Copyright | (c) The FFI task force 2001 |
---|---|
License | BSD-style (see the file libraries/base/LICENSE) |
Maintainer | ffi@haskell.org |
Stability | provisional |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
Mapping of C types to corresponding Haskell types.
Synopsis
- newtype CChar = CChar Int8
- newtype CSChar = CSChar Int8
- newtype CUChar = CUChar Word8
- newtype CShort = CShort Int16
- newtype CUShort = CUShort Word16
- newtype CInt = CInt Int32
- newtype CUInt = CUInt Word32
- newtype CLong = CLong Int64
- newtype CULong = CULong Word64
- newtype CPtrdiff = CPtrdiff Int64
- newtype CSize = CSize Word64
- newtype CWchar = CWchar Int32
- newtype CSigAtomic = CSigAtomic Int32
- newtype CLLong = CLLong Int64
- newtype CULLong = CULLong Word64
- newtype CBool = CBool Word8
- newtype CIntPtr = CIntPtr Int64
- newtype CUIntPtr = CUIntPtr Word64
- newtype CIntMax = CIntMax Int64
- newtype CUIntMax = CUIntMax Word64
- newtype CClock = CClock Int64
- newtype CTime = CTime Int64
- newtype CUSeconds = CUSeconds Word32
- newtype CSUSeconds = CSUSeconds Int64
- newtype CFloat = CFloat Float
- newtype CDouble = CDouble Double
- data CFile
- data CFpos
- data CJmpBuf
Representations of C types
These types are needed to accurately represent C function prototypes,
in order to access C library interfaces in Haskell. The Haskell system
is not required to represent those types exactly as C does, but the
following guarantees are provided concerning a Haskell type CT
representing a C type t
:
- If a C function prototype has
t
as an argument or result type, the use ofCT
in the corresponding position in a foreign declaration permits the Haskell program to access the full range of values encoded by the C type; and conversely, any Haskell value forCT
has a valid representation in C.
will yield the same value assizeOf
(undefined
:: CT)sizeof (t)
in C.
matches the alignment constraint enforced by the C implementation foralignment
(undefined
:: CT)t
.- The members
peek
andpoke
of theStorable
class map all values ofCT
to the corresponding value oft
and vice versa. - When an instance of
Bounded
is defined forCT
, the values ofminBound
andmaxBound
coincide witht_MIN
andt_MAX
in C. - When an instance of
Eq
orOrd
is defined forCT
, the predicates defined by the type class implement the same relation as the corresponding predicate in C ont
. - When an instance of
Num
,Read
,Integral
,Fractional
,Floating
,RealFrac
, orRealFloat
is defined forCT
, the arithmetic operations defined by the type class implement the same function as the corresponding arithmetic operations (if available) in C ont
. - When an instance of
Bits
is defined forCT
, the bitwise operation defined by the type class implement the same function as the corresponding bitwise operation in C ont
.
Platform differences
This module contains platform specific information about types. __/As such the types presented on this page reflect the platform on which the documentation was generated and may not coincide with the types on your platform./__
Integral types
These types are represented as newtype
s of
types in Data.Int and Data.Word, and are instances of
Eq
, Ord
, Num
, Read
,
Show
, Enum
, Typeable
,
Storable
, Bounded
, Real
, Integral
and Bits
.
Haskell type representing the C char
type.
Instances
Haskell type representing the C signed char
type.
Instances
Haskell type representing the C unsigned char
type.
Instances
Haskell type representing the C short
type.
Instances
Haskell type representing the C unsigned short
type.
Instances
Haskell type representing the C int
type.
Instances
Haskell type representing the C unsigned int
type.
Instances
Haskell type representing the C long
type.
Instances
Haskell type representing the C unsigned long
type.
Instances
Haskell type representing the C ptrdiff_t
type.
Instances
Haskell type representing the C size_t
type.
Instances
Haskell type representing the C wchar_t
type.
Instances
newtype CSigAtomic Source #
Haskell type representing the C sig_atomic_t
type.
Instances
Haskell type representing the C long long
type.
Instances
Haskell type representing the C unsigned long long
type.
Instances
Haskell type representing the C bool
type.
Since: base-4.10.0.0
Instances
Instances
Instances
Instances
Instances
Numeric types
These types are represented as newtype
s of basic
foreign types, and are instances of
Eq
, Ord
, Num
, Read
,
Show
, Enum
, Typeable
and
Storable
.
Haskell type representing the C clock_t
type.
Instances
Enum CClock # | |
Defined in Foreign.C.Types succ :: CClock -> CClock Source # pred :: CClock -> CClock Source # toEnum :: Int -> CClock Source # fromEnum :: CClock -> Int Source # enumFrom :: CClock -> [CClock] Source # enumFromThen :: CClock -> CClock -> [CClock] Source # enumFromTo :: CClock -> CClock -> [CClock] Source # enumFromThenTo :: CClock -> CClock -> CClock -> [CClock] Source # | |
Eq CClock # | |
Num CClock # | |
Ord CClock # | |
Defined in Foreign.C.Types | |
Read CClock # | |
Real CClock # | |
Defined in Foreign.C.Types toRational :: CClock -> Rational Source # | |
Show CClock # | |
Storable CClock # | |
Defined in Foreign.C.Types sizeOf :: CClock -> Int Source # alignment :: CClock -> Int Source # peekElemOff :: Ptr CClock -> Int -> IO CClock Source # pokeElemOff :: Ptr CClock -> Int -> CClock -> IO () Source # peekByteOff :: Ptr b -> Int -> IO CClock Source # pokeByteOff :: Ptr b -> Int -> CClock -> IO () Source # |
Haskell type representing the C time_t
type.
Instances
Enum CTime # | |
Defined in Foreign.C.Types succ :: CTime -> CTime Source # pred :: CTime -> CTime Source # toEnum :: Int -> CTime Source # fromEnum :: CTime -> Int Source # enumFrom :: CTime -> [CTime] Source # enumFromThen :: CTime -> CTime -> [CTime] Source # enumFromTo :: CTime -> CTime -> [CTime] Source # enumFromThenTo :: CTime -> CTime -> CTime -> [CTime] Source # | |
Eq CTime # | |
Num CTime # | |
Ord CTime # | |
Defined in Foreign.C.Types | |
Read CTime # | |
Real CTime # | |
Defined in Foreign.C.Types toRational :: CTime -> Rational Source # | |
Show CTime # | |
Storable CTime # | |
Defined in Foreign.C.Types sizeOf :: CTime -> Int Source # alignment :: CTime -> Int Source # peekElemOff :: Ptr CTime -> Int -> IO CTime Source # pokeElemOff :: Ptr CTime -> Int -> CTime -> IO () Source # peekByteOff :: Ptr b -> Int -> IO CTime Source # pokeByteOff :: Ptr b -> Int -> CTime -> IO () Source # |
Haskell type representing the C useconds_t
type.
Since: base-4.4.0.0
Instances
newtype CSUSeconds Source #
Haskell type representing the C suseconds_t
type.
Since: base-4.4.0.0
Instances
To convert CTime
to UTCTime
, use the following:
\t -> posixSecondsToUTCTime (realToFrac t :: POSIXTime)
Floating types
These types are represented as newtype
s of
Float
and Double
, and are instances of
Eq
, Ord
, Num
, Read
,
Show
, Enum
, Typeable
, Storable
,
Real
, Fractional
, Floating
,
RealFrac
and RealFloat
. That does mean
that CFloat
's (respectively CDouble
's) instances of
Eq
, Ord
, Num
and
Fractional
are as badly behaved as Float
's
(respectively Double
's).
Haskell type representing the C float
type.
Instances
Haskell type representing the C double
type.