ghc-8.0.0.20160421: The GHC API

Safe HaskellNone
LanguageHaskell2010

DsMonad

Contents

Synopsis

Documentation

mapM :: Traversable t => forall m a b. Monad m => (a -> m b) -> t a -> m (t b) Source #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see mapM_.

mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) Source #

The mapAndUnzipM function maps its first argument over a list, returning the result as a pair of lists. This function is mainly used with complicated data structures or a state-transforming monad.

initDsTc :: DsM a -> TcM a Source #

fixDs :: (a -> DsM a) -> DsM a Source #

foldlM :: Monad m => (a -> b -> m a) -> a -> [b] -> m a Source #

Monadic version of foldl

foldrM :: Monad m => (b -> a -> m a) -> a -> [b] -> m a Source #

Monadic version of foldr

whenGOptM :: GeneralFlag -> TcRnIf gbl lcl () -> TcRnIf gbl lcl () Source #

unsetGOptM :: GeneralFlag -> TcRnIf gbl lcl a -> TcRnIf gbl lcl a Source #

unsetWOptM :: WarningFlag -> TcRnIf gbl lcl a -> TcRnIf gbl lcl a Source #

class Functor f => Applicative f where Source #

A functor with application, providing operations to

  • embed pure expressions (pure), and
  • sequence computations and combine their results (<*>).

A minimal complete definition must include implementations of these functions satisfying the following laws:

identity
pure id <*> v = v
composition
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
homomorphism
pure f <*> pure x = pure (f x)
interchange
u <*> pure y = pure ($ y) <*> u

The other methods have the following default definitions, which may be overridden with equivalent specialized implementations:

As a consequence of these laws, the Functor instance for f will satisfy

If f is also a Monad, it should satisfy

(which implies that pure and <*> satisfy the applicative functor laws).

Minimal complete definition

pure, (<*>)

Instances

Applicative [] 

Methods

pure :: a -> [a] Source #

(<*>) :: [a -> b] -> [a] -> [b] Source #

(*>) :: [a] -> [b] -> [b] Source #

(<*) :: [a] -> [b] -> [a] Source #

Applicative Maybe 

Methods

pure :: a -> Maybe a Source #

(<*>) :: Maybe (a -> b) -> Maybe a -> Maybe b Source #

(*>) :: Maybe a -> Maybe b -> Maybe b Source #

(<*) :: Maybe a -> Maybe b -> Maybe a Source #

Applicative IO 

Methods

pure :: a -> IO a Source #

(<*>) :: IO (a -> b) -> IO a -> IO b Source #

(*>) :: IO a -> IO b -> IO b Source #

(<*) :: IO a -> IO b -> IO a Source #

Applicative U1 

Methods

pure :: a -> U1 a Source #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b Source #

(*>) :: U1 a -> U1 b -> U1 b Source #

(<*) :: U1 a -> U1 b -> U1 a Source #

Applicative Par1 

Methods

pure :: a -> Par1 a Source #

(<*>) :: Par1 (a -> b) -> Par1 a -> Par1 b Source #

(*>) :: Par1 a -> Par1 b -> Par1 b Source #

(<*) :: Par1 a -> Par1 b -> Par1 a Source #

Applicative Q 

Methods

pure :: a -> Q a Source #

(<*>) :: Q (a -> b) -> Q a -> Q b Source #

(*>) :: Q a -> Q b -> Q b Source #

(<*) :: Q a -> Q b -> Q a Source #

Applicative Id 

Methods

pure :: a -> Id a Source #

(<*>) :: Id (a -> b) -> Id a -> Id b Source #

(*>) :: Id a -> Id b -> Id b Source #

(<*) :: Id a -> Id b -> Id a Source #

Applicative P 

Methods

pure :: a -> P a Source #

(<*>) :: P (a -> b) -> P a -> P b Source #

(*>) :: P a -> P b -> P b Source #

(<*) :: P a -> P b -> P a Source #

Applicative Identity 

Methods

pure :: a -> Identity a Source #

(<*>) :: Identity (a -> b) -> Identity a -> Identity b Source #

(*>) :: Identity a -> Identity b -> Identity b Source #

(<*) :: Identity a -> Identity b -> Identity a Source #

Applicative Min 

Methods

pure :: a -> Min a Source #

(<*>) :: Min (a -> b) -> Min a -> Min b Source #

(*>) :: Min a -> Min b -> Min b Source #

(<*) :: Min a -> Min b -> Min a Source #

Applicative Max 

Methods

pure :: a -> Max a Source #

(<*>) :: Max (a -> b) -> Max a -> Max b Source #

(*>) :: Max a -> Max b -> Max b Source #

(<*) :: Max a -> Max b -> Max a Source #

Applicative First 

Methods

pure :: a -> First a Source #

(<*>) :: First (a -> b) -> First a -> First b Source #

(*>) :: First a -> First b -> First b Source #

(<*) :: First a -> First b -> First a Source #

Applicative Last 

Methods

pure :: a -> Last a Source #

(<*>) :: Last (a -> b) -> Last a -> Last b Source #

(*>) :: Last a -> Last b -> Last b Source #

(<*) :: Last a -> Last b -> Last a Source #

Applicative Option 

Methods

pure :: a -> Option a Source #

(<*>) :: Option (a -> b) -> Option a -> Option b Source #

(*>) :: Option a -> Option b -> Option b Source #

(<*) :: Option a -> Option b -> Option a Source #

Applicative NonEmpty 

Methods

pure :: a -> NonEmpty a Source #

(<*>) :: NonEmpty (a -> b) -> NonEmpty a -> NonEmpty b Source #

(*>) :: NonEmpty a -> NonEmpty b -> NonEmpty b Source #

(<*) :: NonEmpty a -> NonEmpty b -> NonEmpty a Source #

Applicative Complex 

Methods

pure :: a -> Complex a Source #

(<*>) :: Complex (a -> b) -> Complex a -> Complex b Source #

(*>) :: Complex a -> Complex b -> Complex b Source #

(<*) :: Complex a -> Complex b -> Complex a Source #

Applicative ZipList 

Methods

pure :: a -> ZipList a Source #

(<*>) :: ZipList (a -> b) -> ZipList a -> ZipList b Source #

(*>) :: ZipList a -> ZipList b -> ZipList b Source #

(<*) :: ZipList a -> ZipList b -> ZipList a Source #

Applicative STM 

Methods

pure :: a -> STM a Source #

(<*>) :: STM (a -> b) -> STM a -> STM b Source #

(*>) :: STM a -> STM b -> STM b Source #

(<*) :: STM a -> STM b -> STM a Source #

Applicative Dual 

Methods

pure :: a -> Dual a Source #

(<*>) :: Dual (a -> b) -> Dual a -> Dual b Source #

(*>) :: Dual a -> Dual b -> Dual b Source #

(<*) :: Dual a -> Dual b -> Dual a Source #

Applicative Sum 

Methods

pure :: a -> Sum a Source #

(<*>) :: Sum (a -> b) -> Sum a -> Sum b Source #

(*>) :: Sum a -> Sum b -> Sum b Source #

(<*) :: Sum a -> Sum b -> Sum a Source #

Applicative Product 

Methods

pure :: a -> Product a Source #

(<*>) :: Product (a -> b) -> Product a -> Product b Source #

(*>) :: Product a -> Product b -> Product b Source #

(<*) :: Product a -> Product b -> Product a Source #

Applicative First 

Methods

pure :: a -> First a Source #

(<*>) :: First (a -> b) -> First a -> First b Source #

(*>) :: First a -> First b -> First b Source #

(<*) :: First a -> First b -> First a Source #

Applicative Last 

Methods

pure :: a -> Last a Source #

(<*>) :: Last (a -> b) -> Last a -> Last b Source #

(*>) :: Last a -> Last b -> Last b Source #

(<*) :: Last a -> Last b -> Last a Source #

Applicative ReadPrec 

Methods

pure :: a -> ReadPrec a Source #

(<*>) :: ReadPrec (a -> b) -> ReadPrec a -> ReadPrec b Source #

(*>) :: ReadPrec a -> ReadPrec b -> ReadPrec b Source #

(<*) :: ReadPrec a -> ReadPrec b -> ReadPrec a Source #

Applicative ReadP 

Methods

pure :: a -> ReadP a Source #

(<*>) :: ReadP (a -> b) -> ReadP a -> ReadP b Source #

(*>) :: ReadP a -> ReadP b -> ReadP b Source #

(<*) :: ReadP a -> ReadP b -> ReadP a Source #

Applicative PutM 

Methods

pure :: a -> PutM a Source #

(<*>) :: PutM (a -> b) -> PutM a -> PutM b Source #

(*>) :: PutM a -> PutM b -> PutM b Source #

(<*) :: PutM a -> PutM b -> PutM a Source #

Applicative Get 

Methods

pure :: a -> Get a Source #

(<*>) :: Get (a -> b) -> Get a -> Get b Source #

(*>) :: Get a -> Get b -> Get b Source #

(<*) :: Get a -> Get b -> Get a Source #

Applicative Tree 

Methods

pure :: a -> Tree a Source #

(<*>) :: Tree (a -> b) -> Tree a -> Tree b Source #

(*>) :: Tree a -> Tree b -> Tree b Source #

(<*) :: Tree a -> Tree b -> Tree a Source #

Applicative Seq 

Methods

pure :: a -> Seq a Source #

(<*>) :: Seq (a -> b) -> Seq a -> Seq b Source #

(*>) :: Seq a -> Seq b -> Seq b Source #

(<*) :: Seq a -> Seq b -> Seq a Source #

Applicative VM 

Methods

pure :: a -> VM a Source #

(<*>) :: VM (a -> b) -> VM a -> VM b Source #

(*>) :: VM a -> VM b -> VM b Source #

(<*) :: VM a -> VM b -> VM a Source #

Applicative SimpleUniqueMonad 
Applicative PprM 

Methods

pure :: a -> PprM a Source #

(<*>) :: PprM (a -> b) -> PprM a -> PprM b Source #

(*>) :: PprM a -> PprM b -> PprM b Source #

(<*) :: PprM a -> PprM b -> PprM a Source #

Applicative Pair # 

Methods

pure :: a -> Pair a Source #

(<*>) :: Pair (a -> b) -> Pair a -> Pair b Source #

(*>) :: Pair a -> Pair b -> Pair b Source #

(<*) :: Pair a -> Pair b -> Pair a Source #

Applicative UniqSM # 

Methods

pure :: a -> UniqSM a Source #

(<*>) :: UniqSM (a -> b) -> UniqSM a -> UniqSM b Source #

(*>) :: UniqSM a -> UniqSM b -> UniqSM b Source #

(<*) :: UniqSM a -> UniqSM b -> UniqSM a Source #

Applicative P # 

Methods

pure :: a -> P a Source #

(<*>) :: P (a -> b) -> P a -> P b Source #

(*>) :: P a -> P b -> P b Source #

(<*) :: P a -> P b -> P a Source #

Applicative UnifyResultM # 
Applicative LlvmM # 

Methods

pure :: a -> LlvmM a Source #

(<*>) :: LlvmM (a -> b) -> LlvmM a -> LlvmM b Source #

(*>) :: LlvmM a -> LlvmM b -> LlvmM b Source #

(<*) :: LlvmM a -> LlvmM b -> LlvmM a Source #

Applicative NatM # 

Methods

pure :: a -> NatM a Source #

(<*>) :: NatM (a -> b) -> NatM a -> NatM b Source #

(*>) :: NatM a -> NatM b -> NatM b Source #

(<*) :: NatM a -> NatM b -> NatM a Source #

Applicative OccCheckResult # 
Applicative FCode # 

Methods

pure :: a -> FCode a Source #

(<*>) :: FCode (a -> b) -> FCode a -> FCode b Source #

(*>) :: FCode a -> FCode b -> FCode b Source #

(<*) :: FCode a -> FCode b -> FCode a Source #

Applicative CmmParse # 

Methods

pure :: a -> CmmParse a Source #

(<*>) :: CmmParse (a -> b) -> CmmParse a -> CmmParse b Source #

(*>) :: CmmParse a -> CmmParse b -> CmmParse b Source #

(<*) :: CmmParse a -> CmmParse b -> CmmParse a Source #

Applicative Hsc # 

Methods

pure :: a -> Hsc a Source #

(<*>) :: Hsc (a -> b) -> Hsc a -> Hsc b Source #

(*>) :: Hsc a -> Hsc b -> Hsc b Source #

(<*) :: Hsc a -> Hsc b -> Hsc a Source #

Applicative Ghc # 

Methods

pure :: a -> Ghc a Source #

(<*>) :: Ghc (a -> b) -> Ghc a -> Ghc b Source #

(*>) :: Ghc a -> Ghc b -> Ghc b Source #

(<*) :: Ghc a -> Ghc b -> Ghc a Source #

Applicative CompPipeline # 
Applicative TcPluginM # 
Applicative CpsRn # 

Methods

pure :: a -> CpsRn a Source #

(<*>) :: CpsRn (a -> b) -> CpsRn a -> CpsRn b Source #

(*>) :: CpsRn a -> CpsRn b -> CpsRn b Source #

(<*) :: CpsRn a -> CpsRn b -> CpsRn a Source #

Applicative TcS # 

Methods

pure :: a -> TcS a Source #

(<*>) :: TcS (a -> b) -> TcS a -> TcS b Source #

(*>) :: TcS a -> TcS b -> TcS b Source #

(<*) :: TcS a -> TcS b -> TcS a Source #

Applicative CoreM # 

Methods

pure :: a -> CoreM a Source #

(<*>) :: CoreM (a -> b) -> CoreM a -> CoreM b Source #

(*>) :: CoreM a -> CoreM b -> CoreM b Source #

(<*) :: CoreM a -> CoreM b -> CoreM a Source #

Applicative VM # 

Methods

pure :: a -> VM a Source #

(<*>) :: VM (a -> b) -> VM a -> VM b Source #

(*>) :: VM a -> VM b -> VM b Source #

(<*) :: VM a -> VM b -> VM a Source #

Applicative SimplM # 

Methods

pure :: a -> SimplM a Source #

(<*>) :: SimplM (a -> b) -> SimplM a -> SimplM b Source #

(*>) :: SimplM a -> SimplM b -> SimplM b Source #

(<*) :: SimplM a -> SimplM b -> SimplM a Source #

Applicative ((->) a) 

Methods

pure :: a -> a -> a Source #

(<*>) :: (a -> a -> b) -> (a -> a) -> a -> b Source #

(*>) :: (a -> a) -> (a -> b) -> a -> b Source #

(<*) :: (a -> a) -> (a -> b) -> a -> a Source #

Applicative (Either e) 

Methods

pure :: a -> Either e a Source #

(<*>) :: Either e (a -> b) -> Either e a -> Either e b Source #

(*>) :: Either e a -> Either e b -> Either e b Source #

(<*) :: Either e a -> Either e b -> Either e a Source #

Applicative f => Applicative (Rec1 f) 

Methods

pure :: a -> Rec1 f a Source #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b Source #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a Source #

Monoid a => Applicative ((,) a) 

Methods

pure :: a -> (a, a) Source #

(<*>) :: (a, a -> b) -> (a, a) -> (a, b) Source #

(*>) :: (a, a) -> (a, b) -> (a, b) Source #

(<*) :: (a, a) -> (a, b) -> (a, a) Source #

Applicative (ST s) 

Methods

pure :: a -> ST s a Source #

(<*>) :: ST s (a -> b) -> ST s a -> ST s b Source #

(*>) :: ST s a -> ST s b -> ST s b Source #

(<*) :: ST s a -> ST s b -> ST s a Source #

Applicative (StateL s) 

Methods

pure :: a -> StateL s a Source #

(<*>) :: StateL s (a -> b) -> StateL s a -> StateL s b Source #

(*>) :: StateL s a -> StateL s b -> StateL s b Source #

(<*) :: StateL s a -> StateL s b -> StateL s a Source #

Applicative (StateR s) 

Methods

pure :: a -> StateR s a Source #

(<*>) :: StateR s (a -> b) -> StateR s a -> StateR s b Source #

(*>) :: StateR s a -> StateR s b -> StateR s b Source #

(<*) :: StateR s a -> StateR s b -> StateR s a Source #

Applicative (ST s) 

Methods

pure :: a -> ST s a Source #

(<*>) :: ST s (a -> b) -> ST s a -> ST s b Source #

(*>) :: ST s a -> ST s b -> ST s b Source #

(<*) :: ST s a -> ST s b -> ST s a Source #

Monad m => Applicative (WrappedMonad m) 
Arrow a => Applicative (ArrowMonad a) 

Methods

pure :: a -> ArrowMonad a a Source #

(<*>) :: ArrowMonad a (a -> b) -> ArrowMonad a a -> ArrowMonad a b Source #

(*>) :: ArrowMonad a a -> ArrowMonad a b -> ArrowMonad a b Source #

(<*) :: ArrowMonad a a -> ArrowMonad a b -> ArrowMonad a a Source #

Applicative (Proxy *) 

Methods

pure :: a -> Proxy * a Source #

(<*>) :: Proxy * (a -> b) -> Proxy * a -> Proxy * b Source #

(*>) :: Proxy * a -> Proxy * b -> Proxy * b Source #

(<*) :: Proxy * a -> Proxy * b -> Proxy * a Source #

Applicative (SetM s) 

Methods

pure :: a -> SetM s a Source #

(<*>) :: SetM s (a -> b) -> SetM s a -> SetM s b Source #

(*>) :: SetM s a -> SetM s b -> SetM s b Source #

(<*) :: SetM s a -> SetM s b -> SetM s a Source #

Applicative (State s) 

Methods

pure :: a -> State s a Source #

(<*>) :: State s (a -> b) -> State s a -> State s b Source #

(*>) :: State s a -> State s b -> State s b Source #

(<*) :: State s a -> State s b -> State s a Source #

Monad m => Applicative (CheckingFuelMonad m) 
Monad m => Applicative (InfiniteFuelMonad m) 
Monad m => Applicative (UniqueMonadT m) 
(Functor m, Monad m) => Applicative (MaybeT m) 

Methods

pure :: a -> MaybeT m a Source #

(<*>) :: MaybeT m (a -> b) -> MaybeT m a -> MaybeT m b Source #

(*>) :: MaybeT m a -> MaybeT m b -> MaybeT m b Source #

(<*) :: MaybeT m a -> MaybeT m b -> MaybeT m a Source #

Applicative (State s) # 

Methods

pure :: a -> State s a Source #

(<*>) :: State s (a -> b) -> State s a -> State s b Source #

(*>) :: State s a -> State s b -> State s b Source #

(<*) :: State s a -> State s b -> State s a Source #

Applicative (MaybeErr err) # 

Methods

pure :: a -> MaybeErr err a Source #

(<*>) :: MaybeErr err (a -> b) -> MaybeErr err a -> MaybeErr err b Source #

(*>) :: MaybeErr err a -> MaybeErr err b -> MaybeErr err b Source #

(<*) :: MaybeErr err a -> MaybeErr err b -> MaybeErr err a Source #

Applicative (CmdLineP s) # 

Methods

pure :: a -> CmdLineP s a Source #

(<*>) :: CmdLineP s (a -> b) -> CmdLineP s a -> CmdLineP s b Source #

(*>) :: CmdLineP s a -> CmdLineP s b -> CmdLineP s b Source #

(<*) :: CmdLineP s a -> CmdLineP s b -> CmdLineP s a Source #

Monad m => Applicative (EwM m) # 

Methods

pure :: a -> EwM m a Source #

(<*>) :: EwM m (a -> b) -> EwM m a -> EwM m b Source #

(*>) :: EwM m a -> EwM m b -> EwM m b Source #

(<*) :: EwM m a -> EwM m b -> EwM m a Source #

Applicative (IOEnv m) # 

Methods

pure :: a -> IOEnv m a Source #

(<*>) :: IOEnv m (a -> b) -> IOEnv m a -> IOEnv m b Source #

(*>) :: IOEnv m a -> IOEnv m b -> IOEnv m b Source #

(<*) :: IOEnv m a -> IOEnv m b -> IOEnv m a Source #

Applicative (RegM freeRegs) # 

Methods

pure :: a -> RegM freeRegs a Source #

(<*>) :: RegM freeRegs (a -> b) -> RegM freeRegs a -> RegM freeRegs b Source #

(*>) :: RegM freeRegs a -> RegM freeRegs b -> RegM freeRegs b Source #

(<*) :: RegM freeRegs a -> RegM freeRegs b -> RegM freeRegs a Source #

Applicative m => Applicative (GhcT m) # 

Methods

pure :: a -> GhcT m a Source #

(<*>) :: GhcT m (a -> b) -> GhcT m a -> GhcT m b Source #

(*>) :: GhcT m a -> GhcT m b -> GhcT m b Source #

(<*) :: GhcT m a -> GhcT m b -> GhcT m a Source #

(Applicative f, Applicative g) => Applicative ((:*:) f g) 

Methods

pure :: a -> (f :*: g) a Source #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a Source #

(Applicative f, Applicative g) => Applicative ((:.:) f g) 

Methods

pure :: a -> (f :.: g) a Source #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b Source #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a Source #

Arrow a => Applicative (WrappedArrow a b) 

Methods

pure :: a -> WrappedArrow a b a Source #

(<*>) :: WrappedArrow a b (a -> b) -> WrappedArrow a b a -> WrappedArrow a b b Source #

(*>) :: WrappedArrow a b a -> WrappedArrow a b b -> WrappedArrow a b b Source #

(<*) :: WrappedArrow a b a -> WrappedArrow a b b -> WrappedArrow a b a Source #

Monoid m => Applicative (Const * m) 

Methods

pure :: a -> Const * m a Source #

(<*>) :: Const * m (a -> b) -> Const * m a -> Const * m b Source #

(*>) :: Const * m a -> Const * m b -> Const * m b Source #

(<*) :: Const * m a -> Const * m b -> Const * m a Source #

Applicative f => Applicative (Alt * f) 

Methods

pure :: a -> Alt * f a Source #

(<*>) :: Alt * f (a -> b) -> Alt * f a -> Alt * f b Source #

(*>) :: Alt * f a -> Alt * f b -> Alt * f b Source #

(<*) :: Alt * f a -> Alt * f b -> Alt * f a Source #

(Monoid w, Applicative m) => Applicative (WriterT w m) 

Methods

pure :: a -> WriterT w m a Source #

(<*>) :: WriterT w m (a -> b) -> WriterT w m a -> WriterT w m b Source #

(*>) :: WriterT w m a -> WriterT w m b -> WriterT w m b Source #

(<*) :: WriterT w m a -> WriterT w m b -> WriterT w m a Source #

(Functor m, Monad m) => Applicative (StateT s m) 

Methods

pure :: a -> StateT s m a Source #

(<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b Source #

(*>) :: StateT s m a -> StateT s m b -> StateT s m b Source #

(<*) :: StateT s m a -> StateT s m b -> StateT s m a Source #

(Functor m, Monad m) => Applicative (StateT s m) 

Methods

pure :: a -> StateT s m a Source #

(<*>) :: StateT s m (a -> b) -> StateT s m a -> StateT s m b Source #

(*>) :: StateT s m a -> StateT s m b -> StateT s m b Source #

(<*) :: StateT s m a -> StateT s m b -> StateT s m a Source #

(Functor m, Monad m) => Applicative (ExceptT e m) 

Methods

pure :: a -> ExceptT e m a Source #

(<*>) :: ExceptT e m (a -> b) -> ExceptT e m a -> ExceptT e m b Source #

(*>) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m b Source #

(<*) :: ExceptT e m a -> ExceptT e m b -> ExceptT e m a Source #

Monad m => Applicative (Stream m a) # 

Methods

pure :: a -> Stream m a a Source #

(<*>) :: Stream m a (a -> b) -> Stream m a a -> Stream m a b Source #

(*>) :: Stream m a a -> Stream m a b -> Stream m a b Source #

(<*) :: Stream m a a -> Stream m a b -> Stream m a a Source #

Applicative f => Applicative (M1 i c f) 

Methods

pure :: a -> M1 i c f a Source #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b Source #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a Source #

Applicative m => Applicative (ReaderT * r m) 

Methods

pure :: a -> ReaderT * r m a Source #

(<*>) :: ReaderT * r m (a -> b) -> ReaderT * r m a -> ReaderT * r m b Source #

(*>) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m b Source #

(<*) :: ReaderT * r m a -> ReaderT * r m b -> ReaderT * r m a Source #

(<$>) :: Functor f => (a -> b) -> f a -> f b infixl 4 Source #

An infix synonym for fmap.

The name of this operator is an allusion to $. Note the similarities between their types:

 ($)  ::              (a -> b) ->   a ->   b
(<$>) :: Functor f => (a -> b) -> f a -> f b

Whereas $ is function application, <$> is function application lifted over a Functor.

Examples

Convert from a Maybe Int to a Maybe String using show:

>>> show <$> Nothing
Nothing
>>> show <$> Just 3
Just "3"

Convert from an Either Int Int to an Either Int String using show:

>>> show <$> Left 17
Left 17
>>> show <$> Right 17
Right "17"

Double each element of a list:

>>> (*2) <$> [1,2,3]
[2,4,6]

Apply even to the second element of a pair:

>>> even <$> (2,2)
(2,True)

data UniqSupply Source #

A value of type UniqSupply is unique, and it can supply one distinct Unique. Also, from the supply, one can also manufacture an arbitrary number of further UniqueSupply values, which will be distinct from the first and from all others.

dsGetStaticBindsVar :: DsM (IORef [(Fingerprint, (Id, CoreExpr))]) Source #

Gets a reference to the SPT entries created so far.

dsDPHBuiltin :: (PArrBuiltin -> a) -> DsM a Source #

Get a name from Data.Array.Parallel for the desugarer, from the ds_parr_bi component of the global desugerar environment.

data PArrBuiltin Source #

Constructors

PArrBuiltin 

Fields

dsLookupDPHRdrEnv :: OccName -> DsM Name Source #

Lookup a name exported by Prim or Prim. Panic if there isn't one, or if it is defined multiple times.

dsLookupDPHRdrEnv_maybe :: OccName -> DsM (Maybe Name) Source #

Lookup a name exported by Prim or Prim, returning Nothing if it's not defined. Panic if it's defined multiple times.

data DsMetaVal Source #

Constructors

DsBound Id 
DsSplice (HsExpr Id) 

getDictsDs :: DsM (Bag EvVar) Source #

Get in-scope type constraints (pm check)

addDictsDs :: Bag EvVar -> DsM a -> DsM a Source #

Add in-scope type constraints (pm check)

getTmCsDs :: DsM (Bag SimpleEq) Source #

Get in-scope term constraints (pm check)

addTmCsDs :: Bag SimpleEq -> DsM a -> DsM a Source #

Add in-scope term constraints (pm check)

incrCheckPmIterDs :: DsM () Source #

Increase the counter for elapsed pattern match check iterations. If the current counter is already over the limit, fail

resetPmIterDs :: DsM () Source #

Reset the counter for pattern match check iterations to zero

warnDs :: WarnReason -> SDoc -> DsM () Source #

Emit a warning for the current source location

data CanItFail Source #

Constructors

CanFail 
CantFail 

Orphan instances