Copyright | (c) The University of Glasgow 2001 |
---|---|
License | BSD-style (see the file libraries/base/LICENSE) |
Maintainer | libraries@haskell.org |
Stability | stable |
Portability | portable |
Safe Haskell | Safe |
Language | Haskell2010 |
System-independent interface to directory manipulation.
- createDirectory :: FilePath -> IO ()
- createDirectoryIfMissing :: Bool -> FilePath -> IO ()
- removeDirectory :: FilePath -> IO ()
- removeDirectoryRecursive :: FilePath -> IO ()
- removePathForcibly :: FilePath -> IO ()
- renameDirectory :: FilePath -> FilePath -> IO ()
- listDirectory :: FilePath -> IO [FilePath]
- getDirectoryContents :: FilePath -> IO [FilePath]
- getCurrentDirectory :: IO FilePath
- setCurrentDirectory :: FilePath -> IO ()
- withCurrentDirectory :: FilePath -> IO a -> IO a
- getHomeDirectory :: IO FilePath
- data XdgDirectory
- getXdgDirectory :: XdgDirectory -> FilePath -> IO FilePath
- getAppUserDataDirectory :: FilePath -> IO FilePath
- getUserDocumentsDirectory :: IO FilePath
- getTemporaryDirectory :: IO FilePath
- removeFile :: FilePath -> IO ()
- renameFile :: FilePath -> FilePath -> IO ()
- renamePath :: FilePath -> FilePath -> IO ()
- copyFile :: FilePath -> FilePath -> IO ()
- copyFileWithMetadata :: FilePath -> FilePath -> IO ()
- canonicalizePath :: FilePath -> IO FilePath
- makeAbsolute :: FilePath -> IO FilePath
- makeRelativeToCurrentDirectory :: FilePath -> IO FilePath
- findExecutable :: String -> IO (Maybe FilePath)
- findExecutables :: String -> IO [FilePath]
- findExecutablesInDirectories :: [FilePath] -> String -> IO [FilePath]
- findFile :: [FilePath] -> String -> IO (Maybe FilePath)
- findFiles :: [FilePath] -> String -> IO [FilePath]
- findFileWith :: (FilePath -> IO Bool) -> [FilePath] -> String -> IO (Maybe FilePath)
- findFilesWith :: (FilePath -> IO Bool) -> [FilePath] -> String -> IO [FilePath]
- exeExtension :: String
- getFileSize :: FilePath -> IO Integer
- doesPathExist :: FilePath -> IO Bool
- doesFileExist :: FilePath -> IO Bool
- doesDirectoryExist :: FilePath -> IO Bool
- pathIsSymbolicLink :: FilePath -> IO Bool
- data Permissions
- emptyPermissions :: Permissions
- readable :: Permissions -> Bool
- writable :: Permissions -> Bool
- executable :: Permissions -> Bool
- searchable :: Permissions -> Bool
- setOwnerReadable :: Bool -> Permissions -> Permissions
- setOwnerWritable :: Bool -> Permissions -> Permissions
- setOwnerExecutable :: Bool -> Permissions -> Permissions
- setOwnerSearchable :: Bool -> Permissions -> Permissions
- getPermissions :: FilePath -> IO Permissions
- setPermissions :: FilePath -> Permissions -> IO ()
- copyPermissions :: FilePath -> FilePath -> IO ()
- getAccessTime :: FilePath -> IO UTCTime
- getModificationTime :: FilePath -> IO UTCTime
- setAccessTime :: FilePath -> UTCTime -> IO ()
- setModificationTime :: FilePath -> UTCTime -> IO ()
- isSymbolicLink :: FilePath -> IO Bool
Documentation
A directory contains a series of entries, each of which is a named
reference to a file system object (file, directory etc.). Some
entries may be hidden, inaccessible, or have some administrative
function (e.g. .
or ..
under
POSIX), but in
this standard all such entries are considered to form part of the
directory contents. Entries in sub-directories are not, however,
considered to form part of the directory contents.
Each file system object is referenced by a path. There is normally at least one absolute path to each file system object. In some operating systems, it may also be possible to have paths which are relative to the current directory.
Actions on directories
createDirectory :: FilePath -> IO () Source #
creates a new directory createDirectory
dirdir
which is
initially empty, or as near to empty as the operating system
allows.
The operation may fail with:
isPermissionError
/PermissionDenied
The process has insufficient privileges to perform the operation.[EROFS, EACCES]
isAlreadyExistsError
/AlreadyExists
The operand refers to a directory that already exists.[EEXIST]
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
The operand is not a valid directory name.[ENAMETOOLONG, ELOOP]
NoSuchThing
There is no path to the directory.[ENOENT, ENOTDIR]
ResourceExhausted
Insufficient resources (virtual memory, process file descriptors, physical disk space, etc.) are available to perform the operation.[EDQUOT, ENOSPC, ENOMEM, EMLINK]
InappropriateType
The path refers to an existing non-directory object.[EEXIST]
createDirectoryIfMissing Source #
creates a new directory
createDirectoryIfMissing
parents dirdir
if it doesn't exist. If the first argument is True
the function will also create all parent directories if they are missing.
removeDirectory :: FilePath -> IO () Source #
removes an existing directory dir. The
implementation may specify additional constraints which must be
satisfied before a directory can be removed (e.g. the directory has to
be empty, or may not be in use by other processes). It is not legal
for an implementation to partially remove a directory unless the
entire directory is removed. A conformant implementation need not
support directory removal in all situations (e.g. removal of the root
directory).removeDirectory
dir
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
The operand is not a valid directory name.[ENAMETOOLONG, ELOOP]
isDoesNotExistError
/NoSuchThing
The directory does not exist.[ENOENT, ENOTDIR]
isPermissionError
/PermissionDenied
The process has insufficient privileges to perform the operation.[EROFS, EACCES, EPERM]
UnsatisfiedConstraints
Implementation-dependent constraints are not satisfied.[EBUSY, ENOTEMPTY, EEXIST]
UnsupportedOperation
The implementation does not support removal in this situation.[EINVAL]
InappropriateType
The operand refers to an existing non-directory object.[ENOTDIR]
removeDirectoryRecursive :: FilePath -> IO () Source #
removes an existing directory dir
together with its contents and subdirectories. Within this directory,
symbolic links are removed without affecting their targets.removeDirectoryRecursive
dir
On Windows, the operation fails if dir is a directory symbolic link.
removePathForcibly :: FilePath -> IO () Source #
Removes a file or directory at path together with its contents and subdirectories. Symbolic links are removed without affecting their targets. If the path does not exist, nothing happens.
Unlike other removal functions, this function will also attempt to delete files marked as read-only or otherwise made unremovable due to permissions. As a result, if the removal is incomplete, the permissions or attributes on the remaining files may be altered.
If an entry within the directory vanishes while removePathForcibly
is
running, it is silently ignored.
If an exception occurs while removing an entry, removePathForcibly
will
still try to remove as many entries as it can before failing with an
exception. The first exception that it encountered is re-thrown.
Since: 1.2.7.0
renameDirectory :: FilePath -> FilePath -> IO () Source #
changes the name of an existing
directory from old to new. If the new directory
already exists, it is atomically replaced by the old directory.
If the new directory is neither the old directory nor an
alias of the old directory, it is removed as if by
renameDirectory
old newremoveDirectory
. A conformant implementation need not support
renaming directories in all situations (e.g. renaming to an existing
directory, or across different physical devices), but the constraints
must be documented.
On Win32 platforms, renameDirectory
fails if the new directory already
exists.
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
Either operand is not a valid directory name.[ENAMETOOLONG, ELOOP]
isDoesNotExistError
/NoSuchThing
The original directory does not exist, or there is no path to the target.[ENOENT, ENOTDIR]
isPermissionError
/PermissionDenied
The process has insufficient privileges to perform the operation.[EROFS, EACCES, EPERM]
ResourceExhausted
Insufficient resources are available to perform the operation.[EDQUOT, ENOSPC, ENOMEM, EMLINK]
UnsatisfiedConstraints
Implementation-dependent constraints are not satisfied.[EBUSY, ENOTEMPTY, EEXIST]
UnsupportedOperation
The implementation does not support renaming in this situation.[EINVAL, EXDEV]
InappropriateType
Either path refers to an existing non-directory object.[ENOTDIR, EISDIR]
listDirectory :: FilePath -> IO [FilePath] Source #
returns a list of all entries in dir without
the special entries (listDirectory
dir.
and ..
).
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
The operand is not a valid directory name.[ENAMETOOLONG, ELOOP]
isDoesNotExistError
/NoSuchThing
The directory does not exist.[ENOENT, ENOTDIR]
isPermissionError
/PermissionDenied
The process has insufficient privileges to perform the operation.[EACCES]
ResourceExhausted
Insufficient resources are available to perform the operation.[EMFILE, ENFILE]
InappropriateType
The path refers to an existing non-directory object.[ENOTDIR]
Since: 1.2.5.0
getDirectoryContents :: FilePath -> IO [FilePath] Source #
Similar to listDirectory
, but always includes the special entries (.
and ..
). (This applies to Windows as well.)
The operation may fail with the same exceptions as listDirectory
.
Current working directory
getCurrentDirectory :: IO FilePath Source #
Obtain the current working directory as an absolute path.
In a multithreaded program, the current working directory is a global state
shared among all threads of the process. Therefore, when performing
filesystem operations from multiple threads, it is highly recommended to
use absolute rather than relative paths (see: makeAbsolute
).
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
isDoesNotExistError
orNoSuchThing
There is no path referring to the working directory.[EPERM, ENOENT, ESTALE...]
isPermissionError
orPermissionDenied
The process has insufficient privileges to perform the operation.[EACCES]
ResourceExhausted
Insufficient resources are available to perform the operation.UnsupportedOperation
The operating system has no notion of current working directory.
setCurrentDirectory :: FilePath -> IO () Source #
Change the working directory to the given path.
In a multithreaded program, the current working directory is a global state
shared among all threads of the process. Therefore, when performing
filesystem operations from multiple threads, it is highly recommended to
use absolute rather than relative paths (see: makeAbsolute
).
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
The operand is not a valid directory name.[ENAMETOOLONG, ELOOP]
isDoesNotExistError
orNoSuchThing
The directory does not exist.[ENOENT, ENOTDIR]
isPermissionError
orPermissionDenied
The process has insufficient privileges to perform the operation.[EACCES]
UnsupportedOperation
The operating system has no notion of current working directory, or the working directory cannot be dynamically changed.InappropriateType
The path refers to an existing non-directory object.[ENOTDIR]
Run an IO
action with the given working directory and restore the
original working directory afterwards, even if the given action fails due
to an exception.
The operation may fail with the same exceptions as getCurrentDirectory
and setCurrentDirectory
.
Since: 1.2.3.0
Pre-defined directories
getHomeDirectory :: IO FilePath Source #
Returns the current user's home directory.
The directory returned is expected to be writable by the current user,
but note that it isn't generally considered good practice to store
application-specific data here; use getXdgDirectory
or
getAppUserDataDirectory
instead.
On Unix, getHomeDirectory
returns the value of the HOME
environment variable. On Windows, the system is queried for a
suitable path; a typical path might be C:/Users/<user>
.
The operation may fail with:
UnsupportedOperation
The operating system has no notion of home directory.isDoesNotExistError
The home directory for the current user does not exist, or cannot be found.
data XdgDirectory Source #
Special directories for storing user-specific application data, configuration, and cache files, as specified by the XDG Base Directory Specification.
Note: On Windows, XdgData
and XdgConfig
map to the same directory.
Since: 1.2.3.0
XdgData | For data files (e.g. images).
Defaults to |
XdgConfig | For configuration files.
Defaults to |
XdgCache | For non-essential files (e.g. cache).
Defaults to |
:: XdgDirectory | which special directory |
-> FilePath | a relative path that is appended to the path; if empty, the base path is returned |
-> IO FilePath |
Obtain the paths to special directories for storing user-specific
application data, configuration, and cache files, conforming to the
XDG Base Directory Specification.
Compared with getAppUserDataDirectory
, this function provides a more
fine-grained hierarchy as well as greater flexibility for the user.
It also works on Windows, although in that case XdgData
and XdgConfig
will map to the same directory.
The second argument is usually the name of the application. Since it will be integrated into the path, it must consist of valid path characters.
Note: The directory may not actually exist, in which case you would need
to create it with file mode 700
(i.e. only accessible by the owner).
Since: 1.2.3.0
getAppUserDataDirectory Source #
Obtain the path to a special directory for storing user-specific
application data (traditional Unix location). Newer applications may
prefer the the XDG-conformant location provided by getXdgDirectory
(migration guide).
The argument is usually the name of the application. Since it will be integrated into the path, it must consist of valid path characters.
- On Unix-like systems, the path is
~/.<app>
. - On Windows, the path is
%APPDATA%/<app>
(e.g.C:/Users/<user>/AppData/Roaming/<app>
)
Note: the directory may not actually exist, in which case you would need to create it. It is expected that the parent directory exists and is writable.
The operation may fail with:
UnsupportedOperation
The operating system has no notion of application-specific data directory.isDoesNotExistError
The home directory for the current user does not exist, or cannot be found.
getUserDocumentsDirectory :: IO FilePath Source #
Returns the current user's document directory.
The directory returned is expected to be writable by the current user,
but note that it isn't generally considered good practice to store
application-specific data here; use getXdgDirectory
or
getAppUserDataDirectory
instead.
On Unix, getUserDocumentsDirectory
returns the value of the HOME
environment variable. On Windows, the system is queried for a
suitable path; a typical path might be C:/Users/<user>/Documents
.
The operation may fail with:
UnsupportedOperation
The operating system has no notion of document directory.isDoesNotExistError
The document directory for the current user does not exist, or cannot be found.
getTemporaryDirectory :: IO FilePath Source #
Returns the current directory for temporary files.
On Unix, getTemporaryDirectory
returns the value of the TMPDIR
environment variable or "/tmp" if the variable isn't defined.
On Windows, the function checks for the existence of environment variables in
the following order and uses the first path found:
- TMP environment variable.
- TEMP environment variable.
- USERPROFILE environment variable.
- The Windows directory
The operation may fail with:
UnsupportedOperation
The operating system has no notion of temporary directory.
The function doesn't verify whether the path exists.
Actions on files
removeFile :: FilePath -> IO () Source #
removeFile
file removes the directory entry for an existing file
file, where file is not itself a directory. The
implementation may specify additional constraints which must be
satisfied before a file can be removed (e.g. the file may not be in
use by other processes).
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
The operand is not a valid file name.[ENAMETOOLONG, ELOOP]
isDoesNotExistError
/NoSuchThing
The file does not exist.[ENOENT, ENOTDIR]
isPermissionError
/PermissionDenied
The process has insufficient privileges to perform the operation.[EROFS, EACCES, EPERM]
UnsatisfiedConstraints
Implementation-dependent constraints are not satisfied.[EBUSY]
InappropriateType
The operand refers to an existing directory.[EPERM, EINVAL]
renameFile :: FilePath -> FilePath -> IO () Source #
changes the name of an existing file system
object from old to new. If the new object already
exists, it is atomically replaced by the old object. Neither
path may refer to an existing directory. A conformant implementation
need not support renaming files in all situations (e.g. renaming
across different physical devices), but the constraints must be
documented.renameFile
old new
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
Either operand is not a valid file name.[ENAMETOOLONG, ELOOP]
isDoesNotExistError
/NoSuchThing
The original file does not exist, or there is no path to the target.[ENOENT, ENOTDIR]
isPermissionError
/PermissionDenied
The process has insufficient privileges to perform the operation.[EROFS, EACCES, EPERM]
ResourceExhausted
Insufficient resources are available to perform the operation.[EDQUOT, ENOSPC, ENOMEM, EMLINK]
UnsatisfiedConstraints
Implementation-dependent constraints are not satisfied.[EBUSY]
UnsupportedOperation
The implementation does not support renaming in this situation.[EXDEV]
InappropriateType
Either path refers to an existing directory.[ENOTDIR, EISDIR, EINVAL, EEXIST, ENOTEMPTY]
Rename a file or directory. If the destination path already exists, it is replaced atomically. The destination path must not point to an existing directory. A conformant implementation need not support renaming files in all situations (e.g. renaming across different physical devices), but the constraints must be documented.
The operation may fail with:
HardwareFault
A physical I/O error has occurred.[EIO]
InvalidArgument
Either operand is not a valid file name.[ENAMETOOLONG, ELOOP]
isDoesNotExistError
/NoSuchThing
The original file does not exist, or there is no path to the target.[ENOENT, ENOTDIR]
isPermissionError
/PermissionDenied
The process has insufficient privileges to perform the operation.[EROFS, EACCES, EPERM]
ResourceExhausted
Insufficient resources are available to perform the operation.[EDQUOT, ENOSPC, ENOMEM, EMLINK]
UnsatisfiedConstraints
Implementation-dependent constraints are not satisfied.[EBUSY]
UnsupportedOperation
The implementation does not support renaming in this situation.[EXDEV]
InappropriateType
Either the destination path refers to an existing directory, or one of the parent segments in the destination path is not a directory.[ENOTDIR, EISDIR, EINVAL, EEXIST, ENOTEMPTY]
Since: 1.2.7.0
Copy a file with its permissions. If the destination file already exists, it is replaced atomically. Neither path may refer to an existing directory. No exceptions are thrown if the permissions could not be copied.
Copy a file with its associated metadata. If the destination file already exists, it is overwritten. There is no guarantee of atomicity in the replacement of the destination file. Neither path may refer to an existing directory. If the source and/or destination are symbolic links, the copy is performed on the targets of the links.
On Windows, it behaves like the Win32 function CopyFile, which copies various kinds of metadata including file attributes and security resource properties.
On Unix-like systems, permissions, access time, and modification time are preserved. If possible, the owner and group are also preserved. Note that the very act of copying can change the access time of the source file, hence the access times of the two files may differ after the operation completes.
Since: 1.2.6.0
canonicalizePath :: FilePath -> IO FilePath Source #
Make a path absolute, normalise
the path, and remove as many
indirections from it as possible. Any trailing path separators are
discarded via dropTrailingPathSeparator
. Additionally, on Windows the
letter case of the path is canonicalized.
Note: This function is a very big hammer. If you only need an absolute
path, makeAbsolute
is sufficient for removing dependence on the current
working directory.
Indirections include the two special directories .
and ..
, as well as
any symbolic links. The input path need not point to an existing file or
directory. Canonicalization is performed on the longest prefix of the path
that points to an existing file or directory. The remaining portion of the
path that does not point to an existing file or directory will still
undergo normalise
, but case canonicalization and indirection removal are
skipped as they are impossible to do on a nonexistent path.
Most programs should not worry about the canonicity of a path. In particular, despite the name, the function does not truly guarantee canonicity of the returned path due to the presence of hard links, mount points, etc.
If the path points to an existing file or directory, then the output path shall also point to the same file or directory, subject to the condition that the relevant parts of the file system do not change while the function is still running. In other words, the function is definitively not atomic. The results can be utterly wrong if the portions of the path change while this function is running.
Since symbolic links (and, on non-Windows systems, parent directories ..
)
are dependent on the state of the existing filesystem, the function can
only make a conservative attempt by removing such indirections from the
longest prefix of the path that still points to an existing file or
directory.
Note that on Windows parent directories ..
are always fully expanded
before the symbolic links, as consistent with the rest of the Windows API
(such as GetFullPathName
). In contrast, on POSIX systems parent
directories ..
are expanded alongside symbolic links from left to right.
To put this more concretely: if L
is a symbolic link for R/P
, then on
Windows L\..
refers to .
, whereas on other operating systems L/..
refers to R
.
Similar to normalise
, passing an empty path is equivalent to passing the
current directory.
Known bugs: When the path contains an existing symbolic link, but the
target of the link does not exist, then the path is not dereferenced (bug
#64). Symbolic link expansion is not performed on Windows XP or earlier
due to the absence of GetFinalPathNameByHandle
.
Changes since 1.2.3.0: The function has been altered to be more robust
and has the same exception behavior as makeAbsolute
.
Changes since 1.3.0.0: The function no longer preserves the trailing path separator. File symbolic links that appear in the middle of a path are properly dereferenced. Case canonicalization and symbolic link expansion are now performed on Windows.
makeAbsolute :: FilePath -> IO FilePath Source #
Convert a path into an absolute path. If the given path is relative, the
current directory is prepended and then the combined result is
normalise
d. If the path is already absolute, the path is simply
normalise
d. The function preserves the presence or absence of the
trailing path separator unless the path refers to the root directory /
.
If the path is already absolute, the operation never fails. Otherwise, the
operation may fail with the same exceptions as getCurrentDirectory
.
Since: 1.2.2.0
makeRelativeToCurrentDirectory :: FilePath -> IO FilePath Source #
Construct a path relative to the current directory, similar to
makeRelative
.
The operation may fail with the same exceptions as getCurrentDirectory
.
findExecutable :: String -> IO (Maybe FilePath) Source #
Given an executable file name, searches for such file in the directories listed in system PATH. The returned value is the path to the found executable or Nothing if an executable with the given name was not found. For example (findExecutable "ghc") gives you the path to GHC.
The path returned by findExecutable
corresponds to the
program that would be executed by createProcess
when passed the same string (as a RawCommand, not a ShellCommand).
On Windows, findExecutable
calls the Win32 function SearchPath
,
which may search other places before checking the directories in
PATH
. Where it actually searches depends on registry settings,
but notably includes the directory containing the current
executable. See
http://msdn.microsoft.com/en-us/library/aa365527.aspx for more
details.
findExecutables :: String -> IO [FilePath] Source #
Given a file name, searches for the file and returns a list of all occurences that are executable.
On Windows, this only returns the first ocurrence, if any. It uses the
SearchPath
from the Win32 API, so the caveats noted in findExecutable
apply here as well.
Since: 1.2.2.0
findExecutablesInDirectories :: [FilePath] -> String -> IO [FilePath] Source #
Given a file name, searches for the file on the given paths and returns a list of all occurences that are executable.
Since: 1.2.4.0
findFile :: [FilePath] -> String -> IO (Maybe FilePath) Source #
Search through the given set of directories for the given file.
findFiles :: [FilePath] -> String -> IO [FilePath] Source #
Search through the given set of directories for the given file and returns a list of paths where the given file exists.
Since: 1.2.1.0
findFileWith :: (FilePath -> IO Bool) -> [FilePath] -> String -> IO (Maybe FilePath) Source #
Search through the given set of directories for the given file and with the given property (usually permissions) and returns the file path where the given file exists and has the property.
Since: 1.2.6.0
findFilesWith :: (FilePath -> IO Bool) -> [FilePath] -> String -> IO [FilePath] Source #
Search through the given set of directories for the given file and with the given property (usually permissions) and returns a list of paths where the given file exists and has the property.
Since: 1.2.1.0
exeExtension :: String Source #
Filename extension for executable files (including the dot if any)
(usually ""
on POSIX systems and ".exe"
on Windows or OS/2).
Since: 1.2.4.0
Existence tests
doesPathExist :: FilePath -> IO Bool Source #
Test whether the given path points to an existing filesystem object. If the user lacks necessary permissions to search the parent directories, this function may return false even if the file does actually exist.
Since: 1.2.7.0
doesFileExist :: FilePath -> IO Bool Source #
The operation doesFileExist
returns True
if the argument file exists and is not a directory, and False
otherwise.
doesDirectoryExist :: FilePath -> IO Bool Source #
The operation doesDirectoryExist
returns True
if the argument file
exists and is either a directory or a symbolic link to a directory,
and False
otherwise.
Symbolic links
pathIsSymbolicLink :: FilePath -> IO Bool Source #
Check whether the path refers to a symbolic link. On Windows, this tests
for FILE_ATTRIBUTE_REPARSE_POINT
.
Since: 1.3.0.0
Permissions
The Permissions
type is used to record whether certain operations are
permissible on a file/directory. getPermissions
and setPermissions
get and set these permissions, respectively. Permissions apply both to
files and directories. For directories, the executable field will be
False
, and for files the searchable field will be False
. Note that
directories may be searchable without being readable, if permission has
been given to use them as part of a path, but not to examine the
directory contents.
Note that to change some, but not all permissions, a construct on the following lines must be used.
makeReadable f = do p <- getPermissions f setPermissions f (p {readable = True})
readable :: Permissions -> Bool Source #
writable :: Permissions -> Bool Source #
executable :: Permissions -> Bool Source #
searchable :: Permissions -> Bool Source #
setOwnerReadable :: Bool -> Permissions -> Permissions Source #
setOwnerWritable :: Bool -> Permissions -> Permissions Source #
setOwnerExecutable :: Bool -> Permissions -> Permissions Source #
setOwnerSearchable :: Bool -> Permissions -> Permissions Source #
getPermissions :: FilePath -> IO Permissions Source #
The getPermissions
operation returns the
permissions for the file or directory.
The operation may fail with:
isPermissionError
if the user is not permitted to access the permissions; orisDoesNotExistError
if the file or directory does not exist.
setPermissions :: FilePath -> Permissions -> IO () Source #
The setPermissions
operation sets the
permissions for the file or directory.
The operation may fail with:
isPermissionError
if the user is not permitted to set the permissions; orisDoesNotExistError
if the file or directory does not exist.
Timestamps
getAccessTime :: FilePath -> IO UTCTime Source #
Obtain the time at which the file or directory was last accessed.
The operation may fail with:
isPermissionError
if the user is not permitted to read the access time; orisDoesNotExistError
if the file or directory does not exist.
Caveat for POSIX systems: This function returns a timestamp with sub-second
resolution only if this package is compiled against unix-2.6.0.0
or later
and the underlying filesystem supports them.
Since: 1.2.3.0
getModificationTime :: FilePath -> IO UTCTime Source #
Obtain the time at which the file or directory was last modified.
The operation may fail with:
isPermissionError
if the user is not permitted to read the modification time; orisDoesNotExistError
if the file or directory does not exist.
Caveat for POSIX systems: This function returns a timestamp with sub-second
resolution only if this package is compiled against unix-2.6.0.0
or later
and the underlying filesystem supports them.
setAccessTime :: FilePath -> UTCTime -> IO () Source #
Change the time at which the file or directory was last accessed.
The operation may fail with:
isPermissionError
if the user is not permitted to alter the access time; orisDoesNotExistError
if the file or directory does not exist.
Some caveats for POSIX systems:
- Not all systems support
utimensat
, in which case the function can only emulate the behavior by reading the modification time and then setting both the access and modification times together. On systems whereutimensat
is supported, the access time is set atomically with nanosecond precision. - If compiled against a version of
unix
prior to2.7.0.0
, the function would not be able to set timestamps with sub-second resolution. In this case, there would also be loss of precision in the modification time.
Since: 1.2.3.0
setModificationTime :: FilePath -> UTCTime -> IO () Source #
Change the time at which the file or directory was last modified.
The operation may fail with:
isPermissionError
if the user is not permitted to alter the modification time; orisDoesNotExistError
if the file or directory does not exist.
Some caveats for POSIX systems:
- Not all systems support
utimensat
, in which case the function can only emulate the behavior by reading the access time and then setting both the access and modification times together. On systems whereutimensat
is supported, the modification time is set atomically with nanosecond precision. - If compiled against a version of
unix
prior to2.7.0.0
, the function would not be able to set timestamps with sub-second resolution. In this case, there would also be loss of precision in the access time.
Since: 1.2.3.0
Deprecated
isSymbolicLink :: FilePath -> IO Bool Source #
Deprecated: Use pathIsSymbolicLink
instead