData "ForeignSrcLang" "GHC.ForeignSrcLang.Type" "ghc-boot-th-9.4.0.20220501" 'False) ((C1 ('MetaCons "LangC" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "LangCxx" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "LangObjc" 'PrefixI 'False) (U1 :: Type -> Type))) :+: (C1 ('MetaCons "LangObjcxx" 'PrefixI 'False) (U1 :: Type -> Type) :+: (C1 ('MetaCons "LangAsm" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "RawObject" 'PrefixI 'False) (U1 :: Type -> Type)))) |