{-# LANGUAGE CPP #-}
{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE PatternGuards #-}
#ifdef __GLASGOW_HASKELL__
{-# LANGUAGE DeriveLift #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeFamilies #-}
#endif
#if !defined(TESTING) && defined(__GLASGOW_HASKELL__)
{-# LANGUAGE Trustworthy #-}
#endif
{-# OPTIONS_HADDOCK not-home #-}
{-# OPTIONS_GHC -fno-warn-incomplete-uni-patterns #-}
#include "containers.h"
module Data.IntMap.Internal (
IntMap(..), Key
, (!), (!?), (\\)
, null
, size
, member
, notMember
, lookup
, findWithDefault
, lookupLT
, lookupGT
, lookupLE
, lookupGE
, disjoint
, empty
, singleton
, insert
, insertWith
, insertWithKey
, insertLookupWithKey
, delete
, adjust
, adjustWithKey
, update
, updateWithKey
, updateLookupWithKey
, alter
, alterF
, union
, unionWith
, unionWithKey
, unions
, unionsWith
, difference
, differenceWith
, differenceWithKey
, intersection
, intersectionWith
, intersectionWithKey
, compose
, SimpleWhenMissing
, SimpleWhenMatched
, runWhenMatched
, runWhenMissing
, merge
, zipWithMaybeMatched
, zipWithMatched
, mapMaybeMissing
, dropMissing
, preserveMissing
, mapMissing
, filterMissing
, WhenMissing (..)
, WhenMatched (..)
, mergeA
, zipWithMaybeAMatched
, zipWithAMatched
, traverseMaybeMissing
, traverseMissing
, filterAMissing
, mergeWithKey
, mergeWithKey'
, map
, mapWithKey
, traverseWithKey
, traverseMaybeWithKey
, mapAccum
, mapAccumWithKey
, mapAccumRWithKey
, mapKeys
, mapKeysWith
, mapKeysMonotonic
, foldr
, foldl
, foldrWithKey
, foldlWithKey
, foldMapWithKey
, foldr'
, foldl'
, foldrWithKey'
, foldlWithKey'
, elems
, keys
, assocs
, keysSet
, fromSet
, toList
, fromList
, fromListWith
, fromListWithKey
, toAscList
, toDescList
, fromAscList
, fromAscListWith
, fromAscListWithKey
, fromDistinctAscList
, filter
, filterWithKey
, restrictKeys
, withoutKeys
, partition
, partitionWithKey
, takeWhileAntitone
, dropWhileAntitone
, spanAntitone
, mapMaybe
, mapMaybeWithKey
, mapEither
, mapEitherWithKey
, split
, splitLookup
, splitRoot
, isSubmapOf, isSubmapOfBy
, isProperSubmapOf, isProperSubmapOfBy
, lookupMin
, lookupMax
, findMin
, findMax
, deleteMin
, deleteMax
, deleteFindMin
, deleteFindMax
, updateMin
, updateMax
, updateMinWithKey
, updateMaxWithKey
, minView
, maxView
, minViewWithKey
, maxViewWithKey
, showTree
, showTreeWith
, Mask, Prefix, Nat
, natFromInt
, intFromNat
, link
, linkWithMask
, bin
, binCheckLeft
, binCheckRight
, zero
, nomatch
, match
, mask
, maskW
, shorter
, branchMask
, highestBitMask
, mapWhenMissing
, mapWhenMatched
, lmapWhenMissing
, contramapFirstWhenMatched
, contramapSecondWhenMatched
, mapGentlyWhenMissing
, mapGentlyWhenMatched
) where
import Data.Functor.Identity (Identity (..))
import Data.Semigroup (Semigroup(stimes))
#if !(MIN_VERSION_base(4,11,0))
import Data.Semigroup (Semigroup((<>)))
#endif
import Data.Semigroup (stimesIdempotentMonoid)
import Data.Functor.Classes
import Control.DeepSeq (NFData(rnf))
import Data.Bits
import qualified Data.Foldable as Foldable
import Data.Maybe (fromMaybe)
import Prelude hiding (lookup, map, filter, foldr, foldl, null)
import Data.IntSet.Internal (Key)
import qualified Data.IntSet.Internal as IntSet
import Utils.Containers.Internal.BitUtil
import Utils.Containers.Internal.StrictPair
#ifdef __GLASGOW_HASKELL__
import Data.Coerce
import Data.Data (Data(..), Constr, mkConstr, constrIndex, Fixity(Prefix),
DataType, mkDataType, gcast1)
import GHC.Exts (build)
import qualified GHC.Exts as GHCExts
import Text.Read
import Language.Haskell.TH.Syntax (Lift)
import Language.Haskell.TH ()
#endif
import qualified Control.Category as Category
type Nat = Word
natFromInt :: Key -> Nat
natFromInt :: Int -> Nat
natFromInt = Int -> Nat
forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE natFromInt #-}
intFromNat :: Nat -> Key
intFromNat :: Nat -> Int
intFromNat = Nat -> Int
forall a b. (Integral a, Num b) => a -> b
fromIntegral
{-# INLINE intFromNat #-}
data IntMap a = Bin {-# UNPACK #-} !Prefix
{-# UNPACK #-} !Mask
!(IntMap a)
!(IntMap a)
| Tip {-# UNPACK #-} !Key a
| Nil
type Prefix = Int
type Mask = Int
type IntSetPrefix = Int
type IntSetBitMap = Word
deriving instance Lift a => Lift (IntMap a)
bitmapOf :: Int -> IntSetBitMap
bitmapOf :: Int -> Nat
bitmapOf Int
x = Nat -> Int -> Nat
shiftLL Nat
1 (Int
x Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.suffixBitMask)
{-# INLINE bitmapOf #-}
(!) :: IntMap a -> Key -> a
! :: forall a. IntMap a -> Int -> a
(!) IntMap a
m Int
k = Int -> IntMap a -> a
forall a. Int -> IntMap a -> a
find Int
k IntMap a
m
(!?) :: IntMap a -> Key -> Maybe a
!? :: forall a. IntMap a -> Int -> Maybe a
(!?) IntMap a
m Int
k = Int -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
lookup Int
k IntMap a
m
(\\) :: IntMap a -> IntMap b -> IntMap a
IntMap a
m1 \\ :: forall a b. IntMap a -> IntMap b -> IntMap a
\\ IntMap b
m2 = IntMap a -> IntMap b -> IntMap a
forall a b. IntMap a -> IntMap b -> IntMap a
difference IntMap a
m1 IntMap b
m2
infixl 9 !?,\\
instance Monoid (IntMap a) where
mempty :: IntMap a
mempty = IntMap a
forall a. IntMap a
empty
mconcat :: [IntMap a] -> IntMap a
mconcat = [IntMap a] -> IntMap a
forall (f :: * -> *) a. Foldable f => f (IntMap a) -> IntMap a
unions
mappend :: IntMap a -> IntMap a -> IntMap a
mappend = IntMap a -> IntMap a -> IntMap a
forall a. Semigroup a => a -> a -> a
(<>)
instance Semigroup (IntMap a) where
<> :: IntMap a -> IntMap a -> IntMap a
(<>) = IntMap a -> IntMap a -> IntMap a
forall a. IntMap a -> IntMap a -> IntMap a
union
stimes :: forall b. Integral b => b -> IntMap a -> IntMap a
stimes = b -> IntMap a -> IntMap a
forall b a. (Integral b, Monoid a) => b -> a -> a
stimesIdempotentMonoid
instance Foldable.Foldable IntMap where
fold :: forall m. Monoid m => IntMap m -> m
fold = IntMap m -> m
forall m. Monoid m => IntMap m -> m
go
where go :: IntMap a -> a
go IntMap a
Nil = a
forall a. Monoid a => a
mempty
go (Tip Int
_ a
v) = a
v
go (Bin Int
_ Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = IntMap a -> a
go IntMap a
r a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> a
go IntMap a
l
| Bool
otherwise = IntMap a -> a
go IntMap a
l a -> a -> a
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> a
go IntMap a
r
{-# INLINABLE fold #-}
foldr :: forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr = (a -> b -> b) -> b -> IntMap a -> b
forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr
{-# INLINE foldr #-}
foldl :: forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl = (b -> a -> b) -> b -> IntMap a -> b
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl
{-# INLINE foldl #-}
foldMap :: forall m a. Monoid m => (a -> m) -> IntMap a -> m
foldMap a -> m
f IntMap a
t = IntMap a -> m
go IntMap a
t
where go :: IntMap a -> m
go IntMap a
Nil = m
forall a. Monoid a => a
mempty
go (Tip Int
_ a
v) = a -> m
f a
v
go (Bin Int
_ Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = IntMap a -> m
go IntMap a
r m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
l
| Bool
otherwise = IntMap a -> m
go IntMap a
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
r
{-# INLINE foldMap #-}
foldl' :: forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' = (b -> a -> b) -> b -> IntMap a -> b
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl'
{-# INLINE foldl' #-}
foldr' :: forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr' = (a -> b -> b) -> b -> IntMap a -> b
forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr'
{-# INLINE foldr' #-}
length :: forall a. IntMap a -> Int
length = IntMap a -> Int
forall a. IntMap a -> Int
size
{-# INLINE length #-}
null :: forall a. IntMap a -> Bool
null = IntMap a -> Bool
forall a. IntMap a -> Bool
null
{-# INLINE null #-}
toList :: forall a. IntMap a -> [a]
toList = IntMap a -> [a]
forall a. IntMap a -> [a]
elems
{-# INLINE toList #-}
elem :: forall a. Eq a => a -> IntMap a -> Bool
elem = a -> IntMap a -> Bool
forall a. Eq a => a -> IntMap a -> Bool
go
where go :: t -> IntMap t -> Bool
go !t
_ IntMap t
Nil = Bool
False
go t
x (Tip Int
_ t
y) = t
x t -> t -> Bool
forall a. Eq a => a -> a -> Bool
== t
y
go t
x (Bin Int
_ Int
_ IntMap t
l IntMap t
r) = t -> IntMap t -> Bool
go t
x IntMap t
l Bool -> Bool -> Bool
|| t -> IntMap t -> Bool
go t
x IntMap t
r
{-# INLINABLE elem #-}
maximum :: forall a. Ord a => IntMap a -> a
maximum = IntMap a -> a
forall a. Ord a => IntMap a -> a
start
where start :: IntMap a -> a
start IntMap a
Nil = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.maximum (for Data.IntMap): empty map"
start (Tip Int
_ a
y) = a
y
start (Bin Int
_ Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = a -> IntMap a -> a
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap a -> a
start IntMap a
r) IntMap a
l
| Bool
otherwise = a -> IntMap a -> a
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap a -> a
start IntMap a
l) IntMap a
r
go :: t -> IntMap t -> t
go !t
m IntMap t
Nil = t
m
go t
m (Tip Int
_ t
y) = t -> t -> t
forall a. Ord a => a -> a -> a
max t
m t
y
go t
m (Bin Int
_ Int
_ IntMap t
l IntMap t
r) = t -> IntMap t -> t
go (t -> IntMap t -> t
go t
m IntMap t
l) IntMap t
r
{-# INLINABLE maximum #-}
minimum :: forall a. Ord a => IntMap a -> a
minimum = IntMap a -> a
forall a. Ord a => IntMap a -> a
start
where start :: IntMap a -> a
start IntMap a
Nil = [Char] -> a
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.Foldable.minimum (for Data.IntMap): empty map"
start (Tip Int
_ a
y) = a
y
start (Bin Int
_ Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = a -> IntMap a -> a
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap a -> a
start IntMap a
r) IntMap a
l
| Bool
otherwise = a -> IntMap a -> a
forall {t}. Ord t => t -> IntMap t -> t
go (IntMap a -> a
start IntMap a
l) IntMap a
r
go :: t -> IntMap t -> t
go !t
m IntMap t
Nil = t
m
go t
m (Tip Int
_ t
y) = t -> t -> t
forall a. Ord a => a -> a -> a
min t
m t
y
go t
m (Bin Int
_ Int
_ IntMap t
l IntMap t
r) = t -> IntMap t -> t
go (t -> IntMap t -> t
go t
m IntMap t
l) IntMap t
r
{-# INLINABLE minimum #-}
sum :: forall a. Num a => IntMap a -> a
sum = (a -> a -> a) -> a -> IntMap a -> a
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(+) a
0
{-# INLINABLE sum #-}
product :: forall a. Num a => IntMap a -> a
product = (a -> a -> a) -> a -> IntMap a -> a
forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' a -> a -> a
forall a. Num a => a -> a -> a
(*) a
1
{-# INLINABLE product #-}
instance Traversable IntMap where
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> IntMap a -> f (IntMap b)
traverse a -> f b
f = (Int -> a -> f b) -> IntMap a -> f (IntMap b)
forall (t :: * -> *) a b.
Applicative t =>
(Int -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey (\Int
_ -> a -> f b
f)
{-# INLINE traverse #-}
instance NFData a => NFData (IntMap a) where
rnf :: IntMap a -> ()
rnf IntMap a
Nil = ()
rnf (Tip Int
_ a
v) = a -> ()
forall a. NFData a => a -> ()
rnf a
v
rnf (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = IntMap a -> ()
forall a. NFData a => a -> ()
rnf IntMap a
l () -> () -> ()
forall a b. a -> b -> b
`seq` IntMap a -> ()
forall a. NFData a => a -> ()
rnf IntMap a
r
#if __GLASGOW_HASKELL__
instance Data a => Data (IntMap a) where
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> IntMap a -> c (IntMap a)
gfoldl forall d b. Data d => c (d -> b) -> d -> c b
f forall g. g -> c g
z IntMap a
im = ([(Int, a)] -> IntMap a) -> c ([(Int, a)] -> IntMap a)
forall g. g -> c g
z [(Int, a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromList c ([(Int, a)] -> IntMap a) -> [(Int, a)] -> c (IntMap a)
forall d b. Data d => c (d -> b) -> d -> c b
`f` (IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toList IntMap a
im)
toConstr :: IntMap a -> Constr
toConstr IntMap a
_ = Constr
fromListConstr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (IntMap a)
gunfold forall b r. Data b => c (b -> r) -> c r
k forall r. r -> c r
z Constr
c = case Constr -> Int
constrIndex Constr
c of
Int
1 -> c ([(Int, a)] -> IntMap a) -> c (IntMap a)
forall b r. Data b => c (b -> r) -> c r
k (([(Int, a)] -> IntMap a) -> c ([(Int, a)] -> IntMap a)
forall r. r -> c r
z [(Int, a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromList)
Int
_ -> [Char] -> c (IntMap a)
forall a. HasCallStack => [Char] -> a
error [Char]
"gunfold"
dataTypeOf :: IntMap a -> DataType
dataTypeOf IntMap a
_ = DataType
intMapDataType
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (IntMap a))
dataCast1 forall d. Data d => c (t d)
f = c (t a) -> Maybe (c (IntMap a))
forall {k1} {k2} (c :: k1 -> *) (t :: k2 -> k1) (t' :: k2 -> k1)
(a :: k2).
(Typeable t, Typeable t') =>
c (t a) -> Maybe (c (t' a))
gcast1 c (t a)
forall d. Data d => c (t d)
f
fromListConstr :: Constr
fromListConstr :: Constr
fromListConstr = DataType -> [Char] -> [[Char]] -> Fixity -> Constr
mkConstr DataType
intMapDataType [Char]
"fromList" [] Fixity
Prefix
intMapDataType :: DataType
intMapDataType :: DataType
intMapDataType = [Char] -> [Constr] -> DataType
mkDataType [Char]
"Data.IntMap.Internal.IntMap" [Constr
fromListConstr]
#endif
null :: IntMap a -> Bool
null :: forall a. IntMap a -> Bool
null IntMap a
Nil = Bool
True
null IntMap a
_ = Bool
False
{-# INLINE null #-}
size :: IntMap a -> Int
size :: forall a. IntMap a -> Int
size = Int -> IntMap a -> Int
forall {t} {a}. Num t => t -> IntMap a -> t
go Int
0
where
go :: t -> IntMap a -> t
go !t
acc (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = t -> IntMap a -> t
go (t -> IntMap a -> t
go t
acc IntMap a
l) IntMap a
r
go t
acc (Tip Int
_ a
_) = t
1 t -> t -> t
forall a. Num a => a -> a -> a
+ t
acc
go t
acc IntMap a
Nil = t
acc
member :: Key -> IntMap a -> Bool
member :: forall a. Int -> IntMap a -> Bool
member !Int
k = IntMap a -> Bool
go
where
go :: IntMap a -> Bool
go (Bin Int
p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = Bool
False
| Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> Bool
go IntMap a
l
| Bool
otherwise = IntMap a -> Bool
go IntMap a
r
go (Tip Int
kx a
_) = Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx
go IntMap a
Nil = Bool
False
notMember :: Key -> IntMap a -> Bool
notMember :: forall a. Int -> IntMap a -> Bool
notMember Int
k IntMap a
m = Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ Int -> IntMap a -> Bool
forall a. Int -> IntMap a -> Bool
member Int
k IntMap a
m
lookup :: Key -> IntMap a -> Maybe a
lookup :: forall a. Int -> IntMap a -> Maybe a
lookup !Int
k = IntMap a -> Maybe a
go
where
go :: IntMap a -> Maybe a
go (Bin Int
_p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> Maybe a
go IntMap a
l
| Bool
otherwise = IntMap a -> Maybe a
go IntMap a
r
go (Tip Int
kx a
x) | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx = a -> Maybe a
forall a. a -> Maybe a
Just a
x
| Bool
otherwise = Maybe a
forall a. Maybe a
Nothing
go IntMap a
Nil = Maybe a
forall a. Maybe a
Nothing
find :: Key -> IntMap a -> a
find :: forall a. Int -> IntMap a -> a
find !Int
k = IntMap a -> a
go
where
go :: IntMap a -> a
go (Bin Int
_p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> a
go IntMap a
l
| Bool
otherwise = IntMap a -> a
go IntMap a
r
go (Tip Int
kx a
x) | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx = a
x
| Bool
otherwise = a
not_found
go IntMap a
Nil = a
not_found
not_found :: a
not_found = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char]
"IntMap.!: key " [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ Int -> [Char]
forall a. Show a => a -> [Char]
show Int
k [Char] -> [Char] -> [Char]
forall a. [a] -> [a] -> [a]
++ [Char]
" is not an element of the map")
findWithDefault :: a -> Key -> IntMap a -> a
findWithDefault :: forall a. a -> Int -> IntMap a -> a
findWithDefault a
def !Int
k = IntMap a -> a
go
where
go :: IntMap a -> a
go (Bin Int
p Int
m IntMap a
l IntMap a
r) | Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = a
def
| Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> a
go IntMap a
l
| Bool
otherwise = IntMap a -> a
go IntMap a
r
go (Tip Int
kx a
x) | Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kx = a
x
| Bool
otherwise = a
def
go IntMap a
Nil = a
def
lookupLT :: Key -> IntMap a -> Maybe (Key, a)
lookupLT :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupLT !Int
k IntMap a
t = case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
r
IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
where
go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
r
| Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
l
| Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
go IntMap a
def (Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
<= Int
ky = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def
| Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def
lookupGT :: Key -> IntMap a -> Maybe (Key, a)
lookupGT :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupGT !Int
k IntMap a
t = case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
where
go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
l else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
| Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l
| Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
r
go IntMap a
def (Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
ky = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
| Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
lookupLE :: Key -> IntMap a -> Maybe (Key, a)
lookupLE :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupLE !Int
k IntMap a
t = case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
r
IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
where
go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
r
| Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
l
| Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
go IntMap a
def (Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
ky = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def
| Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
def
lookupGE :: Key -> IntMap a -> Maybe (Key, a)
lookupGE :: forall a. Int -> IntMap a -> Maybe (Int, a)
lookupGE !Int
k IntMap a
t = case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0 then IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
l else IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
l IntMap a
r
IntMap a
_ -> IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
forall a. IntMap a
Nil IntMap a
t
where
go :: IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
p then IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
l else IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
| Int -> Int -> Bool
zero Int
k Int
m = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
r IntMap a
l
| Bool
otherwise = IntMap a -> IntMap a -> Maybe (Int, a)
go IntMap a
def IntMap a
r
go IntMap a
def (Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
ky = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
| Bool
otherwise = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
go IntMap a
def IntMap a
Nil = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
def
unsafeFindMin :: IntMap a -> Maybe (Key, a)
unsafeFindMin :: forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
Nil = Maybe (Int, a)
forall a. Maybe a
Nothing
unsafeFindMin (Tip Int
ky a
y) = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
unsafeFindMin (Bin Int
_ Int
_ IntMap a
l IntMap a
_) = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMin IntMap a
l
unsafeFindMax :: IntMap a -> Maybe (Key, a)
unsafeFindMax :: forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
Nil = Maybe (Int, a)
forall a. Maybe a
Nothing
unsafeFindMax (Tip Int
ky a
y) = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
ky, a
y)
unsafeFindMax (Bin Int
_ Int
_ IntMap a
_ IntMap a
r) = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
unsafeFindMax IntMap a
r
disjoint :: IntMap a -> IntMap b -> Bool
disjoint :: forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
Nil IntMap b
_ = Bool
True
disjoint IntMap a
_ IntMap b
Nil = Bool
True
disjoint (Tip Int
kx a
_) IntMap b
ys = Int -> IntMap b -> Bool
forall a. Int -> IntMap a -> Bool
notMember Int
kx IntMap b
ys
disjoint IntMap a
xs (Tip Int
ky b
_) = Int -> IntMap a -> Bool
forall a. Int -> IntMap a -> Bool
notMember Int
ky IntMap a
xs
disjoint t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = Bool
disjoint1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = Bool
disjoint2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
l1 IntMap b
l2 Bool -> Bool -> Bool
&& IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
r1 IntMap b
r2
| Bool
otherwise = Bool
True
where
disjoint1 :: Bool
disjoint1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = Bool
True
| Int -> Int -> Bool
zero Int
p2 Int
m1 = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
l1 IntMap b
t2
| Bool
otherwise = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
r1 IntMap b
t2
disjoint2 :: Bool
disjoint2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Bool
True
| Int -> Int -> Bool
zero Int
p1 Int
m2 = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
t1 IntMap b
l2
| Bool
otherwise = IntMap a -> IntMap b -> Bool
forall a b. IntMap a -> IntMap b -> Bool
disjoint IntMap a
t1 IntMap b
r2
compose :: IntMap c -> IntMap Int -> IntMap c
compose :: forall c. IntMap c -> IntMap Int -> IntMap c
compose IntMap c
bc !IntMap Int
ab
| IntMap c -> Bool
forall a. IntMap a -> Bool
null IntMap c
bc = IntMap c
forall a. IntMap a
empty
| Bool
otherwise = (Int -> Maybe c) -> IntMap Int -> IntMap c
forall a b. (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe (IntMap c
bc IntMap c -> Int -> Maybe c
forall a. IntMap a -> Int -> Maybe a
!?) IntMap Int
ab
empty :: IntMap a
empty :: forall a. IntMap a
empty
= IntMap a
forall a. IntMap a
Nil
{-# INLINE empty #-}
singleton :: Key -> a -> IntMap a
singleton :: forall a. Int -> a -> IntMap a
singleton Int
k a
x
= Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
{-# INLINE singleton #-}
insert :: Key -> a -> IntMap a -> IntMap a
insert :: forall a. Int -> a -> IntMap a -> IntMap a
insert !Int
k a
x t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t
| Int -> Int -> Bool
zero Int
k Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m (Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
insert Int
k a
x IntMap a
l) IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l (Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
insert Int
k a
x IntMap a
r)
insert Int
k a
x t :: IntMap a
t@(Tip Int
ky a
_)
| Int
kInt -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
ky = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
| Bool
otherwise = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t
insert Int
k a
x IntMap a
Nil = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
insertWith :: (a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWith :: forall a. (a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWith a -> a -> a
f Int
k a
x IntMap a
t
= (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey (\Int
_ a
x' a
y' -> a -> a -> a
f a
x' a
y') Int
k a
x IntMap a
t
insertWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> IntMap a
insertWithKey :: forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey Int -> a -> a -> a
f !Int
k a
x t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t
| Int -> Int -> Bool
zero Int
k Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m ((Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
l) IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l ((Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
r)
insertWithKey Int -> a -> a -> a
f Int
k a
x t :: IntMap a
t@(Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k (Int -> a -> a -> a
f Int
k a
x a
y)
| Bool
otherwise = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t
insertWithKey Int -> a -> a -> a
_ Int
k a
x IntMap a
Nil = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
insertLookupWithKey :: (Key -> a -> a -> a) -> Key -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey :: forall a.
(Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Int -> a -> a -> a
f !Int
k a
x t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = (Maybe a
forall a. Maybe a
Nothing,Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t)
| Int -> Int -> Bool
zero Int
k Int
m = let (Maybe a
found,IntMap a
l') = (Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
l
in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l' IntMap a
r)
| Bool
otherwise = let (Maybe a
found,IntMap a
r') = (Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> a -> a) -> Int -> a -> IntMap a -> (Maybe a, IntMap a)
insertLookupWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
r
in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l IntMap a
r')
insertLookupWithKey Int -> a -> a -> a
f Int
k a
x t :: IntMap a
t@(Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky = (a -> Maybe a
forall a. a -> Maybe a
Just a
y,Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k (Int -> a -> a -> a
f Int
k a
x a
y))
| Bool
otherwise = (Maybe a
forall a. Maybe a
Nothing,Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t)
insertLookupWithKey Int -> a -> a -> a
_ Int
k a
x IntMap a
Nil = (Maybe a
forall a. Maybe a
Nothing,Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x)
delete :: Key -> IntMap a -> IntMap a
delete :: forall a. Int -> IntMap a -> IntMap a
delete !Int
k t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = IntMap a
t
| Int -> Int -> Bool
zero Int
k Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
delete Int
k IntMap a
l) IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
delete Int
k IntMap a
r)
delete Int
k t :: IntMap a
t@(Tip Int
ky a
_)
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky = IntMap a
forall a. IntMap a
Nil
| Bool
otherwise = IntMap a
t
delete Int
_k IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
adjust :: (a -> a) -> Key -> IntMap a -> IntMap a
adjust :: forall a. (a -> a) -> Int -> IntMap a -> IntMap a
adjust a -> a
f Int
k IntMap a
m
= (Int -> a -> a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey (\Int
_ a
x -> a -> a
f a
x) Int
k IntMap a
m
adjustWithKey :: (Key -> a -> a) -> Key -> IntMap a -> IntMap a
adjustWithKey :: forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey Int -> a -> a
f !Int
k (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Bool
zero Int
k Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m ((Int -> a -> a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey Int -> a -> a
f Int
k IntMap a
l) IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l ((Int -> a -> a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> a) -> Int -> IntMap a -> IntMap a
adjustWithKey Int -> a -> a
f Int
k IntMap a
r)
adjustWithKey Int -> a -> a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky (Int -> a -> a
f Int
k a
y)
| Bool
otherwise = IntMap a
t
adjustWithKey Int -> a -> a
_ Int
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
update :: (a -> Maybe a) -> Key -> IntMap a -> IntMap a
update :: forall a. (a -> Maybe a) -> Int -> IntMap a -> IntMap a
update a -> Maybe a
f
= (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey (\Int
_ a
x -> a -> Maybe a
f a
x)
updateWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> IntMap a
updateWithKey :: forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey Int -> a -> Maybe a
f !Int
k (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Bool
zero Int
k Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m ((Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey Int -> a -> Maybe a
f Int
k IntMap a
l) IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l ((Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> Int -> IntMap a -> IntMap a
updateWithKey Int -> a -> Maybe a
f Int
k IntMap a
r)
updateWithKey Int -> a -> Maybe a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
| Int
k Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky = case (Int -> a -> Maybe a
f Int
k a
y) of
Just a
y' -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
y'
Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil
| Bool
otherwise = IntMap a
t
updateWithKey Int -> a -> Maybe a
_ Int
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
updateLookupWithKey :: (Key -> a -> Maybe a) -> Key -> IntMap a -> (Maybe a,IntMap a)
updateLookupWithKey :: forall a.
(Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Int -> a -> Maybe a
f !Int
k (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Bool
zero Int
k Int
m = let !(Maybe a
found,IntMap a
l') = (Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Int -> a -> Maybe a
f Int
k IntMap a
l
in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m IntMap a
l' IntMap a
r)
| Bool
otherwise = let !(Maybe a
found,IntMap a
r') = (Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
forall a.
(Int -> a -> Maybe a) -> Int -> IntMap a -> (Maybe a, IntMap a)
updateLookupWithKey Int -> a -> Maybe a
f Int
k IntMap a
r
in (Maybe a
found,Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l IntMap a
r')
updateLookupWithKey Int -> a -> Maybe a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
| Int
kInt -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
ky = case (Int -> a -> Maybe a
f Int
k a
y) of
Just a
y' -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y,Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
y')
Maybe a
Nothing -> (a -> Maybe a
forall a. a -> Maybe a
Just a
y,IntMap a
forall a. IntMap a
Nil)
| Bool
otherwise = (Maybe a
forall a. Maybe a
Nothing,IntMap a
t)
updateLookupWithKey Int -> a -> Maybe a
_ Int
_ IntMap a
Nil = (Maybe a
forall a. Maybe a
Nothing,IntMap a
forall a. IntMap a
Nil)
alter :: (Maybe a -> Maybe a) -> Key -> IntMap a -> IntMap a
alter :: forall a. (Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f !Int
k t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k Int
p Int
m = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
Maybe a
Nothing -> IntMap a
t
Just a
x -> Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
p IntMap a
t
| Int -> Int -> Bool
zero Int
k Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m ((Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f Int
k IntMap a
l) IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l ((Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
forall a. (Maybe a -> Maybe a) -> Int -> IntMap a -> IntMap a
alter Maybe a -> Maybe a
f Int
k IntMap a
r)
alter Maybe a -> Maybe a
f Int
k t :: IntMap a
t@(Tip Int
ky a
y)
| Int
kInt -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
ky = case Maybe a -> Maybe a
f (a -> Maybe a
forall a. a -> Maybe a
Just a
y) of
Just a
x -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
x
Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil
| Bool
otherwise = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
Just a
x -> Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x) Int
ky IntMap a
t
Maybe a
Nothing -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
ky a
y
alter Maybe a -> Maybe a
f Int
k IntMap a
Nil = case Maybe a -> Maybe a
f Maybe a
forall a. Maybe a
Nothing of
Just a
x -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
x
Maybe a
Nothing -> IntMap a
forall a. IntMap a
Nil
alterF :: Functor f
=> (Maybe a -> f (Maybe a)) -> Key -> IntMap a -> f (IntMap a)
alterF :: forall (f :: * -> *) a.
Functor f =>
(Maybe a -> f (Maybe a)) -> Int -> IntMap a -> f (IntMap a)
alterF Maybe a -> f (Maybe a)
f Int
k IntMap a
m = ((Maybe a -> IntMap a) -> f (Maybe a) -> f (IntMap a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe a -> f (Maybe a)
f Maybe a
mv) ((Maybe a -> IntMap a) -> f (IntMap a))
-> (Maybe a -> IntMap a) -> f (IntMap a)
forall a b. (a -> b) -> a -> b
$ \Maybe a
fres ->
case Maybe a
fres of
Maybe a
Nothing -> IntMap a -> (a -> IntMap a) -> Maybe a -> IntMap a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap a
m (IntMap a -> a -> IntMap a
forall a b. a -> b -> a
const (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
delete Int
k IntMap a
m)) Maybe a
mv
Just a
v' -> Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
insert Int
k a
v' IntMap a
m
where mv :: Maybe a
mv = Int -> IntMap a -> Maybe a
forall a. Int -> IntMap a -> Maybe a
lookup Int
k IntMap a
m
unions :: Foldable f => f (IntMap a) -> IntMap a
unions :: forall (f :: * -> *) a. Foldable f => f (IntMap a) -> IntMap a
unions f (IntMap a)
xs
= (IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> f (IntMap a) -> IntMap a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' IntMap a -> IntMap a -> IntMap a
forall a. IntMap a -> IntMap a -> IntMap a
union IntMap a
forall a. IntMap a
empty f (IntMap a)
xs
unionsWith :: Foldable f => (a->a->a) -> f (IntMap a) -> IntMap a
unionsWith :: forall (f :: * -> *) a.
Foldable f =>
(a -> a -> a) -> f (IntMap a) -> IntMap a
unionsWith a -> a -> a
f f (IntMap a)
ts
= (IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> f (IntMap a) -> IntMap a
forall b a. (b -> a -> b) -> b -> f a -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' ((a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
forall a. (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith a -> a -> a
f) IntMap a
forall a. IntMap a
empty f (IntMap a)
ts
union :: IntMap a -> IntMap a -> IntMap a
union :: forall a. IntMap a -> IntMap a -> IntMap a
union IntMap a
m1 IntMap a
m2
= (Int -> Int -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> IntMap a
-> IntMap a
-> IntMap a
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin IntMap a -> IntMap a -> IntMap a
forall a b. a -> b -> a
const IntMap a -> IntMap a
forall a. a -> a
id IntMap a -> IntMap a
forall a. a -> a
id IntMap a
m1 IntMap a
m2
unionWith :: (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith :: forall a. (a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWith a -> a -> a
f IntMap a
m1 IntMap a
m2
= (Int -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey (\Int
_ a
x a
y -> a -> a -> a
f a
x a
y) IntMap a
m1 IntMap a
m2
unionWithKey :: (Key -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey :: forall a. (Int -> a -> a -> a) -> IntMap a -> IntMap a -> IntMap a
unionWithKey Int -> a -> a -> a
f IntMap a
m1 IntMap a
m2
= (Int -> Int -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap a -> IntMap a)
-> IntMap a
-> IntMap a
-> IntMap a
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin (\(Tip Int
k1 a
x1) (Tip Int
_k2 a
x2) -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k1 (Int -> a -> a -> a
f Int
k1 a
x1 a
x2)) IntMap a -> IntMap a
forall a. a -> a
id IntMap a -> IntMap a
forall a. a -> a
id IntMap a
m1 IntMap a
m2
difference :: IntMap a -> IntMap b -> IntMap a
difference :: forall a b. IntMap a -> IntMap b -> IntMap a
difference IntMap a
m1 IntMap b
m2
= (Int -> a -> b -> Maybe a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall a b c.
(Int -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey (\Int
_ a
_ b
_ -> Maybe a
forall a. Maybe a
Nothing) IntMap a -> IntMap a
forall a. a -> a
id (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2
differenceWith :: (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith :: forall a b. (a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWith a -> b -> Maybe a
f IntMap a
m1 IntMap b
m2
= (Int -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
forall a b.
(Int -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey (\Int
_ a
x b
y -> a -> b -> Maybe a
f a
x b
y) IntMap a
m1 IntMap b
m2
differenceWithKey :: (Key -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey :: forall a b.
(Int -> a -> b -> Maybe a) -> IntMap a -> IntMap b -> IntMap a
differenceWithKey Int -> a -> b -> Maybe a
f IntMap a
m1 IntMap b
m2
= (Int -> a -> b -> Maybe a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall a b c.
(Int -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey Int -> a -> b -> Maybe a
f IntMap a -> IntMap a
forall a. a -> a
id (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2
withoutKeys :: IntMap a -> IntSet.IntSet -> IntMap a
withoutKeys :: forall a. IntMap a -> IntSet -> IntMap a
withoutKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntSet
t2@(IntSet.Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = IntMap a
difference1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = IntMap a
difference2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p1 Int
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
l1 IntSet
l2) (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
r1 IntSet
r2)
| Bool
otherwise = IntMap a
t1
where
difference1 :: IntMap a
difference1
| Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = IntMap a
t1
| Int -> Int -> Bool
zero Int
p2 Int
m1 = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p1 Int
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
l1 IntSet
t2) IntMap a
r1
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p1 Int
m1 IntMap a
l1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
r1 IntSet
t2)
difference2 :: IntMap a
difference2
| Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = IntMap a
t1
| Int -> Int -> Bool
zero Int
p1 Int
m2 = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
t1 IntSet
l2
| Bool
otherwise = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
withoutKeys IntMap a
t1 IntSet
r2
withoutKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
_ IntMap a
_) (IntSet.Tip Int
p2 Nat
bm2) =
let minbit :: Nat
minbit = Int -> Nat
bitmapOf Int
p1
lt_minbit :: Nat
lt_minbit = Nat
minbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
maxbit :: Nat
maxbit = Int -> Nat
bitmapOf (Int
p1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)))
gt_maxbit :: Nat
gt_maxbit = (-Nat
maxbit) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
maxbit
in Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Int
p2 IntMap a
t1 ((IntMap a -> IntMap a) -> IntMap a)
-> (IntMap a -> IntMap a) -> IntMap a
forall a b. (a -> b) -> a -> b
$ Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM (Nat
bm2 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Nat
lt_minbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Nat
gt_maxbit)
withoutKeys t1 :: IntMap a
t1@(Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntSet
IntSet.Nil = IntMap a
t1
withoutKeys t1 :: IntMap a
t1@(Tip Int
k1 a
_) IntSet
t2
| Int
k1 Int -> IntSet -> Bool
`IntSet.member` IntSet
t2 = IntMap a
forall a. IntMap a
Nil
| Bool
otherwise = IntMap a
t1
withoutKeys IntMap a
Nil IntSet
_ = IntMap a
forall a. IntMap a
Nil
updatePrefix
:: IntSetPrefix -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix :: forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix !Int
kp t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r) IntMap a -> IntMap a
f
| Int
m Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.suffixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 =
if Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp then IntMap a -> IntMap a
f IntMap a
t else IntMap a
t
| Int -> Int -> Int -> Bool
nomatch Int
kp Int
p Int
m = IntMap a
t
| Int -> Int -> Bool
zero Int
kp Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m (Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Int
kp IntMap a
l IntMap a -> IntMap a
f) IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l (Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
forall a. Int -> IntMap a -> (IntMap a -> IntMap a) -> IntMap a
updatePrefix Int
kp IntMap a
r IntMap a -> IntMap a
f)
updatePrefix Int
kp t :: IntMap a
t@(Tip Int
kx a
_) IntMap a -> IntMap a
f
| Int
kx Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp = IntMap a -> IntMap a
f IntMap a
t
| Bool
otherwise = IntMap a
t
updatePrefix Int
_ IntMap a
Nil IntMap a -> IntMap a
_ = IntMap a
forall a. IntMap a
Nil
withoutBM :: IntSetBitMap -> IntMap a -> IntMap a
withoutBM :: forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
0 IntMap a
t = IntMap a
t
withoutBM Nat
bm (Bin Int
p Int
m IntMap a
l IntMap a
r) =
let leftBits :: Nat
leftBits = Int -> Nat
bitmapOf (Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int
m) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
bmL :: Nat
bmL = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
leftBits
bmR :: Nat
bmR = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bmL
in Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
bmL IntMap a
l) (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
withoutBM Nat
bmR IntMap a
r)
withoutBM Nat
bm t :: IntMap a
t@(Tip Int
k a
_)
| Int
k Int -> IntSet -> Bool
`IntSet.member` Int -> Nat -> IntSet
IntSet.Tip (Int
k Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask) Nat
bm = IntMap a
forall a. IntMap a
Nil
| Bool
otherwise = IntMap a
t
withoutBM Nat
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
intersection :: IntMap a -> IntMap b -> IntMap a
intersection :: forall a b. IntMap a -> IntMap b -> IntMap a
intersection IntMap a
m1 IntMap b
m2
= (Int -> Int -> IntMap a -> IntMap a -> IntMap a)
-> (IntMap a -> IntMap b -> IntMap a)
-> (IntMap a -> IntMap a)
-> (IntMap b -> IntMap a)
-> IntMap a
-> IntMap b
-> IntMap a
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const (IntMap a -> IntMap a -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) (IntMap a -> IntMap b -> IntMap a
forall a b. a -> b -> a
const IntMap a
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2
restrictKeys :: IntMap a -> IntSet.IntSet -> IntMap a
restrictKeys :: forall a. IntMap a -> IntSet -> IntMap a
restrictKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntSet
t2@(IntSet.Bin Int
p2 Int
m2 IntSet
l2 IntSet
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = IntMap a
intersection1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = IntMap a
intersection2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p1 Int
m1 (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
l1 IntSet
l2) (IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
r1 IntSet
r2)
| Bool
otherwise = IntMap a
forall a. IntMap a
Nil
where
intersection1 :: IntMap a
intersection1
| Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = IntMap a
forall a. IntMap a
Nil
| Int -> Int -> Bool
zero Int
p2 Int
m1 = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
l1 IntSet
t2
| Bool
otherwise = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
r1 IntSet
t2
intersection2 :: IntMap a
intersection2
| Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = IntMap a
forall a. IntMap a
Nil
| Int -> Int -> Bool
zero Int
p1 Int
m2 = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
t1 IntSet
l2
| Bool
otherwise = IntMap a -> IntSet -> IntMap a
forall a. IntMap a -> IntSet -> IntMap a
restrictKeys IntMap a
t1 IntSet
r2
restrictKeys t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
_ IntMap a
_) (IntSet.Tip Int
p2 Nat
bm2) =
let minbit :: Nat
minbit = Int -> Nat
bitmapOf Int
p1
ge_minbit :: Nat
ge_minbit = Nat -> Nat
forall a. Bits a => a -> a
complement (Nat
minbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1)
maxbit :: Nat
maxbit = Int -> Nat
bitmapOf (Int
p1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. (Int
m1 Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)))
le_maxbit :: Nat
le_maxbit = Nat
maxbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. (Nat
maxbit Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1)
in Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM (Nat
bm2 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
ge_minbit Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
le_maxbit) (Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
lookupPrefix Int
p2 IntMap a
t1)
restrictKeys (Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntSet
IntSet.Nil = IntMap a
forall a. IntMap a
Nil
restrictKeys t1 :: IntMap a
t1@(Tip Int
k1 a
_) IntSet
t2
| Int
k1 Int -> IntSet -> Bool
`IntSet.member` IntSet
t2 = IntMap a
t1
| Bool
otherwise = IntMap a
forall a. IntMap a
Nil
restrictKeys IntMap a
Nil IntSet
_ = IntMap a
forall a. IntMap a
Nil
lookupPrefix :: IntSetPrefix -> IntMap a -> IntMap a
lookupPrefix :: forall a. Int -> IntMap a -> IntMap a
lookupPrefix !Int
kp t :: IntMap a
t@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.suffixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
0 =
if Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp then IntMap a
t else IntMap a
forall a. IntMap a
Nil
| Int -> Int -> Int -> Bool
nomatch Int
kp Int
p Int
m = IntMap a
forall a. IntMap a
Nil
| Int -> Int -> Bool
zero Int
kp Int
m = Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
lookupPrefix Int
kp IntMap a
l
| Bool
otherwise = Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> IntMap a
lookupPrefix Int
kp IntMap a
r
lookupPrefix Int
kp t :: IntMap a
t@(Tip Int
kx a
_)
| (Int
kx Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
kp = IntMap a
t
| Bool
otherwise = IntMap a
forall a. IntMap a
Nil
lookupPrefix Int
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
restrictBM :: IntSetBitMap -> IntMap a -> IntMap a
restrictBM :: forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
0 IntMap a
_ = IntMap a
forall a. IntMap a
Nil
restrictBM Nat
bm (Bin Int
p Int
m IntMap a
l IntMap a
r) =
let leftBits :: Nat
leftBits = Int -> Nat
bitmapOf (Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.|. Int
m) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1
bmL :: Nat
bmL = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. Nat
leftBits
bmR :: Nat
bmR = Nat
bm Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
bmL
in Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
bmL IntMap a
l) (Nat -> IntMap a -> IntMap a
forall a. Nat -> IntMap a -> IntMap a
restrictBM Nat
bmR IntMap a
r)
restrictBM Nat
bm t :: IntMap a
t@(Tip Int
k a
_)
| Int
k Int -> IntSet -> Bool
`IntSet.member` Int -> Nat -> IntSet
IntSet.Tip (Int
k Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask) Nat
bm = IntMap a
t
| Bool
otherwise = IntMap a
forall a. IntMap a
Nil
restrictBM Nat
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
intersectionWith :: (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith :: forall a b c. (a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWith a -> b -> c
f IntMap a
m1 IntMap b
m2
= (Int -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
forall a b c.
(Int -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey (\Int
_ a
x b
y -> a -> b -> c
f a
x b
y) IntMap a
m1 IntMap b
m2
intersectionWithKey :: (Key -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey :: forall a b c.
(Int -> a -> b -> c) -> IntMap a -> IntMap b -> IntMap c
intersectionWithKey Int -> a -> b -> c
f IntMap a
m1 IntMap b
m2
= (Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin (\(Tip Int
k1 a
x1) (Tip Int
_k2 b
x2) -> Int -> c -> IntMap c
forall a. Int -> a -> IntMap a
Tip Int
k1 (Int -> a -> b -> c
f Int
k1 a
x1 b
x2)) (IntMap c -> IntMap a -> IntMap c
forall a b. a -> b -> a
const IntMap c
forall a. IntMap a
Nil) (IntMap c -> IntMap b -> IntMap c
forall a b. a -> b -> a
const IntMap c
forall a. IntMap a
Nil) IntMap a
m1 IntMap b
m2
mergeWithKey :: (Key -> a -> b -> Maybe c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
-> IntMap a -> IntMap b -> IntMap c
mergeWithKey :: forall a b c.
(Int -> a -> b -> Maybe c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey Int -> a -> b -> Maybe c
f IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2 = (Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin IntMap a -> IntMap b -> IntMap c
combine IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2
where
combine :: IntMap a -> IntMap b -> IntMap c
combine = \(Tip Int
k1 a
x1) (Tip Int
_k2 b
x2) ->
case Int -> a -> b -> Maybe c
f Int
k1 a
x1 b
x2 of
Maybe c
Nothing -> IntMap c
forall a. IntMap a
Nil
Just c
x -> Int -> c -> IntMap c
forall a. Int -> a -> IntMap a
Tip Int
k1 c
x
{-# INLINE combine #-}
{-# INLINE mergeWithKey #-}
mergeWithKey' :: (Prefix -> Mask -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c) -> (IntMap a -> IntMap c) -> (IntMap b -> IntMap c)
-> IntMap a -> IntMap b -> IntMap c
mergeWithKey' :: forall c a b.
(Int -> Int -> IntMap c -> IntMap c -> IntMap c)
-> (IntMap a -> IntMap b -> IntMap c)
-> (IntMap a -> IntMap c)
-> (IntMap b -> IntMap c)
-> IntMap a
-> IntMap b
-> IntMap c
mergeWithKey' Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' IntMap a -> IntMap b -> IntMap c
f IntMap a -> IntMap c
g1 IntMap b -> IntMap c
g2 = IntMap a -> IntMap b -> IntMap c
go
where
go :: IntMap a -> IntMap b -> IntMap c
go t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = IntMap c
merge1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = IntMap c
merge2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap b -> IntMap c
go IntMap a
l1 IntMap b
l2) (IntMap a -> IntMap b -> IntMap c
go IntMap a
r1 IntMap b
r2)
| Bool
otherwise = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
where
merge1 :: IntMap c
merge1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
| Int -> Int -> Bool
zero Int
p2 Int
m1 = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap b -> IntMap c
go IntMap a
l1 IntMap b
t2) (IntMap a -> IntMap c
g1 IntMap a
r1)
| Bool
otherwise = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap c
g1 IntMap a
l1) (IntMap a -> IntMap b -> IntMap c
go IntMap a
r1 IntMap b
t2)
merge2 :: IntMap c
merge2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
| Int -> Int -> Bool
zero Int
p1 Int
m2 = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap a -> IntMap b -> IntMap c
go IntMap a
t1 IntMap b
l2) (IntMap b -> IntMap c
g2 IntMap b
r2)
| Bool
otherwise = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap b -> IntMap c
g2 IntMap b
l2) (IntMap a -> IntMap b -> IntMap c
go IntMap a
t1 IntMap b
r2)
go t1' :: IntMap a
t1'@(Bin Int
_ Int
_ IntMap a
_ IntMap a
_) t2' :: IntMap b
t2'@(Tip Int
k2' b
_) = IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2' Int
k2' IntMap a
t1'
where
merge0 :: IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2 Int
k2 t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1)
| Int -> Int -> Int -> Bool
nomatch Int
k2 Int
p1 Int
m1 = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
p1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
| Int -> Int -> Bool
zero Int
k2 Int
m1 = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2 Int
k2 IntMap a
l1) (IntMap a -> IntMap c
g1 IntMap a
r1)
| Bool
otherwise = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p1 Int
m1 (IntMap a -> IntMap c
g1 IntMap a
l1) (IntMap b -> Int -> IntMap a -> IntMap c
merge0 IntMap b
t2 Int
k2 IntMap a
r1)
merge0 IntMap b
t2 Int
k2 t1 :: IntMap a
t1@(Tip Int
k1 a
_)
| Int
k1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
k2 = IntMap a -> IntMap b -> IntMap c
f IntMap a
t1 IntMap b
t2
| Bool
otherwise = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
merge0 IntMap b
t2 Int
_ IntMap a
Nil = IntMap b -> IntMap c
g2 IntMap b
t2
go t1 :: IntMap a
t1@(Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntMap b
Nil = IntMap a -> IntMap c
g1 IntMap a
t1
go t1' :: IntMap a
t1'@(Tip Int
k1' a
_) IntMap b
t2' = IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1' Int
k1' IntMap b
t2'
where
merge0 :: IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1 Int
k1 t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
| Int -> Int -> Int -> Bool
nomatch Int
k1 Int
p2 Int
m2 = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
p2 (IntMap b -> IntMap c
g2 IntMap b
t2)
| Int -> Int -> Bool
zero Int
k1 Int
m2 = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1 Int
k1 IntMap b
l2) (IntMap b -> IntMap c
g2 IntMap b
r2)
| Bool
otherwise = Int -> Int -> IntMap c -> IntMap c -> IntMap c
bin' Int
p2 Int
m2 (IntMap b -> IntMap c
g2 IntMap b
l2) (IntMap a -> Int -> IntMap b -> IntMap c
merge0 IntMap a
t1 Int
k1 IntMap b
r2)
merge0 IntMap a
t1 Int
k1 t2 :: IntMap b
t2@(Tip Int
k2 b
_)
| Int
k1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
k2 = IntMap a -> IntMap b -> IntMap c
f IntMap a
t1 IntMap b
t2
| Bool
otherwise = Int -> IntMap c -> Int -> IntMap c -> IntMap c
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
k1 (IntMap a -> IntMap c
g1 IntMap a
t1) Int
k2 (IntMap b -> IntMap c
g2 IntMap b
t2)
merge0 IntMap a
t1 Int
_ IntMap b
Nil = IntMap a -> IntMap c
g1 IntMap a
t1
go IntMap a
Nil IntMap b
t2 = IntMap b -> IntMap c
g2 IntMap b
t2
maybe_link :: Int -> IntMap a -> Int -> IntMap a -> IntMap a
maybe_link Int
_ IntMap a
Nil Int
_ IntMap a
t2 = IntMap a
t2
maybe_link Int
_ IntMap a
t1 Int
_ IntMap a
Nil = IntMap a
t1
maybe_link Int
p1 IntMap a
t1 Int
p2 IntMap a
t2 = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
p1 IntMap a
t1 Int
p2 IntMap a
t2
{-# INLINE maybe_link #-}
{-# INLINE mergeWithKey' #-}
data WhenMissing f x y = WhenMissing
{ forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree :: IntMap x -> f (IntMap y)
, forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey :: Key -> x -> f (Maybe y)}
instance (Applicative f, Monad f) => Functor (WhenMissing f x) where
fmap :: forall a b. (a -> b) -> WhenMissing f x a -> WhenMissing f x b
fmap = (a -> b) -> WhenMissing f x a -> WhenMissing f x b
forall (f :: * -> *) a b x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing
{-# INLINE fmap #-}
instance (Applicative f, Monad f) => Category.Category (WhenMissing f)
where
id :: forall a. WhenMissing f a a
id = WhenMissing f a a
forall (f :: * -> *) x. Applicative f => WhenMissing f x x
preserveMissing
WhenMissing f b c
f . :: forall b c a.
WhenMissing f b c -> WhenMissing f a b -> WhenMissing f a c
. WhenMissing f a b
g =
(Int -> a -> f (Maybe c)) -> WhenMissing f a c
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Int -> a -> f (Maybe c)) -> WhenMissing f a c)
-> (Int -> a -> f (Maybe c)) -> WhenMissing f a c
forall a b. (a -> b) -> a -> b
$ \ Int
k a
x -> do
Maybe b
y <- WhenMissing f a b -> Int -> a -> f (Maybe b)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f a b
g Int
k a
x
case Maybe b
y of
Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
Just b
q -> WhenMissing f b c -> Int -> b -> f (Maybe c)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f b c
f Int
k b
q
{-# INLINE id #-}
{-# INLINE (.) #-}
instance (Applicative f, Monad f) => Applicative (WhenMissing f x) where
pure :: forall a. a -> WhenMissing f x a
pure a
x = (Int -> x -> a) -> WhenMissing f x a
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> y) -> WhenMissing f x y
mapMissing (\ Int
_ x
_ -> a
x)
WhenMissing f x (a -> b)
f <*> :: forall a b.
WhenMissing f x (a -> b) -> WhenMissing f x a -> WhenMissing f x b
<*> WhenMissing f x a
g =
(Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Int -> x -> f (Maybe b)) -> WhenMissing f x b)
-> (Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x -> do
Maybe (a -> b)
res1 <- WhenMissing f x (a -> b) -> Int -> x -> f (Maybe (a -> b))
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x (a -> b)
f Int
k x
x
case Maybe (a -> b)
res1 of
Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a -> b
r -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
g Int
k x
x
{-# INLINE pure #-}
{-# INLINE (<*>) #-}
instance (Applicative f, Monad f) => Monad (WhenMissing f x) where
WhenMissing f x a
m >>= :: forall a b.
WhenMissing f x a -> (a -> WhenMissing f x b) -> WhenMissing f x b
>>= a -> WhenMissing f x b
f =
(Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing ((Int -> x -> f (Maybe b)) -> WhenMissing f x b)
-> (Int -> x -> f (Maybe b)) -> WhenMissing f x b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x -> do
Maybe a
res1 <- WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
m Int
k x
x
case Maybe a
res1 of
Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a
r -> WhenMissing f x b -> Int -> x -> f (Maybe b)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey (a -> WhenMissing f x b
f a
r) Int
k x
x
{-# INLINE (>>=) #-}
mapWhenMissing
:: (Applicative f, Monad f)
=> (a -> b)
-> WhenMissing f x a
-> WhenMissing f x b
mapWhenMissing :: forall (f :: * -> *) a b x.
(Applicative f, Monad f) =>
(a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapWhenMissing a -> b
f WhenMissing f x a
t = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap b)
missingSubtree = \IntMap x
m -> WhenMissing f x a -> IntMap x -> f (IntMap a)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f x a
t IntMap x
m f (IntMap a) -> (IntMap a -> f (IntMap b)) -> f (IntMap b)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \IntMap a
m' -> IntMap b -> f (IntMap b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap b -> f (IntMap b)) -> IntMap b -> f (IntMap b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> IntMap a -> IntMap b
forall a b. (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f IntMap a
m'
, missingKey :: Int -> x -> f (Maybe b)
missingKey = \Int
k x
x -> WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
t Int
k x
x f (Maybe a) -> (Maybe a -> f (Maybe b)) -> f (Maybe b)
forall a b. f a -> (a -> f b) -> f b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \Maybe a
q -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$! (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f Maybe a
q) }
{-# INLINE mapWhenMissing #-}
mapGentlyWhenMissing
:: Functor f
=> (a -> b)
-> WhenMissing f x a
-> WhenMissing f x b
mapGentlyWhenMissing :: forall (f :: * -> *) a b x.
Functor f =>
(a -> b) -> WhenMissing f x a -> WhenMissing f x b
mapGentlyWhenMissing a -> b
f WhenMissing f x a
t = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap b)
missingSubtree = \IntMap x
m -> (a -> b) -> IntMap a -> IntMap b
forall a b. (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (IntMap a -> IntMap b) -> f (IntMap a) -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f x a -> IntMap x -> f (IntMap a)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f x a
t IntMap x
m
, missingKey :: Int -> x -> f (Maybe b)
missingKey = \Int
k x
x -> (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMissing f x a -> Int -> x -> f (Maybe a)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f x a
t Int
k x
x }
{-# INLINE mapGentlyWhenMissing #-}
mapGentlyWhenMatched
:: Functor f
=> (a -> b)
-> WhenMatched f x y a
-> WhenMatched f x y b
mapGentlyWhenMatched :: forall (f :: * -> *) a b x y.
Functor f =>
(a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapGentlyWhenMatched a -> b
f WhenMatched f x y a
t =
(Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> WhenMatched f x y a -> Int -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
t Int
k x
x y
y
{-# INLINE mapGentlyWhenMatched #-}
lmapWhenMissing :: (b -> a) -> WhenMissing f a x -> WhenMissing f b x
lmapWhenMissing :: forall b a (f :: * -> *) x.
(b -> a) -> WhenMissing f a x -> WhenMissing f b x
lmapWhenMissing b -> a
f WhenMissing f a x
t = WhenMissing
{ missingSubtree :: IntMap b -> f (IntMap x)
missingSubtree = \IntMap b
m -> WhenMissing f a x -> IntMap a -> f (IntMap x)
forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree WhenMissing f a x
t ((b -> a) -> IntMap b -> IntMap a
forall a b. (a -> b) -> IntMap a -> IntMap b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> a
f IntMap b
m)
, missingKey :: Int -> b -> f (Maybe x)
missingKey = \Int
k b
x -> WhenMissing f a x -> Int -> a -> f (Maybe x)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey WhenMissing f a x
t Int
k (b -> a
f b
x) }
{-# INLINE lmapWhenMissing #-}
contramapFirstWhenMatched
:: (b -> a)
-> WhenMatched f a y z
-> WhenMatched f b y z
contramapFirstWhenMatched :: forall b a (f :: * -> *) y z.
(b -> a) -> WhenMatched f a y z -> WhenMatched f b y z
contramapFirstWhenMatched b -> a
f WhenMatched f a y z
t =
(Int -> b -> y -> f (Maybe z)) -> WhenMatched f b y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> b -> y -> f (Maybe z)) -> WhenMatched f b y z)
-> (Int -> b -> y -> f (Maybe z)) -> WhenMatched f b y z
forall a b. (a -> b) -> a -> b
$ \Int
k b
x y
y -> WhenMatched f a y z -> Int -> a -> y -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f a y z
t Int
k (b -> a
f b
x) y
y
{-# INLINE contramapFirstWhenMatched #-}
contramapSecondWhenMatched
:: (b -> a)
-> WhenMatched f x a z
-> WhenMatched f x b z
contramapSecondWhenMatched :: forall b a (f :: * -> *) x z.
(b -> a) -> WhenMatched f x a z -> WhenMatched f x b z
contramapSecondWhenMatched b -> a
f WhenMatched f x a z
t =
(Int -> x -> b -> f (Maybe z)) -> WhenMatched f x b z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> b -> f (Maybe z)) -> WhenMatched f x b z)
-> (Int -> x -> b -> f (Maybe z)) -> WhenMatched f x b z
forall a b. (a -> b) -> a -> b
$ \Int
k x
x b
y -> WhenMatched f x a z -> Int -> x -> a -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x a z
t Int
k x
x (b -> a
f b
y)
{-# INLINE contramapSecondWhenMatched #-}
type SimpleWhenMissing = WhenMissing Identity
newtype WhenMatched f x y z = WhenMatched
{ forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
matchedKey :: Key -> x -> y -> f (Maybe z) }
runWhenMatched :: WhenMatched f x y z -> Key -> x -> y -> f (Maybe z)
runWhenMatched :: forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched = WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
matchedKey
{-# INLINE runWhenMatched #-}
runWhenMissing :: WhenMissing f x y -> Key-> x -> f (Maybe y)
runWhenMissing :: forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
runWhenMissing = WhenMissing f x y -> Int -> x -> f (Maybe y)
forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey
{-# INLINE runWhenMissing #-}
instance Functor f => Functor (WhenMatched f x y) where
fmap :: forall a b. (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
fmap = (a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
forall (f :: * -> *) a b x y.
Functor f =>
(a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched
{-# INLINE fmap #-}
instance (Monad f, Applicative f) => Category.Category (WhenMatched f x)
where
id :: forall a. WhenMatched f x a a
id = (Int -> x -> a -> a) -> WhenMatched f x a a
forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched (\Int
_ x
_ a
y -> a
y)
WhenMatched f x b c
f . :: forall b c a.
WhenMatched f x b c -> WhenMatched f x a b -> WhenMatched f x a c
. WhenMatched f x a b
g =
(Int -> x -> a -> f (Maybe c)) -> WhenMatched f x a c
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> a -> f (Maybe c)) -> WhenMatched f x a c)
-> (Int -> x -> a -> f (Maybe c)) -> WhenMatched f x a c
forall a b. (a -> b) -> a -> b
$ \Int
k x
x a
y -> do
Maybe b
res <- WhenMatched f x a b -> Int -> x -> a -> f (Maybe b)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x a b
g Int
k x
x a
y
case Maybe b
res of
Maybe b
Nothing -> Maybe c -> f (Maybe c)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe c
forall a. Maybe a
Nothing
Just b
r -> WhenMatched f x b c -> Int -> x -> b -> f (Maybe c)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x b c
f Int
k x
x b
r
{-# INLINE id #-}
{-# INLINE (.) #-}
instance (Monad f, Applicative f) => Applicative (WhenMatched f x y) where
pure :: forall a. a -> WhenMatched f x y a
pure a
x = (Int -> x -> y -> a) -> WhenMatched f x y a
forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched (\Int
_ x
_ y
_ -> a
x)
WhenMatched f x y (a -> b)
fs <*> :: forall a b.
WhenMatched f x y (a -> b)
-> WhenMatched f x y a -> WhenMatched f x y b
<*> WhenMatched f x y a
xs =
(Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> do
Maybe (a -> b)
res <- WhenMatched f x y (a -> b) -> Int -> x -> y -> f (Maybe (a -> b))
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y (a -> b)
fs Int
k x
x y
y
case Maybe (a -> b)
res of
Maybe (a -> b)
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a -> b
r -> (Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe b -> f (Maybe b)) -> Maybe b -> f (Maybe b)
forall a b. (a -> b) -> a -> b
$!) (Maybe b -> f (Maybe b))
-> (Maybe a -> Maybe b) -> Maybe a -> f (Maybe b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
r (Maybe a -> f (Maybe b)) -> f (Maybe a) -> f (Maybe b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< WhenMatched f x y a -> Int -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
xs Int
k x
x y
y
{-# INLINE pure #-}
{-# INLINE (<*>) #-}
instance (Monad f, Applicative f) => Monad (WhenMatched f x y) where
WhenMatched f x y a
m >>= :: forall a b.
WhenMatched f x y a
-> (a -> WhenMatched f x y b) -> WhenMatched f x y b
>>= a -> WhenMatched f x y b
f =
(Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> do
Maybe a
res <- WhenMatched f x y a -> Int -> x -> y -> f (Maybe a)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched WhenMatched f x y a
m Int
k x
x y
y
case Maybe a
res of
Maybe a
Nothing -> Maybe b -> f (Maybe b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe b
forall a. Maybe a
Nothing
Just a
r -> WhenMatched f x y b -> Int -> x -> y -> f (Maybe b)
forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
runWhenMatched (a -> WhenMatched f x y b
f a
r) Int
k x
x y
y
{-# INLINE (>>=) #-}
mapWhenMatched
:: Functor f
=> (a -> b)
-> WhenMatched f x y a
-> WhenMatched f x y b
mapWhenMatched :: forall (f :: * -> *) a b x y.
Functor f =>
(a -> b) -> WhenMatched f x y a -> WhenMatched f x y b
mapWhenMatched a -> b
f (WhenMatched Int -> x -> y -> f (Maybe a)
g) =
(Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b)
-> (Int -> x -> y -> f (Maybe b)) -> WhenMatched f x y b
forall a b. (a -> b) -> a -> b
$ \Int
k x
x y
y -> (Maybe a -> Maybe b) -> f (Maybe a) -> f (Maybe b)
forall a b. (a -> b) -> f a -> f b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((a -> b) -> Maybe a -> Maybe b
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> b
f) (Int -> x -> y -> f (Maybe a)
g Int
k x
x y
y)
{-# INLINE mapWhenMatched #-}
type SimpleWhenMatched = WhenMatched Identity
zipWithMatched
:: Applicative f
=> (Key -> x -> y -> z)
-> WhenMatched f x y z
zipWithMatched :: forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> z) -> WhenMatched f x y z
zipWithMatched Int -> x -> y -> z
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> Maybe z -> f (Maybe z)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> (z -> Maybe z) -> z -> f (Maybe z)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. z -> Maybe z
forall a. a -> Maybe a
Just (z -> f (Maybe z)) -> z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ Int -> x -> y -> z
f Int
k x
x y
y
{-# INLINE zipWithMatched #-}
zipWithAMatched
:: Applicative f
=> (Key -> x -> y -> f z)
-> WhenMatched f x y z
zipWithAMatched :: forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> f z) -> WhenMatched f x y z
zipWithAMatched Int -> x -> y -> f z
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> z -> Maybe z
forall a. a -> Maybe a
Just (z -> Maybe z) -> f z -> f (Maybe z)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> x -> y -> f z
f Int
k x
x y
y
{-# INLINE zipWithAMatched #-}
zipWithMaybeMatched
:: Applicative f
=> (Key -> x -> y -> Maybe z)
-> WhenMatched f x y z
zipWithMaybeMatched :: forall (f :: * -> *) x y z.
Applicative f =>
(Int -> x -> y -> Maybe z) -> WhenMatched f x y z
zipWithMaybeMatched Int -> x -> y -> Maybe z
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> Maybe z -> f (Maybe z)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe z -> f (Maybe z)) -> Maybe z -> f (Maybe z)
forall a b. (a -> b) -> a -> b
$ Int -> x -> y -> Maybe z
f Int
k x
x y
y
{-# INLINE zipWithMaybeMatched #-}
zipWithMaybeAMatched
:: (Key -> x -> y -> f (Maybe z))
-> WhenMatched f x y z
zipWithMaybeAMatched :: forall x y (f :: * -> *) z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
zipWithMaybeAMatched Int -> x -> y -> f (Maybe z)
f = (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall (f :: * -> *) x y z.
(Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
WhenMatched ((Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z)
-> (Int -> x -> y -> f (Maybe z)) -> WhenMatched f x y z
forall a b. (a -> b) -> a -> b
$ \ Int
k x
x y
y -> Int -> x -> y -> f (Maybe z)
f Int
k x
x y
y
{-# INLINE zipWithMaybeAMatched #-}
dropMissing :: Applicative f => WhenMissing f x y
dropMissing :: forall (f :: * -> *) x y. Applicative f => WhenMissing f x y
dropMissing = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = f (IntMap y) -> IntMap x -> f (IntMap y)
forall a b. a -> b -> a
const (IntMap y -> f (IntMap y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap y
forall a. IntMap a
Nil)
, missingKey :: Int -> x -> f (Maybe y)
missingKey = \Int
_ x
_ -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Maybe y
forall a. Maybe a
Nothing }
{-# INLINE dropMissing #-}
preserveMissing :: Applicative f => WhenMissing f x x
preserveMissing :: forall (f :: * -> *) x. Applicative f => WhenMissing f x x
preserveMissing = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = IntMap x -> f (IntMap x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure
, missingKey :: Int -> x -> f (Maybe x)
missingKey = \Int
_ x
v -> Maybe x -> f (Maybe x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (x -> Maybe x
forall a. a -> Maybe a
Just x
v) }
{-# INLINE preserveMissing #-}
mapMissing :: Applicative f => (Key -> x -> y) -> WhenMissing f x y
mapMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> y) -> WhenMissing f x y
mapMissing Int -> x -> y
f = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Int -> x -> y) -> IntMap x -> IntMap y
forall a b. (Int -> a -> b) -> IntMap a -> IntMap b
mapWithKey Int -> x -> y
f IntMap x
m
, missingKey :: Int -> x -> f (Maybe y)
missingKey = \Int
k x
x -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$ y -> Maybe y
forall a. a -> Maybe a
Just (Int -> x -> y
f Int
k x
x) }
{-# INLINE mapMissing #-}
mapMaybeMissing
:: Applicative f => (Key -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> Maybe y) -> WhenMissing f x y
mapMaybeMissing Int -> x -> Maybe y
f = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = \IntMap x
m -> IntMap y -> f (IntMap y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap y -> f (IntMap y)) -> IntMap y -> f (IntMap y)
forall a b. (a -> b) -> a -> b
$! (Int -> x -> Maybe y) -> IntMap x -> IntMap y
forall a b. (Int -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey Int -> x -> Maybe y
f IntMap x
m
, missingKey :: Int -> x -> f (Maybe y)
missingKey = \Int
k x
x -> Maybe y -> f (Maybe y)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe y -> f (Maybe y)) -> Maybe y -> f (Maybe y)
forall a b. (a -> b) -> a -> b
$! Int -> x -> Maybe y
f Int
k x
x }
{-# INLINE mapMaybeMissing #-}
filterMissing
:: Applicative f => (Key -> x -> Bool) -> WhenMissing f x x
filterMissing :: forall (f :: * -> *) x.
Applicative f =>
(Int -> x -> Bool) -> WhenMissing f x x
filterMissing Int -> x -> Bool
f = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = \IntMap x
m -> IntMap x -> f (IntMap x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (IntMap x -> f (IntMap x)) -> IntMap x -> f (IntMap x)
forall a b. (a -> b) -> a -> b
$! (Int -> x -> Bool) -> IntMap x -> IntMap x
forall a. (Int -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey Int -> x -> Bool
f IntMap x
m
, missingKey :: Int -> x -> f (Maybe x)
missingKey = \Int
k x
x -> Maybe x -> f (Maybe x)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Maybe x -> f (Maybe x)) -> Maybe x -> f (Maybe x)
forall a b. (a -> b) -> a -> b
$! if Int -> x -> Bool
f Int
k x
x then x -> Maybe x
forall a. a -> Maybe a
Just x
x else Maybe x
forall a. Maybe a
Nothing }
{-# INLINE filterMissing #-}
filterAMissing
:: Applicative f => (Key -> x -> f Bool) -> WhenMissing f x x
filterAMissing :: forall (f :: * -> *) x.
Applicative f =>
(Int -> x -> f Bool) -> WhenMissing f x x
filterAMissing Int -> x -> f Bool
f = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap x)
missingSubtree = \IntMap x
m -> (Int -> x -> f Bool) -> IntMap x -> f (IntMap x)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> x -> f Bool
f IntMap x
m
, missingKey :: Int -> x -> f (Maybe x)
missingKey = \Int
k x
x -> Maybe x -> Maybe x -> Bool -> Maybe x
forall a. a -> a -> Bool -> a
bool Maybe x
forall a. Maybe a
Nothing (x -> Maybe x
forall a. a -> Maybe a
Just x
x) (Bool -> Maybe x) -> f Bool -> f (Maybe x)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> x -> f Bool
f Int
k x
x }
{-# INLINE filterAMissing #-}
filterWithKeyA
:: Applicative f => (Key -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA :: forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
_ IntMap a
Nil = IntMap a -> f (IntMap a)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap a
forall a. IntMap a
Nil
filterWithKeyA Int -> a -> f Bool
f t :: IntMap a
t@(Tip Int
k a
x) = (\Bool
b -> if Bool
b then IntMap a
t else IntMap a
forall a. IntMap a
Nil) (Bool -> IntMap a) -> f Bool -> f (IntMap a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> f Bool
f Int
k a
x
filterWithKeyA Int -> a -> f Bool
f (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> IntMap a -> IntMap a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m)) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
r) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
l)
| Bool
otherwise = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
l) ((Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
(Int -> a -> f Bool) -> IntMap a -> f (IntMap a)
filterWithKeyA Int -> a -> f Bool
f IntMap a
r)
bool :: a -> a -> Bool -> a
bool :: forall a. a -> a -> Bool -> a
bool a
f a
_ Bool
False = a
f
bool a
_ a
t Bool
True = a
t
traverseMissing
:: Applicative f => (Key -> x -> f y) -> WhenMissing f x y
traverseMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f y) -> WhenMissing f x y
traverseMissing Int -> x -> f y
f = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Int -> x -> f y) -> IntMap x -> f (IntMap y)
forall (t :: * -> *) a b.
Applicative t =>
(Int -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey Int -> x -> f y
f
, missingKey :: Int -> x -> f (Maybe y)
missingKey = \Int
k x
x -> y -> Maybe y
forall a. a -> Maybe a
Just (y -> Maybe y) -> f y -> f (Maybe y)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> x -> f y
f Int
k x
x }
{-# INLINE traverseMissing #-}
traverseMaybeMissing
:: Applicative f => (Key -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing :: forall (f :: * -> *) x y.
Applicative f =>
(Int -> x -> f (Maybe y)) -> WhenMissing f x y
traverseMaybeMissing Int -> x -> f (Maybe y)
f = WhenMissing
{ missingSubtree :: IntMap x -> f (IntMap y)
missingSubtree = (Int -> x -> f (Maybe y)) -> IntMap x -> f (IntMap y)
forall (f :: * -> *) a b.
Applicative f =>
(Int -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey Int -> x -> f (Maybe y)
f
, missingKey :: Int -> x -> f (Maybe y)
missingKey = Int -> x -> f (Maybe y)
f }
{-# INLINE traverseMaybeMissing #-}
traverseMaybeWithKey
:: Applicative f => (Key -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey :: forall (f :: * -> *) a b.
Applicative f =>
(Int -> a -> f (Maybe b)) -> IntMap a -> f (IntMap b)
traverseMaybeWithKey Int -> a -> f (Maybe b)
f = IntMap a -> f (IntMap b)
go
where
go :: IntMap a -> f (IntMap b)
go IntMap a
Nil = IntMap b -> f (IntMap b)
forall a. a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap b
forall a. IntMap a
Nil
go (Tip Int
k a
x) = IntMap b -> (b -> IntMap b) -> Maybe b -> IntMap b
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap b
forall a. IntMap a
Nil (Int -> b -> IntMap b
forall a. Int -> a -> IntMap a
Tip Int
k) (Maybe b -> IntMap b) -> f (Maybe b) -> f (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> f (Maybe b)
f Int
k a
x
go (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = (IntMap b -> IntMap b -> IntMap b)
-> f (IntMap b) -> f (IntMap b) -> f (IntMap b)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap b -> IntMap b -> IntMap b)
-> IntMap b -> IntMap b -> IntMap b
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m)) (IntMap a -> f (IntMap b)
go IntMap a
r) (IntMap a -> f (IntMap b)
go IntMap a
l)
| Bool
otherwise = (IntMap b -> IntMap b -> IntMap b)
-> f (IntMap b) -> f (IntMap b) -> f (IntMap b)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m) (IntMap a -> f (IntMap b)
go IntMap a
l) (IntMap a -> f (IntMap b)
go IntMap a
r)
merge
:: SimpleWhenMissing a c
-> SimpleWhenMissing b c
-> SimpleWhenMatched a b c
-> IntMap a
-> IntMap b
-> IntMap c
merge :: forall a c b.
SimpleWhenMissing a c
-> SimpleWhenMissing b c
-> SimpleWhenMatched a b c
-> IntMap a
-> IntMap b
-> IntMap c
merge SimpleWhenMissing a c
g1 SimpleWhenMissing b c
g2 SimpleWhenMatched a b c
f IntMap a
m1 IntMap b
m2 =
Identity (IntMap c) -> IntMap c
forall a. Identity a -> a
runIdentity (Identity (IntMap c) -> IntMap c)
-> Identity (IntMap c) -> IntMap c
forall a b. (a -> b) -> a -> b
$ SimpleWhenMissing a c
-> SimpleWhenMissing b c
-> SimpleWhenMatched a b c
-> IntMap a
-> IntMap b
-> Identity (IntMap c)
forall (f :: * -> *) a c b.
Applicative f =>
WhenMissing f a c
-> WhenMissing f b c
-> WhenMatched f a b c
-> IntMap a
-> IntMap b
-> f (IntMap c)
mergeA SimpleWhenMissing a c
g1 SimpleWhenMissing b c
g2 SimpleWhenMatched a b c
f IntMap a
m1 IntMap b
m2
{-# INLINE merge #-}
mergeA
:: (Applicative f)
=> WhenMissing f a c
-> WhenMissing f b c
-> WhenMatched f a b c
-> IntMap a
-> IntMap b
-> f (IntMap c)
mergeA :: forall (f :: * -> *) a c b.
Applicative f =>
WhenMissing f a c
-> WhenMissing f b c
-> WhenMatched f a b c
-> IntMap a
-> IntMap b
-> f (IntMap c)
mergeA
WhenMissing{missingSubtree :: forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree = IntMap a -> f (IntMap c)
g1t, missingKey :: forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey = Int -> a -> f (Maybe c)
g1k}
WhenMissing{missingSubtree :: forall (f :: * -> *) x y.
WhenMissing f x y -> IntMap x -> f (IntMap y)
missingSubtree = IntMap b -> f (IntMap c)
g2t, missingKey :: forall (f :: * -> *) x y.
WhenMissing f x y -> Int -> x -> f (Maybe y)
missingKey = Int -> b -> f (Maybe c)
g2k}
WhenMatched{matchedKey :: forall (f :: * -> *) x y z.
WhenMatched f x y z -> Int -> x -> y -> f (Maybe z)
matchedKey = Int -> a -> b -> f (Maybe c)
f}
= IntMap a -> IntMap b -> f (IntMap c)
go
where
go :: IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
t1 IntMap b
Nil = IntMap a -> f (IntMap c)
g1t IntMap a
t1
go IntMap a
Nil IntMap b
t2 = IntMap b -> f (IntMap c)
g2t IntMap b
t2
go (Tip Int
k1 a
x1) IntMap b
t2' = IntMap b -> f (IntMap c)
merge2 IntMap b
t2'
where
merge2 :: IntMap b -> f (IntMap c)
merge2 t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
| Int -> Int -> Int -> Bool
nomatch Int
k1 Int
p2 Int
m2 = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
k1 ((Int -> a -> f (Maybe c)) -> Int -> a -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> a -> f (Maybe c)
g1k Int
k1 a
x1) Int
p2 (IntMap b -> f (IntMap c)
g2t IntMap b
t2)
| Int -> Int -> Bool
zero Int
k1 Int
m2 = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p2 Int
m2 (IntMap b -> f (IntMap c)
merge2 IntMap b
l2) (IntMap b -> f (IntMap c)
g2t IntMap b
r2)
| Bool
otherwise = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p2 Int
m2 (IntMap b -> f (IntMap c)
g2t IntMap b
l2) (IntMap b -> f (IntMap c)
merge2 IntMap b
r2)
merge2 (Tip Int
k2 b
x2) = Int -> a -> Int -> b -> f (IntMap c)
mergeTips Int
k1 a
x1 Int
k2 b
x2
merge2 IntMap b
Nil = (Int -> a -> f (Maybe c)) -> Int -> a -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> a -> f (Maybe c)
g1k Int
k1 a
x1
go IntMap a
t1' (Tip Int
k2 b
x2) = IntMap a -> f (IntMap c)
merge1 IntMap a
t1'
where
merge1 :: IntMap a -> f (IntMap c)
merge1 t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1)
| Int -> Int -> Int -> Bool
nomatch Int
k2 Int
p1 Int
m1 = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
p1 (IntMap a -> f (IntMap c)
g1t IntMap a
t1) Int
k2 ((Int -> b -> f (Maybe c)) -> Int -> b -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> b -> f (Maybe c)
g2k Int
k2 b
x2)
| Int -> Int -> Bool
zero Int
k2 Int
m1 = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> f (IntMap c)
merge1 IntMap a
l1) (IntMap a -> f (IntMap c)
g1t IntMap a
r1)
| Bool
otherwise = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> f (IntMap c)
g1t IntMap a
l1) (IntMap a -> f (IntMap c)
merge1 IntMap a
r1)
merge1 (Tip Int
k1 a
x1) = Int -> a -> Int -> b -> f (IntMap c)
mergeTips Int
k1 a
x1 Int
k2 b
x2
merge1 IntMap a
Nil = (Int -> b -> f (Maybe c)) -> Int -> b -> f (IntMap c)
forall {f :: * -> *} {t} {a}.
Functor f =>
(Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> b -> f (Maybe c)
g2k Int
k2 b
x2
go t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) t2 :: IntMap b
t2@(Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = f (IntMap c)
merge1
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = f (IntMap c)
merge2
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
l1 IntMap b
l2) (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
r1 IntMap b
r2)
| Bool
otherwise = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
p1 (IntMap a -> f (IntMap c)
g1t IntMap a
t1) Int
p2 (IntMap b -> f (IntMap c)
g2t IntMap b
t2)
where
merge1 :: f (IntMap c)
merge1 | Int -> Int -> Int -> Bool
nomatch Int
p2 Int
p1 Int
m1 = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
p1 (IntMap a -> f (IntMap c)
g1t IntMap a
t1) Int
p2 (IntMap b -> f (IntMap c)
g2t IntMap b
t2)
| Int -> Int -> Bool
zero Int
p2 Int
m1 = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
l1 IntMap b
t2) (IntMap a -> f (IntMap c)
g1t IntMap a
r1)
| Bool
otherwise = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p1 Int
m1 (IntMap a -> f (IntMap c)
g1t IntMap a
l1) (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
r1 IntMap b
t2)
merge2 :: f (IntMap c)
merge2 | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Int -> f (IntMap c) -> Int -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
p1 (IntMap a -> f (IntMap c)
g1t IntMap a
t1) Int
p2 (IntMap b -> f (IntMap c)
g2t IntMap b
t2)
| Int -> Int -> Bool
zero Int
p1 Int
m2 = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p2 Int
m2 (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
t1 IntMap b
l2) (IntMap b -> f (IntMap c)
g2t IntMap b
r2)
| Bool
otherwise = Int -> Int -> f (IntMap c) -> f (IntMap c) -> f (IntMap c)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p2 Int
m2 (IntMap b -> f (IntMap c)
g2t IntMap b
l2) (IntMap a -> IntMap b -> f (IntMap c)
go IntMap a
t1 IntMap b
r2)
subsingletonBy :: (Int -> t -> f (Maybe a)) -> Int -> t -> f (IntMap a)
subsingletonBy Int -> t -> f (Maybe a)
gk Int
k t
x = IntMap a -> (a -> IntMap a) -> Maybe a -> IntMap a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap a
forall a. IntMap a
Nil (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k) (Maybe a -> IntMap a) -> f (Maybe a) -> f (IntMap a)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> t -> f (Maybe a)
gk Int
k t
x
{-# INLINE subsingletonBy #-}
mergeTips :: Int -> a -> Int -> b -> f (IntMap c)
mergeTips Int
k1 a
x1 Int
k2 b
x2
| Int
k1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
k2 = IntMap c -> (c -> IntMap c) -> Maybe c -> IntMap c
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap c
forall a. IntMap a
Nil (Int -> c -> IntMap c
forall a. Int -> a -> IntMap a
Tip Int
k1) (Maybe c -> IntMap c) -> f (Maybe c) -> f (IntMap c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> b -> f (Maybe c)
f Int
k1 a
x1 b
x2
| Int
k1 Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
k2 = (Maybe c -> Maybe c -> IntMap c)
-> f (Maybe c) -> f (Maybe c) -> f (IntMap c)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> Maybe c -> Maybe c -> IntMap c
forall {a}. Int -> Int -> Maybe a -> Maybe a -> IntMap a
subdoubleton Int
k1 Int
k2) (Int -> a -> f (Maybe c)
g1k Int
k1 a
x1) (Int -> b -> f (Maybe c)
g2k Int
k2 b
x2)
| Bool
otherwise = (Maybe c -> Maybe c -> IntMap c)
-> f (Maybe c) -> f (Maybe c) -> f (IntMap c)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> Maybe c -> Maybe c -> IntMap c
forall {a}. Int -> Int -> Maybe a -> Maybe a -> IntMap a
subdoubleton Int
k2 Int
k1) (Int -> b -> f (Maybe c)
g2k Int
k2 b
x2) (Int -> a -> f (Maybe c)
g1k Int
k1 a
x1)
{-# INLINE mergeTips #-}
subdoubleton :: Int -> Int -> Maybe a -> Maybe a -> IntMap a
subdoubleton Int
_ Int
_ Maybe a
Nothing Maybe a
Nothing = IntMap a
forall a. IntMap a
Nil
subdoubleton Int
_ Int
k2 Maybe a
Nothing (Just a
y2) = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k2 a
y2
subdoubleton Int
k1 Int
_ (Just a
y1) Maybe a
Nothing = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k1 a
y1
subdoubleton Int
k1 Int
k2 (Just a
y1) (Just a
y2) = Int -> IntMap a -> Int -> IntMap a -> IntMap a
forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
k1 (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k1 a
y1) Int
k2 (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k2 a
y2)
{-# INLINE subdoubleton #-}
linkA
:: Applicative f
=> Prefix -> f (IntMap a)
-> Prefix -> f (IntMap a)
-> f (IntMap a)
linkA :: forall (f :: * -> *) a.
Applicative f =>
Int -> f (IntMap a) -> Int -> f (IntMap a) -> f (IntMap a)
linkA Int
p1 f (IntMap a)
t1 Int
p2 f (IntMap a)
t2
| Int -> Int -> Bool
zero Int
p1 Int
m = Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p Int
m f (IntMap a)
t1 f (IntMap a)
t2
| Bool
otherwise = Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p Int
m f (IntMap a)
t2 f (IntMap a)
t1
where
m :: Int
m = Int -> Int -> Int
branchMask Int
p1 Int
p2
p :: Int
p = Int -> Int -> Int
mask Int
p1 Int
m
{-# INLINE linkA #-}
binA
:: Applicative f
=> Prefix
-> Mask
-> f (IntMap a)
-> f (IntMap a)
-> f (IntMap a)
binA :: forall (f :: * -> *) a.
Applicative f =>
Int -> Int -> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
binA Int
p Int
m f (IntMap a)
a f (IntMap a)
b
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> IntMap a -> IntMap a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m)) f (IntMap a)
b f (IntMap a)
a
| Bool
otherwise = (IntMap a -> IntMap a -> IntMap a)
-> f (IntMap a) -> f (IntMap a) -> f (IntMap a)
forall a b c. (a -> b -> c) -> f a -> f b -> f c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m) f (IntMap a)
a f (IntMap a)
b
{-# INLINE binA #-}
{-# INLINE mergeA #-}
updateMinWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMinWithKey :: forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
updateMinWithKey Int -> a -> Maybe a
f IntMap a
t =
case IntMap a
t of Bin Int
p Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l ((Int -> a -> Maybe a) -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
go Int -> a -> Maybe a
f IntMap a
r)
IntMap a
_ -> (Int -> a -> Maybe a) -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
go Int -> a -> Maybe a
f IntMap a
t
where
go :: (Int -> t -> Maybe t) -> IntMap t -> IntMap t
go Int -> t -> Maybe t
f' (Bin Int
p Int
m IntMap t
l IntMap t
r) = Int -> Int -> IntMap t -> IntMap t -> IntMap t
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m ((Int -> t -> Maybe t) -> IntMap t -> IntMap t
go Int -> t -> Maybe t
f' IntMap t
l) IntMap t
r
go Int -> t -> Maybe t
f' (Tip Int
k t
y) = case Int -> t -> Maybe t
f' Int
k t
y of
Just t
y' -> Int -> t -> IntMap t
forall a. Int -> a -> IntMap a
Tip Int
k t
y'
Maybe t
Nothing -> IntMap t
forall a. IntMap a
Nil
go Int -> t -> Maybe t
_ IntMap t
Nil = [Char] -> IntMap t
forall a. HasCallStack => [Char] -> a
error [Char]
"updateMinWithKey Nil"
updateMaxWithKey :: (Key -> a -> Maybe a) -> IntMap a -> IntMap a
updateMaxWithKey :: forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
updateMaxWithKey Int -> a -> Maybe a
f IntMap a
t =
case IntMap a
t of Bin Int
p Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m ((Int -> a -> Maybe a) -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
go Int -> a -> Maybe a
f IntMap a
l) IntMap a
r
IntMap a
_ -> (Int -> a -> Maybe a) -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
go Int -> a -> Maybe a
f IntMap a
t
where
go :: (Int -> t -> Maybe t) -> IntMap t -> IntMap t
go Int -> t -> Maybe t
f' (Bin Int
p Int
m IntMap t
l IntMap t
r) = Int -> Int -> IntMap t -> IntMap t -> IntMap t
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap t
l ((Int -> t -> Maybe t) -> IntMap t -> IntMap t
go Int -> t -> Maybe t
f' IntMap t
r)
go Int -> t -> Maybe t
f' (Tip Int
k t
y) = case Int -> t -> Maybe t
f' Int
k t
y of
Just t
y' -> Int -> t -> IntMap t
forall a. Int -> a -> IntMap a
Tip Int
k t
y'
Maybe t
Nothing -> IntMap t
forall a. IntMap a
Nil
go Int -> t -> Maybe t
_ IntMap t
Nil = [Char] -> IntMap t
forall a. HasCallStack => [Char] -> a
error [Char]
"updateMaxWithKey Nil"
data View a = View {-# UNPACK #-} !Key a !(IntMap a)
maxViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)
maxViewWithKey :: forall a. IntMap a -> Maybe ((Int, a), IntMap a)
maxViewWithKey IntMap a
t = case IntMap a
t of
IntMap a
Nil -> Maybe ((Int, a), IntMap a)
forall a. Maybe a
Nothing
IntMap a
_ -> ((Int, a), IntMap a) -> Maybe ((Int, a), IntMap a)
forall a. a -> Maybe a
Just (((Int, a), IntMap a) -> Maybe ((Int, a), IntMap a))
-> ((Int, a), IntMap a) -> Maybe ((Int, a), IntMap a)
forall a b. (a -> b) -> a -> b
$ case IntMap a -> View a
forall a. IntMap a -> View a
maxViewWithKeySure IntMap a
t of
View Int
k a
v IntMap a
t' -> ((Int
k, a
v), IntMap a
t')
{-# INLINE maxViewWithKey #-}
maxViewWithKeySure :: IntMap a -> View a
maxViewWithKeySure :: forall a. IntMap a -> View a
maxViewWithKeySure IntMap a
t =
case IntMap a
t of
IntMap a
Nil -> [Char] -> View a
forall a. HasCallStack => [Char] -> a
error [Char]
"maxViewWithKeySure Nil"
Bin Int
p Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
case IntMap a -> View a
forall a. IntMap a -> View a
go IntMap a
l of View Int
k a
a IntMap a
l' -> Int -> a -> IntMap a -> View a
forall a. Int -> a -> IntMap a -> View a
View Int
k a
a (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m IntMap a
l' IntMap a
r)
IntMap a
_ -> IntMap a -> View a
forall a. IntMap a -> View a
go IntMap a
t
where
go :: IntMap a -> View a
go (Bin Int
p Int
m IntMap a
l IntMap a
r) =
case IntMap a -> View a
go IntMap a
r of View Int
k a
a IntMap a
r' -> Int -> a -> IntMap a -> View a
forall a. Int -> a -> IntMap a -> View a
View Int
k a
a (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l IntMap a
r')
go (Tip Int
k a
y) = Int -> a -> IntMap a -> View a
forall a. Int -> a -> IntMap a -> View a
View Int
k a
y IntMap a
forall a. IntMap a
Nil
go IntMap a
Nil = [Char] -> View a
forall a. HasCallStack => [Char] -> a
error [Char]
"maxViewWithKey_go Nil"
{-# NOINLINE maxViewWithKeySure #-}
minViewWithKey :: IntMap a -> Maybe ((Key, a), IntMap a)
minViewWithKey :: forall a. IntMap a -> Maybe ((Int, a), IntMap a)
minViewWithKey IntMap a
t =
case IntMap a
t of
IntMap a
Nil -> Maybe ((Int, a), IntMap a)
forall a. Maybe a
Nothing
IntMap a
_ -> ((Int, a), IntMap a) -> Maybe ((Int, a), IntMap a)
forall a. a -> Maybe a
Just (((Int, a), IntMap a) -> Maybe ((Int, a), IntMap a))
-> ((Int, a), IntMap a) -> Maybe ((Int, a), IntMap a)
forall a b. (a -> b) -> a -> b
$ case IntMap a -> View a
forall a. IntMap a -> View a
minViewWithKeySure IntMap a
t of
View Int
k a
v IntMap a
t' -> ((Int
k, a
v), IntMap a
t')
{-# INLINE minViewWithKey #-}
minViewWithKeySure :: IntMap a -> View a
minViewWithKeySure :: forall a. IntMap a -> View a
minViewWithKeySure IntMap a
t =
case IntMap a
t of
IntMap a
Nil -> [Char] -> View a
forall a. HasCallStack => [Char] -> a
error [Char]
"minViewWithKeySure Nil"
Bin Int
p Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
case IntMap a -> View a
forall a. IntMap a -> View a
go IntMap a
r of
View Int
k a
a IntMap a
r' -> Int -> a -> IntMap a -> View a
forall a. Int -> a -> IntMap a -> View a
View Int
k a
a (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
p Int
m IntMap a
l IntMap a
r')
IntMap a
_ -> IntMap a -> View a
forall a. IntMap a -> View a
go IntMap a
t
where
go :: IntMap a -> View a
go (Bin Int
p Int
m IntMap a
l IntMap a
r) =
case IntMap a -> View a
go IntMap a
l of View Int
k a
a IntMap a
l' -> Int -> a -> IntMap a -> View a
forall a. Int -> a -> IntMap a -> View a
View Int
k a
a (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
p Int
m IntMap a
l' IntMap a
r)
go (Tip Int
k a
y) = Int -> a -> IntMap a -> View a
forall a. Int -> a -> IntMap a -> View a
View Int
k a
y IntMap a
forall a. IntMap a
Nil
go IntMap a
Nil = [Char] -> View a
forall a. HasCallStack => [Char] -> a
error [Char]
"minViewWithKey_go Nil"
{-# NOINLINE minViewWithKeySure #-}
updateMax :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMax :: forall a. (a -> Maybe a) -> IntMap a -> IntMap a
updateMax a -> Maybe a
f = (Int -> a -> Maybe a) -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
updateMaxWithKey ((a -> Maybe a) -> Int -> a -> Maybe a
forall a b. a -> b -> a
const a -> Maybe a
f)
updateMin :: (a -> Maybe a) -> IntMap a -> IntMap a
updateMin :: forall a. (a -> Maybe a) -> IntMap a -> IntMap a
updateMin a -> Maybe a
f = (Int -> a -> Maybe a) -> IntMap a -> IntMap a
forall a. (Int -> a -> Maybe a) -> IntMap a -> IntMap a
updateMinWithKey ((a -> Maybe a) -> Int -> a -> Maybe a
forall a b. a -> b -> a
const a -> Maybe a
f)
maxView :: IntMap a -> Maybe (a, IntMap a)
maxView :: forall a. IntMap a -> Maybe (a, IntMap a)
maxView IntMap a
t = (((Int, a), IntMap a) -> (a, IntMap a))
-> Maybe ((Int, a), IntMap a) -> Maybe (a, IntMap a)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\((Int
_, a
x), IntMap a
t') -> (a
x, IntMap a
t')) (IntMap a -> Maybe ((Int, a), IntMap a)
forall a. IntMap a -> Maybe ((Int, a), IntMap a)
maxViewWithKey IntMap a
t)
minView :: IntMap a -> Maybe (a, IntMap a)
minView :: forall a. IntMap a -> Maybe (a, IntMap a)
minView IntMap a
t = (((Int, a), IntMap a) -> (a, IntMap a))
-> Maybe ((Int, a), IntMap a) -> Maybe (a, IntMap a)
forall a b. (a -> b) -> Maybe a -> Maybe b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (\((Int
_, a
x), IntMap a
t') -> (a
x, IntMap a
t')) (IntMap a -> Maybe ((Int, a), IntMap a)
forall a. IntMap a -> Maybe ((Int, a), IntMap a)
minViewWithKey IntMap a
t)
deleteFindMax :: IntMap a -> ((Key, a), IntMap a)
deleteFindMax :: forall a. IntMap a -> ((Int, a), IntMap a)
deleteFindMax = ((Int, a), IntMap a)
-> Maybe ((Int, a), IntMap a) -> ((Int, a), IntMap a)
forall a. a -> Maybe a -> a
fromMaybe ([Char] -> ((Int, a), IntMap a)
forall a. HasCallStack => [Char] -> a
error [Char]
"deleteFindMax: empty map has no maximal element") (Maybe ((Int, a), IntMap a) -> ((Int, a), IntMap a))
-> (IntMap a -> Maybe ((Int, a), IntMap a))
-> IntMap a
-> ((Int, a), IntMap a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> Maybe ((Int, a), IntMap a)
forall a. IntMap a -> Maybe ((Int, a), IntMap a)
maxViewWithKey
deleteFindMin :: IntMap a -> ((Key, a), IntMap a)
deleteFindMin :: forall a. IntMap a -> ((Int, a), IntMap a)
deleteFindMin = ((Int, a), IntMap a)
-> Maybe ((Int, a), IntMap a) -> ((Int, a), IntMap a)
forall a. a -> Maybe a -> a
fromMaybe ([Char] -> ((Int, a), IntMap a)
forall a. HasCallStack => [Char] -> a
error [Char]
"deleteFindMin: empty map has no minimal element") (Maybe ((Int, a), IntMap a) -> ((Int, a), IntMap a))
-> (IntMap a -> Maybe ((Int, a), IntMap a))
-> IntMap a
-> ((Int, a), IntMap a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> Maybe ((Int, a), IntMap a)
forall a. IntMap a -> Maybe ((Int, a), IntMap a)
minViewWithKey
lookupMin :: IntMap a -> Maybe (Key, a)
lookupMin :: forall a. IntMap a -> Maybe (Int, a)
lookupMin IntMap a
Nil = Maybe (Int, a)
forall a. Maybe a
Nothing
lookupMin (Tip Int
k a
v) = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
k,a
v)
lookupMin (Bin Int
_ Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
go IntMap a
r
| Bool
otherwise = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
go IntMap a
l
where go :: IntMap b -> Maybe (Int, b)
go (Tip Int
k b
v) = (Int, b) -> Maybe (Int, b)
forall a. a -> Maybe a
Just (Int
k,b
v)
go (Bin Int
_ Int
_ IntMap b
l' IntMap b
_) = IntMap b -> Maybe (Int, b)
go IntMap b
l'
go IntMap b
Nil = Maybe (Int, b)
forall a. Maybe a
Nothing
findMin :: IntMap a -> (Key, a)
findMin :: forall a. IntMap a -> (Int, a)
findMin IntMap a
t
| Just (Int, a)
r <- IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
lookupMin IntMap a
t = (Int, a)
r
| Bool
otherwise = [Char] -> (Int, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"findMin: empty map has no minimal element"
lookupMax :: IntMap a -> Maybe (Key, a)
lookupMax :: forall a. IntMap a -> Maybe (Int, a)
lookupMax IntMap a
Nil = Maybe (Int, a)
forall a. Maybe a
Nothing
lookupMax (Tip Int
k a
v) = (Int, a) -> Maybe (Int, a)
forall a. a -> Maybe a
Just (Int
k,a
v)
lookupMax (Bin Int
_ Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
go IntMap a
l
| Bool
otherwise = IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
go IntMap a
r
where go :: IntMap b -> Maybe (Int, b)
go (Tip Int
k b
v) = (Int, b) -> Maybe (Int, b)
forall a. a -> Maybe a
Just (Int
k,b
v)
go (Bin Int
_ Int
_ IntMap b
_ IntMap b
r') = IntMap b -> Maybe (Int, b)
go IntMap b
r'
go IntMap b
Nil = Maybe (Int, b)
forall a. Maybe a
Nothing
findMax :: IntMap a -> (Key, a)
findMax :: forall a. IntMap a -> (Int, a)
findMax IntMap a
t
| Just (Int, a)
r <- IntMap a -> Maybe (Int, a)
forall a. IntMap a -> Maybe (Int, a)
lookupMax IntMap a
t = (Int, a)
r
| Bool
otherwise = [Char] -> (Int, a)
forall a. HasCallStack => [Char] -> a
error [Char]
"findMax: empty map has no maximal element"
deleteMin :: IntMap a -> IntMap a
deleteMin :: forall a. IntMap a -> IntMap a
deleteMin = IntMap a
-> ((a, IntMap a) -> IntMap a) -> Maybe (a, IntMap a) -> IntMap a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap a
forall a. IntMap a
Nil (a, IntMap a) -> IntMap a
forall a b. (a, b) -> b
snd (Maybe (a, IntMap a) -> IntMap a)
-> (IntMap a -> Maybe (a, IntMap a)) -> IntMap a -> IntMap a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> Maybe (a, IntMap a)
forall a. IntMap a -> Maybe (a, IntMap a)
minView
deleteMax :: IntMap a -> IntMap a
deleteMax :: forall a. IntMap a -> IntMap a
deleteMax = IntMap a
-> ((a, IntMap a) -> IntMap a) -> Maybe (a, IntMap a) -> IntMap a
forall b a. b -> (a -> b) -> Maybe a -> b
maybe IntMap a
forall a. IntMap a
Nil (a, IntMap a) -> IntMap a
forall a b. (a, b) -> b
snd (Maybe (a, IntMap a) -> IntMap a)
-> (IntMap a -> Maybe (a, IntMap a)) -> IntMap a -> IntMap a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IntMap a -> Maybe (a, IntMap a)
forall a. IntMap a -> Maybe (a, IntMap a)
maxView
isProperSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isProperSubmapOf :: forall a. Eq a => IntMap a -> IntMap a -> Bool
isProperSubmapOf IntMap a
m1 IntMap a
m2
= (a -> a -> Bool) -> IntMap a -> IntMap a -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isProperSubmapOfBy a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==) IntMap a
m1 IntMap a
m2
isProperSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isProperSubmapOfBy :: forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isProperSubmapOfBy a -> b -> Bool
predicate IntMap a
t1 IntMap b
t2
= case (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp a -> b -> Bool
predicate IntMap a
t1 IntMap b
t2 of
Ordering
LT -> Bool
True
Ordering
_ -> Bool
False
submapCmp :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp :: forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp a -> b -> Bool
predicate t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) (Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = Ordering
GT
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = Ordering
submapCmpLt
| Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2 = Ordering
submapCmpEq
| Bool
otherwise = Ordering
GT
where
submapCmpLt :: Ordering
submapCmpLt | Int -> Int -> Int -> Bool
nomatch Int
p1 Int
p2 Int
m2 = Ordering
GT
| Int -> Int -> Bool
zero Int
p1 Int
m2 = (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp a -> b -> Bool
predicate IntMap a
t1 IntMap b
l2
| Bool
otherwise = (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp a -> b -> Bool
predicate IntMap a
t1 IntMap b
r2
submapCmpEq :: Ordering
submapCmpEq = case ((a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp a -> b -> Bool
predicate IntMap a
l1 IntMap b
l2, (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Ordering
submapCmp a -> b -> Bool
predicate IntMap a
r1 IntMap b
r2) of
(Ordering
GT,Ordering
_ ) -> Ordering
GT
(Ordering
_ ,Ordering
GT) -> Ordering
GT
(Ordering
EQ,Ordering
EQ) -> Ordering
EQ
(Ordering, Ordering)
_ -> Ordering
LT
submapCmp a -> b -> Bool
_ (Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntMap b
_ = Ordering
GT
submapCmp a -> b -> Bool
predicate (Tip Int
kx a
x) (Tip Int
ky b
y)
| (Int
kx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky) Bool -> Bool -> Bool
&& a -> b -> Bool
predicate a
x b
y = Ordering
EQ
| Bool
otherwise = Ordering
GT
submapCmp a -> b -> Bool
predicate (Tip Int
k a
x) IntMap b
t
= case Int -> IntMap b -> Maybe b
forall a. Int -> IntMap a -> Maybe a
lookup Int
k IntMap b
t of
Just b
y | a -> b -> Bool
predicate a
x b
y -> Ordering
LT
Maybe b
_ -> Ordering
GT
submapCmp a -> b -> Bool
_ IntMap a
Nil IntMap b
Nil = Ordering
EQ
submapCmp a -> b -> Bool
_ IntMap a
Nil IntMap b
_ = Ordering
LT
isSubmapOf :: Eq a => IntMap a -> IntMap a -> Bool
isSubmapOf :: forall a. Eq a => IntMap a -> IntMap a -> Bool
isSubmapOf IntMap a
m1 IntMap a
m2
= (a -> a -> Bool) -> IntMap a -> IntMap a -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy a -> a -> Bool
forall a. Eq a => a -> a -> Bool
(==) IntMap a
m1 IntMap a
m2
isSubmapOfBy :: (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy :: forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy a -> b -> Bool
predicate t1 :: IntMap a
t1@(Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) (Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
| Int -> Int -> Bool
shorter Int
m1 Int
m2 = Bool
False
| Int -> Int -> Bool
shorter Int
m2 Int
m1 = Int -> Int -> Int -> Bool
match Int
p1 Int
p2 Int
m2 Bool -> Bool -> Bool
&&
if Int -> Int -> Bool
zero Int
p1 Int
m2
then (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy a -> b -> Bool
predicate IntMap a
t1 IntMap b
l2
else (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy a -> b -> Bool
predicate IntMap a
t1 IntMap b
r2
| Bool
otherwise = (Int
p1Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
==Int
p2) Bool -> Bool -> Bool
&& (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy a -> b -> Bool
predicate IntMap a
l1 IntMap b
l2 Bool -> Bool -> Bool
&& (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
isSubmapOfBy a -> b -> Bool
predicate IntMap a
r1 IntMap b
r2
isSubmapOfBy a -> b -> Bool
_ (Bin Int
_ Int
_ IntMap a
_ IntMap a
_) IntMap b
_ = Bool
False
isSubmapOfBy a -> b -> Bool
predicate (Tip Int
k a
x) IntMap b
t = case Int -> IntMap b -> Maybe b
forall a. Int -> IntMap a -> Maybe a
lookup Int
k IntMap b
t of
Just b
y -> a -> b -> Bool
predicate a
x b
y
Maybe b
Nothing -> Bool
False
isSubmapOfBy a -> b -> Bool
_ IntMap a
Nil IntMap b
_ = Bool
True
map :: (a -> b) -> IntMap a -> IntMap b
map :: forall a b. (a -> b) -> IntMap a -> IntMap b
map a -> b
f = IntMap a -> IntMap b
go
where
go :: IntMap a -> IntMap b
go (Bin Int
p Int
m IntMap a
l IntMap a
r) = Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m (IntMap a -> IntMap b
go IntMap a
l) (IntMap a -> IntMap b
go IntMap a
r)
go (Tip Int
k a
x) = Int -> b -> IntMap b
forall a. Int -> a -> IntMap a
Tip Int
k (a -> b
f a
x)
go IntMap a
Nil = IntMap b
forall a. IntMap a
Nil
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] map #-}
{-# RULES
"map/map" forall f g xs . map f (map g xs) = map (f . g) xs
"map/coerce" map coerce = coerce
#-}
#endif
mapWithKey :: (Key -> a -> b) -> IntMap a -> IntMap b
mapWithKey :: forall a b. (Int -> a -> b) -> IntMap a -> IntMap b
mapWithKey Int -> a -> b
f IntMap a
t
= case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r -> Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m ((Int -> a -> b) -> IntMap a -> IntMap b
forall a b. (Int -> a -> b) -> IntMap a -> IntMap b
mapWithKey Int -> a -> b
f IntMap a
l) ((Int -> a -> b) -> IntMap a -> IntMap b
forall a b. (Int -> a -> b) -> IntMap a -> IntMap b
mapWithKey Int -> a -> b
f IntMap a
r)
Tip Int
k a
x -> Int -> b -> IntMap b
forall a. Int -> a -> IntMap a
Tip Int
k (Int -> a -> b
f Int
k a
x)
IntMap a
Nil -> IntMap b
forall a. IntMap a
Nil
#ifdef __GLASGOW_HASKELL__
{-# NOINLINE [1] mapWithKey #-}
{-# RULES
"mapWithKey/mapWithKey" forall f g xs . mapWithKey f (mapWithKey g xs) =
mapWithKey (\k a -> f k (g k a)) xs
"mapWithKey/map" forall f g xs . mapWithKey f (map g xs) =
mapWithKey (\k a -> f k (g a)) xs
"map/mapWithKey" forall f g xs . map f (mapWithKey g xs) =
mapWithKey (\k a -> f (g k a)) xs
#-}
#endif
traverseWithKey :: Applicative t => (Key -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey :: forall (t :: * -> *) a b.
Applicative t =>
(Int -> a -> t b) -> IntMap a -> t (IntMap b)
traverseWithKey Int -> a -> t b
f = IntMap a -> t (IntMap b)
go
where
go :: IntMap a -> t (IntMap b)
go IntMap a
Nil = IntMap b -> t (IntMap b)
forall a. a -> t a
forall (f :: * -> *) a. Applicative f => a -> f a
pure IntMap b
forall a. IntMap a
Nil
go (Tip Int
k a
v) = Int -> b -> IntMap b
forall a. Int -> a -> IntMap a
Tip Int
k (b -> IntMap b) -> t b -> t (IntMap b)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Int -> a -> t b
f Int
k a
v
go (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = (IntMap b -> IntMap b -> IntMap b)
-> t (IntMap b) -> t (IntMap b) -> t (IntMap b)
forall a b c. (a -> b -> c) -> t a -> t b -> t c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ((IntMap b -> IntMap b -> IntMap b)
-> IntMap b -> IntMap b -> IntMap b
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m)) (IntMap a -> t (IntMap b)
go IntMap a
r) (IntMap a -> t (IntMap b)
go IntMap a
l)
| Bool
otherwise = (IntMap b -> IntMap b -> IntMap b)
-> t (IntMap b) -> t (IntMap b) -> t (IntMap b)
forall a b c. (a -> b -> c) -> t a -> t b -> t c
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 (Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m) (IntMap a -> t (IntMap b)
go IntMap a
l) (IntMap a -> t (IntMap b)
go IntMap a
r)
{-# INLINE traverseWithKey #-}
mapAccum :: (a -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccum :: forall a b c. (a -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccum a -> b -> (a, c)
f = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumWithKey (\a
a' Int
_ b
x -> a -> b -> (a, c)
f a
a' b
x)
mapAccumWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumWithKey :: forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumWithKey a -> Int -> b -> (a, c)
f a
a IntMap b
t
= (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumL a -> Int -> b -> (a, c)
f a
a IntMap b
t
mapAccumL :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumL :: forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumL a -> Int -> b -> (a, c)
f a
a IntMap b
t
= case IntMap b
t of
Bin Int
p Int
m IntMap b
l IntMap b
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
let (a
a1,IntMap c
r') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumL a -> Int -> b -> (a, c)
f a
a IntMap b
r
(a
a2,IntMap c
l') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumL a -> Int -> b -> (a, c)
f a
a1 IntMap b
l
in (a
a2,Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap c
l' IntMap c
r')
| Bool
otherwise ->
let (a
a1,IntMap c
l') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumL a -> Int -> b -> (a, c)
f a
a IntMap b
l
(a
a2,IntMap c
r') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumL a -> Int -> b -> (a, c)
f a
a1 IntMap b
r
in (a
a2,Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap c
l' IntMap c
r')
Tip Int
k b
x -> let (a
a',c
x') = a -> Int -> b -> (a, c)
f a
a Int
k b
x in (a
a',Int -> c -> IntMap c
forall a. Int -> a -> IntMap a
Tip Int
k c
x')
IntMap b
Nil -> (a
a,IntMap c
forall a. IntMap a
Nil)
mapAccumRWithKey :: (a -> Key -> b -> (a,c)) -> a -> IntMap b -> (a,IntMap c)
mapAccumRWithKey :: forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumRWithKey a -> Int -> b -> (a, c)
f a
a IntMap b
t
= case IntMap b
t of
Bin Int
p Int
m IntMap b
l IntMap b
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
let (a
a1,IntMap c
l') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumRWithKey a -> Int -> b -> (a, c)
f a
a IntMap b
l
(a
a2,IntMap c
r') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumRWithKey a -> Int -> b -> (a, c)
f a
a1 IntMap b
r
in (a
a2,Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap c
l' IntMap c
r')
| Bool
otherwise ->
let (a
a1,IntMap c
r') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumRWithKey a -> Int -> b -> (a, c)
f a
a IntMap b
r
(a
a2,IntMap c
l') = (a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
forall a b c.
(a -> Int -> b -> (a, c)) -> a -> IntMap b -> (a, IntMap c)
mapAccumRWithKey a -> Int -> b -> (a, c)
f a
a1 IntMap b
l
in (a
a2,Int -> Int -> IntMap c -> IntMap c -> IntMap c
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap c
l' IntMap c
r')
Tip Int
k b
x -> let (a
a',c
x') = a -> Int -> b -> (a, c)
f a
a Int
k b
x in (a
a',Int -> c -> IntMap c
forall a. Int -> a -> IntMap a
Tip Int
k c
x')
IntMap b
Nil -> (a
a,IntMap c
forall a. IntMap a
Nil)
mapKeys :: (Key->Key) -> IntMap a -> IntMap a
mapKeys :: forall a. (Int -> Int) -> IntMap a -> IntMap a
mapKeys Int -> Int
f = [(Int, a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromList ([(Int, a)] -> IntMap a)
-> (IntMap a -> [(Int, a)]) -> IntMap a -> IntMap a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> a -> [(Int, a)] -> [(Int, a)])
-> [(Int, a)] -> IntMap a -> [(Int, a)]
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey (\Int
k a
x [(Int, a)]
xs -> (Int -> Int
f Int
k, a
x) (Int, a) -> [(Int, a)] -> [(Int, a)]
forall a. a -> [a] -> [a]
: [(Int, a)]
xs) []
mapKeysWith :: (a -> a -> a) -> (Key->Key) -> IntMap a -> IntMap a
mapKeysWith :: forall a. (a -> a -> a) -> (Int -> Int) -> IntMap a -> IntMap a
mapKeysWith a -> a -> a
c Int -> Int
f
= (a -> a -> a) -> [(Int, a)] -> IntMap a
forall a. (a -> a -> a) -> [(Int, a)] -> IntMap a
fromListWith a -> a -> a
c ([(Int, a)] -> IntMap a)
-> (IntMap a -> [(Int, a)]) -> IntMap a -> IntMap a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> a -> [(Int, a)] -> [(Int, a)])
-> [(Int, a)] -> IntMap a -> [(Int, a)]
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey (\Int
k a
x [(Int, a)]
xs -> (Int -> Int
f Int
k, a
x) (Int, a) -> [(Int, a)] -> [(Int, a)]
forall a. a -> [a] -> [a]
: [(Int, a)]
xs) []
mapKeysMonotonic :: (Key->Key) -> IntMap a -> IntMap a
mapKeysMonotonic :: forall a. (Int -> Int) -> IntMap a -> IntMap a
mapKeysMonotonic Int -> Int
f
= [(Int, a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromDistinctAscList ([(Int, a)] -> IntMap a)
-> (IntMap a -> [(Int, a)]) -> IntMap a -> IntMap a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Int -> a -> [(Int, a)] -> [(Int, a)])
-> [(Int, a)] -> IntMap a -> [(Int, a)]
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey (\Int
k a
x [(Int, a)]
xs -> (Int -> Int
f Int
k, a
x) (Int, a) -> [(Int, a)] -> [(Int, a)]
forall a. a -> [a] -> [a]
: [(Int, a)]
xs) []
filter :: (a -> Bool) -> IntMap a -> IntMap a
filter :: forall a. (a -> Bool) -> IntMap a -> IntMap a
filter a -> Bool
p IntMap a
m
= (Int -> a -> Bool) -> IntMap a -> IntMap a
forall a. (Int -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey (\Int
_ a
x -> a -> Bool
p a
x) IntMap a
m
filterWithKey :: (Key -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey :: forall a. (Int -> a -> Bool) -> IntMap a -> IntMap a
filterWithKey Int -> a -> Bool
predicate = IntMap a -> IntMap a
go
where
go :: IntMap a -> IntMap a
go IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
go t :: IntMap a
t@(Tip Int
k a
x) = if Int -> a -> Bool
predicate Int
k a
x then IntMap a
t else IntMap a
forall a. IntMap a
Nil
go (Bin Int
p Int
m IntMap a
l IntMap a
r) = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m (IntMap a -> IntMap a
go IntMap a
l) (IntMap a -> IntMap a
go IntMap a
r)
partition :: (a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partition :: forall a. (a -> Bool) -> IntMap a -> (IntMap a, IntMap a)
partition a -> Bool
p IntMap a
m
= (Int -> a -> Bool) -> IntMap a -> (IntMap a, IntMap a)
forall a. (Int -> a -> Bool) -> IntMap a -> (IntMap a, IntMap a)
partitionWithKey (\Int
_ a
x -> a -> Bool
p a
x) IntMap a
m
partitionWithKey :: (Key -> a -> Bool) -> IntMap a -> (IntMap a,IntMap a)
partitionWithKey :: forall a. (Int -> a -> Bool) -> IntMap a -> (IntMap a, IntMap a)
partitionWithKey Int -> a -> Bool
predicate0 IntMap a
t0 = StrictPair (IntMap a) (IntMap a) -> (IntMap a, IntMap a)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (IntMap a) (IntMap a) -> (IntMap a, IntMap a))
-> StrictPair (IntMap a) (IntMap a) -> (IntMap a, IntMap a)
forall a b. (a -> b) -> a -> b
$ (Int -> a -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall {a}.
(Int -> a -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> a -> Bool
predicate0 IntMap a
t0
where
go :: (Int -> a -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> a -> Bool
predicate IntMap a
t =
case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r ->
let (IntMap a
l1 :*: IntMap a
l2) = (Int -> a -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> a -> Bool
predicate IntMap a
l
(IntMap a
r1 :*: IntMap a
r2) = (Int -> a -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> a -> Bool
predicate IntMap a
r
in Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l1 IntMap a
r1 IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l2 IntMap a
r2
Tip Int
k a
x
| Int -> a -> Bool
predicate Int
k a
x -> (IntMap a
t IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
| Bool
otherwise -> (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
t)
IntMap a
Nil -> (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
takeWhileAntitone :: (Key -> Bool) -> IntMap a -> IntMap a
takeWhileAntitone :: forall a. (Int -> Bool) -> IntMap a -> IntMap a
takeWhileAntitone Int -> Bool
predicate IntMap a
t =
case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
if Int -> Bool
predicate Int
0
then Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m ((Int -> Bool) -> IntMap a -> IntMap a
forall a. (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate IntMap a
l) IntMap a
r
else (Int -> Bool) -> IntMap a -> IntMap a
forall a. (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate IntMap a
r
IntMap a
_ -> (Int -> Bool) -> IntMap a -> IntMap a
forall a. (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate IntMap a
t
where
go :: (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate' (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Bool
predicate' (Int -> Bool) -> Int -> Bool
forall a b. (a -> b) -> a -> b
$! Int
pInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l ((Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate' IntMap a
r)
| Bool
otherwise = (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate' IntMap a
l
go Int -> Bool
predicate' t' :: IntMap a
t'@(Tip Int
ky a
_)
| Int -> Bool
predicate' Int
ky = IntMap a
t'
| Bool
otherwise = IntMap a
forall a. IntMap a
Nil
go Int -> Bool
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
dropWhileAntitone :: (Key -> Bool) -> IntMap a -> IntMap a
dropWhileAntitone :: forall a. (Int -> Bool) -> IntMap a -> IntMap a
dropWhileAntitone Int -> Bool
predicate IntMap a
t =
case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
if Int -> Bool
predicate Int
0
then (Int -> Bool) -> IntMap a -> IntMap a
forall a. (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate IntMap a
l
else Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l ((Int -> Bool) -> IntMap a -> IntMap a
forall a. (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate IntMap a
r)
IntMap a
_ -> (Int -> Bool) -> IntMap a -> IntMap a
forall a. (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate IntMap a
t
where
go :: (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate' (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Bool
predicate' (Int -> Bool) -> Int -> Bool
forall a b. (a -> b) -> a -> b
$! Int
pInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
m = (Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate' IntMap a
r
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m ((Int -> Bool) -> IntMap a -> IntMap a
go Int -> Bool
predicate' IntMap a
l) IntMap a
r
go Int -> Bool
predicate' t' :: IntMap a
t'@(Tip Int
ky a
_)
| Int -> Bool
predicate' Int
ky = IntMap a
forall a. IntMap a
Nil
| Bool
otherwise = IntMap a
t'
go Int -> Bool
_ IntMap a
Nil = IntMap a
forall a. IntMap a
Nil
spanAntitone :: (Key -> Bool) -> IntMap a -> (IntMap a, IntMap a)
spanAntitone :: forall a. (Int -> Bool) -> IntMap a -> (IntMap a, IntMap a)
spanAntitone Int -> Bool
predicate IntMap a
t =
case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
if Int -> Bool
predicate Int
0
then
case (Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall {a}.
(Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> Bool
predicate IntMap a
l of
(IntMap a
lt :*: IntMap a
gt) ->
let !lt' :: IntMap a
lt' = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
lt IntMap a
r
in (IntMap a
lt', IntMap a
gt)
else
case (Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall {a}.
(Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> Bool
predicate IntMap a
r of
(IntMap a
lt :*: IntMap a
gt) ->
let !gt' :: IntMap a
gt' = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l IntMap a
gt
in (IntMap a
lt, IntMap a
gt')
IntMap a
_ -> case (Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall {a}.
(Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> Bool
predicate IntMap a
t of
(IntMap a
lt :*: IntMap a
gt) -> (IntMap a
lt, IntMap a
gt)
where
go :: (Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> Bool
predicate' (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Bool
predicate' (Int -> Bool) -> Int -> Bool
forall a b. (a -> b) -> a -> b
$! Int
pInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
m = case (Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> Bool
predicate' IntMap a
r of (IntMap a
lt :*: IntMap a
gt) -> Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l IntMap a
lt IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
gt
| Bool
otherwise = case (Int -> Bool) -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int -> Bool
predicate' IntMap a
l of (IntMap a
lt :*: IntMap a
gt) -> IntMap a
lt IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
gt IntMap a
r
go Int -> Bool
predicate' t' :: IntMap a
t'@(Tip Int
ky a
_)
| Int -> Bool
predicate' Int
ky = (IntMap a
t' IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
| Bool
otherwise = (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
t')
go Int -> Bool
_ IntMap a
Nil = (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
mapMaybe :: (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe :: forall a b. (a -> Maybe b) -> IntMap a -> IntMap b
mapMaybe a -> Maybe b
f = (Int -> a -> Maybe b) -> IntMap a -> IntMap b
forall a b. (Int -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey (\Int
_ a
x -> a -> Maybe b
f a
x)
mapMaybeWithKey :: (Key -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey :: forall a b. (Int -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey Int -> a -> Maybe b
f (Bin Int
p Int
m IntMap a
l IntMap a
r)
= Int -> Int -> IntMap b -> IntMap b -> IntMap b
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m ((Int -> a -> Maybe b) -> IntMap a -> IntMap b
forall a b. (Int -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey Int -> a -> Maybe b
f IntMap a
l) ((Int -> a -> Maybe b) -> IntMap a -> IntMap b
forall a b. (Int -> a -> Maybe b) -> IntMap a -> IntMap b
mapMaybeWithKey Int -> a -> Maybe b
f IntMap a
r)
mapMaybeWithKey Int -> a -> Maybe b
f (Tip Int
k a
x) = case Int -> a -> Maybe b
f Int
k a
x of
Just b
y -> Int -> b -> IntMap b
forall a. Int -> a -> IntMap a
Tip Int
k b
y
Maybe b
Nothing -> IntMap b
forall a. IntMap a
Nil
mapMaybeWithKey Int -> a -> Maybe b
_ IntMap a
Nil = IntMap b
forall a. IntMap a
Nil
mapEither :: (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEither :: forall a b c. (a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEither a -> Either b c
f IntMap a
m
= (Int -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
forall a b c.
(Int -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEitherWithKey (\Int
_ a
x -> a -> Either b c
f a
x) IntMap a
m
mapEitherWithKey :: (Key -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEitherWithKey :: forall a b c.
(Int -> a -> Either b c) -> IntMap a -> (IntMap b, IntMap c)
mapEitherWithKey Int -> a -> Either b c
f0 IntMap a
t0 = StrictPair (IntMap b) (IntMap c) -> (IntMap b, IntMap c)
forall a b. StrictPair a b -> (a, b)
toPair (StrictPair (IntMap b) (IntMap c) -> (IntMap b, IntMap c))
-> StrictPair (IntMap b) (IntMap c) -> (IntMap b, IntMap c)
forall a b. (a -> b) -> a -> b
$ (Int -> a -> Either b c)
-> IntMap a -> StrictPair (IntMap b) (IntMap c)
forall {t} {a} {a}.
(Int -> t -> Either a a)
-> IntMap t -> StrictPair (IntMap a) (IntMap a)
go Int -> a -> Either b c
f0 IntMap a
t0
where
go :: (Int -> t -> Either a a)
-> IntMap t -> StrictPair (IntMap a) (IntMap a)
go Int -> t -> Either a a
f (Bin Int
p Int
m IntMap t
l IntMap t
r) =
Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l1 IntMap a
r1 IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l2 IntMap a
r2
where
(IntMap a
l1 :*: IntMap a
l2) = (Int -> t -> Either a a)
-> IntMap t -> StrictPair (IntMap a) (IntMap a)
go Int -> t -> Either a a
f IntMap t
l
(IntMap a
r1 :*: IntMap a
r2) = (Int -> t -> Either a a)
-> IntMap t -> StrictPair (IntMap a) (IntMap a)
go Int -> t -> Either a a
f IntMap t
r
go Int -> t -> Either a a
f (Tip Int
k t
x) = case Int -> t -> Either a a
f Int
k t
x of
Left a
y -> (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
y IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
Right a
z -> (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
z)
go Int -> t -> Either a a
_ IntMap t
Nil = (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
split :: Key -> IntMap a -> (IntMap a, IntMap a)
split :: forall a. Int -> IntMap a -> (IntMap a, IntMap a)
split Int
k IntMap a
t =
case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0
then
case Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall {a}. Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int
k IntMap a
l of
(IntMap a
lt :*: IntMap a
gt) ->
let !lt' :: IntMap a
lt' = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
lt IntMap a
r
in (IntMap a
lt', IntMap a
gt)
else
case Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall {a}. Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int
k IntMap a
r of
(IntMap a
lt :*: IntMap a
gt) ->
let !gt' :: IntMap a
gt' = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l IntMap a
gt
in (IntMap a
lt, IntMap a
gt')
IntMap a
_ -> case Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall {a}. Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int
k IntMap a
t of
(IntMap a
lt :*: IntMap a
gt) -> (IntMap a
lt, IntMap a
gt)
where
go :: Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int
k' t' :: IntMap a
t'@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k' Int
p Int
m = if Int
k' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
p then IntMap a
t' IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil else IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
t'
| Int -> Int -> Bool
zero Int
k' Int
m = case Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int
k' IntMap a
l of (IntMap a
lt :*: IntMap a
gt) -> IntMap a
lt IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
gt IntMap a
r
| Bool
otherwise = case Int -> IntMap a -> StrictPair (IntMap a) (IntMap a)
go Int
k' IntMap a
r of (IntMap a
lt :*: IntMap a
gt) -> Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l IntMap a
lt IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
gt
go Int
k' t' :: IntMap a
t'@(Tip Int
ky a
_)
| Int
k' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
ky = (IntMap a
t' IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
| Int
k' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
ky = (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
t')
| Bool
otherwise = (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
go Int
_ IntMap a
Nil = (IntMap a
forall a. IntMap a
Nil IntMap a -> IntMap a -> StrictPair (IntMap a) (IntMap a)
forall a b. a -> b -> StrictPair a b
:*: IntMap a
forall a. IntMap a
Nil)
data SplitLookup a = SplitLookup !(IntMap a) !(Maybe a) !(IntMap a)
mapLT :: (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapLT :: forall a. (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapLT IntMap a -> IntMap a
f (SplitLookup IntMap a
lt Maybe a
fnd IntMap a
gt) = IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup (IntMap a -> IntMap a
f IntMap a
lt) Maybe a
fnd IntMap a
gt
{-# INLINE mapLT #-}
mapGT :: (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapGT :: forall a. (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapGT IntMap a -> IntMap a
f (SplitLookup IntMap a
lt Maybe a
fnd IntMap a
gt) = IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup IntMap a
lt Maybe a
fnd (IntMap a -> IntMap a
f IntMap a
gt)
{-# INLINE mapGT #-}
splitLookup :: Key -> IntMap a -> (IntMap a, Maybe a, IntMap a)
splitLookup :: forall a. Int -> IntMap a -> (IntMap a, Maybe a, IntMap a)
splitLookup Int
k IntMap a
t =
case
case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 ->
if Int
k Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= Int
0
then (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
forall a. (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapLT ((IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> IntMap a -> IntMap a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m) IntMap a
r) (Int -> IntMap a -> SplitLookup a
forall {a}. Int -> IntMap a -> SplitLookup a
go Int
k IntMap a
l)
else (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
forall a. (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapGT (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l) (Int -> IntMap a -> SplitLookup a
forall {a}. Int -> IntMap a -> SplitLookup a
go Int
k IntMap a
r)
IntMap a
_ -> Int -> IntMap a -> SplitLookup a
forall {a}. Int -> IntMap a -> SplitLookup a
go Int
k IntMap a
t
of SplitLookup IntMap a
lt Maybe a
fnd IntMap a
gt -> (IntMap a
lt, Maybe a
fnd, IntMap a
gt)
where
go :: Int -> IntMap a -> SplitLookup a
go Int
k' t' :: IntMap a
t'@(Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int -> Int -> Int -> Bool
nomatch Int
k' Int
p Int
m =
if Int
k' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
p
then IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup IntMap a
t' Maybe a
forall a. Maybe a
Nothing IntMap a
forall a. IntMap a
Nil
else IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup IntMap a
forall a. IntMap a
Nil Maybe a
forall a. Maybe a
Nothing IntMap a
t'
| Int -> Int -> Bool
zero Int
k' Int
m = (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
forall a. (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapGT ((IntMap a -> IntMap a -> IntMap a)
-> IntMap a -> IntMap a -> IntMap a
forall a b c. (a -> b -> c) -> b -> a -> c
flip (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m) IntMap a
r) (Int -> IntMap a -> SplitLookup a
go Int
k' IntMap a
l)
| Bool
otherwise = (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
forall a. (IntMap a -> IntMap a) -> SplitLookup a -> SplitLookup a
mapLT (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
p Int
m IntMap a
l) (Int -> IntMap a -> SplitLookup a
go Int
k' IntMap a
r)
go Int
k' t' :: IntMap a
t'@(Tip Int
ky a
y)
| Int
k' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
ky = IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup IntMap a
t' Maybe a
forall a. Maybe a
Nothing IntMap a
forall a. IntMap a
Nil
| Int
k' Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
ky = IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup IntMap a
forall a. IntMap a
Nil Maybe a
forall a. Maybe a
Nothing IntMap a
t'
| Bool
otherwise = IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup IntMap a
forall a. IntMap a
Nil (a -> Maybe a
forall a. a -> Maybe a
Just a
y) IntMap a
forall a. IntMap a
Nil
go Int
_ IntMap a
Nil = IntMap a -> Maybe a -> IntMap a -> SplitLookup a
forall a. IntMap a -> Maybe a -> IntMap a -> SplitLookup a
SplitLookup IntMap a
forall a. IntMap a
Nil Maybe a
forall a. Maybe a
Nothing IntMap a
forall a. IntMap a
Nil
foldr :: (a -> b -> b) -> b -> IntMap a -> b
foldr :: forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr a -> b -> b
f b
z = \IntMap a
t ->
case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
l) IntMap a
r
| Bool
otherwise -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
r) IntMap a
l
IntMap a
_ -> b -> IntMap a -> b
go b
z IntMap a
t
where
go :: b -> IntMap a -> b
go b
z' IntMap a
Nil = b
z'
go b
z' (Tip Int
_ a
x) = a -> b -> b
f a
x b
z'
go b
z' (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z' IntMap a
r) IntMap a
l
{-# INLINE foldr #-}
foldr' :: (a -> b -> b) -> b -> IntMap a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr' a -> b -> b
f b
z = \IntMap a
t ->
case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
l) IntMap a
r
| Bool
otherwise -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
r) IntMap a
l
IntMap a
_ -> b -> IntMap a -> b
go b
z IntMap a
t
where
go :: b -> IntMap a -> b
go !b
z' IntMap a
Nil = b
z'
go b
z' (Tip Int
_ a
x) = a -> b -> b
f a
x b
z'
go b
z' (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z' IntMap a
r) IntMap a
l
{-# INLINE foldr' #-}
foldl :: (a -> b -> a) -> a -> IntMap b -> a
foldl :: forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl a -> b -> a
f a
z = \IntMap b
t ->
case IntMap b
t of
Bin Int
_ Int
m IntMap b
l IntMap b
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
r) IntMap b
l
| Bool
otherwise -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
l) IntMap b
r
IntMap b
_ -> a -> IntMap b -> a
go a
z IntMap b
t
where
go :: a -> IntMap b -> a
go a
z' IntMap b
Nil = a
z'
go a
z' (Tip Int
_ b
x) = a -> b -> a
f a
z' b
x
go a
z' (Bin Int
_ Int
_ IntMap b
l IntMap b
r) = a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z' IntMap b
l) IntMap b
r
{-# INLINE foldl #-}
foldl' :: (a -> b -> a) -> a -> IntMap b -> a
foldl' :: forall b a. (b -> a -> b) -> b -> IntMap a -> b
foldl' a -> b -> a
f a
z = \IntMap b
t ->
case IntMap b
t of
Bin Int
_ Int
m IntMap b
l IntMap b
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
r) IntMap b
l
| Bool
otherwise -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
l) IntMap b
r
IntMap b
_ -> a -> IntMap b -> a
go a
z IntMap b
t
where
go :: a -> IntMap b -> a
go !a
z' IntMap b
Nil = a
z'
go a
z' (Tip Int
_ b
x) = a -> b -> a
f a
z' b
x
go a
z' (Bin Int
_ Int
_ IntMap b
l IntMap b
r) = a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z' IntMap b
l) IntMap b
r
{-# INLINE foldl' #-}
foldrWithKey :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey :: forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey Int -> a -> b -> b
f b
z = \IntMap a
t ->
case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
l) IntMap a
r
| Bool
otherwise -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
r) IntMap a
l
IntMap a
_ -> b -> IntMap a -> b
go b
z IntMap a
t
where
go :: b -> IntMap a -> b
go b
z' IntMap a
Nil = b
z'
go b
z' (Tip Int
kx a
x) = Int -> a -> b -> b
f Int
kx a
x b
z'
go b
z' (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z' IntMap a
r) IntMap a
l
{-# INLINE foldrWithKey #-}
foldrWithKey' :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey' :: forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey' Int -> a -> b -> b
f b
z = \IntMap a
t ->
case IntMap a
t of
Bin Int
_ Int
m IntMap a
l IntMap a
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
l) IntMap a
r
| Bool
otherwise -> b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z IntMap a
r) IntMap a
l
IntMap a
_ -> b -> IntMap a -> b
go b
z IntMap a
t
where
go :: b -> IntMap a -> b
go !b
z' IntMap a
Nil = b
z'
go b
z' (Tip Int
kx a
x) = Int -> a -> b -> b
f Int
kx a
x b
z'
go b
z' (Bin Int
_ Int
_ IntMap a
l IntMap a
r) = b -> IntMap a -> b
go (b -> IntMap a -> b
go b
z' IntMap a
r) IntMap a
l
{-# INLINE foldrWithKey' #-}
foldlWithKey :: (a -> Key -> b -> a) -> a -> IntMap b -> a
foldlWithKey :: forall a b. (a -> Int -> b -> a) -> a -> IntMap b -> a
foldlWithKey a -> Int -> b -> a
f a
z = \IntMap b
t ->
case IntMap b
t of
Bin Int
_ Int
m IntMap b
l IntMap b
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
r) IntMap b
l
| Bool
otherwise -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
l) IntMap b
r
IntMap b
_ -> a -> IntMap b -> a
go a
z IntMap b
t
where
go :: a -> IntMap b -> a
go a
z' IntMap b
Nil = a
z'
go a
z' (Tip Int
kx b
x) = a -> Int -> b -> a
f a
z' Int
kx b
x
go a
z' (Bin Int
_ Int
_ IntMap b
l IntMap b
r) = a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z' IntMap b
l) IntMap b
r
{-# INLINE foldlWithKey #-}
foldlWithKey' :: (a -> Key -> b -> a) -> a -> IntMap b -> a
foldlWithKey' :: forall a b. (a -> Int -> b -> a) -> a -> IntMap b -> a
foldlWithKey' a -> Int -> b -> a
f a
z = \IntMap b
t ->
case IntMap b
t of
Bin Int
_ Int
m IntMap b
l IntMap b
r
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
r) IntMap b
l
| Bool
otherwise -> a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z IntMap b
l) IntMap b
r
IntMap b
_ -> a -> IntMap b -> a
go a
z IntMap b
t
where
go :: a -> IntMap b -> a
go !a
z' IntMap b
Nil = a
z'
go a
z' (Tip Int
kx b
x) = a -> Int -> b -> a
f a
z' Int
kx b
x
go a
z' (Bin Int
_ Int
_ IntMap b
l IntMap b
r) = a -> IntMap b -> a
go (a -> IntMap b -> a
go a
z' IntMap b
l) IntMap b
r
{-# INLINE foldlWithKey' #-}
foldMapWithKey :: Monoid m => (Key -> a -> m) -> IntMap a -> m
foldMapWithKey :: forall m a. Monoid m => (Int -> a -> m) -> IntMap a -> m
foldMapWithKey Int -> a -> m
f = IntMap a -> m
go
where
go :: IntMap a -> m
go IntMap a
Nil = m
forall a. Monoid a => a
mempty
go (Tip Int
kx a
x) = Int -> a -> m
f Int
kx a
x
go (Bin Int
_ Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = IntMap a -> m
go IntMap a
r m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
l
| Bool
otherwise = IntMap a -> m
go IntMap a
l m -> m -> m
forall a. Monoid a => a -> a -> a
`mappend` IntMap a -> m
go IntMap a
r
{-# INLINE foldMapWithKey #-}
elems :: IntMap a -> [a]
elems :: forall a. IntMap a -> [a]
elems = (a -> [a] -> [a]) -> [a] -> IntMap a -> [a]
forall a b. (a -> b -> b) -> b -> IntMap a -> b
foldr (:) []
keys :: IntMap a -> [Key]
keys :: forall a. IntMap a -> [Int]
keys = (Int -> a -> [Int] -> [Int]) -> [Int] -> IntMap a -> [Int]
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey (\Int
k a
_ [Int]
ks -> Int
k Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
: [Int]
ks) []
assocs :: IntMap a -> [(Key,a)]
assocs :: forall a. IntMap a -> [(Int, a)]
assocs = IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toAscList
keysSet :: IntMap a -> IntSet.IntSet
keysSet :: forall a. IntMap a -> IntSet
keysSet IntMap a
Nil = IntSet
IntSet.Nil
keysSet (Tip Int
kx a
_) = Int -> IntSet
IntSet.singleton Int
kx
keysSet (Bin Int
p Int
m IntMap a
l IntMap a
r)
| Int
m Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.suffixBitMask Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
0 = Int -> Int -> IntSet -> IntSet -> IntSet
IntSet.Bin Int
p Int
m (IntMap a -> IntSet
forall a. IntMap a -> IntSet
keysSet IntMap a
l) (IntMap a -> IntSet
forall a. IntMap a -> IntSet
keysSet IntMap a
r)
| Bool
otherwise = Int -> Nat -> IntSet
IntSet.Tip (Int
p Int -> Int -> Int
forall a. Bits a => a -> a -> a
.&. Int
IntSet.prefixBitMask) (Nat -> IntMap a -> Nat
forall {a}. Nat -> IntMap a -> Nat
computeBm (Nat -> IntMap a -> Nat
forall {a}. Nat -> IntMap a -> Nat
computeBm Nat
0 IntMap a
l) IntMap a
r)
where computeBm :: Nat -> IntMap a -> Nat
computeBm !Nat
acc (Bin Int
_ Int
_ IntMap a
l' IntMap a
r') = Nat -> IntMap a -> Nat
computeBm (Nat -> IntMap a -> Nat
computeBm Nat
acc IntMap a
l') IntMap a
r'
computeBm Nat
acc (Tip Int
kx a
_) = Nat
acc Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.|. Int -> Nat
IntSet.bitmapOf Int
kx
computeBm Nat
_ IntMap a
Nil = [Char] -> Nat
forall a. HasCallStack => [Char] -> a
error [Char]
"Data.IntSet.keysSet: Nil"
fromSet :: (Key -> a) -> IntSet.IntSet -> IntMap a
fromSet :: forall a. (Int -> a) -> IntSet -> IntMap a
fromSet Int -> a
_ IntSet
IntSet.Nil = IntMap a
forall a. IntMap a
Nil
fromSet Int -> a
f (IntSet.Bin Int
p Int
m IntSet
l IntSet
r) = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m ((Int -> a) -> IntSet -> IntMap a
forall a. (Int -> a) -> IntSet -> IntMap a
fromSet Int -> a
f IntSet
l) ((Int -> a) -> IntSet -> IntMap a
forall a. (Int -> a) -> IntSet -> IntMap a
fromSet Int -> a
f IntSet
r)
fromSet Int -> a
f (IntSet.Tip Int
kx Nat
bm) = (Int -> a) -> Int -> Nat -> Int -> IntMap a
forall {a}. (Int -> a) -> Int -> Nat -> Int -> IntMap a
buildTree Int -> a
f Int
kx Nat
bm (Int
IntSet.suffixBitMask Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
1)
where
buildTree :: (Int -> a) -> Int -> Nat -> Int -> IntMap a
buildTree Int -> a
g !Int
prefix !Nat
bmask Int
bits = case Int
bits of
Int
0 -> Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
prefix (Int -> a
g Int
prefix)
Int
_ -> case Nat -> Int
intFromNat ((Int -> Nat
natFromInt Int
bits) Nat -> Int -> Nat
`shiftRL` Int
1) of
Int
bits2
| Nat
bmask Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. ((Nat
1 Nat -> Int -> Nat
`shiftLL` Int
bits2) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0 ->
(Int -> a) -> Int -> Nat -> Int -> IntMap a
buildTree Int -> a
g (Int
prefix Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
bits2) (Nat
bmask Nat -> Int -> Nat
`shiftRL` Int
bits2) Int
bits2
| (Nat
bmask Nat -> Int -> Nat
`shiftRL` Int
bits2) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. ((Nat
1 Nat -> Int -> Nat
`shiftLL` Int
bits2) Nat -> Nat -> Nat
forall a. Num a => a -> a -> a
- Nat
1) Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0 ->
(Int -> a) -> Int -> Nat -> Int -> IntMap a
buildTree Int -> a
g Int
prefix Nat
bmask Int
bits2
| Bool
otherwise ->
Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
prefix Int
bits2
((Int -> a) -> Int -> Nat -> Int -> IntMap a
buildTree Int -> a
g Int
prefix Nat
bmask Int
bits2)
((Int -> a) -> Int -> Nat -> Int -> IntMap a
buildTree Int -> a
g (Int
prefix Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
bits2) (Nat
bmask Nat -> Int -> Nat
`shiftRL` Int
bits2) Int
bits2)
#ifdef __GLASGOW_HASKELL__
instance GHCExts.IsList (IntMap a) where
type Item (IntMap a) = (Key,a)
fromList :: [Item (IntMap a)] -> IntMap a
fromList = [(Int, a)] -> IntMap a
[Item (IntMap a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromList
toList :: IntMap a -> [Item (IntMap a)]
toList = IntMap a -> [(Int, a)]
IntMap a -> [Item (IntMap a)]
forall a. IntMap a -> [(Int, a)]
toList
#endif
toList :: IntMap a -> [(Key,a)]
toList :: forall a. IntMap a -> [(Int, a)]
toList = IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toAscList
toAscList :: IntMap a -> [(Key,a)]
toAscList :: forall a. IntMap a -> [(Int, a)]
toAscList = (Int -> a -> [(Int, a)] -> [(Int, a)])
-> [(Int, a)] -> IntMap a -> [(Int, a)]
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey (\Int
k a
x [(Int, a)]
xs -> (Int
k,a
x)(Int, a) -> [(Int, a)] -> [(Int, a)]
forall a. a -> [a] -> [a]
:[(Int, a)]
xs) []
toDescList :: IntMap a -> [(Key,a)]
toDescList :: forall a. IntMap a -> [(Int, a)]
toDescList = ([(Int, a)] -> Int -> a -> [(Int, a)])
-> [(Int, a)] -> IntMap a -> [(Int, a)]
forall a b. (a -> Int -> b -> a) -> a -> IntMap b -> a
foldlWithKey (\[(Int, a)]
xs Int
k a
x -> (Int
k,a
x)(Int, a) -> [(Int, a)] -> [(Int, a)]
forall a. a -> [a] -> [a]
:[(Int, a)]
xs) []
#if __GLASGOW_HASKELL__
foldrFB :: (Key -> a -> b -> b) -> b -> IntMap a -> b
foldrFB :: forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrFB = (Int -> a -> b -> b) -> b -> IntMap a -> b
forall a b. (Int -> a -> b -> b) -> b -> IntMap a -> b
foldrWithKey
{-# INLINE[0] foldrFB #-}
foldlFB :: (a -> Key -> b -> a) -> a -> IntMap b -> a
foldlFB :: forall a b. (a -> Int -> b -> a) -> a -> IntMap b -> a
foldlFB = (a -> Int -> b -> a) -> a -> IntMap b -> a
forall a b. (a -> Int -> b -> a) -> a -> IntMap b -> a
foldlWithKey
{-# INLINE[0] foldlFB #-}
{-# INLINE assocs #-}
{-# INLINE toList #-}
{-# NOINLINE[0] elems #-}
{-# NOINLINE[0] keys #-}
{-# NOINLINE[0] toAscList #-}
{-# NOINLINE[0] toDescList #-}
{-# RULES "IntMap.elems" [~1] forall m . elems m = build (\c n -> foldrFB (\_ x xs -> c x xs) n m) #-}
{-# RULES "IntMap.elemsBack" [1] foldrFB (\_ x xs -> x : xs) [] = elems #-}
{-# RULES "IntMap.keys" [~1] forall m . keys m = build (\c n -> foldrFB (\k _ xs -> c k xs) n m) #-}
{-# RULES "IntMap.keysBack" [1] foldrFB (\k _ xs -> k : xs) [] = keys #-}
{-# RULES "IntMap.toAscList" [~1] forall m . toAscList m = build (\c n -> foldrFB (\k x xs -> c (k,x) xs) n m) #-}
{-# RULES "IntMap.toAscListBack" [1] foldrFB (\k x xs -> (k, x) : xs) [] = toAscList #-}
{-# RULES "IntMap.toDescList" [~1] forall m . toDescList m = build (\c n -> foldlFB (\xs k x -> c (k,x) xs) n m) #-}
{-# RULES "IntMap.toDescListBack" [1] foldlFB (\xs k x -> (k, x) : xs) [] = toDescList #-}
#endif
fromList :: [(Key,a)] -> IntMap a
fromList :: forall a. [(Int, a)] -> IntMap a
fromList [(Int, a)]
xs
= (IntMap a -> (Int, a) -> IntMap a)
-> IntMap a -> [(Int, a)] -> IntMap a
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' IntMap a -> (Int, a) -> IntMap a
forall {a}. IntMap a -> (Int, a) -> IntMap a
ins IntMap a
forall a. IntMap a
empty [(Int, a)]
xs
where
ins :: IntMap a -> (Int, a) -> IntMap a
ins IntMap a
t (Int
k,a
x) = Int -> a -> IntMap a -> IntMap a
forall a. Int -> a -> IntMap a -> IntMap a
insert Int
k a
x IntMap a
t
fromListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWith :: forall a. (a -> a -> a) -> [(Int, a)] -> IntMap a
fromListWith a -> a -> a
f [(Int, a)]
xs
= (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
forall a. (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromListWithKey (\Int
_ a
x a
y -> a -> a -> a
f a
x a
y) [(Int, a)]
xs
fromListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromListWithKey :: forall a. (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromListWithKey Int -> a -> a -> a
f [(Int, a)]
xs
= (IntMap a -> (Int, a) -> IntMap a)
-> IntMap a -> [(Int, a)] -> IntMap a
forall b a. (b -> a -> b) -> b -> [a] -> b
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
Foldable.foldl' IntMap a -> (Int, a) -> IntMap a
ins IntMap a
forall a. IntMap a
empty [(Int, a)]
xs
where
ins :: IntMap a -> (Int, a) -> IntMap a
ins IntMap a
t (Int
k,a
x) = (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
forall a. (Int -> a -> a -> a) -> Int -> a -> IntMap a -> IntMap a
insertWithKey Int -> a -> a -> a
f Int
k a
x IntMap a
t
fromAscList :: [(Key,a)] -> IntMap a
fromAscList :: forall a. [(Int, a)] -> IntMap a
fromAscList = Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
forall a.
Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromMonoListWithKey Distinct
Nondistinct (\Int
_ a
x a
_ -> a
x)
{-# NOINLINE fromAscList #-}
fromAscListWith :: (a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWith :: forall a. (a -> a -> a) -> [(Int, a)] -> IntMap a
fromAscListWith a -> a -> a
f = Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
forall a.
Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromMonoListWithKey Distinct
Nondistinct (\Int
_ a
x a
y -> a -> a -> a
f a
x a
y)
{-# NOINLINE fromAscListWith #-}
fromAscListWithKey :: (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromAscListWithKey :: forall a. (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromAscListWithKey Int -> a -> a -> a
f = Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
forall a.
Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromMonoListWithKey Distinct
Nondistinct Int -> a -> a -> a
f
{-# NOINLINE fromAscListWithKey #-}
fromDistinctAscList :: [(Key,a)] -> IntMap a
fromDistinctAscList :: forall a. [(Int, a)] -> IntMap a
fromDistinctAscList = Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
forall a.
Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromMonoListWithKey Distinct
Distinct (\Int
_ a
x a
_ -> a
x)
{-# NOINLINE fromDistinctAscList #-}
fromMonoListWithKey :: Distinct -> (Key -> a -> a -> a) -> [(Key,a)] -> IntMap a
fromMonoListWithKey :: forall a.
Distinct -> (Int -> a -> a -> a) -> [(Int, a)] -> IntMap a
fromMonoListWithKey Distinct
distinct Int -> a -> a -> a
f = [(Int, a)] -> IntMap a
go
where
go :: [(Int, a)] -> IntMap a
go [] = IntMap a
forall a. IntMap a
Nil
go ((Int
kx,a
vx) : [(Int, a)]
zs1) = Int -> a -> [(Int, a)] -> IntMap a
addAll' Int
kx a
vx [(Int, a)]
zs1
addAll' :: Int -> a -> [(Int, a)] -> IntMap a
addAll' !Int
kx a
vx []
= Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
kx a
vx
addAll' !Int
kx a
vx ((Int
ky,a
vy) : [(Int, a)]
zs)
| Distinct
Nondistinct <- Distinct
distinct, Int
kx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky
= let v :: a
v = Int -> a -> a -> a
f Int
kx a
vy a
vx in Int -> a -> [(Int, a)] -> IntMap a
addAll' Int
ky a
v [(Int, a)]
zs
| Int
m <- Int -> Int -> Int
branchMask Int
kx Int
ky
, Inserted IntMap a
ty [(Int, a)]
zs' <- Int -> Int -> a -> [(Int, a)] -> Inserted a
addMany' Int
m Int
ky a
vy [(Int, a)]
zs
= Int -> IntMap a -> [(Int, a)] -> IntMap a
addAll Int
kx (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
linkWithMask Int
m Int
ky IntMap a
ty (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
kx a
vx)) [(Int, a)]
zs'
addAll :: Int -> IntMap a -> [(Int, a)] -> IntMap a
addAll !Int
_kx !IntMap a
tx []
= IntMap a
tx
addAll !Int
kx !IntMap a
tx ((Int
ky,a
vy) : [(Int, a)]
zs)
| Int
m <- Int -> Int -> Int
branchMask Int
kx Int
ky
, Inserted IntMap a
ty [(Int, a)]
zs' <- Int -> Int -> a -> [(Int, a)] -> Inserted a
addMany' Int
m Int
ky a
vy [(Int, a)]
zs
= Int -> IntMap a -> [(Int, a)] -> IntMap a
addAll Int
kx (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
linkWithMask Int
m Int
ky IntMap a
ty IntMap a
tx) [(Int, a)]
zs'
addMany' :: Int -> Int -> a -> [(Int, a)] -> Inserted a
addMany' !Int
_m !Int
kx a
vx []
= IntMap a -> [(Int, a)] -> Inserted a
forall a. IntMap a -> [(Int, a)] -> Inserted a
Inserted (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
kx a
vx) []
addMany' !Int
m !Int
kx a
vx zs0 :: [(Int, a)]
zs0@((Int
ky,a
vy) : [(Int, a)]
zs)
| Distinct
Nondistinct <- Distinct
distinct, Int
kx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky
= let v :: a
v = Int -> a -> a -> a
f Int
kx a
vy a
vx in Int -> Int -> a -> [(Int, a)] -> Inserted a
addMany' Int
m Int
ky a
v [(Int, a)]
zs
| Int -> Int -> Int
mask Int
kx Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int -> Int -> Int
mask Int
ky Int
m
= IntMap a -> [(Int, a)] -> Inserted a
forall a. IntMap a -> [(Int, a)] -> Inserted a
Inserted (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
kx a
vx) [(Int, a)]
zs0
| Int
mxy <- Int -> Int -> Int
branchMask Int
kx Int
ky
, Inserted IntMap a
ty [(Int, a)]
zs' <- Int -> Int -> a -> [(Int, a)] -> Inserted a
addMany' Int
mxy Int
ky a
vy [(Int, a)]
zs
= Int -> Int -> IntMap a -> [(Int, a)] -> Inserted a
addMany Int
m Int
kx (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
linkWithMask Int
mxy Int
ky IntMap a
ty (Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
kx a
vx)) [(Int, a)]
zs'
addMany :: Int -> Int -> IntMap a -> [(Int, a)] -> Inserted a
addMany !Int
_m !Int
_kx IntMap a
tx []
= IntMap a -> [(Int, a)] -> Inserted a
forall a. IntMap a -> [(Int, a)] -> Inserted a
Inserted IntMap a
tx []
addMany !Int
m !Int
kx IntMap a
tx zs0 :: [(Int, a)]
zs0@((Int
ky,a
vy) : [(Int, a)]
zs)
| Int -> Int -> Int
mask Int
kx Int
m Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int -> Int -> Int
mask Int
ky Int
m
= IntMap a -> [(Int, a)] -> Inserted a
forall a. IntMap a -> [(Int, a)] -> Inserted a
Inserted IntMap a
tx [(Int, a)]
zs0
| Int
mxy <- Int -> Int -> Int
branchMask Int
kx Int
ky
, Inserted IntMap a
ty [(Int, a)]
zs' <- Int -> Int -> a -> [(Int, a)] -> Inserted a
addMany' Int
mxy Int
ky a
vy [(Int, a)]
zs
= Int -> Int -> IntMap a -> [(Int, a)] -> Inserted a
addMany Int
m Int
kx (Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
linkWithMask Int
mxy Int
ky IntMap a
ty IntMap a
tx) [(Int, a)]
zs'
{-# INLINE fromMonoListWithKey #-}
data Inserted a = Inserted !(IntMap a) ![(Key,a)]
data Distinct = Distinct | Nondistinct
instance Eq a => Eq (IntMap a) where
IntMap a
t1 == :: IntMap a -> IntMap a -> Bool
== IntMap a
t2 = IntMap a -> IntMap a -> Bool
forall a. Eq a => IntMap a -> IntMap a -> Bool
equal IntMap a
t1 IntMap a
t2
IntMap a
t1 /= :: IntMap a -> IntMap a -> Bool
/= IntMap a
t2 = IntMap a -> IntMap a -> Bool
forall a. Eq a => IntMap a -> IntMap a -> Bool
nequal IntMap a
t1 IntMap a
t2
equal :: Eq a => IntMap a -> IntMap a -> Bool
equal :: forall a. Eq a => IntMap a -> IntMap a -> Bool
equal (Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) (Bin Int
p2 Int
m2 IntMap a
l2 IntMap a
r2)
= (Int
m1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
m2) Bool -> Bool -> Bool
&& (Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2) Bool -> Bool -> Bool
&& (IntMap a -> IntMap a -> Bool
forall a. Eq a => IntMap a -> IntMap a -> Bool
equal IntMap a
l1 IntMap a
l2) Bool -> Bool -> Bool
&& (IntMap a -> IntMap a -> Bool
forall a. Eq a => IntMap a -> IntMap a -> Bool
equal IntMap a
r1 IntMap a
r2)
equal (Tip Int
kx a
x) (Tip Int
ky a
y)
= (Int
kx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky) Bool -> Bool -> Bool
&& (a
xa -> a -> Bool
forall a. Eq a => a -> a -> Bool
==a
y)
equal IntMap a
Nil IntMap a
Nil = Bool
True
equal IntMap a
_ IntMap a
_ = Bool
False
nequal :: Eq a => IntMap a -> IntMap a -> Bool
nequal :: forall a. Eq a => IntMap a -> IntMap a -> Bool
nequal (Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) (Bin Int
p2 Int
m2 IntMap a
l2 IntMap a
r2)
= (Int
m1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
m2) Bool -> Bool -> Bool
|| (Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
p2) Bool -> Bool -> Bool
|| (IntMap a -> IntMap a -> Bool
forall a. Eq a => IntMap a -> IntMap a -> Bool
nequal IntMap a
l1 IntMap a
l2) Bool -> Bool -> Bool
|| (IntMap a -> IntMap a -> Bool
forall a. Eq a => IntMap a -> IntMap a -> Bool
nequal IntMap a
r1 IntMap a
r2)
nequal (Tip Int
kx a
x) (Tip Int
ky a
y)
= (Int
kx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
ky) Bool -> Bool -> Bool
|| (a
xa -> a -> Bool
forall a. Eq a => a -> a -> Bool
/=a
y)
nequal IntMap a
Nil IntMap a
Nil = Bool
False
nequal IntMap a
_ IntMap a
_ = Bool
True
instance Eq1 IntMap where
liftEq :: forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
liftEq a -> b -> Bool
eq (Bin Int
p1 Int
m1 IntMap a
l1 IntMap a
r1) (Bin Int
p2 Int
m2 IntMap b
l2 IntMap b
r2)
= (Int
m1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
m2) Bool -> Bool -> Bool
&& (Int
p1 Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p2) Bool -> Bool -> Bool
&& ((a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq a -> b -> Bool
eq IntMap a
l1 IntMap b
l2) Bool -> Bool -> Bool
&& ((a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall a b. (a -> b -> Bool) -> IntMap a -> IntMap b -> Bool
forall (f :: * -> *) a b.
Eq1 f =>
(a -> b -> Bool) -> f a -> f b -> Bool
liftEq a -> b -> Bool
eq IntMap a
r1 IntMap b
r2)
liftEq a -> b -> Bool
eq (Tip Int
kx a
x) (Tip Int
ky b
y)
= (Int
kx Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
ky) Bool -> Bool -> Bool
&& (a -> b -> Bool
eq a
x b
y)
liftEq a -> b -> Bool
_eq IntMap a
Nil IntMap b
Nil = Bool
True
liftEq a -> b -> Bool
_eq IntMap a
_ IntMap b
_ = Bool
False
instance Ord a => Ord (IntMap a) where
compare :: IntMap a -> IntMap a -> Ordering
compare IntMap a
m1 IntMap a
m2 = [(Int, a)] -> [(Int, a)] -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toList IntMap a
m1) (IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toList IntMap a
m2)
instance Ord1 IntMap where
liftCompare :: forall a b.
(a -> b -> Ordering) -> IntMap a -> IntMap b -> Ordering
liftCompare a -> b -> Ordering
cmp IntMap a
m IntMap b
n =
((Int, a) -> (Int, b) -> Ordering)
-> [(Int, a)] -> [(Int, b)] -> Ordering
forall a b. (a -> b -> Ordering) -> [a] -> [b] -> Ordering
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare ((a -> b -> Ordering) -> (Int, a) -> (Int, b) -> Ordering
forall a b.
(a -> b -> Ordering) -> (Int, a) -> (Int, b) -> Ordering
forall (f :: * -> *) a b.
Ord1 f =>
(a -> b -> Ordering) -> f a -> f b -> Ordering
liftCompare a -> b -> Ordering
cmp) (IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toList IntMap a
m) (IntMap b -> [(Int, b)]
forall a. IntMap a -> [(Int, a)]
toList IntMap b
n)
instance Functor IntMap where
fmap :: forall a b. (a -> b) -> IntMap a -> IntMap b
fmap = (a -> b) -> IntMap a -> IntMap b
forall a b. (a -> b) -> IntMap a -> IntMap b
map
#ifdef __GLASGOW_HASKELL__
a
a <$ :: forall a b. a -> IntMap b -> IntMap a
<$ Bin Int
p Int
m IntMap b
l IntMap b
r = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m (a
a a -> IntMap b -> IntMap a
forall a b. a -> IntMap b -> IntMap a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ IntMap b
l) (a
a a -> IntMap b -> IntMap a
forall a b. a -> IntMap b -> IntMap a
forall (f :: * -> *) a b. Functor f => a -> f b -> f a
<$ IntMap b
r)
a
a <$ Tip Int
k b
_ = Int -> a -> IntMap a
forall a. Int -> a -> IntMap a
Tip Int
k a
a
a
_ <$ IntMap b
Nil = IntMap a
forall a. IntMap a
Nil
#endif
instance Show a => Show (IntMap a) where
showsPrec :: Int -> IntMap a -> [Char] -> [Char]
showsPrec Int
d IntMap a
m = Bool -> ([Char] -> [Char]) -> [Char] -> [Char]
showParen (Int
d Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
10) (([Char] -> [Char]) -> [Char] -> [Char])
-> ([Char] -> [Char]) -> [Char] -> [Char]
forall a b. (a -> b) -> a -> b
$
[Char] -> [Char] -> [Char]
showString [Char]
"fromList " ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(Int, a)] -> [Char] -> [Char]
forall a. Show a => a -> [Char] -> [Char]
shows (IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toList IntMap a
m)
instance Show1 IntMap where
liftShowsPrec :: forall a.
(Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> Int -> IntMap a -> [Char] -> [Char]
liftShowsPrec Int -> a -> [Char] -> [Char]
sp [a] -> [Char] -> [Char]
sl Int
d IntMap a
m =
(Int -> [(Int, a)] -> [Char] -> [Char])
-> [Char] -> Int -> [(Int, a)] -> [Char] -> [Char]
forall a.
(Int -> a -> [Char] -> [Char])
-> [Char] -> Int -> a -> [Char] -> [Char]
showsUnaryWith ((Int -> (Int, a) -> [Char] -> [Char])
-> ([(Int, a)] -> [Char] -> [Char])
-> Int
-> [(Int, a)]
-> [Char]
-> [Char]
forall a.
(Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> Int -> [a] -> [Char] -> [Char]
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> Int -> f a -> [Char] -> [Char]
liftShowsPrec Int -> (Int, a) -> [Char] -> [Char]
sp' [(Int, a)] -> [Char] -> [Char]
sl') [Char]
"fromList" Int
d (IntMap a -> [(Int, a)]
forall a. IntMap a -> [(Int, a)]
toList IntMap a
m)
where
sp' :: Int -> (Int, a) -> [Char] -> [Char]
sp' = (Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> Int -> (Int, a) -> [Char] -> [Char]
forall a.
(Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> Int -> (Int, a) -> [Char] -> [Char]
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> Int -> f a -> [Char] -> [Char]
liftShowsPrec Int -> a -> [Char] -> [Char]
sp [a] -> [Char] -> [Char]
sl
sl' :: [(Int, a)] -> [Char] -> [Char]
sl' = (Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> [(Int, a)] -> [Char] -> [Char]
forall a.
(Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> [(Int, a)] -> [Char] -> [Char]
forall (f :: * -> *) a.
Show1 f =>
(Int -> a -> [Char] -> [Char])
-> ([a] -> [Char] -> [Char]) -> [f a] -> [Char] -> [Char]
liftShowList Int -> a -> [Char] -> [Char]
sp [a] -> [Char] -> [Char]
sl
instance (Read e) => Read (IntMap e) where
#ifdef __GLASGOW_HASKELL__
readPrec :: ReadPrec (IntMap e)
readPrec = ReadPrec (IntMap e) -> ReadPrec (IntMap e)
forall a. ReadPrec a -> ReadPrec a
parens (ReadPrec (IntMap e) -> ReadPrec (IntMap e))
-> ReadPrec (IntMap e) -> ReadPrec (IntMap e)
forall a b. (a -> b) -> a -> b
$ Int -> ReadPrec (IntMap e) -> ReadPrec (IntMap e)
forall a. Int -> ReadPrec a -> ReadPrec a
prec Int
10 (ReadPrec (IntMap e) -> ReadPrec (IntMap e))
-> ReadPrec (IntMap e) -> ReadPrec (IntMap e)
forall a b. (a -> b) -> a -> b
$ do
Ident [Char]
"fromList" <- ReadPrec Lexeme
lexP
[(Int, e)]
xs <- ReadPrec [(Int, e)]
forall a. Read a => ReadPrec a
readPrec
IntMap e -> ReadPrec (IntMap e)
forall a. a -> ReadPrec a
forall (m :: * -> *) a. Monad m => a -> m a
return ([(Int, e)] -> IntMap e
forall a. [(Int, a)] -> IntMap a
fromList [(Int, e)]
xs)
readListPrec :: ReadPrec [IntMap e]
readListPrec = ReadPrec [IntMap e]
forall a. Read a => ReadPrec [a]
readListPrecDefault
#else
readsPrec p = readParen (p > 10) $ \ r -> do
("fromList",s) <- lex r
(xs,t) <- reads s
return (fromList xs,t)
#endif
instance Read1 IntMap where
liftReadsPrec :: forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (IntMap a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl = ([Char] -> ReadS (IntMap a)) -> Int -> ReadS (IntMap a)
forall a. ([Char] -> ReadS a) -> Int -> ReadS a
readsData (([Char] -> ReadS (IntMap a)) -> Int -> ReadS (IntMap a))
-> ([Char] -> ReadS (IntMap a)) -> Int -> ReadS (IntMap a)
forall a b. (a -> b) -> a -> b
$
(Int -> ReadS [(Int, a)])
-> [Char] -> ([(Int, a)] -> IntMap a) -> [Char] -> ReadS (IntMap a)
forall a t.
(Int -> ReadS a) -> [Char] -> (a -> t) -> [Char] -> ReadS t
readsUnaryWith ((Int -> ReadS (Int, a))
-> ReadS [(Int, a)] -> Int -> ReadS [(Int, a)]
forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS [a]
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS (Int, a)
rp' ReadS [(Int, a)]
rl') [Char]
"fromList" [(Int, a)] -> IntMap a
forall a. [(Int, a)] -> IntMap a
fromList
where
rp' :: Int -> ReadS (Int, a)
rp' = (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Int, a)
forall a. (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Int, a)
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (f a)
liftReadsPrec Int -> ReadS a
rp ReadS [a]
rl
rl' :: ReadS [(Int, a)]
rl' = (Int -> ReadS a) -> ReadS [a] -> ReadS [(Int, a)]
forall a. (Int -> ReadS a) -> ReadS [a] -> ReadS [(Int, a)]
forall (f :: * -> *) a.
Read1 f =>
(Int -> ReadS a) -> ReadS [a] -> ReadS [f a]
liftReadList Int -> ReadS a
rp ReadS [a]
rl
link :: Prefix -> IntMap a -> Prefix -> IntMap a -> IntMap a
link :: forall a. Int -> IntMap a -> Int -> IntMap a -> IntMap a
link Int
p1 IntMap a
t1 Int
p2 IntMap a
t2 = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
linkWithMask (Int -> Int -> Int
branchMask Int
p1 Int
p2) Int
p1 IntMap a
t1 IntMap a
t2
{-# INLINE link #-}
linkWithMask :: Mask -> Prefix -> IntMap a -> IntMap a -> IntMap a
linkWithMask :: forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
linkWithMask Int
m Int
p1 IntMap a
t1 IntMap a
t2
| Int -> Int -> Bool
zero Int
p1 Int
m = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
t1 IntMap a
t2
| Bool
otherwise = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
t2 IntMap a
t1
where
p :: Int
p = Int -> Int -> Int
mask Int
p1 Int
m
{-# INLINE linkWithMask #-}
bin :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a
bin :: forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
bin Int
_ Int
_ IntMap a
l IntMap a
Nil = IntMap a
l
bin Int
_ Int
_ IntMap a
Nil IntMap a
r = IntMap a
r
bin Int
p Int
m IntMap a
l IntMap a
r = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l IntMap a
r
{-# INLINE bin #-}
binCheckLeft :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a
binCheckLeft :: forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckLeft Int
_ Int
_ IntMap a
Nil IntMap a
r = IntMap a
r
binCheckLeft Int
p Int
m IntMap a
l IntMap a
r = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l IntMap a
r
{-# INLINE binCheckLeft #-}
binCheckRight :: Prefix -> Mask -> IntMap a -> IntMap a -> IntMap a
binCheckRight :: forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
binCheckRight Int
_ Int
_ IntMap a
l IntMap a
Nil = IntMap a
l
binCheckRight Int
p Int
m IntMap a
l IntMap a
r = Int -> Int -> IntMap a -> IntMap a -> IntMap a
forall a. Int -> Int -> IntMap a -> IntMap a -> IntMap a
Bin Int
p Int
m IntMap a
l IntMap a
r
{-# INLINE binCheckRight #-}
zero :: Key -> Mask -> Bool
zero :: Int -> Int -> Bool
zero Int
i Int
m
= (Int -> Nat
natFromInt Int
i) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. (Int -> Nat
natFromInt Int
m) Nat -> Nat -> Bool
forall a. Eq a => a -> a -> Bool
== Nat
0
{-# INLINE zero #-}
nomatch,match :: Key -> Prefix -> Mask -> Bool
nomatch :: Int -> Int -> Int -> Bool
nomatch Int
i Int
p Int
m
= (Int -> Int -> Int
mask Int
i Int
m) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= Int
p
{-# INLINE nomatch #-}
match :: Int -> Int -> Int -> Bool
match Int
i Int
p Int
m
= (Int -> Int -> Int
mask Int
i Int
m) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
p
{-# INLINE match #-}
mask :: Key -> Mask -> Prefix
mask :: Int -> Int -> Int
mask Int
i Int
m
= Nat -> Nat -> Int
maskW (Int -> Nat
natFromInt Int
i) (Int -> Nat
natFromInt Int
m)
{-# INLINE mask #-}
maskW :: Nat -> Nat -> Prefix
maskW :: Nat -> Nat -> Int
maskW Nat
i Nat
m
= Nat -> Int
intFromNat (Nat
i Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
.&. ((-Nat
m) Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Nat
m))
{-# INLINE maskW #-}
shorter :: Mask -> Mask -> Bool
shorter :: Int -> Int -> Bool
shorter Int
m1 Int
m2
= (Int -> Nat
natFromInt Int
m1) Nat -> Nat -> Bool
forall a. Ord a => a -> a -> Bool
> (Int -> Nat
natFromInt Int
m2)
{-# INLINE shorter #-}
branchMask :: Prefix -> Prefix -> Mask
branchMask :: Int -> Int -> Int
branchMask Int
p1 Int
p2
= Nat -> Int
intFromNat (Nat -> Nat
highestBitMask (Int -> Nat
natFromInt Int
p1 Nat -> Nat -> Nat
forall a. Bits a => a -> a -> a
`xor` Int -> Nat
natFromInt Int
p2))
{-# INLINE branchMask #-}
splitRoot :: IntMap a -> [IntMap a]
splitRoot :: forall a. IntMap a -> [IntMap a]
splitRoot IntMap a
orig =
case IntMap a
orig of
IntMap a
Nil -> []
x :: IntMap a
x@(Tip Int
_ a
_) -> [IntMap a
x]
Bin Int
_ Int
m IntMap a
l IntMap a
r | Int
m Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 -> [IntMap a
r, IntMap a
l]
| Bool
otherwise -> [IntMap a
l, IntMap a
r]
{-# INLINE splitRoot #-}
showTree :: Show a => IntMap a -> String
showTree :: forall a. Show a => IntMap a -> [Char]
showTree IntMap a
s
= Bool -> Bool -> IntMap a -> [Char]
forall a. Show a => Bool -> Bool -> IntMap a -> [Char]
showTreeWith Bool
True Bool
False IntMap a
s
showTreeWith :: Show a => Bool -> Bool -> IntMap a -> String
showTreeWith :: forall a. Show a => Bool -> Bool -> IntMap a -> [Char]
showTreeWith Bool
hang Bool
wide IntMap a
t
| Bool
hang = (Bool -> [[Char]] -> IntMap a -> [Char] -> [Char]
forall a.
Show a =>
Bool -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTreeHang Bool
wide [] IntMap a
t) [Char]
""
| Bool
otherwise = (Bool -> [[Char]] -> [[Char]] -> IntMap a -> [Char] -> [Char]
forall a.
Show a =>
Bool -> [[Char]] -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTree Bool
wide [] [] IntMap a
t) [Char]
""
showsTree :: Show a => Bool -> [String] -> [String] -> IntMap a -> ShowS
showsTree :: forall a.
Show a =>
Bool -> [[Char]] -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTree Bool
wide [[Char]]
lbars [[Char]]
rbars IntMap a
t = case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r ->
Bool -> [[Char]] -> [[Char]] -> IntMap a -> [Char] -> [Char]
forall a.
Show a =>
Bool -> [[Char]] -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTree Bool
wide ([[Char]] -> [[Char]]
withBar [[Char]]
rbars) ([[Char]] -> [[Char]]
withEmpty [[Char]]
rbars) IntMap a
r ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> [Char] -> [Char]
showWide Bool
wide [[Char]]
rbars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
[[Char]] -> [Char] -> [Char]
showsBars [[Char]]
lbars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString (Int -> Int -> [Char]
showBin Int
p Int
m) ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
"\n" ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> [Char] -> [Char]
showWide Bool
wide [[Char]]
lbars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> [[Char]] -> IntMap a -> [Char] -> [Char]
forall a.
Show a =>
Bool -> [[Char]] -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTree Bool
wide ([[Char]] -> [[Char]]
withEmpty [[Char]]
lbars) ([[Char]] -> [[Char]]
withBar [[Char]]
lbars) IntMap a
l
Tip Int
k a
x ->
[[Char]] -> [Char] -> [Char]
showsBars [[Char]]
lbars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
[Char] -> [Char] -> [Char]
showString [Char]
" " ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> [Char] -> [Char]
forall a. Show a => a -> [Char] -> [Char]
shows Int
k ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
":=" ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> [Char] -> [Char]
forall a. Show a => a -> [Char] -> [Char]
shows a
x ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
"\n"
IntMap a
Nil -> [[Char]] -> [Char] -> [Char]
showsBars [[Char]]
lbars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
"|\n"
showsTreeHang :: Show a => Bool -> [String] -> IntMap a -> ShowS
showsTreeHang :: forall a.
Show a =>
Bool -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTreeHang Bool
wide [[Char]]
bars IntMap a
t = case IntMap a
t of
Bin Int
p Int
m IntMap a
l IntMap a
r ->
[[Char]] -> [Char] -> [Char]
showsBars [[Char]]
bars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString (Int -> Int -> [Char]
showBin Int
p Int
m) ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
"\n" ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> [Char] -> [Char]
showWide Bool
wide [[Char]]
bars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> IntMap a -> [Char] -> [Char]
forall a.
Show a =>
Bool -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTreeHang Bool
wide ([[Char]] -> [[Char]]
withBar [[Char]]
bars) IntMap a
l ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> [Char] -> [Char]
showWide Bool
wide [[Char]]
bars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
Bool -> [[Char]] -> IntMap a -> [Char] -> [Char]
forall a.
Show a =>
Bool -> [[Char]] -> IntMap a -> [Char] -> [Char]
showsTreeHang Bool
wide ([[Char]] -> [[Char]]
withEmpty [[Char]]
bars) IntMap a
r
Tip Int
k a
x ->
[[Char]] -> [Char] -> [Char]
showsBars [[Char]]
bars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
[Char] -> [Char] -> [Char]
showString [Char]
" " ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> [Char] -> [Char]
forall a. Show a => a -> [Char] -> [Char]
shows Int
k ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
":=" ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> [Char] -> [Char]
forall a. Show a => a -> [Char] -> [Char]
shows a
x ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
"\n"
IntMap a
Nil -> [[Char]] -> [Char] -> [Char]
showsBars [[Char]]
bars ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
"|\n"
showBin :: Prefix -> Mask -> String
showBin :: Int -> Int -> [Char]
showBin Int
_ Int
_
= [Char]
"*"
showWide :: Bool -> [String] -> String -> String
showWide :: Bool -> [[Char]] -> [Char] -> [Char]
showWide Bool
wide [[Char]]
bars
| Bool
wide = [Char] -> [Char] -> [Char]
showString ([[Char]] -> [Char]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[Char]] -> [[Char]]
forall a. [a] -> [a]
reverse [[Char]]
bars)) ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
"|\n"
| Bool
otherwise = [Char] -> [Char]
forall a. a -> a
id
showsBars :: [String] -> ShowS
showsBars :: [[Char]] -> [Char] -> [Char]
showsBars [[Char]]
bars
= case [[Char]]
bars of
[] -> [Char] -> [Char]
forall a. a -> a
id
[Char]
_ : [[Char]]
tl -> [Char] -> [Char] -> [Char]
showString ([[Char]] -> [Char]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[Char]] -> [[Char]]
forall a. [a] -> [a]
reverse [[Char]]
tl)) ([Char] -> [Char]) -> ([Char] -> [Char]) -> [Char] -> [Char]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Char] -> [Char] -> [Char]
showString [Char]
node
node :: String
node :: [Char]
node = [Char]
"+--"
withBar, withEmpty :: [String] -> [String]
withBar :: [[Char]] -> [[Char]]
withBar [[Char]]
bars = [Char]
"| "[Char] -> [[Char]] -> [[Char]]
forall a. a -> [a] -> [a]
:[[Char]]
bars
withEmpty :: [[Char]] -> [[Char]]
withEmpty [[Char]]
bars = [Char]
" "[Char] -> [[Char]] -> [[Char]]
forall a. a -> [a] -> [a]
:[[Char]]
bars