Portability | portable to Hugs and GHC. Requires the FFI and some flexible instances |
---|---|
Stability | unstable |
Maintainer | Lennart Kolmodin <kolmodin@gmail.com> |
Safe Haskell | Trustworthy |
Binary serialisation of Haskell values to and from lazy ByteStrings.
The Binary library provides methods for encoding Haskell values as
streams of bytes directly in memory. The resulting ByteString
can
then be written to disk, sent over the network, or futher processed
(for example, compressed with gzip).
The Binary
package is notable in that it provides both pure, and
high performance serialisation.
Values are always encoded in network order (big endian) form, and encoded data should be portable across machine endianess, word size, or compiler version. For example, data encoded using the Binary class could be written from GHC, and read back in Hugs.
The Binary class
The Binary
class provides put
and get
, methods to encode and
decode a Haskell value to a lazy ByteString. It mirrors the Read and
Show classes for textual representation of Haskell types, and is
suitable for serialising Haskell values to disk, over the network.
For parsing and generating simple external binary formats (e.g. C structures), Binary may be used, but in general is not suitable for complex protocols. Instead use the Put and Get primitives directly.
Instances of Binary should satisfy the following property:
decode . encode == id
That is, the get
and put
methods should be the inverse of each
other. A range of instances are provided for basic Haskell types.
Encode a value in the Put monad.
Decode a value in the Get monad
To serialise a custom type, an instance of Binary for that type is required. For example, suppose we have a data structure:
data Exp = IntE Int | OpE String Exp Exp deriving Show
We can encode values of this type into bytestrings using the following instance, which proceeds by recursively breaking down the structure to serialise:
instance Binary Exp where put (IntE i) = do put (0 :: Word8) put i put (OpE s e1 e2) = do put (1 :: Word8) put s put e1 put e2 get = do t <- get :: Get Word8 case t of 0 -> do i <- get return (IntE i) 1 -> do s <- get e1 <- get e2 <- get return (OpE s e1 e2)
Note how we write an initial tag byte to indicate each variant of the data type.
We can simplify the writing of get
instances using monadic
combinators:
get = do tag <- getWord8 case tag of 0 -> liftM IntE get 1 -> liftM3 OpE get get get
The generation of Binary instances has been automated by a script using Scrap Your Boilerplate generics. Use the script here: http://darcs.haskell.org/binary/tools/derive/BinaryDerive.hs.
To derive the instance for a type, load this script into GHCi, and bring your type into scope. Your type can then have its Binary instances derived as follows:
$ ghci -fglasgow-exts BinaryDerive.hs *BinaryDerive> :l Example.hs *Main> deriveM (undefined :: Drinks) instance Binary Main.Drinks where put (Beer a) = putWord8 0 >> put a put Coffee = putWord8 1 put Tea = putWord8 2 put EnergyDrink = putWord8 3 put Water = putWord8 4 put Wine = putWord8 5 put Whisky = putWord8 6 get = do tag_ <- getWord8 case tag_ of 0 -> get >>= \a -> return (Beer a) 1 -> return Coffee 2 -> return Tea 3 -> return EnergyDrink 4 -> return Water 5 -> return Wine 6 -> return Whisky
To serialise this to a bytestring, we use encode
, which packs the
data structure into a binary format, in a lazy bytestring
> let e = OpE "*" (IntE 7) (OpE "/" (IntE 4) (IntE 2)) > let v = encode e
Where v
is a binary encoded data structure. To reconstruct the
original data, we use decode
> decode v :: Exp OpE "*" (IntE 7) (OpE "/" (IntE 4) (IntE 2))
The lazy ByteString that results from encode
can be written to
disk, and read from disk using Data.ByteString.Lazy IO functions,
such as hPutStr or writeFile:
> writeFile "/tmp/exp.txt" (encode e)
And read back with:
> readFile "/tmp/exp.txt" >>= return . decode :: IO Exp OpE "*" (IntE 7) (OpE "/" (IntE 4) (IntE 2))
We can also directly serialise a value to and from a Handle, or a file:
> v <- decodeFile "/tmp/exp.txt" :: IO Exp OpE "*" (IntE 7) (OpE "/" (IntE 4) (IntE 2))
And write a value to disk
> encodeFile "/tmp/a.txt" v
The Get and Put monads
The Get monad is just a State monad carrying around the input ByteString We treat it as a strict state monad.
Useful helpers for writing instances
Binary serialisation
encode :: Binary a => a -> ByteStringSource
Encode a value using binary serialisation to a lazy ByteString.
decode :: Binary a => ByteString -> aSource
Decode a value from a lazy ByteString, reconstructing the original structure.
IO functions for serialisation
encodeFile :: Binary a => FilePath -> a -> IO ()Source
Lazily serialise a value to a file
This is just a convenience function, it's defined simply as:
encodeFile f = B.writeFile f . encode
So for example if you wanted to compress as well, you could use:
B.writeFile f . compress . encode
decodeFile :: Binary a => FilePath -> IO aSource
Lazily reconstruct a value previously written to a file.
This is just a convenience function, it's defined simply as:
decodeFile f = return . decode =<< B.readFile f
So for example if you wanted to decompress as well, you could use:
return . decode . decompress =<< B.readFile f
After contructing the data from the input file, decodeFile
checks
if the file is empty, and in doing so will force the associated file
handle closed, if it is indeed empty. If the file is not empty,
it is up to the decoding instance to consume the rest of the data,
or otherwise finalise the resource.
module Data.Word