Portability | non-portable (GHC extensions) |
---|---|
Stability | internal |
Maintainer | cvs-ghc@haskell.org |
Basic concurrency stuff.
- data ThreadId = ThreadId ThreadId#
- forkIO :: IO () -> IO ThreadId
- forkIOUnmasked :: IO () -> IO ThreadId
- forkOnIO :: Int -> IO () -> IO ThreadId
- forkOnIOUnmasked :: Int -> IO () -> IO ThreadId
- numCapabilities :: Int
- numSparks :: IO Int
- childHandler :: SomeException -> IO ()
- myThreadId :: IO ThreadId
- killThread :: ThreadId -> IO ()
- throwTo :: Exception e => ThreadId -> e -> IO ()
- par :: a -> b -> b
- pseq :: a -> b -> b
- runSparks :: IO ()
- yield :: IO ()
- labelThread :: ThreadId -> String -> IO ()
- data ThreadStatus
- data BlockReason
- threadStatus :: ThreadId -> IO ThreadStatus
- threadDelay :: Int -> IO ()
- registerDelay :: Int -> IO (TVar Bool)
- threadWaitRead :: Fd -> IO ()
- threadWaitWrite :: Fd -> IO ()
- newtype STM a = STM (State# RealWorld -> (#State# RealWorld, a#))
- atomically :: STM a -> IO a
- retry :: STM a
- orElse :: STM a -> STM a -> STM a
- throwSTM :: Exception e => e -> STM a
- catchSTM :: Exception e => STM a -> (e -> STM a) -> STM a
- alwaysSucceeds :: STM a -> STM ()
- always :: STM Bool -> STM ()
- data TVar a = TVar (TVar# RealWorld a)
- newTVar :: a -> STM (TVar a)
- newTVarIO :: a -> IO (TVar a)
- readTVar :: TVar a -> STM a
- readTVarIO :: TVar a -> IO a
- writeTVar :: TVar a -> a -> STM ()
- unsafeIOToSTM :: IO a -> STM a
- withMVar :: MVar a -> (a -> IO b) -> IO b
- type Signal = CInt
- type HandlerFun = ForeignPtr Word8 -> IO ()
- setHandler :: Signal -> Maybe (HandlerFun, Dynamic) -> IO (Maybe (HandlerFun, Dynamic))
- runHandlers :: ForeignPtr Word8 -> Signal -> IO ()
- ensureIOManagerIsRunning :: IO ()
- setUncaughtExceptionHandler :: (SomeException -> IO ()) -> IO ()
- getUncaughtExceptionHandler :: IO (SomeException -> IO ())
- reportError :: SomeException -> IO ()
- reportStackOverflow :: IO ()
Documentation
A ThreadId
is an abstract type representing a handle to a thread.
ThreadId
is an instance of Eq
, Ord
and Show
, where
the Ord
instance implements an arbitrary total ordering over
ThreadId
s. The Show
instance lets you convert an arbitrary-valued
ThreadId
to string form; showing a ThreadId
value is occasionally
useful when debugging or diagnosing the behaviour of a concurrent
program.
Note: in GHC, if you have a ThreadId
, you essentially have
a pointer to the thread itself. This means the thread itself can't be
garbage collected until you drop the ThreadId
.
This misfeature will hopefully be corrected at a later date.
Note: Hugs does not provide any operations on other threads;
it defines ThreadId
as a synonym for ().
Forking and suchlike
forkIO :: IO () -> IO ThreadIdSource
Sparks off a new thread to run the IO
computation passed as the
first argument, and returns the ThreadId
of the newly created
thread.
The new thread will be a lightweight thread; if you want to use a foreign
library that uses thread-local storage, use Control.Concurrent.forkOS
instead.
GHC note: the new thread inherits the masked state of the parent
(see Control.Exception.mask
).
The newly created thread has an exception handler that discards the
exceptions BlockedIndefinitelyOnMVar
, BlockedIndefinitelyOnSTM
, and
ThreadKilled
, and passes all other exceptions to the uncaught
exception handler (see setUncaughtExceptionHandler
).
forkIOUnmasked :: IO () -> IO ThreadIdSource
Like forkIO
, but the child thread is created with asynchronous exceptions
unmasked (see Control.Exception.mask
).
forkOnIO :: Int -> IO () -> IO ThreadIdSource
Like forkIO
, but lets you specify on which CPU the thread is
created. Unlike a forkIO
thread, a thread created by forkOnIO
will stay on the same CPU for its entire lifetime (forkIO
threads
can migrate between CPUs according to the scheduling policy).
forkOnIO
is useful for overriding the scheduling policy when you
know in advance how best to distribute the threads.
The Int
argument specifies the CPU number; it is interpreted modulo
numCapabilities
(note that it actually specifies a capability number
rather than a CPU number, but to a first approximation the two are
equivalent).
forkOnIOUnmasked :: Int -> IO () -> IO ThreadIdSource
Like forkOnIO
, but the child thread is created with
asynchronous exceptions unmasked (see Control.Exception.mask
).
the value passed to the +RTS -N
flag. This is the number of
Haskell threads that can run truly simultaneously at any given
time, and is typically set to the number of physical CPU cores on
the machine.
childHandler :: SomeException -> IO ()Source
myThreadId :: IO ThreadIdSource
Returns the ThreadId
of the calling thread (GHC only).
killThread :: ThreadId -> IO ()Source
killThread
raises the ThreadKilled
exception in the given
thread (GHC only).
killThread tid = throwTo tid ThreadKilled
throwTo :: Exception e => ThreadId -> e -> IO ()Source
throwTo
raises an arbitrary exception in the target thread (GHC only).
throwTo
does not return until the exception has been raised in the
target thread.
The calling thread can thus be certain that the target
thread has received the exception. This is a useful property to know
when dealing with race conditions: eg. if there are two threads that
can kill each other, it is guaranteed that only one of the threads
will get to kill the other.
Whatever work the target thread was doing when the exception was raised is not lost: the computation is suspended until required by another thread.
If the target thread is currently making a foreign call, then the
exception will not be raised (and hence throwTo
will not return)
until the call has completed. This is the case regardless of whether
the call is inside a mask
or not.
Important note: the behaviour of throwTo
differs from that described in
the paper "Asynchronous exceptions in Haskell"
(http://research.microsoft.com/~simonpj/Papers/asynch-exns.htm).
In the paper, throwTo
is non-blocking; but the library implementation adopts
a more synchronous design in which throwTo
does not return until the exception
is received by the target thread. The trade-off is discussed in Section 9 of the paper.
Like any blocking operation, throwTo
is therefore interruptible (see Section 5.3 of
the paper). Unlike other interruptible operations, however, throwTo
is always interruptible, even if it does not actually block.
There is no guarantee that the exception will be delivered promptly,
although the runtime will endeavour to ensure that arbitrary
delays don't occur. In GHC, an exception can only be raised when a
thread reaches a safe point, where a safe point is where memory
allocation occurs. Some loops do not perform any memory allocation
inside the loop and therefore cannot be interrupted by a throwTo
.
Blocked throwTo
is fair: if multiple threads are trying to throw an
exception to the same target thread, they will succeed in FIFO order.
The yield
action allows (forces, in a co-operative multitasking
implementation) a context-switch to any other currently runnable
threads (if any), and is occasionally useful when implementing
concurrency abstractions.
labelThread :: ThreadId -> String -> IO ()Source
labelThread
stores a string as identifier for this thread if
you built a RTS with debugging support. This identifier will be used in
the debugging output to make distinction of different threads easier
(otherwise you only have the thread state object's address in the heap).
Other applications like the graphical Concurrent Haskell Debugger
(http://www.informatik.uni-kiel.de/~fhu/chd/) may choose to overload
labelThread
for their purposes as well.
data ThreadStatus Source
The current status of a thread
ThreadRunning | the thread is currently runnable or running |
ThreadFinished | the thread has finished |
ThreadBlocked BlockReason | the thread is blocked on some resource |
ThreadDied | the thread received an uncaught exception |
data BlockReason Source
BlockedOnMVar | blocked on on |
BlockedOnBlackHole | blocked on a computation in progress by another thread |
BlockedOnException | blocked in |
BlockedOnSTM | blocked in |
BlockedOnForeignCall | currently in a foreign call |
BlockedOnOther | blocked on some other resource. Without |
Waiting
threadDelay :: Int -> IO ()Source
Suspends the current thread for a given number of microseconds (GHC only).
There is no guarantee that the thread will be rescheduled promptly when the delay has expired, but the thread will never continue to run earlier than specified.
registerDelay :: Int -> IO (TVar Bool)Source
Set the value of returned TVar to True after a given number of microseconds. The caveats associated with threadDelay also apply.
threadWaitRead :: Fd -> IO ()Source
Block the current thread until data is available to read on the given file descriptor (GHC only).
threadWaitWrite :: Fd -> IO ()Source
Block the current thread until data can be written to the given file descriptor (GHC only).
TVars
A monad supporting atomic memory transactions.
atomically :: STM a -> IO aSource
Perform a series of STM actions atomically.
You cannot use atomically
inside an unsafePerformIO
or unsafeInterleaveIO
.
Any attempt to do so will result in a runtime error. (Reason: allowing
this would effectively allow a transaction inside a transaction, depending
on exactly when the thunk is evaluated.)
However, see newTVarIO
, which can be called inside unsafePerformIO
,
and which allows top-level TVars to be allocated.
Retry execution of the current memory transaction because it has seen values in TVars which mean that it should not continue (e.g. the TVars represent a shared buffer that is now empty). The implementation may block the thread until one of the TVars that it has read from has been udpated. (GHC only)
orElse :: STM a -> STM a -> STM aSource
Compose two alternative STM actions (GHC only). If the first action completes without retrying then it forms the result of the orElse. Otherwise, if the first action retries, then the second action is tried in its place. If both actions retry then the orElse as a whole retries.
throwSTM :: Exception e => e -> STM aSource
A variant of throw
that can only be used within the STM
monad.
Throwing an exception in STM
aborts the transaction and propagates the
exception.
Although throwSTM
has a type that is an instance of the type of throw
, the
two functions are subtly different:
throw e `seq` x ===> throw e throwSTM e `seq` x ===> x
The first example will cause the exception e
to be raised,
whereas the second one won't. In fact, throwSTM
will only cause
an exception to be raised when it is used within the STM
monad.
The throwSTM
variant should be used in preference to throw
to
raise an exception within the STM
monad because it guarantees
ordering with respect to other STM
operations, whereas throw
does not.
catchSTM :: Exception e => STM a -> (e -> STM a) -> STM aSource
Exception handling within STM actions.
alwaysSucceeds :: STM a -> STM ()Source
alwaysSucceeds adds a new invariant that must be true when passed to alwaysSucceeds, at the end of the current transaction, and at the end of every subsequent transaction. If it fails at any of those points then the transaction violating it is aborted and the exception raised by the invariant is propagated.
always :: STM Bool -> STM ()Source
always is a variant of alwaysSucceeds in which the invariant is expressed as an STM Bool action that must return True. Returning False or raising an exception are both treated as invariant failures.
Shared memory locations that support atomic memory transactions.
newTVarIO :: a -> IO (TVar a)Source
IO
version of newTVar
. This is useful for creating top-level
TVar
s using System.IO.Unsafe.unsafePerformIO
, because using
atomically
inside System.IO.Unsafe.unsafePerformIO
isn't
possible.
readTVarIO :: TVar a -> IO aSource
Return the current value stored in a TVar. This is equivalent to
readTVarIO = atomically . readTVar
but works much faster, because it doesn't perform a complete
transaction, it just reads the current value of the TVar
.
unsafeIOToSTM :: IO a -> STM aSource
Unsafely performs IO in the STM monad. Beware: this is a highly dangerous thing to do.
- The STM implementation will often run transactions multiple times, so you need to be prepared for this if your IO has any side effects.
- The STM implementation will abort transactions that are known to
be invalid and need to be restarted. This may happen in the middle
of
unsafeIOToSTM
, so make sure you don't acquire any resources that need releasing (exception handlers are ignored when aborting the transaction). That includes doing any IO using Handles, for example. Getting this wrong will probably lead to random deadlocks. - The transaction may have seen an inconsistent view of memory when
the IO runs. Invariants that you expect to be true throughout
your program may not be true inside a transaction, due to the
way transactions are implemented. Normally this wouldn't be visible
to the programmer, but using
unsafeIOToSTM
can expose it.
Miscellaneous
type HandlerFun = ForeignPtr Word8 -> IO ()Source
setHandler :: Signal -> Maybe (HandlerFun, Dynamic) -> IO (Maybe (HandlerFun, Dynamic))Source
runHandlers :: ForeignPtr Word8 -> Signal -> IO ()Source
setUncaughtExceptionHandler :: (SomeException -> IO ()) -> IO ()Source
reportError :: SomeException -> IO ()Source