| ||||||||
| ||||||||
Description | ||||||||
Manipulate ByteStrings using Char operations. All Chars will be truncated to 8 bits. It can be expected that these functions will run at identical speeds to their Word8 equivalents in Data.ByteString. More specifically these byte strings are taken to be in the subset of Unicode covered by code points 0-255. This covers Unicode Basic Latin, Latin-1 Supplement and C0+C1 Controls. See:
This module is intended to be imported qualified, to avoid name clashes with Prelude functions. eg. import qualified Data.ByteString.Char8 as B | ||||||||
Synopsis | ||||||||
The ByteString type | ||||||||
data ByteString | ||||||||
| ||||||||
Introducing and eliminating ByteStrings | ||||||||
empty :: ByteString | ||||||||
O(1) The empty ByteString | ||||||||
singleton :: Char -> ByteString | ||||||||
O(1) Convert a Char into a ByteString | ||||||||
pack :: String -> ByteString | ||||||||
O(n) Convert a String into a ByteString For applications with large numbers of string literals, pack can be a bottleneck. In such cases, consider using packAddress (GHC only). | ||||||||
unpack :: ByteString -> [Char] | ||||||||
O(n) Converts a ByteString to a String. | ||||||||
Basic interface | ||||||||
cons :: Char -> ByteString -> ByteString | ||||||||
O(n) cons is analogous to (:) for lists, but of different complexity, as it requires a memcpy. | ||||||||
snoc :: ByteString -> Char -> ByteString | ||||||||
O(n) Append a Char to the end of a ByteString. Similar to cons, this function performs a memcpy. | ||||||||
append :: ByteString -> ByteString -> ByteString | ||||||||
O(n) Append two ByteStrings | ||||||||
head :: ByteString -> Char | ||||||||
O(1) Extract the first element of a ByteString, which must be non-empty. | ||||||||
last :: ByteString -> Char | ||||||||
O(1) Extract the last element of a packed string, which must be non-empty. | ||||||||
tail :: ByteString -> ByteString | ||||||||
O(1) Extract the elements after the head of a ByteString, which must be non-empty. An exception will be thrown in the case of an empty ByteString. | ||||||||
init :: ByteString -> ByteString | ||||||||
O(1) Return all the elements of a ByteString except the last one. An exception will be thrown in the case of an empty ByteString. | ||||||||
null :: ByteString -> Bool | ||||||||
O(1) Test whether a ByteString is empty. | ||||||||
length :: ByteString -> Int | ||||||||
O(1) length returns the length of a ByteString as an Int. | ||||||||
Transformating ByteStrings | ||||||||
map :: (Char -> Char) -> ByteString -> ByteString | ||||||||
O(n) map f xs is the ByteString obtained by applying f to each element of xs | ||||||||
reverse :: ByteString -> ByteString | ||||||||
O(n) reverse xs efficiently returns the elements of xs in reverse order. | ||||||||
intersperse :: Char -> ByteString -> ByteString | ||||||||
O(n) The intersperse function takes a Char and a ByteString and `intersperses' that Char between the elements of the ByteString. It is analogous to the intersperse function on Lists. | ||||||||
transpose :: [ByteString] -> [ByteString] | ||||||||
The transpose function transposes the rows and columns of its ByteString argument. | ||||||||
Reducing ByteStrings (folds) | ||||||||
foldl :: (a -> Char -> a) -> a -> ByteString -> a | ||||||||
foldl, applied to a binary operator, a starting value (typically the left-identity of the operator), and a ByteString, reduces the ByteString using the binary operator, from left to right. | ||||||||
foldl' :: (a -> Char -> a) -> a -> ByteString -> a | ||||||||
foldl is like foldl, but strict in the accumulator. | ||||||||
foldl1 :: (Char -> Char -> Char) -> ByteString -> Char | ||||||||
foldl1 is a variant of foldl that has no starting value argument, and thus must be applied to non-empty ByteStrings. | ||||||||
foldl1' :: (Char -> Char -> Char) -> ByteString -> Char | ||||||||
A strict version of foldl1 | ||||||||
foldr :: (Char -> a -> a) -> a -> ByteString -> a | ||||||||
foldr, applied to a binary operator, a starting value (typically the right-identity of the operator), and a packed string, reduces the packed string using the binary operator, from right to left. | ||||||||
foldr' :: (Char -> a -> a) -> a -> ByteString -> a | ||||||||
foldr is a strict variant of foldr | ||||||||
foldr1 :: (Char -> Char -> Char) -> ByteString -> Char | ||||||||
foldr1 is a variant of foldr that has no starting value argument, and thus must be applied to non-empty ByteStrings | ||||||||
foldr1' :: (Char -> Char -> Char) -> ByteString -> Char | ||||||||
A strict variant of foldr1 | ||||||||
Special folds | ||||||||
concat :: [ByteString] -> ByteString | ||||||||
O(n) Concatenate a list of ByteStrings. | ||||||||
concatMap :: (Char -> ByteString) -> ByteString -> ByteString | ||||||||
Map a function over a ByteString and concatenate the results | ||||||||
any :: (Char -> Bool) -> ByteString -> Bool | ||||||||
Applied to a predicate and a ByteString, any determines if any element of the ByteString satisfies the predicate. | ||||||||
all :: (Char -> Bool) -> ByteString -> Bool | ||||||||
Applied to a predicate and a ByteString, all determines if all elements of the ByteString satisfy the predicate. | ||||||||
maximum :: ByteString -> Char | ||||||||
maximum returns the maximum value from a ByteString | ||||||||
minimum :: ByteString -> Char | ||||||||
minimum returns the minimum value from a ByteString | ||||||||
Building ByteStrings | ||||||||
Scans | ||||||||
scanl :: (Char -> Char -> Char) -> Char -> ByteString -> ByteString | ||||||||
scanl is similar to foldl, but returns a list of successive reduced values from the left: scanl f z [x1, x2, ...] == [z, z `f` x1, (z `f` x1) `f` x2, ...] Note that last (scanl f z xs) == foldl f z xs. | ||||||||
scanl1 :: (Char -> Char -> Char) -> ByteString -> ByteString | ||||||||
scanl1 is a variant of scanl that has no starting value argument: scanl1 f [x1, x2, ...] == [x1, x1 `f` x2, ...] | ||||||||
scanr :: (Char -> Char -> Char) -> Char -> ByteString -> ByteString | ||||||||
scanr is the right-to-left dual of scanl. | ||||||||
scanr1 :: (Char -> Char -> Char) -> ByteString -> ByteString | ||||||||
scanr1 is a variant of scanr that has no starting value argument. | ||||||||
Accumulating maps | ||||||||
mapAccumL :: (acc -> Char -> (acc, Char)) -> acc -> ByteString -> (acc, ByteString) | ||||||||
The mapAccumL function behaves like a combination of map and foldl; it applies a function to each element of a ByteString, passing an accumulating parameter from left to right, and returning a final value of this accumulator together with the new list. | ||||||||
mapAccumR :: (acc -> Char -> (acc, Char)) -> acc -> ByteString -> (acc, ByteString) | ||||||||
The mapAccumR function behaves like a combination of map and foldr; it applies a function to each element of a ByteString, passing an accumulating parameter from right to left, and returning a final value of this accumulator together with the new ByteString. | ||||||||
mapIndexed :: (Int -> Char -> Char) -> ByteString -> ByteString | ||||||||
O(n) map Char functions, provided with the index at each position | ||||||||
Generating and unfolding ByteStrings | ||||||||
replicate :: Int -> Char -> ByteString | ||||||||
O(n) replicate n x is a ByteString of length n with x the value of every element. The following holds: replicate w c = unfoldr w (\u -> Just (u,u)) c This implemenation uses memset(3) | ||||||||
unfoldr :: (a -> Maybe (Char, a)) -> a -> ByteString | ||||||||
O(n), where n is the length of the result. The unfoldr function is analogous to the List 'unfoldr'. unfoldr builds a ByteString from a seed value. The function takes the element and returns Nothing if it is done producing the ByteString or returns Just (a,b), in which case, a is the next character in the string, and b is the seed value for further production. Examples: unfoldr (\x -> if x <= '9' then Just (x, succ x) else Nothing) '0' == "0123456789" | ||||||||
unfoldrN :: Int -> (a -> Maybe (Char, a)) -> a -> (ByteString, Maybe a) | ||||||||
O(n) Like unfoldr, unfoldrN builds a ByteString from a seed value. However, the length of the result is limited by the first argument to unfoldrN. This function is more efficient than unfoldr when the maximum length of the result is known. The following equation relates unfoldrN and unfoldr: unfoldrN n f s == take n (unfoldr f s) | ||||||||
Substrings | ||||||||
Breaking strings | ||||||||
take :: Int -> ByteString -> ByteString | ||||||||
O(1) take n, applied to a ByteString xs, returns the prefix of xs of length n, or xs itself if n > length xs. | ||||||||
drop :: Int -> ByteString -> ByteString | ||||||||
O(1) drop n xs returns the suffix of xs after the first n elements, or [] if n > length xs. | ||||||||
splitAt :: Int -> ByteString -> (ByteString, ByteString) | ||||||||
O(1) splitAt n xs is equivalent to (take n xs, drop n xs). | ||||||||
takeWhile :: (Char -> Bool) -> ByteString -> ByteString | ||||||||
takeWhile, applied to a predicate p and a ByteString xs, returns the longest prefix (possibly empty) of xs of elements that satisfy p. | ||||||||
dropWhile :: (Char -> Bool) -> ByteString -> ByteString | ||||||||
dropWhile p xs returns the suffix remaining after takeWhile p xs. | ||||||||
span :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) | ||||||||
span p xs breaks the ByteString into two segments. It is equivalent to (takeWhile p xs, dropWhile p xs) | ||||||||
spanEnd :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) | ||||||||
spanEnd behaves like span but from the end of the ByteString. We have spanEnd (not.isSpace) "x y z" == ("x y ","z") and spanEnd (not . isSpace) ps == let (x,y) = span (not.isSpace) (reverse ps) in (reverse y, reverse x) | ||||||||
break :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) | ||||||||
break p is equivalent to span (not . p). | ||||||||
breakEnd :: (Char -> Bool) -> ByteString -> (ByteString, ByteString) | ||||||||
breakEnd behaves like break but from the end of the ByteString breakEnd p == spanEnd (not.p) | ||||||||
group :: ByteString -> [ByteString] | ||||||||
The group function takes a ByteString and returns a list of ByteStrings such that the concatenation of the result is equal to the argument. Moreover, each sublist in the result contains only equal elements. For example, group "Mississippi" = ["M","i","ss","i","ss","i","pp","i"] It is a special case of groupBy, which allows the programmer to supply their own equality test. It is about 40% faster than groupBy (==) | ||||||||
groupBy :: (Char -> Char -> Bool) -> ByteString -> [ByteString] | ||||||||
The groupBy function is the non-overloaded version of group. | ||||||||
inits :: ByteString -> [ByteString] | ||||||||
O(n) Return all initial segments of the given ByteString, shortest first. | ||||||||
tails :: ByteString -> [ByteString] | ||||||||
O(n) Return all final segments of the given ByteString, longest first. | ||||||||
Breaking into many substrings | ||||||||
split :: Char -> ByteString -> [ByteString] | ||||||||
O(n) Break a ByteString into pieces separated by the byte argument, consuming the delimiter. I.e. split '\n' "a\nb\nd\ne" == ["a","b","d","e"] split 'a' "aXaXaXa" == ["","X","X","X"] split 'x' "x" == ["",""] and join [c] . split c == id split == splitWith . (==) As for all splitting functions in this library, this function does not copy the substrings, it just constructs new ByteStrings that are slices of the original. | ||||||||
splitWith :: (Char -> Bool) -> ByteString -> [ByteString] | ||||||||
O(n) Splits a ByteString into components delimited by separators, where the predicate returns True for a separator element. The resulting components do not contain the separators. Two adjacent separators result in an empty component in the output. eg. splitWith (=='a') "aabbaca" == ["","","bb","c",""] | ||||||||
Breaking into lines and words | ||||||||
lines :: ByteString -> [ByteString] | ||||||||
lines breaks a ByteString up into a list of ByteStrings at newline Chars. The resulting strings do not contain newlines. | ||||||||
words :: ByteString -> [ByteString] | ||||||||
words breaks a ByteString up into a list of words, which were delimited by Chars representing white space. And tokens isSpace = words | ||||||||
unlines :: [ByteString] -> ByteString | ||||||||
unlines is an inverse operation to lines. It joins lines, after appending a terminating newline to each. | ||||||||
unwords :: [ByteString] -> ByteString | ||||||||
The unwords function is analogous to the unlines function, on words. | ||||||||
Joining strings | ||||||||
join :: ByteString -> [ByteString] -> ByteString | ||||||||
O(n) The join function takes a ByteString and a list of ByteStrings and concatenates the list after interspersing the first argument between each element of the list. | ||||||||
Searching for substrings | ||||||||
isPrefixOf :: ByteString -> ByteString -> Bool | ||||||||
O(n) The isPrefixOf function takes two ByteStrings and returns True iff the first is a prefix of the second. | ||||||||
isSuffixOf :: ByteString -> ByteString -> Bool | ||||||||
O(n) The isSuffixOf function takes two ByteStrings and returns True iff the first is a suffix of the second. The following holds: isSuffixOf x y == reverse x `isPrefixOf` reverse y However, the real implemenation uses memcmp to compare the end of the string only, with no reverse required.. | ||||||||
isSubstringOf | ||||||||
| ||||||||
findSubstring | ||||||||
| ||||||||
findSubstrings | ||||||||
| ||||||||
Searching ByteStrings | ||||||||
Searching by equality | ||||||||
elem :: Char -> ByteString -> Bool | ||||||||
O(n) elem is the ByteString membership predicate. This implementation uses memchr(3). | ||||||||
notElem :: Char -> ByteString -> Bool | ||||||||
O(n) notElem is the inverse of elem | ||||||||
Searching with a predicate | ||||||||
find :: (Char -> Bool) -> ByteString -> Maybe Char | ||||||||
O(n) The find function takes a predicate and a ByteString, and returns the first element in matching the predicate, or Nothing if there is no such element. | ||||||||
filter :: (Char -> Bool) -> ByteString -> ByteString | ||||||||
O(n) filter, applied to a predicate and a ByteString, returns a ByteString containing those characters that satisfy the predicate. | ||||||||
Indexing ByteStrings | ||||||||
index :: ByteString -> Int -> Char | ||||||||
O(1) ByteString index (subscript) operator, starting from 0. | ||||||||
elemIndex :: Char -> ByteString -> Maybe Int | ||||||||
O(n) The elemIndex function returns the index of the first element in the given ByteString which is equal (by memchr) to the query element, or Nothing if there is no such element. | ||||||||
elemIndices :: Char -> ByteString -> [Int] | ||||||||
O(n) The elemIndices function extends elemIndex, by returning the indices of all elements equal to the query element, in ascending order. | ||||||||
elemIndexEnd :: Char -> ByteString -> Maybe Int | ||||||||
O(n) The elemIndexEnd function returns the last index of the element in the given ByteString which is equal to the query element, or Nothing if there is no such element. The following holds: elemIndexEnd c xs == (-) (length xs - 1) `fmap` elemIndex c (reverse xs) | ||||||||
findIndex :: (Char -> Bool) -> ByteString -> Maybe Int | ||||||||
The findIndex function takes a predicate and a ByteString and returns the index of the first element in the ByteString satisfying the predicate. | ||||||||
findIndices :: (Char -> Bool) -> ByteString -> [Int] | ||||||||
The findIndices function extends findIndex, by returning the indices of all elements satisfying the predicate, in ascending order. | ||||||||
count :: Char -> ByteString -> Int | ||||||||
count returns the number of times its argument appears in the ByteString count = length . elemIndices Also count '\n' == length . lines But more efficiently than using length on the intermediate list. | ||||||||
Zipping and unzipping ByteStrings | ||||||||
zip :: ByteString -> ByteString -> [(Char, Char)] | ||||||||
O(n) zip takes two ByteStrings and returns a list of corresponding pairs of Chars. If one input ByteString is short, excess elements of the longer ByteString are discarded. This is equivalent to a pair of unpack operations, and so space usage may be large for multi-megabyte ByteStrings | ||||||||
zipWith :: (Char -> Char -> a) -> ByteString -> ByteString -> [a] | ||||||||
zipWith generalises zip by zipping with the function given as the first argument, instead of a tupling function. For example, zipWith (+) is applied to two ByteStrings to produce the list of corresponding sums. | ||||||||
unzip :: [(Char, Char)] -> (ByteString, ByteString) | ||||||||
unzip transforms a list of pairs of Chars into a pair of ByteStrings. Note that this performs two pack operations. | ||||||||
Ordered ByteStrings | ||||||||
sort :: ByteString -> ByteString | ||||||||
O(n) Sort a ByteString efficiently, using counting sort. | ||||||||
Reading from ByteStrings | ||||||||
readInt :: ByteString -> Maybe (Int, ByteString) | ||||||||
readInt reads an Int from the beginning of the ByteString. If there is no integer at the beginning of the string, it returns Nothing, otherwise it just returns the int read, and the rest of the string. | ||||||||
readInteger :: ByteString -> Maybe (Integer, ByteString) | ||||||||
readInteger reads an Integer from the beginning of the ByteString. If there is no integer at the beginning of the string, it returns Nothing, otherwise it just returns the int read, and the rest of the string. | ||||||||
Low level CString conversions | ||||||||
Packing CStrings and pointers | ||||||||
packCString :: CString -> ByteString | ||||||||
The sortBy function is the non-overloaded version of sort. Try some linear sorts: radix, counting Or mergesort. sortBy :: (Word8 -> Word8 -> Ordering) -> ByteString -> ByteString sortBy f ps = undefined O(n) Build a ByteString from a CString. This value will have no finalizer associated to it. The ByteString length is calculated using strlen(3), and thus the complexity is a O(n). | ||||||||
packCStringLen :: CStringLen -> ByteString | ||||||||
O(1) Build a ByteString from a CStringLen. This value will have no finalizer associated with it. This operation has O(1) complexity as we already know the final size, so no strlen(3) is required. | ||||||||
packMallocCString :: CString -> ByteString | ||||||||
O(n) Build a ByteString from a malloced CString. This value will have a free(3) finalizer associated to it. | ||||||||
Using ByteStrings as CStrings | ||||||||
useAsCString :: ByteString -> (CString -> IO a) -> IO a | ||||||||
O(n) construction Use a ByteString with a function requiring a null-terminated CString. The CString will be freed automatically. This is a memcpy(3). | ||||||||
useAsCStringLen :: ByteString -> (CStringLen -> IO a) -> IO a | ||||||||
O(1) construction Use a ByteString with a function requiring a CStringLen. | ||||||||
Copying ByteStrings | ||||||||
copy :: ByteString -> ByteString | ||||||||
O(n) Make a copy of the ByteString with its own storage. This is mainly useful to allow the rest of the data pointed to by the ByteString to be garbage collected, for example if a large string has been read in, and only a small part of it is needed in the rest of the program. | ||||||||
copyCString :: CString -> IO ByteString | ||||||||
O(n) Duplicate a CString as a ByteString. Useful if you know the CString is going to be deallocated from C land. | ||||||||
copyCStringLen :: CStringLen -> IO ByteString | ||||||||
O(n) Same as copyCString, but saves a strlen call when the length is known. | ||||||||
I/O with ByteStrings | ||||||||
Standard input and output | ||||||||
getLine :: IO ByteString | ||||||||
Read a line from stdin. | ||||||||
getContents :: IO ByteString | ||||||||
getContents. Equivalent to hGetContents stdin | ||||||||
putStr :: ByteString -> IO () | ||||||||
Write a ByteString to stdout | ||||||||
putStrLn :: ByteString -> IO () | ||||||||
Write a ByteString to stdout, appending a newline byte | ||||||||
interact :: (ByteString -> ByteString) -> IO () | ||||||||
The interact function takes a function of type ByteString -> ByteString as its argument. The entire input from the standard input device is passed to this function as its argument, and the resulting string is output on the standard output device. It's great for writing one line programs! | ||||||||
Files | ||||||||
readFile :: FilePath -> IO ByteString | ||||||||
Read an entire file strictly into a ByteString. This is far more efficient than reading the characters into a String and then using pack. It also may be more efficient than opening the file and reading it using hGet. | ||||||||
writeFile :: FilePath -> ByteString -> IO () | ||||||||
Write a ByteString to a file. | ||||||||
appendFile :: FilePath -> ByteString -> IO () | ||||||||
Append a ByteString to a file. | ||||||||
I/O with Handles | ||||||||
hGetLine :: Handle -> IO ByteString | ||||||||
Read a line from a handle | ||||||||
hGetNonBlocking :: Handle -> Int -> IO ByteString | ||||||||
hGetNonBlocking is identical to hGet, except that it will never block waiting for data to become available, instead it returns only whatever data is available. | ||||||||
hGetContents :: Handle -> IO ByteString | ||||||||
Read entire handle contents into a ByteString. This function reads chunks at a time, doubling the chunksize on each read. The final buffer is then realloced to the appropriate size. For files > half of available memory, this may lead to memory exhaustion. Consider using readFile in this case. As with hGet, the string representation in the file is assumed to be ISO-8859-1. | ||||||||
hGet :: Handle -> Int -> IO ByteString | ||||||||
Read a ByteString directly from the specified Handle. This is far more efficient than reading the characters into a String and then using pack. | ||||||||
hPut :: Handle -> ByteString -> IO () | ||||||||
Outputs a ByteString to the specified Handle. | ||||||||
hPutStr :: Handle -> ByteString -> IO () | ||||||||
A synonym for hPut, for compatibility | ||||||||
hPutStrLn :: Handle -> ByteString -> IO () | ||||||||
Write a ByteString to a handle, appending a newline byte | ||||||||
Low level construction | ||||||||
For constructors from foreign language types see Data.ByteString | ||||||||
packAddress :: Addr# -> ByteString | ||||||||
O(n) Pack a null-terminated sequence of bytes, pointed to by an Addr# (an arbitrary machine address assumed to point outside the garbage-collected heap) into a ByteString. A much faster way to create an Addr# is with an unboxed string literal, than to pack a boxed string. A unboxed string literal is compiled to a static char [] by GHC. Establishing the length of the string requires a call to strlen(3), so the Addr# must point to a null-terminated buffer (as is the case with string# literals in GHC). Use unsafePackAddress if you know the length of the string statically. An example: literalFS = packAddress "literal"# | ||||||||
unsafePackAddress :: Int -> Addr# -> ByteString | ||||||||
O(1) unsafePackAddress provides constant-time construction of ByteStrings -- which is ideal for string literals. It packs a null-terminated sequence of bytes into a ByteString, given a raw Addr to the string, and the length of the string. Make sure the length is correct, otherwise use the safer packAddress (where the length will be calculated once at runtime). | ||||||||
Utilities (needed for array fusion) | ||||||||
unpackList :: ByteString -> [Word8] | ||||||||
Produced by Haddock version 0.8 |