Safe Haskell | Safe |
---|
Documentation
Rational numbers, with numerator and denominator of some Integral
type.
numerator :: Integral a => Ratio a -> aSource
Extract the numerator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
denominator :: Integral a => Ratio a -> aSource
Extract the denominator of the ratio in reduced form: the numerator and denominator have no common factor and the denominator is positive.
approxRational :: RealFrac a => a -> a -> RationalSource
approxRational
, applied to two real fractional numbers x
and epsilon
,
returns the simplest rational number within epsilon
of x
.
A rational number y
is said to be simpler than another y'
if
-
, andabs
(numerator
y) <=abs
(numerator
y') -
.denominator
y <=denominator
y'
Any real interval contains a unique simplest rational;
in particular, note that 0/1
is the simplest rational of all.
Specification
module Data.Ratio ( Ratio, Rational, (%), numerator, denominator, approxRational ) where infixl 7 % ratPrec = 7 :: Int data (Integral a) => Ratio a = !a :% !a deriving (Eq) type Rational = Ratio Integer (%) :: (Integral a) => a -> a -> Ratio a numerator, denominator :: (Integral a) => Ratio a -> a approxRational :: (RealFrac a) => a -> a -> Rational -- "reduce" is a subsidiary function used only in this module. -- It normalises a ratio by dividing both numerator -- and denominator by their greatest common divisor. -- -- E.g., 12 `reduce` 8 == 3 :% 2 -- 12 `reduce` (-8) == 3 :% (-2) reduce _ 0 = error "Data.Ratio.% : zero denominator" reduce x y = (x `quot` d) :% (y `quot` d) where d = gcd x y x % y = reduce (x * signum y) (abs y) numerator (x :% _) = x denominator (_ :% y) = y instance (Integral a) => Ord (Ratio a) where (x:%y) <= (x':%y') = x * y' <= x' * y (x:%y) < (x':%y') = x * y' < x' * y instance (Integral a) => Num (Ratio a) where (x:%y) + (x':%y') = reduce (x*y' + x'*y) (y*y') (x:%y) * (x':%y') = reduce (x * x') (y * y') negate (x:%y) = (-x) :% y abs (x:%y) = abs x :% y signum (x:%y) = signum x :% 1 fromInteger x = fromInteger x :% 1 instance (Integral a) => Real (Ratio a) where toRational (x:%y) = toInteger x :% toInteger y instance (Integral a) => Fractional (Ratio a) where (x:%y) / (x':%y') = (x*y') % (y*x') recip (x:%y) = y % x fromRational (x:%y) = fromInteger x :% fromInteger y instance (Integral a) => RealFrac (Ratio a) where properFraction (x:%y) = (fromIntegral q, r:%y) where (q,r) = quotRem x y instance (Integral a) => Enum (Ratio a) where succ x = x+1 pred x = x-1 toEnum = fromIntegral fromEnum = fromInteger . truncate -- May overflow enumFrom = numericEnumFrom -- These numericEnumXXX functions enumFromThen = numericEnumFromThen -- are as defined in Prelude.hs enumFromTo = numericEnumFromTo -- but not exported from it! enumFromThenTo = numericEnumFromThenTo instance (Read a, Integral a) => Read (Ratio a) where readsPrec p = readParen (p > ratPrec) (\r -> [(x%y,u) | (x,s) <- readsPrec (ratPrec+1) r, ("%",t) <- lex s, (y,u) <- readsPrec (ratPrec+1) t ]) instance (Integral a) => Show (Ratio a) where showsPrec p (x:%y) = showParen (p > ratPrec) showsPrec (ratPrec+1) x . showString " % " . showsPrec (ratPrec+1) y) approxRational x eps = simplest (x-eps) (x+eps) where simplest x y | y < x = simplest y x | x == y = xr | x > 0 = simplest' n d n' d' | y < 0 = - simplest' (-n') d' (-n) d | otherwise = 0 :% 1 where xr@(n:%d) = toRational x (n':%d') = toRational y simplest' n d n' d' -- assumes 0 < n%d < n'%d' | r == 0 = q :% 1 | q /= q' = (q+1) :% 1 | otherwise = (q*n''+d'') :% n'' where (q,r) = quotRem n d (q',r') = quotRem n' d' (n'':%d'') = simplest' d' r' d r