{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998
-}

{-# LANGUAGE CPP, DeriveDataTypeable, ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE UndecidableInstances #-} -- Wrinkle in Note [Trees That Grow]
                                      -- in module GHC.Hs.Extension
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeFamilyDependencies #-}
{-# LANGUAGE LambdaCase #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

-- | Abstract Haskell syntax for expressions.
module GHC.Hs.Expr where

#include "HsVersions.h"

-- friends:
import GHC.Prelude

import GHC.Hs.Decls
import GHC.Hs.Pat
import GHC.Hs.Lit
import GHC.Hs.Extension
import GHC.Hs.Type
import GHC.Hs.Binds

-- others:
import GHC.Tc.Types.Evidence
import GHC.Core
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Basic
import GHC.Core.ConLike
import GHC.Types.SrcLoc
import GHC.Unit.Module (ModuleName)
import GHC.Utils.Misc
import GHC.Utils.Outputable
import GHC.Data.FastString
import GHC.Core.Type
import GHC.Builtin.Types (mkTupleStr)
import GHC.Tc.Utils.TcType (TcType)
import {-# SOURCE #-} GHC.Tc.Types (TcLclEnv)

-- libraries:
import Data.Data hiding (Fixity(..))
import qualified Data.Data as Data (Fixity(..))
import qualified Data.Kind
import Data.Maybe (isJust)

import GHCi.RemoteTypes ( ForeignRef )
import qualified Language.Haskell.TH as TH (Q)

{-
************************************************************************
*                                                                      *
\subsection{Expressions proper}
*                                                                      *
************************************************************************
-}

-- * Expressions proper

-- | Located Haskell Expression
type LHsExpr p = Located (HsExpr p)
  -- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma' when
  --   in a list

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

-------------------------
-- | Post-Type checking Expression
--
-- PostTcExpr is an evidence expression attached to the syntax tree by the
-- type checker (c.f. postTcType).
type PostTcExpr  = HsExpr GhcTc

-- | Post-Type checking Table
--
-- We use a PostTcTable where there are a bunch of pieces of evidence, more
-- than is convenient to keep individually.
type PostTcTable = [(Name, PostTcExpr)]

-------------------------
{- Note [NoSyntaxExpr]
~~~~~~~~~~~~~~~~~~~~~~
Syntax expressions can be missing (NoSyntaxExprRn or NoSyntaxExprTc)
for several reasons:

 1. As described in Note [Rebindable if]

 2. In order to suppress "not in scope: xyz" messages when a bit of
    rebindable syntax does not apply. For example, when using an irrefutable
    pattern in a BindStmt, we don't need a `fail` operator.

 3. Rebindable syntax might just not make sense. For example, a BodyStmt
    contains the syntax for `guard`, but that's used only in monad comprehensions.
    If we had more of a whiz-bang type system, we might be able to rule this
    case out statically.
-}

-- | Syntax Expression
--
-- SyntaxExpr is represents the function used in interpreting rebindable
-- syntax. In the parser, we have no information to supply; in the renamer,
-- we have the name of the function (but see
-- Note [Monad fail : Rebindable syntax, overloaded strings] for a wrinkle)
-- and in the type-checker we have a more elaborate structure 'SyntaxExprTc'.
--
-- In some contexts, rebindable syntax is not implemented, and so we have
-- constructors to represent that possibility in both the renamer and
-- typechecker instantiations.
--
-- E.g. @(>>=)@ is filled in before the renamer by the appropriate 'Name' for
--      @(>>=)@, and then instantiated by the type checker with its type args
--      etc
type family SyntaxExpr p

-- Defining SyntaxExpr in two stages allows for better type inference, because
-- we can declare SyntaxExprGhc to be injective (and closed). Without injectivity,
-- noSyntaxExpr would be ambiguous.
type instance SyntaxExpr (GhcPass p) = SyntaxExprGhc p

type family SyntaxExprGhc (p :: Pass) = (r :: Data.Kind.Type) | r -> p where
  SyntaxExprGhc 'Parsed      = NoExtField
  SyntaxExprGhc 'Renamed     = SyntaxExprRn
  SyntaxExprGhc 'Typechecked = SyntaxExprTc

-- | The function to use in rebindable syntax. See Note [NoSyntaxExpr].
data SyntaxExprRn = SyntaxExprRn (HsExpr GhcRn)
    -- Why is the payload not just a Name?
    -- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
                  | NoSyntaxExprRn

-- | An expression with wrappers, used for rebindable syntax
--
-- This should desugar to
--
-- > syn_res_wrap $ syn_expr (syn_arg_wraps[0] arg0)
-- >                         (syn_arg_wraps[1] arg1) ...
--
-- where the actual arguments come from elsewhere in the AST.
data SyntaxExprTc = SyntaxExprTc { SyntaxExprTc -> HsExpr GhcTc
syn_expr      :: HsExpr GhcTc
                                 , SyntaxExprTc -> [HsWrapper]
syn_arg_wraps :: [HsWrapper]
                                 , SyntaxExprTc -> HsWrapper
syn_res_wrap  :: HsWrapper }
                  | NoSyntaxExprTc  -- See Note [NoSyntaxExpr]

-- | This is used for rebindable-syntax pieces that are too polymorphic
-- for tcSyntaxOp (trS_fmap and the mzip in ParStmt)
noExpr :: HsExpr (GhcPass p)
noExpr :: forall (p :: Pass). HsExpr (GhcPass p)
noExpr = XLitE (GhcPass p) -> HsLit (GhcPass p) -> HsExpr (GhcPass p)
forall p. XLitE p -> HsLit p -> HsExpr p
HsLit NoExtField
XLitE (GhcPass p)
noExtField (XHsString (GhcPass p) -> FastString -> HsLit (GhcPass p)
forall x. XHsString x -> FastString -> HsLit x
HsString (String -> SourceText
SourceText  String
"noExpr") (String -> FastString
fsLit String
"noExpr"))

noSyntaxExpr :: forall p. IsPass p => SyntaxExpr (GhcPass p)
                              -- Before renaming, and sometimes after
                              -- See Note [NoSyntaxExpr]
noSyntaxExpr :: forall (p :: Pass). IsPass p => SyntaxExpr (GhcPass p)
noSyntaxExpr = case forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p of
  GhcPass p
GhcPs -> NoExtField
SyntaxExpr (GhcPass p)
noExtField
  GhcPass p
GhcRn -> SyntaxExpr (GhcPass p)
SyntaxExprRn
NoSyntaxExprRn
  GhcPass p
GhcTc -> SyntaxExpr (GhcPass p)
SyntaxExprTc
NoSyntaxExprTc

-- | Make a 'SyntaxExpr GhcRn' from an expression
-- Used only in getMonadFailOp.
-- See Note [Monad fail : Rebindable syntax, overloaded strings] in "GHC.Rename.Expr"
mkSyntaxExpr :: HsExpr GhcRn -> SyntaxExprRn
mkSyntaxExpr :: HsExpr GhcRn -> SyntaxExprRn
mkSyntaxExpr = HsExpr GhcRn -> SyntaxExprRn
SyntaxExprRn

-- | Make a 'SyntaxExpr' from a 'Name' (the "rn" is because this is used in the
-- renamer).
mkRnSyntaxExpr :: Name -> SyntaxExprRn
mkRnSyntaxExpr :: Name -> SyntaxExprRn
mkRnSyntaxExpr Name
name = HsExpr GhcRn -> SyntaxExprRn
SyntaxExprRn (HsExpr GhcRn -> SyntaxExprRn) -> HsExpr GhcRn -> SyntaxExprRn
forall a b. (a -> b) -> a -> b
$ XVar GhcRn -> Located (IdP GhcRn) -> HsExpr GhcRn
forall p. XVar p -> Located (IdP p) -> HsExpr p
HsVar NoExtField
XVar GhcRn
noExtField (Located (IdP GhcRn) -> HsExpr GhcRn)
-> Located (IdP GhcRn) -> HsExpr GhcRn
forall a b. (a -> b) -> a -> b
$ Name -> Located Name
forall e. e -> Located e
noLoc Name
name

instance Outputable SyntaxExprRn where
  ppr :: SyntaxExprRn -> SDoc
ppr (SyntaxExprRn HsExpr GhcRn
expr) = HsExpr GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr GhcRn
expr
  ppr SyntaxExprRn
NoSyntaxExprRn      = String -> SDoc
text String
"<no syntax expr>"

instance Outputable SyntaxExprTc where
  ppr :: SyntaxExprTc -> SDoc
ppr (SyntaxExprTc { syn_expr :: SyntaxExprTc -> HsExpr GhcTc
syn_expr      = HsExpr GhcTc
expr
                    , syn_arg_wraps :: SyntaxExprTc -> [HsWrapper]
syn_arg_wraps = [HsWrapper]
arg_wraps
                    , syn_res_wrap :: SyntaxExprTc -> HsWrapper
syn_res_wrap  = HsWrapper
res_wrap })
    = (SDocContext -> Bool) -> (Bool -> SDoc) -> SDoc
forall a. (SDocContext -> a) -> (a -> SDoc) -> SDoc
sdocOption SDocContext -> Bool
sdocPrintExplicitCoercions ((Bool -> SDoc) -> SDoc) -> (Bool -> SDoc) -> SDoc
forall a b. (a -> b) -> a -> b
$ \Bool
print_co ->
      (Bool -> SDoc) -> SDoc
getPprDebug ((Bool -> SDoc) -> SDoc) -> (Bool -> SDoc) -> SDoc
forall a b. (a -> b) -> a -> b
$ \Bool
debug ->
      if Bool
debug Bool -> Bool -> Bool
|| Bool
print_co
      then HsExpr GhcTc -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr GhcTc
expr SDoc -> SDoc -> SDoc
<> SDoc -> SDoc
braces ((HsWrapper -> SDoc) -> [HsWrapper] -> SDoc
forall a. (a -> SDoc) -> [a] -> SDoc
pprWithCommas HsWrapper -> SDoc
forall a. Outputable a => a -> SDoc
ppr [HsWrapper]
arg_wraps)
                    SDoc -> SDoc -> SDoc
<> SDoc -> SDoc
braces (HsWrapper -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsWrapper
res_wrap)
      else HsExpr GhcTc -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr GhcTc
expr

  ppr SyntaxExprTc
NoSyntaxExprTc = String -> SDoc
text String
"<no syntax expr>"

-- | Command Syntax Table (for Arrow syntax)
type CmdSyntaxTable p = [(Name, HsExpr p)]
-- See Note [CmdSyntaxTable]

{-
Note [CmdSyntaxTable]
~~~~~~~~~~~~~~~~~~~~~
Used only for arrow-syntax stuff (HsCmdTop), the CmdSyntaxTable keeps
track of the methods needed for a Cmd.

* Before the renamer, this list is an empty list

* After the renamer, it takes the form @[(std_name, HsVar actual_name)]@
  For example, for the 'arr' method
   * normal case:            (GHC.Control.Arrow.arr, HsVar GHC.Control.Arrow.arr)
   * with rebindable syntax: (GHC.Control.Arrow.arr, arr_22)
             where @arr_22@ is whatever 'arr' is in scope

* After the type checker, it takes the form [(std_name, <expression>)]
  where <expression> is the evidence for the method.  This evidence is
  instantiated with the class, but is still polymorphic in everything
  else.  For example, in the case of 'arr', the evidence has type
         forall b c. (b->c) -> a b c
  where 'a' is the ambient type of the arrow.  This polymorphism is
  important because the desugarer uses the same evidence at multiple
  different types.

This is Less Cool than what we normally do for rebindable syntax, which is to
make fully-instantiated piece of evidence at every use site.  The Cmd way
is Less Cool because
  * The renamer has to predict which methods are needed.
    See the tedious GHC.Rename.Expr.methodNamesCmd.

  * The desugarer has to know the polymorphic type of the instantiated
    method. This is checked by Inst.tcSyntaxName, but is less flexible
    than the rest of rebindable syntax, where the type is less
    pre-ordained.  (And this flexibility is useful; for example we can
    typecheck do-notation with (>>=) :: m1 a -> (a -> m2 b) -> m2 b.)
-}

-- | A Haskell expression.
data HsExpr p
  = HsVar     (XVar p)
              (Located (IdP p)) -- ^ Variable

                             -- See Note [Located RdrNames]

  | HsUnboundVar (XUnboundVar p)
                 OccName     -- ^ Unbound variable; also used for "holes"
                             --   (_ or _x).
                             -- Turned from HsVar to HsUnboundVar by the
                             --   renamer, when it finds an out-of-scope
                             --   variable or hole.
                             -- Turned into HsVar by type checker, to support
                             --   deferred type errors.

  | HsConLikeOut (XConLikeOut p)
                 ConLike     -- ^ After typechecker only; must be different
                             -- HsVar for pretty printing

  | HsRecFld  (XRecFld p)
              (AmbiguousFieldOcc p) -- ^ Variable pointing to record selector
                                    -- Not in use after typechecking

  | HsOverLabel (XOverLabel p)
                (Maybe (IdP p)) FastString
     -- ^ Overloaded label (Note [Overloaded labels] in GHC.OverloadedLabels)
     --   @Just id@ means @RebindableSyntax@ is in use, and gives the id of the
     --   in-scope 'fromLabel'.
     --   NB: Not in use after typechecking

  | HsIPVar   (XIPVar p)
              HsIPName   -- ^ Implicit parameter (not in use after typechecking)
  | HsOverLit (XOverLitE p)
              (HsOverLit p)  -- ^ Overloaded literals

  | HsLit     (XLitE p)
              (HsLit p)      -- ^ Simple (non-overloaded) literals

  | HsLam     (XLam p)
              (MatchGroup p (LHsExpr p))
                       -- ^ Lambda abstraction. Currently always a single match
       --
       -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
       --       'GHC.Parser.Annotation.AnnRarrow',

       -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsLamCase (XLamCase p) (MatchGroup p (LHsExpr p)) -- ^ Lambda-case
       --
       -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
       --           'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen',
       --           'GHC.Parser.Annotation.AnnClose'

       -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsApp     (XApp p) (LHsExpr p) (LHsExpr p) -- ^ Application

  | HsAppType (XAppTypeE p) -- After typechecking: the type argument
              (LHsExpr p)
              (LHsWcType (NoGhcTc p))  -- ^ Visible type application
       --
       -- Explicit type argument; e.g  f @Int x y
       -- NB: Has wildcards, but no implicit quantification
       --
       -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnAt',

  -- | Operator applications:
  -- NB Bracketed ops such as (+) come out as Vars.

  -- NB We need an expr for the operator in an OpApp/Section since
  -- the typechecker may need to apply the operator to a few types.

  | OpApp       (XOpApp p)
                (LHsExpr p)       -- left operand
                (LHsExpr p)       -- operator
                (LHsExpr p)       -- right operand

  -- | Negation operator. Contains the negated expression and the name
  -- of 'negate'
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnMinus'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | NegApp      (XNegApp p)
                (LHsExpr p)
                (SyntaxExpr p)

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
  --             'GHC.Parser.Annotation.AnnClose' @')'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsPar       (XPar p)
                (LHsExpr p)  -- ^ Parenthesised expr; see Note [Parens in HsSyn]

  | SectionL    (XSectionL p)
                (LHsExpr p)    -- operand; see Note [Sections in HsSyn]
                (LHsExpr p)    -- operator
  | SectionR    (XSectionR p)
                (LHsExpr p)    -- operator; see Note [Sections in HsSyn]
                (LHsExpr p)    -- operand

  -- | Used for explicit tuples and sections thereof
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
  --         'GHC.Parser.Annotation.AnnClose'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  -- Note [ExplicitTuple]
  | ExplicitTuple
        (XExplicitTuple p)
        [LHsTupArg p]
        Boxity

  -- | Used for unboxed sum types
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'(#'@,
  --          'GHC.Parser.Annotation.AnnVbar', 'GHC.Parser.Annotation.AnnClose' @'#)'@,
  --
  --  There will be multiple 'GHC.Parser.Annotation.AnnVbar', (1 - alternative) before
  --  the expression, (arity - alternative) after it
  | ExplicitSum
          (XExplicitSum p)
          ConTag --  Alternative (one-based)
          Arity  --  Sum arity
          (LHsExpr p)

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
  --       'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
  --       'GHC.Parser.Annotation.AnnClose' @'}'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsCase      (XCase p)
                (LHsExpr p)
                (MatchGroup p (LHsExpr p))

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
  --       'GHC.Parser.Annotation.AnnSemi',
  --       'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
  --       'GHC.Parser.Annotation.AnnElse',

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsIf        (XIf p)        -- GhcPs: this is a Bool; False <=> do not use
                               --  rebindable syntax
                (LHsExpr p)    --  predicate
                (LHsExpr p)    --  then part
                (LHsExpr p)    --  else part

  -- | Multi-way if
  --
  -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf'
  --       'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose',

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsMultiIf   (XMultiIf p) [LGRHS p (LHsExpr p)]

  -- | let(rec)
  --
  -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
  --       'GHC.Parser.Annotation.AnnOpen' @'{'@,
  --       'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsLet       (XLet p)
                (LHsLocalBinds p)
                (LHsExpr  p)

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
  --             'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
  --             'GHC.Parser.Annotation.AnnVbar',
  --             'GHC.Parser.Annotation.AnnClose'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsDo        (XDo p)                  -- Type of the whole expression
                (HsStmtContext GhcRn)    -- The parameterisation is unimportant
                                         -- because in this context we never use
                                         -- the PatGuard or ParStmt variant
                (Located [ExprLStmt p]) -- "do":one or more stmts

  -- | Syntactic list: [a,b,c,...]
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
  --              'GHC.Parser.Annotation.AnnClose' @']'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  -- See Note [Empty lists]
  | ExplicitList
                (XExplicitList p)  -- Gives type of components of list
                (Maybe (SyntaxExpr p))
                                   -- For OverloadedLists, the fromListN witness
                [LHsExpr p]

  -- | Record construction
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
  --         'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | RecordCon
      { forall p. HsExpr p -> XRecordCon p
rcon_ext      :: XRecordCon p
      , forall p. HsExpr p -> Located (IdP p)
rcon_con_name :: Located (IdP p)    -- The constructor name;
                                            --  not used after type checking
      , forall p. HsExpr p -> HsRecordBinds p
rcon_flds     :: HsRecordBinds p }  -- The fields

  -- | Record update
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'{'@,
  --         'GHC.Parser.Annotation.AnnDotdot','GHC.Parser.Annotation.AnnClose' @'}'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | RecordUpd
      { forall p. HsExpr p -> XRecordUpd p
rupd_ext  :: XRecordUpd p
      , forall p. HsExpr p -> LHsExpr p
rupd_expr :: LHsExpr p
      , forall p. HsExpr p -> [LHsRecUpdField p]
rupd_flds :: [LHsRecUpdField p]
      }
  -- For a type family, the arg types are of the *instance* tycon,
  -- not the family tycon

  -- | Expression with an explicit type signature. @e :: type@
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDcolon'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | ExprWithTySig
                (XExprWithTySig p)

                (LHsExpr p)
                (LHsSigWcType (NoGhcTc p))

  -- | Arithmetic sequence
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'['@,
  --              'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnDotdot',
  --              'GHC.Parser.Annotation.AnnClose' @']'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | ArithSeq
                (XArithSeq p)
                (Maybe (SyntaxExpr p))
                                  -- For OverloadedLists, the fromList witness
                (ArithSeqInfo p)

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  -----------------------------------------------------------
  -- MetaHaskell Extensions

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
  --         'GHC.Parser.Annotation.AnnOpenE','GHC.Parser.Annotation.AnnOpenEQ',
  --         'GHC.Parser.Annotation.AnnClose','GHC.Parser.Annotation.AnnCloseQ'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsBracket    (XBracket p) (HsBracket p)

    -- See Note [Pending Splices]
  | HsRnBracketOut
      (XRnBracketOut p)
      (HsBracket GhcRn)    -- Output of the renamer is the *original* renamed
                           -- expression, plus
      [PendingRnSplice]    -- _renamed_ splices to be type checked

  | HsTcBracketOut
      (XTcBracketOut p)
      (Maybe QuoteWrapper) -- The wrapper to apply type and dictionary argument
                           -- to the quote.
      (HsBracket GhcRn)    -- Output of the type checker is the *original*
                           -- renamed expression, plus
      [PendingTcSplice]    -- _typechecked_ splices to be
                           -- pasted back in by the desugarer

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
  --         'GHC.Parser.Annotation.AnnClose'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsSpliceE  (XSpliceE p) (HsSplice p)

  -----------------------------------------------------------
  -- Arrow notation extension

  -- | @proc@ notation for Arrows
  --
  --  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnProc',
  --          'GHC.Parser.Annotation.AnnRarrow'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsProc      (XProc p)
                (LPat p)               -- arrow abstraction, proc
                (LHsCmdTop p)          -- body of the abstraction
                                       -- always has an empty stack

  ---------------------------------------
  -- static pointers extension
  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnStatic',

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsStatic (XStatic p) -- Free variables of the body
             (LHsExpr p)        -- Body

  ---------------------------------------
  -- Haskell program coverage (Hpc) Support

  | HsTick
     (XTick p)
     (Tickish (IdP p))
     (LHsExpr p)                       -- sub-expression

  | HsBinTick
     (XBinTick p)
     Int                                -- module-local tick number for True
     Int                                -- module-local tick number for False
     (LHsExpr p)                        -- sub-expression

  ---------------------------------------
  -- Expressions annotated with pragmas, written as {-# ... #-}
  | HsPragE (XPragE p) (HsPragE p) (LHsExpr p)

  | XExpr       !(XXExpr p)
  -- Note [Trees that Grow] extension constructor for the
  -- general idea, and Note [Rebindable syntax and HsExpansion]
  -- for an example of how we use it.

-- | Extra data fields for a 'RecordCon', added by the type checker
data RecordConTc = RecordConTc
      { RecordConTc -> ConLike
rcon_con_like :: ConLike      -- The data constructor or pattern synonym
      , RecordConTc -> HsExpr GhcTc
rcon_con_expr :: PostTcExpr   -- Instantiated constructor function
      }

-- | Extra data fields for a 'RecordUpd', added by the type checker
data RecordUpdTc = RecordUpdTc
      { RecordUpdTc -> [ConLike]
rupd_cons :: [ConLike]
                -- Filled in by the type checker to the
                -- _non-empty_ list of DataCons that have
                -- all the upd'd fields

      , RecordUpdTc -> [Type]
rupd_in_tys  :: [Type]  -- Argument types of *input* record type
      , RecordUpdTc -> [Type]
rupd_out_tys :: [Type]  --             and  *output* record type
                -- For a data family, these are the type args of the
                -- /representation/ type constructor

      , RecordUpdTc -> HsWrapper
rupd_wrap :: HsWrapper  -- See note [Record Update HsWrapper]
      }

-- | HsWrap appears only in typechecker output
-- Invariant: The contained Expr is *NOT* itself an HsWrap.
-- See Note [Detecting forced eta expansion] in "GHC.HsToCore.Expr".
-- This invariant is maintained by 'GHC.Hs.Utils.mkHsWrap'.
-- hs_syn is something like HsExpr or HsCmd
data HsWrap hs_syn = HsWrap HsWrapper      -- the wrapper
                            (hs_syn GhcTc) -- the thing that is wrapped

deriving instance (Data (hs_syn GhcTc), Typeable hs_syn) => Data (HsWrap hs_syn)

-- ---------------------------------------------------------------------

type instance XVar           (GhcPass _) = NoExtField
type instance XUnboundVar    (GhcPass _) = NoExtField
type instance XConLikeOut    (GhcPass _) = NoExtField
type instance XRecFld        (GhcPass _) = NoExtField
type instance XOverLabel     (GhcPass _) = NoExtField
type instance XIPVar         (GhcPass _) = NoExtField
type instance XOverLitE      (GhcPass _) = NoExtField
type instance XLitE          (GhcPass _) = NoExtField
type instance XLam           (GhcPass _) = NoExtField
type instance XLamCase       (GhcPass _) = NoExtField
type instance XApp           (GhcPass _) = NoExtField

type instance XAppTypeE      GhcPs = NoExtField
type instance XAppTypeE      GhcRn = NoExtField
type instance XAppTypeE      GhcTc = Type

type instance XOpApp         GhcPs = NoExtField
type instance XOpApp         GhcRn = Fixity
type instance XOpApp         GhcTc = Fixity

type instance XNegApp        (GhcPass _) = NoExtField
type instance XPar           (GhcPass _) = NoExtField
type instance XSectionL      (GhcPass _) = NoExtField
type instance XSectionR      (GhcPass _) = NoExtField
type instance XExplicitTuple (GhcPass _) = NoExtField

type instance XExplicitSum   GhcPs = NoExtField
type instance XExplicitSum   GhcRn = NoExtField
type instance XExplicitSum   GhcTc = [Type]

type instance XCase          (GhcPass _) = NoExtField

type instance XIf            (GhcPass _) = NoExtField

type instance XMultiIf       GhcPs = NoExtField
type instance XMultiIf       GhcRn = NoExtField
type instance XMultiIf       GhcTc = Type

type instance XLet           (GhcPass _) = NoExtField

type instance XDo            GhcPs = NoExtField
type instance XDo            GhcRn = NoExtField
type instance XDo            GhcTc = Type

type instance XExplicitList  GhcPs = NoExtField
type instance XExplicitList  GhcRn = NoExtField
type instance XExplicitList  GhcTc = Type

type instance XRecordCon     GhcPs = NoExtField
type instance XRecordCon     GhcRn = NoExtField
type instance XRecordCon     GhcTc = RecordConTc

type instance XRecordUpd     GhcPs = NoExtField
type instance XRecordUpd     GhcRn = NoExtField
type instance XRecordUpd     GhcTc = RecordUpdTc

type instance XExprWithTySig (GhcPass _) = NoExtField

type instance XArithSeq      GhcPs = NoExtField
type instance XArithSeq      GhcRn = NoExtField
type instance XArithSeq      GhcTc = PostTcExpr

type instance XBracket       (GhcPass _) = NoExtField

type instance XRnBracketOut  (GhcPass _) = NoExtField
type instance XTcBracketOut  (GhcPass _) = NoExtField

type instance XSpliceE       (GhcPass _) = NoExtField
type instance XProc          (GhcPass _) = NoExtField

type instance XStatic        GhcPs = NoExtField
type instance XStatic        GhcRn = NameSet
type instance XStatic        GhcTc = NameSet

type instance XTick          (GhcPass _) = NoExtField
type instance XBinTick       (GhcPass _) = NoExtField

type instance XPragE         (GhcPass _) = NoExtField

type instance XXExpr         GhcPs       = NoExtCon

-- See Note [Rebindable syntax and HsExpansion] below
type instance XXExpr         GhcRn       = HsExpansion (HsExpr GhcRn)
                                                       (HsExpr GhcRn)
type instance XXExpr         GhcTc       = XXExprGhcTc

data XXExprGhcTc
  = WrapExpr {-# UNPACK #-} !(HsWrap HsExpr)
  | ExpansionExpr {-# UNPACK #-} !(HsExpansion (HsExpr GhcRn) (HsExpr GhcTc))


{-
Note [Rebindable syntax and HsExpansion]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We implement rebindable syntax (RS) support by performing a desugaring
in the renamer. We transform GhcPs expressions affected by RS into the
appropriate desugared form, but **annotated with the original expression**.

Let us consider a piece of code like:

    {-# LANGUAGE RebindableSyntax #-}
    ifThenElse :: Char -> () -> () -> ()
    ifThenElse _ _ _ = ()
    x = if 'a' then () else True

The parsed AST for the RHS of x would look something like (slightly simplified):

    L locif (HsIf (L loca 'a') (L loctrue ()) (L locfalse True))

Upon seeing such an AST with RS on, we could transform it into a
mere function call, as per the RS rules, equivalent to the
following function application:

    ifThenElse 'a' () True

which doesn't typecheck. But GHC would report an error about
not being able to match the third argument's type (Bool) with the
expected type: (), in the expression _as desugared_, i.e in
the aforementioned function application. But the user never
wrote a function application! This would be pretty bad.

To remedy this, instead of transforming the original HsIf
node into mere applications of 'ifThenElse', we keep the
original 'if' expression around too, using the TTG
XExpr extension point to allow GHC to construct an
'HsExpansion' value that will keep track of the original
expression in its first field, and the desugared one in the
second field. The resulting renamed AST would look like:

    L locif (XExpr
      (HsExpanded
        (HsIf (L loca 'a')
              (L loctrue ())
              (L locfalse True)
        )
        (App (L generatedSrcSpan
                (App (L generatedSrcSpan
                        (App (L generatedSrcSpan (Var ifThenElse))
                             (L loca 'a')
                        )
                     )
                     (L loctrue ())
                )
             )
             (L locfalse True)
        )
      )
    )

When comes the time to typecheck the program, we end up calling
tcMonoExpr on the AST above. If this expression gives rise to
a type error, then it will appear in a context line and GHC
will pretty-print it using the 'Outputable (HsExpansion a b)'
instance defined below, which *only prints the original
expression*. This is the gist of the idea, but is not quite
enough to recover the error messages that we had with the
SyntaxExpr-based, typechecking/desugaring-to-core time
implementation of rebindable syntax. The key idea is to decorate
some elements of the desugared expression so as to be able to
give them a special treatment when typechecking the desugared
expression, to print a different context line or skip one
altogether.

Whenever we 'setSrcSpan' a 'generatedSrcSpan', we update a field in
TcLclEnv called 'tcl_in_gen_code', setting it to True, which indicates that we
entered generated code, i.e code fabricated by the compiler when rebinding some
syntax. If someone tries to push some error context line while that field is set
to True, the pushing won't actually happen and the context line is just dropped.
Once we 'setSrcSpan' a real span (for an expression that was in the original
source code), we set 'tcl_in_gen_code' back to False, indicating that we
"emerged from the generated code tunnel", and that the expressions we will be
processing are relevant to report in context lines again.

You might wonder why we store a RealSrcSpan in addition to a Bool in
the TcLclEnv: could we not store a Maybe RealSrcSpan? The problem is
that we still generate constraints when processing generated code,
and a CtLoc must contain a RealSrcSpan -- otherwise, error messages
might appear without source locations. So we keep the RealSrcSpan of
the last location spotted that wasn't generated; it's as good as
we're going to get in generated code. Once we get to sub-trees that
are not generated, then we update the RealSrcSpan appropriately, and
set the tcl_in_gen_code Bool to False.

---

A general recipe to follow this approach for new constructs could go as follows:

- Remove any GhcRn-time SyntaxExpr extensions to the relevant constructor for your
  construct, in HsExpr or related syntax data types.
- At renaming-time:
    - take your original node of interest (HsIf above)
    - rename its subexpressions (condition, true branch, false branch above)
    - construct the suitable "rebound"-and-renamed result (ifThenElse call
      above), where the 'SrcSpan' attached to any _fabricated node_ (the
      HsVar/HsApp nodes, above) is set to 'generatedSrcSpan'
    - take both the original node and that rebound-and-renamed result and wrap
      them in an XExpr: XExpr (HsExpanded <original node> <desugared>)
 - At typechecking-time:
    - remove any logic that was previously dealing with your rebindable
      construct, typically involving [tc]SyntaxOp, SyntaxExpr and friends.
    - the XExpr (HsExpanded ... ...) case in tcExpr already makes sure that we
      typecheck the desugared expression while reporting the original one in
      errors

-}

-- See Note [Rebindable syntax and HsExpansion] just above.
data HsExpansion a b
  = HsExpanded a b
  deriving Typeable (HsExpansion a b)
Typeable (HsExpansion a b)
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> HsExpansion a b -> c (HsExpansion a b))
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c (HsExpansion a b))
-> (HsExpansion a b -> Constr)
-> (HsExpansion a b -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c (HsExpansion a b)))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c (HsExpansion a b)))
-> ((forall b. Data b => b -> b)
    -> HsExpansion a b -> HsExpansion a b)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r)
-> (forall u.
    (forall d. Data d => d -> u) -> HsExpansion a b -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> HsExpansion a b -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d)
    -> HsExpansion a b -> m (HsExpansion a b))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d)
    -> HsExpansion a b -> m (HsExpansion a b))
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d)
    -> HsExpansion a b -> m (HsExpansion a b))
-> Data (HsExpansion a b)
HsExpansion a b -> DataType
HsExpansion a b -> Constr
(forall b. Data b => b -> b) -> HsExpansion a b -> HsExpansion a b
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u.
Int -> (forall d. Data d => d -> u) -> HsExpansion a b -> u
forall u. (forall d. Data d => d -> u) -> HsExpansion a b -> [u]
forall {a} {b}. (Data a, Data b) => Typeable (HsExpansion a b)
forall a b. (Data a, Data b) => HsExpansion a b -> DataType
forall a b. (Data a, Data b) => HsExpansion a b -> Constr
forall a b.
(Data a, Data b) =>
(forall b. Data b => b -> b) -> HsExpansion a b -> HsExpansion a b
forall a b u.
(Data a, Data b) =>
Int -> (forall d. Data d => d -> u) -> HsExpansion a b -> u
forall a b u.
(Data a, Data b) =>
(forall d. Data d => d -> u) -> HsExpansion a b -> [u]
forall a b r r'.
(Data a, Data b) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
forall a b r r'.
(Data a, Data b) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
forall a b (m :: * -> *).
(Data a, Data b, Monad m) =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
forall a b (m :: * -> *).
(Data a, Data b, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
forall a b (c :: * -> *).
(Data a, Data b) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsExpansion a b)
forall a b (c :: * -> *).
(Data a, Data b) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsExpansion a b -> c (HsExpansion a b)
forall a b (t :: * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (HsExpansion a b))
forall a b (t :: * -> * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsExpansion a b))
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsExpansion a b)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsExpansion a b -> c (HsExpansion a b)
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (HsExpansion a b))
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsExpansion a b))
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
$cgmapMo :: forall a b (m :: * -> *).
(Data a, Data b, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
$cgmapMp :: forall a b (m :: * -> *).
(Data a, Data b, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
$cgmapM :: forall a b (m :: * -> *).
(Data a, Data b, Monad m) =>
(forall d. Data d => d -> m d)
-> HsExpansion a b -> m (HsExpansion a b)
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> HsExpansion a b -> u
$cgmapQi :: forall a b u.
(Data a, Data b) =>
Int -> (forall d. Data d => d -> u) -> HsExpansion a b -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> HsExpansion a b -> [u]
$cgmapQ :: forall a b u.
(Data a, Data b) =>
(forall d. Data d => d -> u) -> HsExpansion a b -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
$cgmapQr :: forall a b r r'.
(Data a, Data b) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
$cgmapQl :: forall a b r r'.
(Data a, Data b) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsExpansion a b -> r
gmapT :: (forall b. Data b => b -> b) -> HsExpansion a b -> HsExpansion a b
$cgmapT :: forall a b.
(Data a, Data b) =>
(forall b. Data b => b -> b) -> HsExpansion a b -> HsExpansion a b
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsExpansion a b))
$cdataCast2 :: forall a b (t :: * -> * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (HsExpansion a b))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (HsExpansion a b))
$cdataCast1 :: forall a b (t :: * -> *) (c :: * -> *).
(Data a, Data b, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (HsExpansion a b))
dataTypeOf :: HsExpansion a b -> DataType
$cdataTypeOf :: forall a b. (Data a, Data b) => HsExpansion a b -> DataType
toConstr :: HsExpansion a b -> Constr
$ctoConstr :: forall a b. (Data a, Data b) => HsExpansion a b -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsExpansion a b)
$cgunfold :: forall a b (c :: * -> *).
(Data a, Data b) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (HsExpansion a b)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsExpansion a b -> c (HsExpansion a b)
$cgfoldl :: forall a b (c :: * -> *).
(Data a, Data b) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsExpansion a b -> c (HsExpansion a b)
Data

-- | Build a "wrapped" 'HsExpansion' out of an extension constructor,
--   and the two components of the expansion: original and desugared
--   expressions.
--
--   See Note [Rebindable Syntax and HsExpansion] above for more details.
mkExpanded
  :: (HsExpansion a b -> b) -- ^ XExpr, XCmd, ...
  -> a                      -- ^ source expression ('GhcPs')
  -> b                      -- ^ "desugared" expression
                            --   ('GhcRn')
  -> b                      -- ^ suitably wrapped
                            --   'HsExpansion'
mkExpanded :: forall a b. (HsExpansion a b -> b) -> a -> b -> b
mkExpanded HsExpansion a b -> b
xwrap a
a b
b = HsExpansion a b -> b
xwrap (a -> b -> HsExpansion a b
forall a b. a -> b -> HsExpansion a b
HsExpanded a
a b
b)

-- | Just print the original expression (the @a@).
instance (Outputable a, Outputable b) => Outputable (HsExpansion a b) where
  ppr :: HsExpansion a b -> SDoc
ppr (HsExpanded a
a b
b) = SDoc -> SDoc -> SDoc
ifPprDebug ([SDoc] -> SDoc
vcat [a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
a, b -> SDoc
forall a. Outputable a => a -> SDoc
ppr b
b]) (a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
a)

-- ---------------------------------------------------------------------

-- | A pragma, written as {-# ... #-}, that may appear within an expression.
data HsPragE p
  = HsPragSCC   (XSCC p)
                SourceText            -- Note [Pragma source text] in GHC.Types.Basic
                StringLiteral         -- "set cost centre" SCC pragma

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen',
  --       'GHC.Parser.Annotation.AnnOpen' @'{-\# GENERATED'@,
  --       'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnVal',
  --       'GHC.Parser.Annotation.AnnColon','GHC.Parser.Annotation.AnnVal',
  --       'GHC.Parser.Annotation.AnnMinus',
  --       'GHC.Parser.Annotation.AnnVal','GHC.Parser.Annotation.AnnColon',
  --       'GHC.Parser.Annotation.AnnVal',
  --       'GHC.Parser.Annotation.AnnClose' @'\#-}'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsPragTick                        -- A pragma introduced tick
     (XTickPragma p)
     SourceText                       -- Note [Pragma source text] in GHC.Types.Basic
     (StringLiteral,(Int,Int),(Int,Int))
                                      -- external span for this tick
     ((SourceText,SourceText),(SourceText,SourceText))
        -- Source text for the four integers used in the span.
        -- See note [Pragma source text] in GHC.Types.Basic

  | XHsPragE !(XXPragE p)

type instance XSCC           (GhcPass _) = NoExtField
type instance XCoreAnn       (GhcPass _) = NoExtField
type instance XTickPragma    (GhcPass _) = NoExtField
type instance XXPragE        (GhcPass _) = NoExtCon

-- | Located Haskell Tuple Argument
--
-- 'HsTupArg' is used for tuple sections
-- @(,a,)@ is represented by
-- @ExplicitTuple [Missing ty1, Present a, Missing ty3]@
-- Which in turn stands for @(\x:ty1 \y:ty2. (x,a,y))@
type LHsTupArg id = Located (HsTupArg id)
-- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnComma'

-- For details on above see note [Api annotations] in GHC.Parser.Annotation

-- | Haskell Tuple Argument
data HsTupArg id
  = Present (XPresent id) (LHsExpr id)     -- ^ The argument
  | Missing (XMissing id)    -- ^ The argument is missing, but this is its type
  | XTupArg !(XXTupArg id)   -- ^ Note [Trees that Grow] extension point

type instance XPresent         (GhcPass _) = NoExtField

type instance XMissing         GhcPs = NoExtField
type instance XMissing         GhcRn = NoExtField
type instance XMissing         GhcTc = Scaled Type

type instance XXTupArg         (GhcPass _) = NoExtCon

tupArgPresent :: LHsTupArg id -> Bool
tupArgPresent :: forall id. LHsTupArg id -> Bool
tupArgPresent (L SrcSpan
_ (Present {})) = Bool
True
tupArgPresent (L SrcSpan
_ (Missing {})) = Bool
False
tupArgPresent (L SrcSpan
_ (XTupArg {})) = Bool
False

{-
Note [Parens in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~
HsPar (and ParPat in patterns, HsParTy in types) is used as follows

  * HsPar is required; the pretty printer does not add parens.

  * HsPars are respected when rearranging operator fixities.
    So   a * (b + c)  means what it says (where the parens are an HsPar)

  * For ParPat and HsParTy the pretty printer does add parens but this should be
    a no-op for ParsedSource, based on the pretty printer round trip feature
    introduced in
    https://phabricator.haskell.org/rGHC499e43824bda967546ebf95ee33ec1f84a114a7c

  * ParPat and HsParTy are pretty printed as '( .. )' regardless of whether or
    not they are strictly necessary. This should be addressed when #13238 is
    completed, to be treated the same as HsPar.


Note [Sections in HsSyn]
~~~~~~~~~~~~~~~~~~~~~~~~
Sections should always appear wrapped in an HsPar, thus
         HsPar (SectionR ...)
The parser parses sections in a wider variety of situations
(See Note [Parsing sections]), but the renamer checks for those
parens.  This invariant makes pretty-printing easier; we don't need
a special case for adding the parens round sections.

Note [Rebindable if]
~~~~~~~~~~~~~~~~~~~~
The rebindable syntax for 'if' is a bit special, because when
rebindable syntax is *off* we do not want to treat
   (if c then t else e)
as if it was an application (ifThenElse c t e).  Why not?
Because we allow an 'if' to return *unboxed* results, thus
  if blah then 3# else 4#
whereas that would not be possible using a all to a polymorphic function
(because you can't call a polymorphic function at an unboxed type).

So we use NoSyntaxExpr to mean "use the old built-in typing rule".

A further complication is that, in the `deriving` code, we never want
to use rebindable syntax. So, even in GhcPs, we want to denote whether
to use rebindable syntax or not. This is done via the type instance
for XIf GhcPs.

Note [Record Update HsWrapper]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a wrapper in RecordUpd which is used for the *required*
constraints for pattern synonyms. This wrapper is created in the
typechecking and is then directly used in the desugaring without
modification.

For example, if we have the record pattern synonym P,
  pattern P :: (Show a) => a -> Maybe a
  pattern P{x} = Just x

  foo = (Just True) { x = False }
then `foo` desugars to something like
  foo = case Just True of
          P x -> P False
hence we need to provide the correct dictionaries to P's matcher on
the RHS so that we can build the expression.

Note [Located RdrNames]
~~~~~~~~~~~~~~~~~~~~~~~
A number of syntax elements have seemingly redundant locations attached to them.
This is deliberate, to allow transformations making use of the API Annotations
to easily correlate a Located Name in the RenamedSource with a Located RdrName
in the ParsedSource.

There are unfortunately enough differences between the ParsedSource and the
RenamedSource that the API Annotations cannot be used directly with
RenamedSource, so this allows a simple mapping to be used based on the location.

Note [ExplicitTuple]
~~~~~~~~~~~~~~~~~~~~
An ExplicitTuple is never just a data constructor like (,,,).
That is, the `[LHsTupArg p]` argument of `ExplicitTuple` has at least
one `Present` member (and is thus never empty).

A tuple data constructor like () or (,,,) is parsed as an `HsVar`, not an
`ExplicitTuple`, and stays that way. This is important for two reasons:

  1. We don't need -XTupleSections for (,,,)
  2. The type variables in (,,,) can be instantiated with visible type application.
     That is,

       (,,)     :: forall a b c. a -> b -> c -> (a,b,c)
       (True,,) :: forall {b} {c}. b -> c -> (Bool,b,c)

     Note that the tuple section has *inferred* arguments, while the data
     constructor has *specified* ones.
     (See Note [Required, Specified, and Inferred for types] in GHC.Tc.TyCl
     for background.)

Sadly, the grammar for this is actually ambiguous, and it's only thanks to the
preference of a shift in a shift/reduce conflict that the parser works as this
Note details. Search for a reference to this Note in GHC.Parser for further
explanation.

Note [Empty lists]
~~~~~~~~~~~~~~~~~~
An empty list could be considered either a data constructor (stored with
HsVar) or an ExplicitList. This Note describes how empty lists flow through the
various phases and why.

Parsing
-------
An empty list is parsed by the sysdcon nonterminal. It thus comes to life via
HsVar nilDataCon (defined in GHC.Builtin.Types). A freshly-parsed (HsExpr GhcPs) empty list
is never a ExplicitList.

Renaming
--------
If -XOverloadedLists is enabled, we must type-check the empty list as if it
were a call to fromListN. (This is true regardless of the setting of
-XRebindableSyntax.) This is very easy if the empty list is an ExplicitList,
but an annoying special case if it's an HsVar. So the renamer changes a
HsVar nilDataCon to an ExplicitList [], but only if -XOverloadedLists is on.
(Why not always? Read on, dear friend.) This happens in the HsVar case of rnExpr.

Type-checking
-------------
We want to accept an expression like [] @Int. To do this, we must infer that
[] :: forall a. [a]. This is easy if [] is a HsVar with the right DataCon inside.
However, the type-checking for explicit lists works differently: [x,y,z] is never
polymorphic. Instead, we unify the types of x, y, and z together, and use the
unified type as the argument to the cons and nil constructors. Thus, treating
[] as an empty ExplicitList in the type-checker would prevent [] @Int from working.

However, if -XOverloadedLists is on, then [] @Int really shouldn't be allowed:
it's just like fromListN 0 [] @Int. Since
  fromListN :: forall list. IsList list => Int -> [Item list] -> list
that expression really should be rejected. Thus, the renamer's behaviour is
exactly what we want: treat [] as a datacon when -XNoOverloadedLists, and as
an empty ExplicitList when -XOverloadedLists.

See also #13680, which requested [] @Int to work.
-}

instance (OutputableBndrId p) => Outputable (HsExpr (GhcPass p)) where
    ppr :: HsExpr (GhcPass p) -> SDoc
ppr HsExpr (GhcPass p)
expr = HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr HsExpr (GhcPass p)
expr

-----------------------
-- pprExpr, pprLExpr, pprBinds call pprDeeper;
-- the underscore versions do not
pprLExpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
pprLExpr :: forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
pprLExpr (L SrcSpan
_ HsExpr (GhcPass p)
e) = HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr HsExpr (GhcPass p)
e

pprExpr :: (OutputableBndrId p) => HsExpr (GhcPass p) -> SDoc
pprExpr :: forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr HsExpr (GhcPass p)
e | HsExpr (GhcPass p) -> Bool
forall (p :: Pass). IsPass p => HsExpr (GhcPass p) -> Bool
isAtomicHsExpr HsExpr (GhcPass p)
e Bool -> Bool -> Bool
|| HsExpr (GhcPass p) -> Bool
forall id. HsExpr id -> Bool
isQuietHsExpr HsExpr (GhcPass p)
e =            HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
ppr_expr HsExpr (GhcPass p)
e
          | Bool
otherwise                           = SDoc -> SDoc
pprDeeper (HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
ppr_expr HsExpr (GhcPass p)
e)

isQuietHsExpr :: HsExpr id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsExpr :: forall id. HsExpr id -> Bool
isQuietHsExpr (HsPar {})        = Bool
True
-- applications don't display anything themselves
isQuietHsExpr (HsApp {})        = Bool
True
isQuietHsExpr (HsAppType {})    = Bool
True
isQuietHsExpr (OpApp {})        = Bool
True
isQuietHsExpr HsExpr id
_ = Bool
False

pprBinds :: (OutputableBndrId idL, OutputableBndrId idR)
         => HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds :: forall (idL :: Pass) (idR :: Pass).
(OutputableBndrId idL, OutputableBndrId idR) =>
HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds HsLocalBindsLR (GhcPass idL) (GhcPass idR)
b = SDoc -> SDoc
pprDeeper (HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsLocalBindsLR (GhcPass idL) (GhcPass idR)
b)

-----------------------
ppr_lexpr :: (OutputableBndrId p) => LHsExpr (GhcPass p) -> SDoc
ppr_lexpr :: forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
e = HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
ppr_expr (LHsExpr (GhcPass p) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsExpr (GhcPass p)
e)

ppr_expr :: forall p. (OutputableBndrId p)
         => HsExpr (GhcPass p) -> SDoc
ppr_expr :: forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
ppr_expr (HsVar XVar (GhcPass p)
_ (L SrcSpan
_ IdP (GhcPass p)
v))  = IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdGhcP p
IdP (GhcPass p)
v
ppr_expr (HsUnboundVar XUnboundVar (GhcPass p)
_ OccName
uv)= OccName -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc OccName
uv
ppr_expr (HsConLikeOut XConLikeOut (GhcPass p)
_ ConLike
c) = ConLike -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc ConLike
c
ppr_expr (HsIPVar XIPVar (GhcPass p)
_ HsIPName
v)      = HsIPName -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsIPName
v
ppr_expr (HsOverLabel XOverLabel (GhcPass p)
_ Maybe (IdP (GhcPass p))
_ FastString
l)= Char -> SDoc
char Char
'#' SDoc -> SDoc -> SDoc
<> FastString -> SDoc
forall a. Outputable a => a -> SDoc
ppr FastString
l
ppr_expr (HsLit XLitE (GhcPass p)
_ HsLit (GhcPass p)
lit)      = HsLit (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsLit (GhcPass p)
lit
ppr_expr (HsOverLit XOverLitE (GhcPass p)
_ HsOverLit (GhcPass p)
lit)  = HsOverLit (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsOverLit (GhcPass p)
lit
ppr_expr (HsPar XPar (GhcPass p)
_ LHsExpr (GhcPass p)
e)        = SDoc -> SDoc
parens (LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
e)

ppr_expr (HsPragE XPragE (GhcPass p)
_ HsPragE (GhcPass p)
prag LHsExpr (GhcPass p)
e) = [SDoc] -> SDoc
sep [HsPragE (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsPragE (GhcPass p)
prag, LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
e]

ppr_expr e :: HsExpr (GhcPass p)
e@(HsApp {})        = HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps HsExpr (GhcPass p)
e []
ppr_expr e :: HsExpr (GhcPass p)
e@(HsAppType {})    = HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps HsExpr (GhcPass p)
e []

ppr_expr (OpApp XOpApp (GhcPass p)
_ LHsExpr (GhcPass p)
e1 LHsExpr (GhcPass p)
op LHsExpr (GhcPass p)
e2)
  | Just SDoc
pp_op <- HsExpr (GhcPass p) -> Maybe SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (LHsExpr (GhcPass p) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsExpr (GhcPass p)
op)
  = SDoc -> SDoc
pp_infixly SDoc
pp_op
  | Bool
otherwise
  = SDoc
pp_prefixly

  where
    pp_e1 :: SDoc
pp_e1 = PprPrec -> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr PprPrec
opPrec LHsExpr (GhcPass p)
e1   -- In debug mode, add parens
    pp_e2 :: SDoc
pp_e2 = PprPrec -> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr PprPrec
opPrec LHsExpr (GhcPass p)
e2   -- to make precedence clear

    pp_prefixly :: SDoc
pp_prefixly
      = SDoc -> Int -> SDoc -> SDoc
hang (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
op) Int
2 ([SDoc] -> SDoc
sep [SDoc
pp_e1, SDoc
pp_e2])

    pp_infixly :: SDoc -> SDoc
pp_infixly SDoc
pp_op
      = SDoc -> Int -> SDoc -> SDoc
hang SDoc
pp_e1 Int
2 ([SDoc] -> SDoc
sep [SDoc
pp_op, Int -> SDoc -> SDoc
nest Int
2 SDoc
pp_e2])

ppr_expr (NegApp XNegApp (GhcPass p)
_ LHsExpr (GhcPass p)
e SyntaxExpr (GhcPass p)
_) = Char -> SDoc
char Char
'-' SDoc -> SDoc -> SDoc
<+> PprPrec -> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr PprPrec
appPrec LHsExpr (GhcPass p)
e

ppr_expr (SectionL XSectionL (GhcPass p)
_ LHsExpr (GhcPass p)
expr LHsExpr (GhcPass p)
op)
  | Just SDoc
pp_op <- HsExpr (GhcPass p) -> Maybe SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (LHsExpr (GhcPass p) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsExpr (GhcPass p)
op)
  = SDoc -> SDoc
pp_infixly SDoc
pp_op
  | Bool
otherwise
  = SDoc
pp_prefixly
  where
    pp_expr :: SDoc
pp_expr = PprPrec -> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr PprPrec
opPrec LHsExpr (GhcPass p)
expr

    pp_prefixly :: SDoc
pp_prefixly = SDoc -> Int -> SDoc -> SDoc
hang ([SDoc] -> SDoc
hsep [String -> SDoc
text String
" \\ x_ ->", LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
op])
                       Int
4 ([SDoc] -> SDoc
hsep [SDoc
pp_expr, String -> SDoc
text String
"x_ )"])

    pp_infixly :: SDoc -> SDoc
pp_infixly SDoc
v = ([SDoc] -> SDoc
sep [SDoc
pp_expr, SDoc
v])

ppr_expr (SectionR XSectionR (GhcPass p)
_ LHsExpr (GhcPass p)
op LHsExpr (GhcPass p)
expr)
  | Just SDoc
pp_op <- HsExpr (GhcPass p) -> Maybe SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (LHsExpr (GhcPass p) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsExpr (GhcPass p)
op)
  = SDoc -> SDoc
pp_infixly SDoc
pp_op
  | Bool
otherwise
  = SDoc
pp_prefixly
  where
    pp_expr :: SDoc
pp_expr = PprPrec -> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr PprPrec
opPrec LHsExpr (GhcPass p)
expr

    pp_prefixly :: SDoc
pp_prefixly = SDoc -> Int -> SDoc -> SDoc
hang ([SDoc] -> SDoc
hsep [String -> SDoc
text String
"( \\ x_ ->", LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
op, String -> SDoc
text String
"x_"])
                       Int
4 (SDoc
pp_expr SDoc -> SDoc -> SDoc
<> SDoc
rparen)

    pp_infixly :: SDoc -> SDoc
pp_infixly SDoc
v = [SDoc] -> SDoc
sep [SDoc
v, SDoc
pp_expr]

ppr_expr (ExplicitTuple XExplicitTuple (GhcPass p)
_ [LHsTupArg (GhcPass p)]
exprs Boxity
boxity)
    -- Special-case unary boxed tuples so that they are pretty-printed as
    -- `Solo x`, not `(x)`
  | [L SrcSpan
_ (Present XPresent (GhcPass p)
_ LHsExpr (GhcPass p)
expr)] <- [LHsTupArg (GhcPass p)]
exprs
  , Boxity
Boxed <- Boxity
boxity
  = [SDoc] -> SDoc
hsep [String -> SDoc
text (Boxity -> Int -> String
mkTupleStr Boxity
Boxed Int
1), LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
expr]
  | Bool
otherwise
  = TupleSort -> SDoc -> SDoc
tupleParens (Boxity -> TupleSort
boxityTupleSort Boxity
boxity) ([SDoc] -> SDoc
fcat ([HsTupArg (GhcPass p)] -> [SDoc]
forall {p :: Pass}.
(OutputableBndr (IdGhcP p),
 OutputableBndr (IdGhcP (NoGhcTcPass p)), IsPass p) =>
[HsTupArg (GhcPass p)] -> [SDoc]
ppr_tup_args ([HsTupArg (GhcPass p)] -> [SDoc])
-> [HsTupArg (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> a -> b
$ (LHsTupArg (GhcPass p) -> HsTupArg (GhcPass p))
-> [LHsTupArg (GhcPass p)] -> [HsTupArg (GhcPass p)]
forall a b. (a -> b) -> [a] -> [b]
map LHsTupArg (GhcPass p) -> HsTupArg (GhcPass p)
forall l e. GenLocated l e -> e
unLoc [LHsTupArg (GhcPass p)]
exprs))
  where
    ppr_tup_args :: [HsTupArg (GhcPass p)] -> [SDoc]
ppr_tup_args []               = []
    ppr_tup_args (Present XPresent (GhcPass p)
_ LHsExpr (GhcPass p)
e : [HsTupArg (GhcPass p)]
es) = (LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
e SDoc -> SDoc -> SDoc
<> [HsTupArg (GhcPass p)] -> SDoc
forall {id}. [HsTupArg id] -> SDoc
punc [HsTupArg (GhcPass p)]
es) SDoc -> [SDoc] -> [SDoc]
forall a. a -> [a] -> [a]
: [HsTupArg (GhcPass p)] -> [SDoc]
ppr_tup_args [HsTupArg (GhcPass p)]
es
    ppr_tup_args (Missing XMissing (GhcPass p)
_   : [HsTupArg (GhcPass p)]
es) = [HsTupArg (GhcPass p)] -> SDoc
forall {id}. [HsTupArg id] -> SDoc
punc [HsTupArg (GhcPass p)]
es SDoc -> [SDoc] -> [SDoc]
forall a. a -> [a] -> [a]
: [HsTupArg (GhcPass p)] -> [SDoc]
ppr_tup_args [HsTupArg (GhcPass p)]
es

    punc :: [HsTupArg id] -> SDoc
punc (Present {} : [HsTupArg id]
_) = SDoc
comma SDoc -> SDoc -> SDoc
<> SDoc
space
    punc (Missing {} : [HsTupArg id]
_) = SDoc
comma
    punc (XTupArg {} : [HsTupArg id]
_) = SDoc
comma SDoc -> SDoc -> SDoc
<> SDoc
space
    punc []               = SDoc
empty

ppr_expr (ExplicitSum XExplicitSum (GhcPass p)
_ Int
alt Int
arity LHsExpr (GhcPass p)
expr)
  = String -> SDoc
text String
"(#" SDoc -> SDoc -> SDoc
<+> Int -> SDoc
ppr_bars (Int
alt Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1) SDoc -> SDoc -> SDoc
<+> LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
expr SDoc -> SDoc -> SDoc
<+> Int -> SDoc
ppr_bars (Int
arity Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
alt) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"#)"
  where
    ppr_bars :: Int -> SDoc
ppr_bars Int
n = [SDoc] -> SDoc
hsep (Int -> SDoc -> [SDoc]
forall a. Int -> a -> [a]
replicate Int
n (Char -> SDoc
char Char
'|'))

ppr_expr (HsLam XLam (GhcPass p)
_ MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches)
  = MatchGroup (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches

ppr_expr (HsLamCase XLamCase (GhcPass p)
_ MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches)
  = [SDoc] -> SDoc
sep [ [SDoc] -> SDoc
sep [String -> SDoc
text String
"\\case"],
          Int -> SDoc -> SDoc
nest Int
2 (MatchGroup (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches) ]

ppr_expr (HsCase XCase (GhcPass p)
_ LHsExpr (GhcPass p)
expr matches :: MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches@(MG { mg_alts :: forall p body. MatchGroup p body -> Located [LMatch p body]
mg_alts = L SrcSpan
_ [LMatch (GhcPass p) (LHsExpr (GhcPass p))
_] }))
  = [SDoc] -> SDoc
sep [ [SDoc] -> SDoc
sep [String -> SDoc
text String
"case", Int -> SDoc -> SDoc
nest Int
4 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
expr), PtrString -> SDoc
ptext (String -> PtrString
sLit String
"of {")],
          Int -> SDoc -> SDoc
nest Int
2 (MatchGroup (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches) SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'}']
ppr_expr (HsCase XCase (GhcPass p)
_ LHsExpr (GhcPass p)
expr MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches)
  = [SDoc] -> SDoc
sep [ [SDoc] -> SDoc
sep [String -> SDoc
text String
"case", Int -> SDoc -> SDoc
nest Int
4 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
expr), PtrString -> SDoc
ptext (String -> PtrString
sLit String
"of")],
          Int -> SDoc -> SDoc
nest Int
2 (MatchGroup (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass p) (LHsExpr (GhcPass p))
matches) ]

ppr_expr (HsIf XIf (GhcPass p)
_ LHsExpr (GhcPass p)
e1 LHsExpr (GhcPass p)
e2 LHsExpr (GhcPass p)
e3)
  = [SDoc] -> SDoc
sep [[SDoc] -> SDoc
hsep [String -> SDoc
text String
"if", Int -> SDoc -> SDoc
nest Int
2 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
e1), PtrString -> SDoc
ptext (String -> PtrString
sLit String
"then")],
         Int -> SDoc -> SDoc
nest Int
4 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
e2),
         String -> SDoc
text String
"else",
         Int -> SDoc -> SDoc
nest Int
4 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
e3)]

ppr_expr (HsMultiIf XMultiIf (GhcPass p)
_ [LGRHS (GhcPass p) (LHsExpr (GhcPass p))]
alts)
  = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"if") Int
3  ([SDoc] -> SDoc
vcat ((LGRHS (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc)
-> [LGRHS (GhcPass p) (LHsExpr (GhcPass p))] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LGRHS (GhcPass p) (LHsExpr (GhcPass p)) -> SDoc
forall {a} {p} {l}.
(Outputable a, Outputable (XXGRHS p a),
 Outputable (StmtLR p p (LHsExpr p))) =>
GenLocated l (GRHS p a) -> SDoc
ppr_alt [LGRHS (GhcPass p) (LHsExpr (GhcPass p))]
alts))
  where ppr_alt :: GenLocated l (GRHS p a) -> SDoc
ppr_alt (L l
_ (GRHS XCGRHS p a
_ [GuardLStmt p]
guards a
expr)) =
          SDoc -> Int -> SDoc -> SDoc
hang SDoc
vbar Int
2 ([SDoc] -> SDoc
ppr_one [SDoc]
one_alt)
          where
            ppr_one :: [SDoc] -> SDoc
ppr_one [] = String -> SDoc
forall a. String -> a
panic String
"ppr_exp HsMultiIf"
            ppr_one (SDoc
h:[SDoc]
t) = SDoc -> Int -> SDoc -> SDoc
hang SDoc
h Int
2 ([SDoc] -> SDoc
sep [SDoc]
t)
            one_alt :: [SDoc]
one_alt = [ [GuardLStmt p] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [GuardLStmt p]
guards
                      , String -> SDoc
text String
"->" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
pprDeeper (a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
expr) ]
        ppr_alt (L l
_ (XGRHS XXGRHS p a
x)) = XXGRHS p a -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXGRHS p a
x

-- special case: let ... in let ...
ppr_expr (HsLet XLet (GhcPass p)
_ (L SrcSpan
_ HsLocalBinds (GhcPass p)
binds) expr :: LHsExpr (GhcPass p)
expr@(L SrcSpan
_ (HsLet XLet (GhcPass p)
_ GenLocated SrcSpan (HsLocalBinds (GhcPass p))
_ LHsExpr (GhcPass p)
_)))
  = [SDoc] -> SDoc
sep [SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"let") Int
2 ([SDoc] -> SDoc
hsep [HsLocalBinds (GhcPass p) -> SDoc
forall (idL :: Pass) (idR :: Pass).
(OutputableBndrId idL, OutputableBndrId idR) =>
HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds HsLocalBinds (GhcPass p)
binds, PtrString -> SDoc
ptext (String -> PtrString
sLit String
"in")]),
         LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
expr]

ppr_expr (HsLet XLet (GhcPass p)
_ (L SrcSpan
_ HsLocalBinds (GhcPass p)
binds) LHsExpr (GhcPass p)
expr)
  = [SDoc] -> SDoc
sep [SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"let") Int
2 (HsLocalBinds (GhcPass p) -> SDoc
forall (idL :: Pass) (idR :: Pass).
(OutputableBndrId idL, OutputableBndrId idR) =>
HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds HsLocalBinds (GhcPass p)
binds),
         SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"in")  Int
2 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
expr)]

ppr_expr (HsDo XDo (GhcPass p)
_ HsStmtContext GhcRn
do_or_list_comp (L SrcSpan
_ [ExprLStmt (GhcPass p)]
stmts)) = HsStmtContext GhcRn -> [ExprLStmt (GhcPass p)] -> SDoc
forall (p :: Pass) body any.
(OutputableBndrId p, Outputable body) =>
HsStmtContext any -> [LStmt (GhcPass p) body] -> SDoc
pprDo HsStmtContext GhcRn
do_or_list_comp [ExprLStmt (GhcPass p)]
stmts

ppr_expr (ExplicitList XExplicitList (GhcPass p)
_ Maybe (SyntaxExpr (GhcPass p))
_ [LHsExpr (GhcPass p)]
exprs)
  = SDoc -> SDoc
brackets (([SDoc] -> SDoc) -> [SDoc] -> SDoc
pprDeeperList [SDoc] -> SDoc
fsep (SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma ((LHsExpr (GhcPass p) -> SDoc) -> [LHsExpr (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr [LHsExpr (GhcPass p)]
exprs)))

ppr_expr (RecordCon { rcon_con_name :: forall p. HsExpr p -> Located (IdP p)
rcon_con_name = GenLocated SrcSpan (IdP (GhcPass p))
con_id, rcon_flds :: forall p. HsExpr p -> HsRecordBinds p
rcon_flds = HsRecordBinds (GhcPass p)
rbinds })
  = SDoc -> Int -> SDoc -> SDoc
hang (Located (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (IdGhcP p)
GenLocated SrcSpan (IdP (GhcPass p))
con_id) Int
2 (HsRecordBinds (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsRecordBinds (GhcPass p)
rbinds)

ppr_expr (RecordUpd { rupd_expr :: forall p. HsExpr p -> LHsExpr p
rupd_expr = L SrcSpan
_ HsExpr (GhcPass p)
aexp, rupd_flds :: forall p. HsExpr p -> [LHsRecUpdField p]
rupd_flds = [LHsRecUpdField (GhcPass p)]
rbinds })
  = SDoc -> Int -> SDoc -> SDoc
hang (HsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpr (GhcPass p)
aexp) Int
2 (SDoc -> SDoc
braces ([SDoc] -> SDoc
fsep (SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma ((LHsRecUpdField (GhcPass p) -> SDoc)
-> [LHsRecUpdField (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LHsRecUpdField (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LHsRecUpdField (GhcPass p)]
rbinds))))

ppr_expr (ExprWithTySig XExprWithTySig (GhcPass p)
_ LHsExpr (GhcPass p)
expr LHsSigWcType (NoGhcTc (GhcPass p))
sig)
  = SDoc -> Int -> SDoc -> SDoc
hang (Int -> SDoc -> SDoc
nest Int
2 (LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
expr) SDoc -> SDoc -> SDoc
<+> SDoc
dcolon)
         Int
4 (LHsSigWcType (GhcPass (NoGhcTcPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsSigWcType (GhcPass (NoGhcTcPass p))
LHsSigWcType (NoGhcTc (GhcPass p))
sig)

ppr_expr (ArithSeq XArithSeq (GhcPass p)
_ Maybe (SyntaxExpr (GhcPass p))
_ ArithSeqInfo (GhcPass p)
info) = SDoc -> SDoc
brackets (ArithSeqInfo (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr ArithSeqInfo (GhcPass p)
info)

ppr_expr (HsSpliceE XSpliceE (GhcPass p)
_ HsSplice (GhcPass p)
s)         = HsSplice (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsSplice (GhcPass p) -> SDoc
pprSplice HsSplice (GhcPass p)
s
ppr_expr (HsBracket XBracket (GhcPass p)
_ HsBracket (GhcPass p)
b)         = HsBracket (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsBracket (GhcPass p) -> SDoc
pprHsBracket HsBracket (GhcPass p)
b
ppr_expr (HsRnBracketOut XRnBracketOut (GhcPass p)
_ HsBracket GhcRn
e []) = HsBracket GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsBracket GhcRn
e
ppr_expr (HsRnBracketOut XRnBracketOut (GhcPass p)
_ HsBracket GhcRn
e [PendingRnSplice]
ps) = HsBracket GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsBracket GhcRn
e SDoc -> SDoc -> SDoc
$$ String -> SDoc
text String
"pending(rn)" SDoc -> SDoc -> SDoc
<+> [PendingRnSplice] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [PendingRnSplice]
ps
ppr_expr (HsTcBracketOut XTcBracketOut (GhcPass p)
_ Maybe QuoteWrapper
_wrap HsBracket GhcRn
e []) = HsBracket GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsBracket GhcRn
e
ppr_expr (HsTcBracketOut XTcBracketOut (GhcPass p)
_ Maybe QuoteWrapper
_wrap HsBracket GhcRn
e [PendingTcSplice]
ps) = HsBracket GhcRn -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsBracket GhcRn
e SDoc -> SDoc -> SDoc
$$ String -> SDoc
text String
"pending(tc)" SDoc -> SDoc -> SDoc
<+> forall (p :: Pass).
IsPass p =>
((p ~ 'Typechecked) => SDoc) -> SDoc
pprIfTc @p ([PendingTcSplice] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [PendingTcSplice]
ps)

ppr_expr (HsProc XProc (GhcPass p)
_ LPat (GhcPass p)
pat (L SrcSpan
_ (HsCmdTop XCmdTop (GhcPass p)
_ LHsCmd (GhcPass p)
cmd)))
  = [SDoc] -> SDoc
hsep [String -> SDoc
text String
"proc", Located (Pat (GhcPass p)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (Pat (GhcPass p))
LPat (GhcPass p)
pat, PtrString -> SDoc
ptext (String -> PtrString
sLit String
"->"), LHsCmd (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsCmd (GhcPass p)
cmd]

ppr_expr (HsStatic XStatic (GhcPass p)
_ LHsExpr (GhcPass p)
e)
  = [SDoc] -> SDoc
hsep [String -> SDoc
text String
"static", LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
e]

ppr_expr (HsTick XTick (GhcPass p)
_ Tickish (IdP (GhcPass p))
tickish LHsExpr (GhcPass p)
exp)
  = SDoc -> SDoc -> SDoc
pprTicks (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
exp) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
    Tickish (IdGhcP p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Tickish (IdGhcP p)
Tickish (IdP (GhcPass p))
tickish SDoc -> SDoc -> SDoc
<+> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
exp
ppr_expr (HsBinTick XBinTick (GhcPass p)
_ Int
tickIdTrue Int
tickIdFalse LHsExpr (GhcPass p)
exp)
  = SDoc -> SDoc -> SDoc
pprTicks (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
exp) (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$
    [SDoc] -> SDoc
hcat [String -> SDoc
text String
"bintick<",
          Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr Int
tickIdTrue,
          String -> SDoc
text String
",",
          Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr Int
tickIdFalse,
          String -> SDoc
text String
">(",
          LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
exp, String -> SDoc
text String
")"]

ppr_expr (HsRecFld XRecFld (GhcPass p)
_ AmbiguousFieldOcc (GhcPass p)
f) = AmbiguousFieldOcc (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr AmbiguousFieldOcc (GhcPass p)
f
ppr_expr (XExpr XXExpr (GhcPass p)
x) = case forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
  GhcPs -> ppr x
#endif
  GhcPass p
GhcRn -> HsExpansion (HsExpr GhcRn) (HsExpr GhcRn) -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXExpr (GhcPass p)
HsExpansion (HsExpr GhcRn) (HsExpr GhcRn)
x
  GhcPass p
GhcTc -> case XXExpr (GhcPass p)
x of
    WrapExpr (HsWrap HsWrapper
co_fn HsExpr GhcTc
e) -> HsWrapper -> (Bool -> SDoc) -> SDoc
pprHsWrapper HsWrapper
co_fn
      (\Bool
parens -> if Bool
parens then HsExpr GhcTc -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr HsExpr GhcTc
e else HsExpr GhcTc -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr HsExpr GhcTc
e)
    ExpansionExpr HsExpansion (HsExpr GhcRn) (HsExpr GhcTc)
e -> HsExpansion (HsExpr GhcRn) (HsExpr GhcTc) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsExpansion (HsExpr GhcRn) (HsExpr GhcTc)
e -- e is an HsExpansion, we print the original
                             -- expression (LHsExpr GhcPs), not the
                             -- desugared one (LHsExpr GhcT).

ppr_infix_expr :: forall p. (OutputableBndrId p) => HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr :: forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr (HsVar XVar (GhcPass p)
_ (L SrcSpan
_ IdP (GhcPass p)
v))    = SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc IdGhcP p
IdP (GhcPass p)
v)
ppr_infix_expr (HsConLikeOut XConLikeOut (GhcPass p)
_ ConLike
c)   = SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (Name -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc (ConLike -> Name
conLikeName ConLike
c))
ppr_infix_expr (HsRecFld XRecFld (GhcPass p)
_ AmbiguousFieldOcc (GhcPass p)
f)       = SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (AmbiguousFieldOcc (GhcPass p) -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc AmbiguousFieldOcc (GhcPass p)
f)
ppr_infix_expr (HsUnboundVar XUnboundVar (GhcPass p)
_ OccName
occ) = SDoc -> Maybe SDoc
forall a. a -> Maybe a
Just (OccName -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc OccName
occ)
ppr_infix_expr (XExpr XXExpr (GhcPass p)
x)            = case (forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p, XXExpr (GhcPass p)
x) of
  (GhcPass p
GhcPs, XXExpr (GhcPass p)
_)                              -> Maybe SDoc
forall a. Maybe a
Nothing
  (GhcPass p
GhcRn, HsExpanded HsExpr GhcRn
a HsExpr GhcRn
_)                 -> HsExpr GhcRn -> Maybe SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr HsExpr GhcRn
a
  (GhcPass p
GhcTc, WrapExpr (HsWrap HsWrapper
_ HsExpr GhcTc
e))          -> HsExpr GhcTc -> Maybe SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr HsExpr GhcTc
e
  (GhcPass p
GhcTc, ExpansionExpr (HsExpanded HsExpr GhcRn
a HsExpr GhcTc
_)) -> HsExpr GhcRn -> Maybe SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> Maybe SDoc
ppr_infix_expr HsExpr GhcRn
a
ppr_infix_expr HsExpr (GhcPass p)
_ = Maybe SDoc
forall a. Maybe a
Nothing

ppr_apps :: (OutputableBndrId p)
         => HsExpr (GhcPass p)
         -> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
         -> SDoc
ppr_apps :: forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps (HsApp XApp (GhcPass p)
_ (L SrcSpan
_ HsExpr (GhcPass p)
fun) LHsExpr (GhcPass p)
arg)        [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
args
  = HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps HsExpr (GhcPass p)
fun (LHsExpr (GhcPass p)
-> Either
     (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))
forall a b. a -> Either a b
Left LHsExpr (GhcPass p)
arg Either (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))
-> [Either
      (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
-> [Either
      (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
forall a. a -> [a] -> [a]
: [Either
   (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
[Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
args)
ppr_apps (HsAppType XAppTypeE (GhcPass p)
_ (L SrcSpan
_ HsExpr (GhcPass p)
fun) LHsWcType (NoGhcTc (GhcPass p))
arg)    [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
args
  = HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p)
-> [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
-> SDoc
ppr_apps HsExpr (GhcPass p)
fun (LHsWcType (GhcPass (NoGhcTcPass p))
-> Either
     (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))
forall a b. b -> Either a b
Right LHsWcType (GhcPass (NoGhcTcPass p))
LHsWcType (NoGhcTc (GhcPass p))
arg Either (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))
-> [Either
      (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
-> [Either
      (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
forall a. a -> [a] -> [a]
: [Either
   (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
[Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
args)
ppr_apps HsExpr (GhcPass p)
fun [Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
args = SDoc -> Int -> SDoc -> SDoc
hang (HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
ppr_expr HsExpr (GhcPass p)
fun) Int
2 ([SDoc] -> SDoc
fsep ((Either (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))
 -> SDoc)
-> [Either
      (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
-> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Either (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))
-> SDoc
forall {a} {a}. (Outputable a, Outputable a) => Either a a -> SDoc
pp [Either
   (LHsExpr (GhcPass p)) (LHsWcType (GhcPass (NoGhcTcPass p)))]
[Either (LHsExpr (GhcPass p)) (LHsWcType (NoGhcTc (GhcPass p)))]
args))
  where
    pp :: Either a a -> SDoc
pp (Left a
arg)                             = a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
arg
    -- pp (Right (LHsWcTypeX (HsWC { hswc_body = L _ arg })))
    --   = char '@' <> pprHsType arg
    pp (Right a
arg)
      = String -> SDoc
text String
"@" SDoc -> SDoc -> SDoc
<> a -> SDoc
forall a. Outputable a => a -> SDoc
ppr a
arg

pprExternalSrcLoc :: (StringLiteral,(Int,Int),(Int,Int)) -> SDoc
pprExternalSrcLoc :: (StringLiteral, (Int, Int), (Int, Int)) -> SDoc
pprExternalSrcLoc (StringLiteral SourceText
_ FastString
src,(Int
n1,Int
n2),(Int
n3,Int
n4))
  = (FastString, (Int, Int), (Int, Int)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (FastString
src,(Int
n1,Int
n2),(Int
n3,Int
n4))

{-
HsSyn records exactly where the user put parens, with HsPar.
So generally speaking we print without adding any parens.
However, some code is internally generated, and in some places
parens are absolutely required; so for these places we use
pprParendLExpr (but don't print double parens of course).

For operator applications we don't add parens, because the operator
fixities should do the job, except in debug mode (-dppr-debug) so we
can see the structure of the parse tree.
-}

pprDebugParendExpr :: (OutputableBndrId p)
                   => PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr :: forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprDebugParendExpr PprPrec
p LHsExpr (GhcPass p)
expr
  = (Bool -> SDoc) -> SDoc
getPprDebug ((Bool -> SDoc) -> SDoc) -> (Bool -> SDoc) -> SDoc
forall a b. (a -> b) -> a -> b
$ \case
      Bool
True  -> PprPrec -> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprParendLExpr PprPrec
p LHsExpr (GhcPass p)
expr
      Bool
False -> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
pprLExpr         LHsExpr (GhcPass p)
expr

pprParendLExpr :: (OutputableBndrId p)
               => PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprParendLExpr :: forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LHsExpr (GhcPass p) -> SDoc
pprParendLExpr PprPrec
p (L SrcSpan
_ HsExpr (GhcPass p)
e) = PprPrec -> HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> HsExpr (GhcPass p) -> SDoc
pprParendExpr PprPrec
p HsExpr (GhcPass p)
e

pprParendExpr :: (OutputableBndrId p)
              => PprPrec -> HsExpr (GhcPass p) -> SDoc
pprParendExpr :: forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> HsExpr (GhcPass p) -> SDoc
pprParendExpr PprPrec
p HsExpr (GhcPass p)
expr
  | PprPrec -> HsExpr (GhcPass p) -> Bool
forall (p :: Pass).
IsPass p =>
PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens PprPrec
p HsExpr (GhcPass p)
expr = SDoc -> SDoc
parens (HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr HsExpr (GhcPass p)
expr)
  | Bool
otherwise                = HsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsExpr (GhcPass p) -> SDoc
pprExpr HsExpr (GhcPass p)
expr
        -- Using pprLExpr makes sure that we go 'deeper'
        -- I think that is usually (always?) right

-- | @'hsExprNeedsParens' p e@ returns 'True' if the expression @e@ needs
-- parentheses under precedence @p@.
hsExprNeedsParens :: forall p. IsPass p => PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens :: forall (p :: Pass).
IsPass p =>
PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens PprPrec
p = HsExpr (GhcPass p) -> Bool
go
  where
    go :: HsExpr (GhcPass p) -> Bool
go (HsVar{})                      = Bool
False
    go (HsUnboundVar{})               = Bool
False
    go (HsConLikeOut{})               = Bool
False
    go (HsIPVar{})                    = Bool
False
    go (HsOverLabel{})                = Bool
False
    go (HsLit XLitE (GhcPass p)
_ HsLit (GhcPass p)
l)                    = PprPrec -> HsLit (GhcPass p) -> Bool
forall x. PprPrec -> HsLit x -> Bool
hsLitNeedsParens PprPrec
p HsLit (GhcPass p)
l
    go (HsOverLit XOverLitE (GhcPass p)
_ HsOverLit (GhcPass p)
ol)               = PprPrec -> HsOverLit (GhcPass p) -> Bool
forall x. PprPrec -> HsOverLit x -> Bool
hsOverLitNeedsParens PprPrec
p HsOverLit (GhcPass p)
ol
    go (HsPar{})                      = Bool
False
    go (HsApp{})                      = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
appPrec
    go (HsAppType {})                 = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
appPrec
    go (OpApp{})                      = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
opPrec
    go (NegApp{})                     = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (SectionL{})                   = Bool
True
    go (SectionR{})                   = Bool
True
    go (ExplicitTuple{})              = Bool
False
    go (ExplicitSum{})                = Bool
False
    go (HsLam{})                      = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsLamCase{})                  = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsCase{})                     = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsIf{})                       = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsMultiIf{})                  = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsLet{})                      = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsDo XDo (GhcPass p)
_ HsStmtContext GhcRn
sc Located [ExprLStmt (GhcPass p)]
_)
      | HsStmtContext GhcRn -> Bool
forall id. HsStmtContext id -> Bool
isComprehensionContext HsStmtContext GhcRn
sc     = Bool
False
      | Bool
otherwise                     = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (ExplicitList{})               = Bool
False
    go (RecordUpd{})                  = Bool
False
    go (ExprWithTySig{})              = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
sigPrec
    go (ArithSeq{})                   = Bool
False
    go (HsPragE{})                    = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
appPrec
    go (HsSpliceE{})                  = Bool
False
    go (HsBracket{})                  = Bool
False
    go (HsRnBracketOut{})             = Bool
False
    go (HsTcBracketOut{})             = Bool
False
    go (HsProc{})                     = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
> PprPrec
topPrec
    go (HsStatic{})                   = PprPrec
p PprPrec -> PprPrec -> Bool
forall a. Ord a => a -> a -> Bool
>= PprPrec
appPrec
    go (HsTick XTick (GhcPass p)
_ Tickish (IdP (GhcPass p))
_ (L SrcSpan
_ HsExpr (GhcPass p)
e))           = HsExpr (GhcPass p) -> Bool
go HsExpr (GhcPass p)
e
    go (HsBinTick XBinTick (GhcPass p)
_ Int
_ Int
_ (L SrcSpan
_ HsExpr (GhcPass p)
e))      = HsExpr (GhcPass p) -> Bool
go HsExpr (GhcPass p)
e
    go (RecordCon{})                  = Bool
False
    go (HsRecFld{})                   = Bool
False
    go (XExpr XXExpr (GhcPass p)
x)
      | GhcPass p
GhcTc <- forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p
      = case XXExpr (GhcPass p)
x of
          WrapExpr      (HsWrap HsWrapper
_ HsExpr GhcTc
e)     -> HsExpr (GhcPass p) -> Bool
go HsExpr (GhcPass p)
HsExpr GhcTc
e
          ExpansionExpr (HsExpanded HsExpr GhcRn
a HsExpr GhcTc
_) -> PprPrec -> HsExpr GhcRn -> Bool
forall (p :: Pass).
IsPass p =>
PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens PprPrec
p HsExpr GhcRn
a
      | GhcPass p
GhcRn <- forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p
      = case XXExpr (GhcPass p)
x of HsExpanded HsExpr GhcRn
a HsExpr GhcRn
_ -> PprPrec -> HsExpr GhcRn -> Bool
forall (p :: Pass).
IsPass p =>
PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens PprPrec
p HsExpr GhcRn
a
      | Bool
otherwise
      = Bool
True


-- | @'parenthesizeHsExpr' p e@ checks if @'hsExprNeedsParens' p e@ is true,
-- and if so, surrounds @e@ with an 'HsPar'. Otherwise, it simply returns @e@.
parenthesizeHsExpr :: IsPass p => PprPrec -> LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
parenthesizeHsExpr :: forall (p :: Pass).
IsPass p =>
PprPrec -> LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
parenthesizeHsExpr PprPrec
p le :: LHsExpr (GhcPass p)
le@(L SrcSpan
loc HsExpr (GhcPass p)
e)
  | PprPrec -> HsExpr (GhcPass p) -> Bool
forall (p :: Pass).
IsPass p =>
PprPrec -> HsExpr (GhcPass p) -> Bool
hsExprNeedsParens PprPrec
p HsExpr (GhcPass p)
e = SrcSpan -> HsExpr (GhcPass p) -> LHsExpr (GhcPass p)
forall l e. l -> e -> GenLocated l e
L SrcSpan
loc (XPar (GhcPass p) -> LHsExpr (GhcPass p) -> HsExpr (GhcPass p)
forall p. XPar p -> LHsExpr p -> HsExpr p
HsPar NoExtField
XPar (GhcPass p)
noExtField LHsExpr (GhcPass p)
le)
  | Bool
otherwise             = LHsExpr (GhcPass p)
le

stripParensLHsExpr :: LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
stripParensLHsExpr :: forall (p :: Pass). LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
stripParensLHsExpr (L SrcSpan
_ (HsPar XPar (GhcPass p)
_ GenLocated SrcSpan (HsExpr (GhcPass p))
e)) = GenLocated SrcSpan (HsExpr (GhcPass p))
-> GenLocated SrcSpan (HsExpr (GhcPass p))
forall (p :: Pass). LHsExpr (GhcPass p) -> LHsExpr (GhcPass p)
stripParensLHsExpr GenLocated SrcSpan (HsExpr (GhcPass p))
e
stripParensLHsExpr GenLocated SrcSpan (HsExpr (GhcPass p))
e = GenLocated SrcSpan (HsExpr (GhcPass p))
e

stripParensHsExpr :: HsExpr (GhcPass p) -> HsExpr (GhcPass p)
stripParensHsExpr :: forall (p :: Pass). HsExpr (GhcPass p) -> HsExpr (GhcPass p)
stripParensHsExpr (HsPar XPar (GhcPass p)
_ (L SrcSpan
_ HsExpr (GhcPass p)
e)) = HsExpr (GhcPass p) -> HsExpr (GhcPass p)
forall (p :: Pass). HsExpr (GhcPass p) -> HsExpr (GhcPass p)
stripParensHsExpr HsExpr (GhcPass p)
e
stripParensHsExpr HsExpr (GhcPass p)
e = HsExpr (GhcPass p)
e

isAtomicHsExpr :: forall p. IsPass p => HsExpr (GhcPass p) -> Bool
-- True of a single token
isAtomicHsExpr :: forall (p :: Pass). IsPass p => HsExpr (GhcPass p) -> Bool
isAtomicHsExpr (HsVar {})        = Bool
True
isAtomicHsExpr (HsConLikeOut {}) = Bool
True
isAtomicHsExpr (HsLit {})        = Bool
True
isAtomicHsExpr (HsOverLit {})    = Bool
True
isAtomicHsExpr (HsIPVar {})      = Bool
True
isAtomicHsExpr (HsOverLabel {})  = Bool
True
isAtomicHsExpr (HsUnboundVar {}) = Bool
True
isAtomicHsExpr (HsPar XPar (GhcPass p)
_ LHsExpr (GhcPass p)
e)       = HsExpr (GhcPass p) -> Bool
forall (p :: Pass). IsPass p => HsExpr (GhcPass p) -> Bool
isAtomicHsExpr (LHsExpr (GhcPass p) -> HsExpr (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsExpr (GhcPass p)
e)
isAtomicHsExpr (HsRecFld{})      = Bool
True
isAtomicHsExpr (XExpr XXExpr (GhcPass p)
x)
  | GhcPass p
GhcTc <- forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p          = case XXExpr (GhcPass p)
x of
      WrapExpr      (HsWrap HsWrapper
_ HsExpr GhcTc
e)     -> HsExpr GhcTc -> Bool
forall (p :: Pass). IsPass p => HsExpr (GhcPass p) -> Bool
isAtomicHsExpr HsExpr GhcTc
e
      ExpansionExpr (HsExpanded HsExpr GhcRn
a HsExpr GhcTc
_) -> HsExpr GhcRn -> Bool
forall (p :: Pass). IsPass p => HsExpr (GhcPass p) -> Bool
isAtomicHsExpr HsExpr GhcRn
a
  | GhcPass p
GhcRn <- forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p          = case XXExpr (GhcPass p)
x of
      HsExpanded HsExpr GhcRn
a HsExpr GhcRn
_         -> HsExpr GhcRn -> Bool
forall (p :: Pass). IsPass p => HsExpr (GhcPass p) -> Bool
isAtomicHsExpr HsExpr GhcRn
a
isAtomicHsExpr HsExpr (GhcPass p)
_                 = Bool
False

instance Outputable (HsPragE (GhcPass p)) where
  ppr :: HsPragE (GhcPass p) -> SDoc
ppr (HsPragSCC XSCC (GhcPass p)
_ SourceText
st (StringLiteral SourceText
stl FastString
lbl)) =
    SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
st (String -> SDoc
text String
"{-# SCC")
     -- no doublequotes if stl empty, for the case where the SCC was written
     -- without quotes.
    SDoc -> SDoc -> SDoc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
stl (FastString -> SDoc
ftext FastString
lbl) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"#-}"
  ppr (HsPragTick XTickPragma (GhcPass p)
_ SourceText
st (StringLiteral SourceText
sta FastString
s, (Int
v1,Int
v2), (Int
v3,Int
v4)) ((SourceText
s1,SourceText
s2),(SourceText
s3,SourceText
s4))) =
    SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
st (String -> SDoc
text String
"{-# GENERATED")
    SDoc -> SDoc -> SDoc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
sta (SDoc -> SDoc
doubleQuotes (SDoc -> SDoc) -> SDoc -> SDoc
forall a b. (a -> b) -> a -> b
$ FastString -> SDoc
ftext FastString
s)
    SDoc -> SDoc -> SDoc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
s1 (Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr Int
v1) SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
':' SDoc -> SDoc -> SDoc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
s2 (Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr Int
v2)
    SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
'-'
    SDoc -> SDoc -> SDoc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
s3 (Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr Int
v3) SDoc -> SDoc -> SDoc
<+> Char -> SDoc
char Char
':' SDoc -> SDoc -> SDoc
<+> SourceText -> SDoc -> SDoc
pprWithSourceText SourceText
s4 (Int -> SDoc
forall a. Outputable a => a -> SDoc
ppr Int
v4)
    SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"#-}"

{-
************************************************************************
*                                                                      *
\subsection{Commands (in arrow abstractions)}
*                                                                      *
************************************************************************

We re-use HsExpr to represent these.
-}

-- | Located Haskell Command (for arrow syntax)
type LHsCmd id = Located (HsCmd id)

-- | Haskell Command (e.g. a "statement" in an Arrow proc block)
data HsCmd id
  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.Annlarrowtail',
  --          'GHC.Parser.Annotation.Annrarrowtail','GHC.Parser.Annotation.AnnLarrowtail',
  --          'GHC.Parser.Annotation.AnnRarrowtail'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  = HsCmdArrApp          -- Arrow tail, or arrow application (f -< arg)
        (XCmdArrApp id)  -- type of the arrow expressions f,
                         -- of the form a t t', where arg :: t
        (LHsExpr id)     -- arrow expression, f
        (LHsExpr id)     -- input expression, arg
        HsArrAppType     -- higher-order (-<<) or first-order (-<)
        Bool             -- True => right-to-left (f -< arg)
                         -- False => left-to-right (arg >- f)

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpenB' @'(|'@,
  --         'GHC.Parser.Annotation.AnnCloseB' @'|)'@

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | HsCmdArrForm         -- Command formation,  (| e cmd1 .. cmdn |)
        (XCmdArrForm id)
        (LHsExpr id)     -- The operator.
                         -- After type-checking, a type abstraction to be
                         -- applied to the type of the local environment tuple
        LexicalFixity    -- Whether the operator appeared prefix or infix when
                         -- parsed.
        (Maybe Fixity)   -- fixity (filled in by the renamer), for forms that
                         -- were converted from OpApp's by the renamer
        [LHsCmdTop id]   -- argument commands

  | HsCmdApp    (XCmdApp id)
                (LHsCmd id)
                (LHsExpr id)

  | HsCmdLam    (XCmdLam id)
                (MatchGroup id (LHsCmd id))     -- kappa
       -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
       --       'GHC.Parser.Annotation.AnnRarrow',

       -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsCmdPar    (XCmdPar id)
                (LHsCmd id)                     -- parenthesised command
    -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnOpen' @'('@,
    --             'GHC.Parser.Annotation.AnnClose' @')'@

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsCmdCase   (XCmdCase id)
                (LHsExpr id)
                (MatchGroup id (LHsCmd id))     -- bodies are HsCmd's
    -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnCase',
    --       'GHC.Parser.Annotation.AnnOf','GHC.Parser.Annotation.AnnOpen' @'{'@,
    --       'GHC.Parser.Annotation.AnnClose' @'}'@

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsCmdLamCase (XCmdLamCase id)
                 (MatchGroup id (LHsCmd id))    -- bodies are HsCmd's
    -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLam',
    --       'GHC.Parser.Annotation.AnnCase','GHC.Parser.Annotation.AnnOpen' @'{'@,
    --       'GHC.Parser.Annotation.AnnClose' @'}'@

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsCmdIf     (XCmdIf id)
                (SyntaxExpr id)         -- cond function
                (LHsExpr id)            -- predicate
                (LHsCmd id)             -- then part
                (LHsCmd id)             -- else part
    -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnIf',
    --       'GHC.Parser.Annotation.AnnSemi',
    --       'GHC.Parser.Annotation.AnnThen','GHC.Parser.Annotation.AnnSemi',
    --       'GHC.Parser.Annotation.AnnElse',

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsCmdLet    (XCmdLet id)
                (LHsLocalBinds id)      -- let(rec)
                (LHsCmd  id)
    -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet',
    --       'GHC.Parser.Annotation.AnnOpen' @'{'@,
    --       'GHC.Parser.Annotation.AnnClose' @'}'@,'GHC.Parser.Annotation.AnnIn'

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | HsCmdDo     (XCmdDo id)                     -- Type of the whole expression
                (Located [CmdLStmt id])
    -- ^ - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnDo',
    --             'GHC.Parser.Annotation.AnnOpen', 'GHC.Parser.Annotation.AnnSemi',
    --             'GHC.Parser.Annotation.AnnVbar',
    --             'GHC.Parser.Annotation.AnnClose'

    -- For details on above see note [Api annotations] in GHC.Parser.Annotation

  | XCmd        !(XXCmd id)     -- Note [Trees that Grow] extension point

type instance XCmdArrApp  GhcPs = NoExtField
type instance XCmdArrApp  GhcRn = NoExtField
type instance XCmdArrApp  GhcTc = Type

type instance XCmdArrForm (GhcPass _) = NoExtField
type instance XCmdApp     (GhcPass _) = NoExtField
type instance XCmdLam     (GhcPass _) = NoExtField
type instance XCmdPar     (GhcPass _) = NoExtField
type instance XCmdCase    (GhcPass _) = NoExtField
type instance XCmdLamCase (GhcPass _) = NoExtField
type instance XCmdIf      (GhcPass _) = NoExtField
type instance XCmdLet     (GhcPass _) = NoExtField

type instance XCmdDo      GhcPs = NoExtField
type instance XCmdDo      GhcRn = NoExtField
type instance XCmdDo      GhcTc = Type

type instance XCmdWrap    (GhcPass _) = NoExtField

type instance XXCmd       GhcPs = NoExtCon
type instance XXCmd       GhcRn = NoExtCon
type instance XXCmd       GhcTc = HsWrap HsCmd
    -- If   cmd :: arg1 --> res
    --      wrap :: arg1 "->" arg2
    -- Then (XCmd (HsWrap wrap cmd)) :: arg2 --> res

-- | Haskell Array Application Type
data HsArrAppType = HsHigherOrderApp | HsFirstOrderApp
  deriving Typeable HsArrAppType
Typeable HsArrAppType
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> HsArrAppType -> c HsArrAppType)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c HsArrAppType)
-> (HsArrAppType -> Constr)
-> (HsArrAppType -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c HsArrAppType))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c HsArrAppType))
-> ((forall b. Data b => b -> b) -> HsArrAppType -> HsArrAppType)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r)
-> (forall u. (forall d. Data d => d -> u) -> HsArrAppType -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> HsArrAppType -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType)
-> Data HsArrAppType
HsArrAppType -> DataType
HsArrAppType -> Constr
(forall b. Data b => b -> b) -> HsArrAppType -> HsArrAppType
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> HsArrAppType -> u
forall u. (forall d. Data d => d -> u) -> HsArrAppType -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsArrAppType
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsArrAppType -> c HsArrAppType
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsArrAppType)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c HsArrAppType)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> HsArrAppType -> m HsArrAppType
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> HsArrAppType -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> HsArrAppType -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> HsArrAppType -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> HsArrAppType -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> HsArrAppType -> r
gmapT :: (forall b. Data b => b -> b) -> HsArrAppType -> HsArrAppType
$cgmapT :: (forall b. Data b => b -> b) -> HsArrAppType -> HsArrAppType
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c HsArrAppType)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c HsArrAppType)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsArrAppType)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c HsArrAppType)
dataTypeOf :: HsArrAppType -> DataType
$cdataTypeOf :: HsArrAppType -> DataType
toConstr :: HsArrAppType -> Constr
$ctoConstr :: HsArrAppType -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsArrAppType
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c HsArrAppType
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsArrAppType -> c HsArrAppType
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> HsArrAppType -> c HsArrAppType
Data


{- | Top-level command, introducing a new arrow.
This may occur inside a proc (where the stack is empty) or as an
argument of a command-forming operator.
-}

-- | Located Haskell Top-level Command
type LHsCmdTop p = Located (HsCmdTop p)

-- | Haskell Top-level Command
data HsCmdTop p
  = HsCmdTop (XCmdTop p)
             (LHsCmd p)
  | XCmdTop !(XXCmdTop p)        -- Note [Trees that Grow] extension point

data CmdTopTc
  = CmdTopTc Type    -- Nested tuple of inputs on the command's stack
             Type    -- return type of the command
             (CmdSyntaxTable GhcTc) -- See Note [CmdSyntaxTable]

type instance XCmdTop  GhcPs = NoExtField
type instance XCmdTop  GhcRn = CmdSyntaxTable GhcRn -- See Note [CmdSyntaxTable]
type instance XCmdTop  GhcTc = CmdTopTc

type instance XXCmdTop (GhcPass _) = NoExtCon

instance (OutputableBndrId p) => Outputable (HsCmd (GhcPass p)) where
    ppr :: HsCmd (GhcPass p) -> SDoc
ppr HsCmd (GhcPass p)
cmd = HsCmd (GhcPass p) -> SDoc
forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
pprCmd HsCmd (GhcPass p)
cmd

-----------------------
-- pprCmd and pprLCmd call pprDeeper;
-- the underscore versions do not
pprLCmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
pprLCmd :: forall (p :: Pass).
OutputableBndrId p =>
LHsCmd (GhcPass p) -> SDoc
pprLCmd (L SrcSpan
_ HsCmd (GhcPass p)
c) = HsCmd (GhcPass p) -> SDoc
forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
pprCmd HsCmd (GhcPass p)
c

pprCmd :: (OutputableBndrId p) => HsCmd (GhcPass p) -> SDoc
pprCmd :: forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
pprCmd HsCmd (GhcPass p)
c | HsCmd (GhcPass p) -> Bool
forall id. HsCmd id -> Bool
isQuietHsCmd HsCmd (GhcPass p)
c =            HsCmd (GhcPass p) -> SDoc
forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
ppr_cmd HsCmd (GhcPass p)
c
         | Bool
otherwise      = SDoc -> SDoc
pprDeeper (HsCmd (GhcPass p) -> SDoc
forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
ppr_cmd HsCmd (GhcPass p)
c)

isQuietHsCmd :: HsCmd id -> Bool
-- Parentheses do display something, but it gives little info and
-- if we go deeper when we go inside them then we get ugly things
-- like (...)
isQuietHsCmd :: forall id. HsCmd id -> Bool
isQuietHsCmd (HsCmdPar {}) = Bool
True
-- applications don't display anything themselves
isQuietHsCmd (HsCmdApp {}) = Bool
True
isQuietHsCmd HsCmd id
_ = Bool
False

-----------------------
ppr_lcmd :: (OutputableBndrId p) => LHsCmd (GhcPass p) -> SDoc
ppr_lcmd :: forall (p :: Pass).
OutputableBndrId p =>
LHsCmd (GhcPass p) -> SDoc
ppr_lcmd LHsCmd (GhcPass p)
c = HsCmd (GhcPass p) -> SDoc
forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
ppr_cmd (LHsCmd (GhcPass p) -> HsCmd (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmd (GhcPass p)
c)

ppr_cmd :: forall p. (OutputableBndrId p) => HsCmd (GhcPass p) -> SDoc
ppr_cmd :: forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
ppr_cmd (HsCmdPar XCmdPar (GhcPass p)
_ LHsCmd (GhcPass p)
c) = SDoc -> SDoc
parens (LHsCmd (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsCmd (GhcPass p) -> SDoc
ppr_lcmd LHsCmd (GhcPass p)
c)

ppr_cmd (HsCmdApp XCmdApp (GhcPass p)
_ LHsCmd (GhcPass p)
c LHsExpr (GhcPass p)
e)
  = let (LHsCmd (GhcPass p)
fun, [LHsExpr (GhcPass p)]
args) = LHsCmd (GhcPass p)
-> [LHsExpr (GhcPass p)]
-> (LHsCmd (GhcPass p), [LHsExpr (GhcPass p)])
forall {id}. LHsCmd id -> [LHsExpr id] -> (LHsCmd id, [LHsExpr id])
collect_args LHsCmd (GhcPass p)
c [LHsExpr (GhcPass p)
e] in
    SDoc -> Int -> SDoc -> SDoc
hang (LHsCmd (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsCmd (GhcPass p) -> SDoc
ppr_lcmd LHsCmd (GhcPass p)
fun) Int
2 ([SDoc] -> SDoc
sep ((LHsExpr (GhcPass p) -> SDoc) -> [LHsExpr (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [LHsExpr (GhcPass p)]
args))
  where
    collect_args :: LHsCmd id -> [LHsExpr id] -> (LHsCmd id, [LHsExpr id])
collect_args (L SrcSpan
_ (HsCmdApp XCmdApp id
_ LHsCmd id
fun LHsExpr id
arg)) [LHsExpr id]
args = LHsCmd id -> [LHsExpr id] -> (LHsCmd id, [LHsExpr id])
collect_args LHsCmd id
fun (LHsExpr id
argLHsExpr id -> [LHsExpr id] -> [LHsExpr id]
forall a. a -> [a] -> [a]
:[LHsExpr id]
args)
    collect_args LHsCmd id
fun [LHsExpr id]
args = (LHsCmd id
fun, [LHsExpr id]
args)

ppr_cmd (HsCmdLam XCmdLam (GhcPass p)
_ MatchGroup (GhcPass p) (LHsCmd (GhcPass p))
matches)
  = MatchGroup (GhcPass p) (LHsCmd (GhcPass p)) -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass p) (LHsCmd (GhcPass p))
matches

ppr_cmd (HsCmdCase XCmdCase (GhcPass p)
_ LHsExpr (GhcPass p)
expr MatchGroup (GhcPass p) (LHsCmd (GhcPass p))
matches)
  = [SDoc] -> SDoc
sep [ [SDoc] -> SDoc
sep [String -> SDoc
text String
"case", Int -> SDoc -> SDoc
nest Int
4 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
expr), PtrString -> SDoc
ptext (String -> PtrString
sLit String
"of")],
          Int -> SDoc -> SDoc
nest Int
2 (MatchGroup (GhcPass p) (LHsCmd (GhcPass p)) -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass p) (LHsCmd (GhcPass p))
matches) ]

ppr_cmd (HsCmdLamCase XCmdLamCase (GhcPass p)
_ MatchGroup (GhcPass p) (LHsCmd (GhcPass p))
matches)
  = [SDoc] -> SDoc
sep [ String -> SDoc
text String
"\\case", Int -> SDoc -> SDoc
nest Int
2 (MatchGroup (GhcPass p) (LHsCmd (GhcPass p)) -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass p) (LHsCmd (GhcPass p))
matches) ]

ppr_cmd (HsCmdIf XCmdIf (GhcPass p)
_ SyntaxExpr (GhcPass p)
_ LHsExpr (GhcPass p)
e LHsCmd (GhcPass p)
ct LHsCmd (GhcPass p)
ce)
  = [SDoc] -> SDoc
sep [[SDoc] -> SDoc
hsep [String -> SDoc
text String
"if", Int -> SDoc -> SDoc
nest Int
2 (LHsExpr (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsExpr (GhcPass p)
e), PtrString -> SDoc
ptext (String -> PtrString
sLit String
"then")],
         Int -> SDoc -> SDoc
nest Int
4 (LHsCmd (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsCmd (GhcPass p)
ct),
         String -> SDoc
text String
"else",
         Int -> SDoc -> SDoc
nest Int
4 (LHsCmd (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsCmd (GhcPass p)
ce)]

-- special case: let ... in let ...
ppr_cmd (HsCmdLet XCmdLet (GhcPass p)
_ (L SrcSpan
_ HsLocalBinds (GhcPass p)
binds) cmd :: LHsCmd (GhcPass p)
cmd@(L SrcSpan
_ (HsCmdLet {})))
  = [SDoc] -> SDoc
sep [SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"let") Int
2 ([SDoc] -> SDoc
hsep [HsLocalBinds (GhcPass p) -> SDoc
forall (idL :: Pass) (idR :: Pass).
(OutputableBndrId idL, OutputableBndrId idR) =>
HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds HsLocalBinds (GhcPass p)
binds, PtrString -> SDoc
ptext (String -> PtrString
sLit String
"in")]),
         LHsCmd (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsCmd (GhcPass p) -> SDoc
ppr_lcmd LHsCmd (GhcPass p)
cmd]

ppr_cmd (HsCmdLet XCmdLet (GhcPass p)
_ (L SrcSpan
_ HsLocalBinds (GhcPass p)
binds) LHsCmd (GhcPass p)
cmd)
  = [SDoc] -> SDoc
sep [SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"let") Int
2 (HsLocalBinds (GhcPass p) -> SDoc
forall (idL :: Pass) (idR :: Pass).
(OutputableBndrId idL, OutputableBndrId idR) =>
HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds HsLocalBinds (GhcPass p)
binds),
         SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"in")  Int
2 (LHsCmd (GhcPass p) -> SDoc
forall a. Outputable a => a -> SDoc
ppr LHsCmd (GhcPass p)
cmd)]

ppr_cmd (HsCmdDo XCmdDo (GhcPass p)
_ (L SrcSpan
_ [CmdLStmt (GhcPass p)]
stmts))  = HsStmtContext Any -> [CmdLStmt (GhcPass p)] -> SDoc
forall (p :: Pass) body any.
(OutputableBndrId p, Outputable body) =>
HsStmtContext any -> [LStmt (GhcPass p) body] -> SDoc
pprDo HsStmtContext Any
forall p. HsStmtContext p
ArrowExpr [CmdLStmt (GhcPass p)]
stmts

ppr_cmd (HsCmdArrApp XCmdArrApp (GhcPass p)
_ LHsExpr (GhcPass p)
arrow LHsExpr (GhcPass p)
arg HsArrAppType
HsFirstOrderApp Bool
True)
  = [SDoc] -> SDoc
hsep [LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arrow, SDoc
larrowt, LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arg]
ppr_cmd (HsCmdArrApp XCmdArrApp (GhcPass p)
_ LHsExpr (GhcPass p)
arrow LHsExpr (GhcPass p)
arg HsArrAppType
HsFirstOrderApp Bool
False)
  = [SDoc] -> SDoc
hsep [LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arg, SDoc
arrowt, LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arrow]
ppr_cmd (HsCmdArrApp XCmdArrApp (GhcPass p)
_ LHsExpr (GhcPass p)
arrow LHsExpr (GhcPass p)
arg HsArrAppType
HsHigherOrderApp Bool
True)
  = [SDoc] -> SDoc
hsep [LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arrow, SDoc
larrowtt, LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arg]
ppr_cmd (HsCmdArrApp XCmdArrApp (GhcPass p)
_ LHsExpr (GhcPass p)
arrow LHsExpr (GhcPass p)
arg HsArrAppType
HsHigherOrderApp Bool
False)
  = [SDoc] -> SDoc
hsep [LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arg, SDoc
arrowtt, LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
arrow]

ppr_cmd (HsCmdArrForm XCmdArrForm (GhcPass p)
_ (L SrcSpan
_ (HsVar XVar (GhcPass p)
_ (L SrcSpan
_ IdP (GhcPass p)
v))) LexicalFixity
_ (Just Fixity
_) [LHsCmdTop (GhcPass p)
arg1, LHsCmdTop (GhcPass p)
arg2])
  = SDoc -> Int -> SDoc -> SDoc
hang (HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg1)) Int
4 ([SDoc] -> SDoc
sep [ IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc IdGhcP p
IdP (GhcPass p)
v
                                         , HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg2)])
ppr_cmd (HsCmdArrForm XCmdArrForm (GhcPass p)
_ (L SrcSpan
_ (HsVar XVar (GhcPass p)
_ (L SrcSpan
_ IdP (GhcPass p)
v))) LexicalFixity
Infix Maybe Fixity
_    [LHsCmdTop (GhcPass p)
arg1, LHsCmdTop (GhcPass p)
arg2])
  = SDoc -> Int -> SDoc -> SDoc
hang (HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg1)) Int
4 ([SDoc] -> SDoc
sep [ IdGhcP p -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc IdGhcP p
IdP (GhcPass p)
v
                                         , HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg2)])
ppr_cmd (HsCmdArrForm XCmdArrForm (GhcPass p)
_ (L SrcSpan
_ (HsConLikeOut XConLikeOut (GhcPass p)
_ ConLike
c)) LexicalFixity
_ (Just Fixity
_) [LHsCmdTop (GhcPass p)
arg1, LHsCmdTop (GhcPass p)
arg2])
  = SDoc -> Int -> SDoc -> SDoc
hang (HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg1)) Int
4 ([SDoc] -> SDoc
sep [ Name -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc (ConLike -> Name
conLikeName ConLike
c)
                                         , HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg2)])
ppr_cmd (HsCmdArrForm XCmdArrForm (GhcPass p)
_ (L SrcSpan
_ (HsConLikeOut XConLikeOut (GhcPass p)
_ ConLike
c)) LexicalFixity
Infix Maybe Fixity
_    [LHsCmdTop (GhcPass p)
arg1, LHsCmdTop (GhcPass p)
arg2])
  = SDoc -> Int -> SDoc -> SDoc
hang (HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg1)) Int
4 ([SDoc] -> SDoc
sep [ Name -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc (ConLike -> Name
conLikeName ConLike
c)
                                         , HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc LHsCmdTop (GhcPass p)
arg2)])
ppr_cmd (HsCmdArrForm XCmdArrForm (GhcPass p)
_ LHsExpr (GhcPass p)
op LexicalFixity
_ Maybe Fixity
_ [LHsCmdTop (GhcPass p)]
args)
  = SDoc -> Int -> SDoc -> SDoc
hang (String -> SDoc
text String
"(|" SDoc -> SDoc -> SDoc
<+> LHsExpr (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsExpr (GhcPass p) -> SDoc
ppr_lexpr LHsExpr (GhcPass p)
op)
         Int
4 ([SDoc] -> SDoc
sep ((LHsCmdTop (GhcPass p) -> SDoc)
-> [LHsCmdTop (GhcPass p)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg(HsCmdTop (GhcPass p) -> SDoc)
-> (LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p))
-> LHsCmdTop (GhcPass p)
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
.LHsCmdTop (GhcPass p) -> HsCmdTop (GhcPass p)
forall l e. GenLocated l e -> e
unLoc) [LHsCmdTop (GhcPass p)]
args) SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"|)")
ppr_cmd (XCmd XXCmd (GhcPass p)
x) = case forall (p :: Pass). IsPass p => GhcPass p
ghcPass @p of
#if __GLASGOW_HASKELL__ < 811
  GhcPs -> ppr x
  GhcRn -> ppr x
#endif
  GhcPass p
GhcTc -> case XXCmd (GhcPass p)
x of
    HsWrap HsWrapper
w HsCmd GhcTc
cmd -> HsWrapper -> (Bool -> SDoc) -> SDoc
pprHsWrapper HsWrapper
w (\Bool
_ -> SDoc -> SDoc
parens (HsCmd GhcTc -> SDoc
forall (p :: Pass). OutputableBndrId p => HsCmd (GhcPass p) -> SDoc
ppr_cmd HsCmd GhcTc
cmd))

pprCmdArg :: (OutputableBndrId p) => HsCmdTop (GhcPass p) -> SDoc
pprCmdArg :: forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg (HsCmdTop XCmdTop (GhcPass p)
_ LHsCmd (GhcPass p)
cmd)
  = LHsCmd (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
LHsCmd (GhcPass p) -> SDoc
ppr_lcmd LHsCmd (GhcPass p)
cmd

instance (OutputableBndrId p) => Outputable (HsCmdTop (GhcPass p)) where
    ppr :: HsCmdTop (GhcPass p) -> SDoc
ppr = HsCmdTop (GhcPass p) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
HsCmdTop (GhcPass p) -> SDoc
pprCmdArg

{-
************************************************************************
*                                                                      *
\subsection{Record binds}
*                                                                      *
************************************************************************
-}

-- | Haskell Record Bindings
type HsRecordBinds p = HsRecFields p (LHsExpr p)

{-
************************************************************************
*                                                                      *
\subsection{@Match@, @GRHSs@, and @GRHS@ datatypes}
*                                                                      *
************************************************************************

@Match@es are sets of pattern bindings and right hand sides for
functions, patterns or case branches. For example, if a function @g@
is defined as:
\begin{verbatim}
g (x,y) = y
g ((x:ys),y) = y+1,
\end{verbatim}
then \tr{g} has two @Match@es: @(x,y) = y@ and @((x:ys),y) = y+1@.

It is always the case that each element of an @[Match]@ list has the
same number of @pats@s inside it.  This corresponds to saying that
a function defined by pattern matching must have the same number of
patterns in each equation.
-}

data MatchGroup p body
  = MG { forall p body. MatchGroup p body -> XMG p body
mg_ext     :: XMG p body -- Post-typechecker, types of args and result
       , forall p body. MatchGroup p body -> Located [LMatch p body]
mg_alts    :: Located [LMatch p body]  -- The alternatives
       , forall p body. MatchGroup p body -> Origin
mg_origin  :: Origin }
     -- The type is the type of the entire group
     --      t1 -> ... -> tn -> tr
     -- where there are n patterns
  | XMatchGroup !(XXMatchGroup p body)

data MatchGroupTc
  = MatchGroupTc
       { MatchGroupTc -> [Scaled Type]
mg_arg_tys :: [Scaled Type]  -- Types of the arguments, t1..tn
       , MatchGroupTc -> Type
mg_res_ty  :: Type    -- Type of the result, tr
       } deriving Typeable MatchGroupTc
Typeable MatchGroupTc
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> MatchGroupTc -> c MatchGroupTc)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c MatchGroupTc)
-> (MatchGroupTc -> Constr)
-> (MatchGroupTc -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c MatchGroupTc))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e))
    -> Maybe (c MatchGroupTc))
-> ((forall b. Data b => b -> b) -> MatchGroupTc -> MatchGroupTc)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r)
-> (forall u. (forall d. Data d => d -> u) -> MatchGroupTc -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> MatchGroupTc -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc)
-> Data MatchGroupTc
MatchGroupTc -> DataType
MatchGroupTc -> Constr
(forall b. Data b => b -> b) -> MatchGroupTc -> MatchGroupTc
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> MatchGroupTc -> u
forall u. (forall d. Data d => d -> u) -> MatchGroupTc -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c MatchGroupTc
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> MatchGroupTc -> c MatchGroupTc
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c MatchGroupTc)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c MatchGroupTc)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> MatchGroupTc -> m MatchGroupTc
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> MatchGroupTc -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> MatchGroupTc -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> MatchGroupTc -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> MatchGroupTc -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> MatchGroupTc -> r
gmapT :: (forall b. Data b => b -> b) -> MatchGroupTc -> MatchGroupTc
$cgmapT :: (forall b. Data b => b -> b) -> MatchGroupTc -> MatchGroupTc
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c MatchGroupTc)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c MatchGroupTc)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c MatchGroupTc)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c MatchGroupTc)
dataTypeOf :: MatchGroupTc -> DataType
$cdataTypeOf :: MatchGroupTc -> DataType
toConstr :: MatchGroupTc -> Constr
$ctoConstr :: MatchGroupTc -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c MatchGroupTc
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c MatchGroupTc
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> MatchGroupTc -> c MatchGroupTc
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> MatchGroupTc -> c MatchGroupTc
Data

type instance XMG         GhcPs b = NoExtField
type instance XMG         GhcRn b = NoExtField
type instance XMG         GhcTc b = MatchGroupTc

type instance XXMatchGroup (GhcPass _) b = NoExtCon

-- | Located Match
type LMatch id body = Located (Match id body)
-- ^ May have 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnSemi' when in a
--   list

-- For details on above see note [Api annotations] in GHC.Parser.Annotation
data Match p body
  = Match {
        forall p body. Match p body -> XCMatch p body
m_ext :: XCMatch p body,
        forall p body. Match p body -> HsMatchContext (NoGhcTc p)
m_ctxt :: HsMatchContext (NoGhcTc p),
          -- See note [m_ctxt in Match]
        forall p body. Match p body -> [LPat p]
m_pats :: [LPat p], -- The patterns
        forall p body. Match p body -> GRHSs p body
m_grhss :: (GRHSs p body)
  }
  | XMatch !(XXMatch p body)

type instance XCMatch (GhcPass _) b = NoExtField
type instance XXMatch (GhcPass _) b = NoExtCon

instance (OutputableBndrId pr, Outputable body)
            => Outputable (Match (GhcPass pr) body) where
  ppr :: Match (GhcPass pr) body -> SDoc
ppr = Match (GhcPass pr) body -> SDoc
forall (pr :: Pass) body.
(OutputableBndrId pr, Outputable body) =>
Match (GhcPass pr) body -> SDoc
pprMatch

{-
Note [m_ctxt in Match]
~~~~~~~~~~~~~~~~~~~~~~

A Match can occur in a number of contexts, such as a FunBind, HsCase, HsLam and
so on.

In order to simplify tooling processing and pretty print output, the provenance
is captured in an HsMatchContext.

This is particularly important for the API Annotations for a multi-equation
FunBind.

The parser initially creates a FunBind with a single Match in it for
every function definition it sees.

These are then grouped together by getMonoBind into a single FunBind,
where all the Matches are combined.

In the process, all the original FunBind fun_id's bar one are
discarded, including the locations.

This causes a problem for source to source conversions via API
Annotations, so the original fun_ids and infix flags are preserved in
the Match, when it originates from a FunBind.

Example infix function definition requiring individual API Annotations

    (&&&  ) [] [] =  []
    xs    &&&   [] =  xs
    (  &&&  ) [] ys =  ys



-}


isInfixMatch :: Match id body -> Bool
isInfixMatch :: forall id body. Match id body -> Bool
isInfixMatch Match id body
match = case Match id body -> HsMatchContext (NoGhcTc id)
forall p body. Match p body -> HsMatchContext (NoGhcTc p)
m_ctxt Match id body
match of
  FunRhs {mc_fixity :: forall p. HsMatchContext p -> LexicalFixity
mc_fixity = LexicalFixity
Infix} -> Bool
True
  HsMatchContext (NoGhcTc id)
_                          -> Bool
False

isEmptyMatchGroup :: MatchGroup id body -> Bool
isEmptyMatchGroup :: forall id body. MatchGroup id body -> Bool
isEmptyMatchGroup (MG { mg_alts :: forall p body. MatchGroup p body -> Located [LMatch p body]
mg_alts = Located [LMatch id body]
ms }) = [LMatch id body] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([LMatch id body] -> Bool) -> [LMatch id body] -> Bool
forall a b. (a -> b) -> a -> b
$ Located [LMatch id body] -> [LMatch id body]
forall l e. GenLocated l e -> e
unLoc Located [LMatch id body]
ms
isEmptyMatchGroup (XMatchGroup {})      = Bool
False

-- | Is there only one RHS in this list of matches?
isSingletonMatchGroup :: [LMatch id body] -> Bool
isSingletonMatchGroup :: forall id body. [LMatch id body] -> Bool
isSingletonMatchGroup [LMatch id body]
matches
  | [L SrcSpan
_ Match id body
match] <- [LMatch id body]
matches
  , Match { m_grhss :: forall p body. Match p body -> GRHSs p body
m_grhss = GRHSs { grhssGRHSs :: forall p body. GRHSs p body -> [LGRHS p body]
grhssGRHSs = [LGRHS id body
_] } } <- Match id body
match
  = Bool
True
  | Bool
otherwise
  = Bool
False

matchGroupArity :: MatchGroup (GhcPass id) body -> Arity
-- Precondition: MatchGroup is non-empty
-- This is called before type checking, when mg_arg_tys is not set
matchGroupArity :: forall (id :: Pass) body. MatchGroup (GhcPass id) body -> Int
matchGroupArity (MG { mg_alts :: forall p body. MatchGroup p body -> Located [LMatch p body]
mg_alts = Located [LMatch (GhcPass id) body]
alts })
  | L SrcSpan
_ (LMatch (GhcPass id) body
alt1:[LMatch (GhcPass id) body]
_) <- Located [LMatch (GhcPass id) body]
alts = [Located (Pat (GhcPass id))] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (LMatch (GhcPass id) body -> [LPat (GhcPass id)]
forall (id :: Pass) body.
LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats LMatch (GhcPass id) body
alt1)
  | Bool
otherwise        = String -> Int
forall a. String -> a
panic String
"matchGroupArity"

hsLMatchPats :: LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats :: forall (id :: Pass) body.
LMatch (GhcPass id) body -> [LPat (GhcPass id)]
hsLMatchPats (L SrcSpan
_ (Match { m_pats :: forall p body. Match p body -> [LPat p]
m_pats = [LPat (GhcPass id)]
pats })) = [LPat (GhcPass id)]
pats

-- | Guarded Right-Hand Sides
--
-- GRHSs are used both for pattern bindings and for Matches
--
--  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
--        'GHC.Parser.Annotation.AnnEqual','GHC.Parser.Annotation.AnnWhere',
--        'GHC.Parser.Annotation.AnnOpen','GHC.Parser.Annotation.AnnClose'
--        'GHC.Parser.Annotation.AnnRarrow','GHC.Parser.Annotation.AnnSemi'

-- For details on above see note [Api annotations] in GHC.Parser.Annotation
data GRHSs p body
  = GRHSs {
      forall p body. GRHSs p body -> XCGRHSs p body
grhssExt :: XCGRHSs p body,
      forall p body. GRHSs p body -> [LGRHS p body]
grhssGRHSs :: [LGRHS p body],      -- ^ Guarded RHSs
      forall p body. GRHSs p body -> LHsLocalBinds p
grhssLocalBinds :: LHsLocalBinds p -- ^ The where clause
    }
  | XGRHSs !(XXGRHSs p body)

type instance XCGRHSs (GhcPass _) b = NoExtField
type instance XXGRHSs (GhcPass _) b = NoExtCon

-- | Located Guarded Right-Hand Side
type LGRHS id body = Located (GRHS id body)

-- | Guarded Right Hand Side.
data GRHS p body = GRHS (XCGRHS p body)
                        [GuardLStmt p] -- Guards
                        body           -- Right hand side
                  | XGRHS !(XXGRHS p body)

type instance XCGRHS (GhcPass _) b = NoExtField
type instance XXGRHS (GhcPass _) b = NoExtCon

-- We know the list must have at least one @Match@ in it.

pprMatches :: (OutputableBndrId idR, Outputable body)
           => MatchGroup (GhcPass idR) body -> SDoc
pprMatches :: forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MG { mg_alts :: forall p body. MatchGroup p body -> Located [LMatch p body]
mg_alts = Located [LMatch (GhcPass idR) body]
matches }
    = [SDoc] -> SDoc
vcat ((Match (GhcPass idR) body -> SDoc)
-> [Match (GhcPass idR) body] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map Match (GhcPass idR) body -> SDoc
forall (pr :: Pass) body.
(OutputableBndrId pr, Outputable body) =>
Match (GhcPass pr) body -> SDoc
pprMatch ((LMatch (GhcPass idR) body -> Match (GhcPass idR) body)
-> [LMatch (GhcPass idR) body] -> [Match (GhcPass idR) body]
forall a b. (a -> b) -> [a] -> [b]
map LMatch (GhcPass idR) body -> Match (GhcPass idR) body
forall l e. GenLocated l e -> e
unLoc (Located [LMatch (GhcPass idR) body] -> [LMatch (GhcPass idR) body]
forall l e. GenLocated l e -> e
unLoc Located [LMatch (GhcPass idR) body]
matches)))
      -- Don't print the type; it's only a place-holder before typechecking

-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprFunBind :: (OutputableBndrId idR, Outputable body)
           => MatchGroup (GhcPass idR) body -> SDoc
pprFunBind :: forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprFunBind MatchGroup (GhcPass idR) body
matches = MatchGroup (GhcPass idR) body -> SDoc
forall (idR :: Pass) body.
(OutputableBndrId idR, Outputable body) =>
MatchGroup (GhcPass idR) body -> SDoc
pprMatches MatchGroup (GhcPass idR) body
matches

-- Exported to GHC.Hs.Binds, which can't see the defn of HsMatchContext
pprPatBind :: forall bndr p body. (OutputableBndrId bndr,
                                   OutputableBndrId p,
                                   Outputable body)
           => LPat (GhcPass bndr) -> GRHSs (GhcPass p) body -> SDoc
pprPatBind :: forall (bndr :: Pass) (p :: Pass) body.
(OutputableBndrId bndr, OutputableBndrId p, Outputable body) =>
LPat (GhcPass bndr) -> GRHSs (GhcPass p) body -> SDoc
pprPatBind LPat (GhcPass bndr)
pat (GRHSs (GhcPass p) body
grhss)
 = [SDoc] -> SDoc
sep [Located (Pat (GhcPass bndr)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (Pat (GhcPass bndr))
LPat (GhcPass bndr)
pat,
       Int -> SDoc -> SDoc
nest Int
2 (HsMatchContext (GhcPass p) -> GRHSs (GhcPass p) body -> SDoc
forall (idR :: Pass) body passL.
(OutputableBndrId idR, Outputable body) =>
HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs (HsMatchContext (GhcPass p)
forall p. HsMatchContext p
PatBindRhs :: HsMatchContext (GhcPass p)) GRHSs (GhcPass p) body
grhss)]

pprMatch :: (OutputableBndrId idR, Outputable body)
         => Match (GhcPass idR) body -> SDoc
pprMatch :: forall (pr :: Pass) body.
(OutputableBndrId pr, Outputable body) =>
Match (GhcPass pr) body -> SDoc
pprMatch (Match { m_pats :: forall p body. Match p body -> [LPat p]
m_pats = [LPat (GhcPass idR)]
pats, m_ctxt :: forall p body. Match p body -> HsMatchContext (NoGhcTc p)
m_ctxt = HsMatchContext (NoGhcTc (GhcPass idR))
ctxt, m_grhss :: forall p body. Match p body -> GRHSs p body
m_grhss = GRHSs (GhcPass idR) body
grhss })
  = [SDoc] -> SDoc
sep [ [SDoc] -> SDoc
sep (SDoc
herald SDoc -> [SDoc] -> [SDoc]
forall a. a -> [a] -> [a]
: (Located (Pat (GhcPass idR)) -> SDoc)
-> [Located (Pat (GhcPass idR))] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> SDoc -> SDoc
nest Int
2 (SDoc -> SDoc)
-> (Located (Pat (GhcPass idR)) -> SDoc)
-> Located (Pat (GhcPass idR))
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. PprPrec -> LPat (GhcPass idR) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LPat (GhcPass p) -> SDoc
pprParendLPat PprPrec
appPrec) [Located (Pat (GhcPass idR))]
other_pats)
        , Int -> SDoc -> SDoc
nest Int
2 (HsMatchContext (GhcPass (NoGhcTcPass idR))
-> GRHSs (GhcPass idR) body -> SDoc
forall (idR :: Pass) body passL.
(OutputableBndrId idR, Outputable body) =>
HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs HsMatchContext (GhcPass (NoGhcTcPass idR))
HsMatchContext (NoGhcTc (GhcPass idR))
ctxt GRHSs (GhcPass idR) body
grhss) ]
  where
    (SDoc
herald, [Located (Pat (GhcPass idR))]
other_pats)
        = case HsMatchContext (NoGhcTc (GhcPass idR))
ctxt of
            FunRhs {mc_fun :: forall p. HsMatchContext p -> LIdP p
mc_fun=L SrcSpan
_ IdP (NoGhcTc (GhcPass idR))
fun, mc_fixity :: forall p. HsMatchContext p -> LexicalFixity
mc_fixity=LexicalFixity
fixity, mc_strictness :: forall p. HsMatchContext p -> SrcStrictness
mc_strictness=SrcStrictness
strictness}
                | SrcStrictness
SrcStrict <- SrcStrictness
strictness
                -> ASSERT(null pats)     -- A strict variable binding
                   (Char -> SDoc
char Char
'!'SDoc -> SDoc -> SDoc
<>IdGhcP (NoGhcTcPass idR) -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdGhcP (NoGhcTcPass idR)
IdP (NoGhcTc (GhcPass idR))
fun, [Located (Pat (GhcPass idR))]
[LPat (GhcPass idR)]
pats)

                | LexicalFixity
Prefix <- LexicalFixity
fixity
                -> (IdGhcP (NoGhcTcPass idR) -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprPrefixOcc IdGhcP (NoGhcTcPass idR)
IdP (NoGhcTc (GhcPass idR))
fun, [Located (Pat (GhcPass idR))]
[LPat (GhcPass idR)]
pats) -- f x y z = e
                                            -- Not pprBndr; the AbsBinds will
                                            -- have printed the signature
                | Bool
otherwise
                -> case [LPat (GhcPass idR)]
pats of
                     (LPat (GhcPass idR)
p1:LPat (GhcPass idR)
p2:[LPat (GhcPass idR)]
rest)
                        | [Located (Pat (GhcPass idR))] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Located (Pat (GhcPass idR))]
[LPat (GhcPass idR)]
rest -> (SDoc
pp_infix, [])           -- x &&& y = e
                        | Bool
otherwise -> (SDoc -> SDoc
parens SDoc
pp_infix, [Located (Pat (GhcPass idR))]
[LPat (GhcPass idR)]
rest)  -- (x &&& y) z = e
                        where
                          pp_infix :: SDoc
pp_infix = PprPrec -> LPat (GhcPass idR) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LPat (GhcPass p) -> SDoc
pprParendLPat PprPrec
opPrec LPat (GhcPass idR)
p1
                                     SDoc -> SDoc -> SDoc
<+> IdGhcP (NoGhcTcPass idR) -> SDoc
forall a. OutputableBndr a => a -> SDoc
pprInfixOcc IdGhcP (NoGhcTcPass idR)
IdP (NoGhcTc (GhcPass idR))
fun
                                     SDoc -> SDoc -> SDoc
<+> PprPrec -> LPat (GhcPass idR) -> SDoc
forall (p :: Pass).
OutputableBndrId p =>
PprPrec -> LPat (GhcPass p) -> SDoc
pprParendLPat PprPrec
opPrec LPat (GhcPass idR)
p2
                     [LPat (GhcPass idR)]
_ -> String -> SDoc -> (SDoc, [Located (Pat (GhcPass idR))])
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"pprMatch" (HsMatchContext (GhcPass (NoGhcTcPass idR)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsMatchContext (GhcPass (NoGhcTcPass idR))
HsMatchContext (NoGhcTc (GhcPass idR))
ctxt SDoc -> SDoc -> SDoc
$$ [Located (Pat (GhcPass idR))] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Located (Pat (GhcPass idR))]
[LPat (GhcPass idR)]
pats)

            HsMatchContext (NoGhcTc (GhcPass idR))
LambdaExpr -> (Char -> SDoc
char Char
'\\', [Located (Pat (GhcPass idR))]
[LPat (GhcPass idR)]
pats)

            HsMatchContext (NoGhcTc (GhcPass idR))
_ -> case [LPat (GhcPass idR)]
pats of
                   []    -> (SDoc
empty, [])
                   [LPat (GhcPass idR)
pat] -> (Located (Pat (GhcPass idR)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (Pat (GhcPass idR))
LPat (GhcPass idR)
pat, [])  -- No parens around the single pat in a case
                   [LPat (GhcPass idR)]
_     -> String -> SDoc -> (SDoc, [Located (Pat (GhcPass idR))])
forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"pprMatch" (HsMatchContext (GhcPass (NoGhcTcPass idR)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsMatchContext (GhcPass (NoGhcTcPass idR))
HsMatchContext (NoGhcTc (GhcPass idR))
ctxt SDoc -> SDoc -> SDoc
$$ [Located (Pat (GhcPass idR))] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [Located (Pat (GhcPass idR))]
[LPat (GhcPass idR)]
pats)

pprGRHSs :: (OutputableBndrId idR, Outputable body)
         => HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs :: forall (idR :: Pass) body passL.
(OutputableBndrId idR, Outputable body) =>
HsMatchContext passL -> GRHSs (GhcPass idR) body -> SDoc
pprGRHSs HsMatchContext passL
ctxt (GRHSs XCGRHSs (GhcPass idR) body
_ [LGRHS (GhcPass idR) body]
grhss (L SrcSpan
_ HsLocalBinds (GhcPass idR)
binds))
  = [SDoc] -> SDoc
vcat ((LGRHS (GhcPass idR) body -> SDoc)
-> [LGRHS (GhcPass idR) body] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (HsMatchContext passL -> GRHS (GhcPass idR) body -> SDoc
forall (idR :: Pass) body passL.
(OutputableBndrId idR, Outputable body) =>
HsMatchContext passL -> GRHS (GhcPass idR) body -> SDoc
pprGRHS HsMatchContext passL
ctxt (GRHS (GhcPass idR) body -> SDoc)
-> (LGRHS (GhcPass idR) body -> GRHS (GhcPass idR) body)
-> LGRHS (GhcPass idR) body
-> SDoc
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LGRHS (GhcPass idR) body -> GRHS (GhcPass idR) body
forall l e. GenLocated l e -> e
unLoc) [LGRHS (GhcPass idR) body]
grhss)
  -- Print the "where" even if the contents of the binds is empty. Only
  -- EmptyLocalBinds means no "where" keyword
 SDoc -> SDoc -> SDoc
$$ Bool -> SDoc -> SDoc
ppUnless (HsLocalBinds (GhcPass idR) -> Bool
forall a b. HsLocalBindsLR a b -> Bool
eqEmptyLocalBinds HsLocalBinds (GhcPass idR)
binds)
      (String -> SDoc
text String
"where" SDoc -> SDoc -> SDoc
$$ Int -> SDoc -> SDoc
nest Int
4 (HsLocalBinds (GhcPass idR) -> SDoc
forall (idL :: Pass) (idR :: Pass).
(OutputableBndrId idL, OutputableBndrId idR) =>
HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds HsLocalBinds (GhcPass idR)
binds))

pprGRHS :: (OutputableBndrId idR, Outputable body)
        => HsMatchContext passL -> GRHS (GhcPass idR) body -> SDoc
pprGRHS :: forall (idR :: Pass) body passL.
(OutputableBndrId idR, Outputable body) =>
HsMatchContext passL -> GRHS (GhcPass idR) body -> SDoc
pprGRHS HsMatchContext passL
ctxt (GRHS XCGRHS (GhcPass idR) body
_ [] body
body)
 =  HsMatchContext passL -> body -> SDoc
forall body passL.
Outputable body =>
HsMatchContext passL -> body -> SDoc
pp_rhs HsMatchContext passL
ctxt body
body

pprGRHS HsMatchContext passL
ctxt (GRHS XCGRHS (GhcPass idR) body
_ [GuardLStmt (GhcPass idR)]
guards body
body)
 = [SDoc] -> SDoc
sep [SDoc
vbar SDoc -> SDoc -> SDoc
<+> [GuardLStmt (GhcPass idR)] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [GuardLStmt (GhcPass idR)]
guards, HsMatchContext passL -> body -> SDoc
forall body passL.
Outputable body =>
HsMatchContext passL -> body -> SDoc
pp_rhs HsMatchContext passL
ctxt body
body]

pp_rhs :: Outputable body => HsMatchContext passL -> body -> SDoc
pp_rhs :: forall body passL.
Outputable body =>
HsMatchContext passL -> body -> SDoc
pp_rhs HsMatchContext passL
ctxt body
rhs = HsMatchContext passL -> SDoc
forall p. HsMatchContext p -> SDoc
matchSeparator HsMatchContext passL
ctxt SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
pprDeeper (body -> SDoc
forall a. Outputable a => a -> SDoc
ppr body
rhs)

{-
************************************************************************
*                                                                      *
\subsection{Do stmts and list comprehensions}
*                                                                      *
************************************************************************
-}

-- | Located @do@ block Statement
type LStmt id body = Located (StmtLR id id body)

-- | Located Statement with separate Left and Right id's
type LStmtLR idL idR body = Located (StmtLR idL idR body)

-- | @do@ block Statement
type Stmt id body = StmtLR id id body

-- | Command Located Statement
type CmdLStmt   id = LStmt id (LHsCmd  id)

-- | Command Statement
type CmdStmt    id = Stmt  id (LHsCmd  id)

-- | Expression Located Statement
type ExprLStmt  id = LStmt id (LHsExpr id)

-- | Expression Statement
type ExprStmt   id = Stmt  id (LHsExpr id)

-- | Guard Located Statement
type GuardLStmt id = LStmt id (LHsExpr id)

-- | Guard Statement
type GuardStmt  id = Stmt  id (LHsExpr id)

-- | Ghci Located Statement
type GhciLStmt  id = LStmt id (LHsExpr id)

-- | Ghci Statement
type GhciStmt   id = Stmt  id (LHsExpr id)

-- The SyntaxExprs in here are used *only* for do-notation and monad
-- comprehensions, which have rebindable syntax. Otherwise they are unused.
-- | API Annotations when in qualifier lists or guards
--  - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnVbar',
--         'GHC.Parser.Annotation.AnnComma','GHC.Parser.Annotation.AnnThen',
--         'GHC.Parser.Annotation.AnnBy','GHC.Parser.Annotation.AnnBy',
--         'GHC.Parser.Annotation.AnnGroup','GHC.Parser.Annotation.AnnUsing'

-- For details on above see note [Api annotations] in GHC.Parser.Annotation
data StmtLR idL idR body -- body should always be (LHs**** idR)
  = LastStmt  -- Always the last Stmt in ListComp, MonadComp,
              -- and (after the renamer, see GHC.Rename.Expr.checkLastStmt) DoExpr, MDoExpr
              -- Not used for GhciStmtCtxt, PatGuard, which scope over other stuff
          (XLastStmt idL idR body)
          body
          (Maybe Bool)  -- Whether return was stripped
            -- Just True <=> return with a dollar was stripped by ApplicativeDo
            -- Just False <=> return without a dollar was stripped by ApplicativeDo
            -- Nothing <=> Nothing was stripped
          (SyntaxExpr idR)   -- The return operator
            -- The return operator is used only for MonadComp
            -- For ListComp we use the baked-in 'return'
            -- For DoExpr, MDoExpr, we don't apply a 'return' at all
            -- See Note [Monad Comprehensions]
            -- - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLarrow'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | BindStmt (XBindStmt idL idR body)
             -- ^ Post renaming has optional fail and bind / (>>=) operator.
             -- Post typechecking, also has multiplicity of the argument
             -- and the result type of the function passed to bind;
             -- that is, (P, S) in (>>=) :: Q -> (R # P -> S) -> T
             -- See Note [The type of bind in Stmts]
             (LPat idL)
             body

  -- | 'ApplicativeStmt' represents an applicative expression built with
  -- '<$>' and '<*>'.  It is generated by the renamer, and is desugared into the
  -- appropriate applicative expression by the desugarer, but it is intended
  -- to be invisible in error messages.
  --
  -- For full details, see Note [ApplicativeDo] in "GHC.Rename.Expr"
  --
  | ApplicativeStmt
             (XApplicativeStmt idL idR body) -- Post typecheck, Type of the body
             [ ( SyntaxExpr idR
               , ApplicativeArg idL) ]
                      -- [(<$>, e1), (<*>, e2), ..., (<*>, en)]
             (Maybe (SyntaxExpr idR))  -- 'join', if necessary

  | BodyStmt (XBodyStmt idL idR body) -- Post typecheck, element type
                                      -- of the RHS (used for arrows)
             body              -- See Note [BodyStmt]
             (SyntaxExpr idR)  -- The (>>) operator
             (SyntaxExpr idR)  -- The `guard` operator; used only in MonadComp
                               -- See notes [Monad Comprehensions]

  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnLet'
  --          'GHC.Parser.Annotation.AnnOpen' @'{'@,'GHC.Parser.Annotation.AnnClose' @'}'@,

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | LetStmt  (XLetStmt idL idR body) (LHsLocalBindsLR idL idR)

  -- ParStmts only occur in a list/monad comprehension
  | ParStmt  (XParStmt idL idR body)    -- Post typecheck,
                                        -- S in (>>=) :: Q -> (R -> S) -> T
             [ParStmtBlock idL idR]
             (HsExpr idR)               -- Polymorphic `mzip` for monad comprehensions
             (SyntaxExpr idR)           -- The `>>=` operator
                                        -- See notes [Monad Comprehensions]
            -- After renaming, the ids are the binders
            -- bound by the stmts and used after themp

  | TransStmt {
      forall idL idR body. StmtLR idL idR body -> XTransStmt idL idR body
trS_ext   :: XTransStmt idL idR body, -- Post typecheck,
                                            -- R in (>>=) :: Q -> (R -> S) -> T
      forall idL idR body. StmtLR idL idR body -> TransForm
trS_form  :: TransForm,
      forall idL idR body. StmtLR idL idR body -> [ExprLStmt idL]
trS_stmts :: [ExprLStmt idL],   -- Stmts to the *left* of the 'group'
                                      -- which generates the tuples to be grouped

      forall idL idR body. StmtLR idL idR body -> [(IdP idR, IdP idR)]
trS_bndrs :: [(IdP idR, IdP idR)], -- See Note [TransStmt binder map]

      forall idL idR body. StmtLR idL idR body -> LHsExpr idR
trS_using :: LHsExpr idR,
      forall idL idR body. StmtLR idL idR body -> Maybe (LHsExpr idR)
trS_by :: Maybe (LHsExpr idR),  -- "by e" (optional)
        -- Invariant: if trS_form = GroupBy, then grp_by = Just e

      forall idL idR body. StmtLR idL idR body -> SyntaxExpr idR
trS_ret :: SyntaxExpr idR,      -- The monomorphic 'return' function for
                                      -- the inner monad comprehensions
      forall idL idR body. StmtLR idL idR body -> SyntaxExpr idR
trS_bind :: SyntaxExpr idR,     -- The '(>>=)' operator
      forall idL idR body. StmtLR idL idR body -> HsExpr idR
trS_fmap :: HsExpr idR          -- The polymorphic 'fmap' function for desugaring
                                      -- Only for 'group' forms
                                      -- Just a simple HsExpr, because it's
                                      -- too polymorphic for tcSyntaxOp
    }                                 -- See Note [Monad Comprehensions]

  -- Recursive statement (see Note [How RecStmt works] below)
  -- | - 'GHC.Parser.Annotation.AnnKeywordId' : 'GHC.Parser.Annotation.AnnRec'

  -- For details on above see note [Api annotations] in GHC.Parser.Annotation
  | RecStmt
     { forall idL idR body. StmtLR idL idR body -> XRecStmt idL idR body
recS_ext :: XRecStmt idL idR body
     , forall idL idR body. StmtLR idL idR body -> [LStmtLR idL idR body]
recS_stmts :: [LStmtLR idL idR body]

        -- The next two fields are only valid after renaming
     , forall idL idR body. StmtLR idL idR body -> [IdP idR]
recS_later_ids :: [IdP idR]
                         -- The ids are a subset of the variables bound by the
                         -- stmts that are used in stmts that follow the RecStmt

     , forall idL idR body. StmtLR idL idR body -> [IdP idR]
recS_rec_ids :: [IdP idR]
                         -- Ditto, but these variables are the "recursive" ones,
                         -- that are used before they are bound in the stmts of
                         -- the RecStmt.
        -- An Id can be in both groups
        -- Both sets of Ids are (now) treated monomorphically
        -- See Note [How RecStmt works] for why they are separate

        -- Rebindable syntax
     , forall idL idR body. StmtLR idL idR body -> SyntaxExpr idR
recS_bind_fn :: SyntaxExpr idR -- The bind function
     , forall idL idR body. StmtLR idL idR body -> SyntaxExpr idR
recS_ret_fn  :: SyntaxExpr idR -- The return function
     , forall idL idR body. StmtLR idL idR body -> SyntaxExpr idR
recS_mfix_fn :: SyntaxExpr idR -- The mfix function
      }
  | XStmtLR !(XXStmtLR idL idR body)

-- Extra fields available post typechecking for RecStmt.
data RecStmtTc =
  RecStmtTc
     { RecStmtTc -> Type
recS_bind_ty :: Type       -- S in (>>=) :: Q -> (R -> S) -> T
     , RecStmtTc -> [HsExpr GhcTc]
recS_later_rets :: [PostTcExpr] -- (only used in the arrow version)
     , RecStmtTc -> [HsExpr GhcTc]
recS_rec_rets :: [PostTcExpr] -- These expressions correspond 1-to-1
                                  -- with recS_later_ids and recS_rec_ids,
                                  -- and are the expressions that should be
                                  -- returned by the recursion.
                                  -- They may not quite be the Ids themselves,
                                  -- because the Id may be *polymorphic*, but
                                  -- the returned thing has to be *monomorphic*,
                                  -- so they may be type applications

      , RecStmtTc -> Type
recS_ret_ty :: Type        -- The type of
                                   -- do { stmts; return (a,b,c) }
                                   -- With rebindable syntax the type might not
                                   -- be quite as simple as (m (tya, tyb, tyc)).
      }


type instance XLastStmt        (GhcPass _) (GhcPass _) b = NoExtField

type instance XBindStmt        (GhcPass _) GhcPs b = NoExtField
type instance XBindStmt        (GhcPass _) GhcRn b = XBindStmtRn
type instance XBindStmt        (GhcPass _) GhcTc b = XBindStmtTc

data XBindStmtRn = XBindStmtRn
  { XBindStmtRn -> SyntaxExpr GhcRn
xbsrn_bindOp :: SyntaxExpr GhcRn
  , XBindStmtRn -> FailOperator GhcRn
xbsrn_failOp :: FailOperator GhcRn
  }

data XBindStmtTc = XBindStmtTc
  { XBindStmtTc -> SyntaxExpr GhcTc
xbstc_bindOp :: SyntaxExpr GhcTc
  , XBindStmtTc -> Type
xbstc_boundResultType :: Type -- If (>>=) :: Q -> (R -> S) -> T, this is S
  , XBindStmtTc -> Type
xbstc_boundResultMult :: Mult -- If (>>=) :: Q -> (R -> S) -> T, this is S
  , XBindStmtTc -> FailOperator GhcTc
xbstc_failOp :: FailOperator GhcTc
  }

type instance XApplicativeStmt (GhcPass _) GhcPs b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcRn b = NoExtField
type instance XApplicativeStmt (GhcPass _) GhcTc b = Type

type instance XBodyStmt        (GhcPass _) GhcPs b = NoExtField
type instance XBodyStmt        (GhcPass _) GhcRn b = NoExtField
type instance XBodyStmt        (GhcPass _) GhcTc b = Type

type instance XLetStmt         (GhcPass _) (GhcPass _) b = NoExtField

type instance XParStmt         (GhcPass _) GhcPs b = NoExtField
type instance XParStmt         (GhcPass _) GhcRn b = NoExtField
type instance XParStmt         (GhcPass _) GhcTc b = Type

type instance XTransStmt       (GhcPass _) GhcPs b = NoExtField
type instance XTransStmt       (GhcPass _) GhcRn b = NoExtField
type instance XTransStmt       (GhcPass _) GhcTc b = Type

type instance XRecStmt         (GhcPass _) GhcPs b = NoExtField
type instance XRecStmt         (GhcPass _) GhcRn b = NoExtField
type instance XRecStmt         (GhcPass _) GhcTc b = RecStmtTc

type instance XXStmtLR         (GhcPass _) (GhcPass _) b = NoExtCon

data TransForm   -- The 'f' below is the 'using' function, 'e' is the by function
  = ThenForm     -- then f               or    then f by e             (depending on trS_by)
  | GroupForm    -- then group using f   or    then group by e using f (depending on trS_by)
  deriving Typeable TransForm
Typeable TransForm
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> TransForm -> c TransForm)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c TransForm)
-> (TransForm -> Constr)
-> (TransForm -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c TransForm))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TransForm))
-> ((forall b. Data b => b -> b) -> TransForm -> TransForm)
-> (forall r r'.
    (r -> r' -> r)
    -> r -> (forall d. Data d => d -> r') -> TransForm -> r)
-> (forall r r'.
    (r' -> r -> r)
    -> r -> (forall d. Data d => d -> r') -> TransForm -> r)
-> (forall u. (forall d. Data d => d -> u) -> TransForm -> [u])
-> (forall u.
    Int -> (forall d. Data d => d -> u) -> TransForm -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> TransForm -> m TransForm)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> TransForm -> m TransForm)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> TransForm -> m TransForm)
-> Data TransForm
TransForm -> DataType
TransForm -> Constr
(forall b. Data b => b -> b) -> TransForm -> TransForm
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> TransForm -> u
forall u. (forall d. Data d => d -> u) -> TransForm -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> TransForm -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> TransForm -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c TransForm
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> TransForm -> c TransForm
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c TransForm)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TransForm)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> TransForm -> m TransForm
gmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> TransForm -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> TransForm -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> TransForm -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> TransForm -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> TransForm -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> TransForm -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> TransForm -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> TransForm -> r
gmapT :: (forall b. Data b => b -> b) -> TransForm -> TransForm
$cgmapT :: (forall b. Data b => b -> b) -> TransForm -> TransForm
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TransForm)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c TransForm)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c TransForm)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c TransForm)
dataTypeOf :: TransForm -> DataType
$cdataTypeOf :: TransForm -> DataType
toConstr :: TransForm -> Constr
$ctoConstr :: TransForm -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c TransForm
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c TransForm
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> TransForm -> c TransForm
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> TransForm -> c TransForm
Data

-- | Parenthesised Statement Block
data ParStmtBlock idL idR
  = ParStmtBlock
        (XParStmtBlock idL idR)
        [ExprLStmt idL]
        [IdP idR]          -- The variables to be returned
        (SyntaxExpr idR)   -- The return operator
  | XParStmtBlock !(XXParStmtBlock idL idR)

type instance XParStmtBlock  (GhcPass pL) (GhcPass pR) = NoExtField
type instance XXParStmtBlock (GhcPass pL) (GhcPass pR) = NoExtCon

-- | The fail operator
--
-- This is used for `.. <-` "bind statments" in do notation, including
-- non-monadic "binds" in applicative.
--
-- The fail operator is 'Just expr' if it potentially fail monadically. if the
-- pattern match cannot fail, or shouldn't fail monadically (regular incomplete
-- pattern exception), it is 'Nothing'.
--
-- See Note [Monad fail : Rebindable syntax, overloaded strings] for the type of
-- expression in the 'Just' case, and why it is so.
--
-- See Note [Failing pattern matches in Stmts] for which contexts for
-- '@BindStmt@'s should use the monadic fail and which shouldn't.
type FailOperator id = Maybe (SyntaxExpr id)

-- | Applicative Argument
data ApplicativeArg idL
  = ApplicativeArgOne      -- A single statement (BindStmt or BodyStmt)
    { forall idL. ApplicativeArg idL -> XApplicativeArgOne idL
xarg_app_arg_one  :: XApplicativeArgOne idL
      -- ^ The fail operator, after renaming
      --
      -- The fail operator is needed if this is a BindStmt
      -- where the pattern can fail. E.g.:
      -- (Just a) <- stmt
      -- The fail operator will be invoked if the pattern
      -- match fails.
      -- It is also used for guards in MonadComprehensions.
      -- The fail operator is Nothing
      -- if the pattern match can't fail
    , forall idL. ApplicativeArg idL -> LPat idL
app_arg_pattern   :: LPat idL -- WildPat if it was a BodyStmt (see below)
    , forall idL. ApplicativeArg idL -> LHsExpr idL
arg_expr          :: LHsExpr idL
    , forall idL. ApplicativeArg idL -> Bool
is_body_stmt      :: Bool
      -- ^ True <=> was a BodyStmt,
      -- False <=> was a BindStmt.
      -- See Note [Applicative BodyStmt]
    }
  | ApplicativeArgMany     -- do { stmts; return vars }
    { forall idL. ApplicativeArg idL -> XApplicativeArgMany idL
xarg_app_arg_many :: XApplicativeArgMany idL
    , forall idL. ApplicativeArg idL -> [ExprLStmt idL]
app_stmts         :: [ExprLStmt idL] -- stmts
    , forall idL. ApplicativeArg idL -> HsExpr idL
final_expr        :: HsExpr idL    -- return (v1,..,vn), or just (v1,..,vn)
    , forall idL. ApplicativeArg idL -> LPat idL
bv_pattern        :: LPat idL      -- (v1,...,vn)
    , forall idL. ApplicativeArg idL -> HsStmtContext GhcRn
stmt_context      :: HsStmtContext GhcRn -- context of the do expression
                                               -- used in pprArg
    }
  | XApplicativeArg !(XXApplicativeArg idL)

type instance XApplicativeArgOne GhcPs = NoExtField
type instance XApplicativeArgOne GhcRn = FailOperator GhcRn
type instance XApplicativeArgOne GhcTc = FailOperator GhcTc

type instance XApplicativeArgMany (GhcPass _) = NoExtField
type instance XXApplicativeArg    (GhcPass _) = NoExtCon

{-
Note [The type of bind in Stmts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Some Stmts, notably BindStmt, keep the (>>=) bind operator.
We do NOT assume that it has type
    (>>=) :: m a -> (a -> m b) -> m b
In some cases (see #303, #1537) it might have a more
exotic type, such as
    (>>=) :: m i j a -> (a -> m j k b) -> m i k b
So we must be careful not to make assumptions about the type.
In particular, the monad may not be uniform throughout.

Note [TransStmt binder map]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
The [(idR,idR)] in a TransStmt behaves as follows:

  * Before renaming: []

  * After renaming:
          [ (x27,x27), ..., (z35,z35) ]
    These are the variables
       bound by the stmts to the left of the 'group'
       and used either in the 'by' clause,
                or     in the stmts following the 'group'
    Each item is a pair of identical variables.

  * After typechecking:
          [ (x27:Int, x27:[Int]), ..., (z35:Bool, z35:[Bool]) ]
    Each pair has the same unique, but different *types*.

Note [BodyStmt]
~~~~~~~~~~~~~~~
BodyStmts are a bit tricky, because what they mean
depends on the context.  Consider the following contexts:

        A do expression of type (m res_ty)
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        * BodyStmt E any_ty:   do { ....; E; ... }
                E :: m any_ty
          Translation: E >> ...

        A list comprehensions of type [elt_ty]
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        * BodyStmt E Bool:   [ .. | .... E ]
                        [ .. | ..., E, ... ]
                        [ .. | .... | ..., E | ... ]
                E :: Bool
          Translation: if E then fail else ...

        A guard list, guarding a RHS of type rhs_ty
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        * BodyStmt E BooParStmtBlockl:   f x | ..., E, ... = ...rhs...
                E :: Bool
          Translation: if E then fail else ...

        A monad comprehension of type (m res_ty)
        ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
        * BodyStmt E Bool:   [ .. | .... E ]
                E :: Bool
          Translation: guard E >> ...

Array comprehensions are handled like list comprehensions.

Note [How RecStmt works]
~~~~~~~~~~~~~~~~~~~~~~~~
Example:
   HsDo [ BindStmt x ex

        , RecStmt { recS_rec_ids   = [a, c]
                  , recS_stmts     = [ BindStmt b (return (a,c))
                                     , LetStmt a = ...b...
                                     , BindStmt c ec ]
                  , recS_later_ids = [a, b]

        , return (a b) ]

Here, the RecStmt binds a,b,c; but
  - Only a,b are used in the stmts *following* the RecStmt,
  - Only a,c are used in the stmts *inside* the RecStmt
        *before* their bindings

Why do we need *both* rec_ids and later_ids?  For monads they could be
combined into a single set of variables, but not for arrows.  That
follows from the types of the respective feedback operators:

        mfix :: MonadFix m => (a -> m a) -> m a
        loop :: ArrowLoop a => a (b,d) (c,d) -> a b c

* For mfix, the 'a' covers the union of the later_ids and the rec_ids
* For 'loop', 'c' is the later_ids and 'd' is the rec_ids

Note [Typing a RecStmt]
~~~~~~~~~~~~~~~~~~~~~~~
A (RecStmt stmts) types as if you had written

  (v1,..,vn, _, ..., _) <- mfix (\~(_, ..., _, r1, ..., rm) ->
                                 do { stmts
                                    ; return (v1,..vn, r1, ..., rm) })

where v1..vn are the later_ids
      r1..rm are the rec_ids

Note [Monad Comprehensions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Monad comprehensions require separate functions like 'return' and
'>>=' for desugaring. These functions are stored in the statements
used in monad comprehensions. For example, the 'return' of the 'LastStmt'
expression is used to lift the body of the monad comprehension:

  [ body | stmts ]
   =>
  stmts >>= \bndrs -> return body

In transform and grouping statements ('then ..' and 'then group ..') the
'return' function is required for nested monad comprehensions, for example:

  [ body | stmts, then f, rest ]
   =>
  f [ env | stmts ] >>= \bndrs -> [ body | rest ]

BodyStmts require the 'Control.Monad.guard' function for boolean
expressions:

  [ body | exp, stmts ]
   =>
  guard exp >> [ body | stmts ]

Parallel statements require the 'Control.Monad.Zip.mzip' function:

  [ body | stmts1 | stmts2 | .. ]
   =>
  mzip stmts1 (mzip stmts2 (..)) >>= \(bndrs1, (bndrs2, ..)) -> return body

In any other context than 'MonadComp', the fields for most of these
'SyntaxExpr's stay bottom.


Note [Applicative BodyStmt]

(#12143) For the purposes of ApplicativeDo, we treat any BodyStmt
as if it was a BindStmt with a wildcard pattern.  For example,

  do
    x <- A
    B
    return x

is transformed as if it were

  do
    x <- A
    _ <- B
    return x

so it transforms to

  (\(x,_) -> x) <$> A <*> B

But we have to remember when we treat a BodyStmt like a BindStmt,
because in error messages we want to emit the original syntax the user
wrote, not our internal representation.  So ApplicativeArgOne has a
Bool flag that is True when the original statement was a BodyStmt, so
that we can pretty-print it correctly.
-}

instance (Outputable (StmtLR idL idL (LHsExpr idL)),
          Outputable (XXParStmtBlock idL idR))
        => Outputable (ParStmtBlock idL idR) where
  ppr :: ParStmtBlock idL idR -> SDoc
ppr (ParStmtBlock XParStmtBlock idL idR
_ [ExprLStmt idL]
stmts [IdP idR]
_ SyntaxExpr idR
_) = [ExprLStmt idL] -> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [ExprLStmt idL]
stmts
  ppr (XParStmtBlock XXParStmtBlock idL idR
x)          = XXParStmtBlock idL idR -> SDoc
forall a. Outputable a => a -> SDoc
ppr XXParStmtBlock idL idR
x

instance (OutputableBndrId pl, OutputableBndrId pr,
          Outputable body)
         => Outputable (StmtLR (GhcPass pl) (GhcPass pr) body) where
    ppr :: StmtLR (GhcPass pl) (GhcPass pr) body -> SDoc
ppr StmtLR (GhcPass pl) (GhcPass pr) body
stmt = StmtLR (GhcPass pl) (GhcPass pr) body -> SDoc
forall (pl :: Pass) (pr :: Pass) body.
(OutputableBndrId pl, OutputableBndrId pr, Outputable body) =>
StmtLR (GhcPass pl) (GhcPass pr) body -> SDoc
pprStmt StmtLR (GhcPass pl) (GhcPass pr) body
stmt

pprStmt :: forall idL idR body . (OutputableBndrId idL,
                                  OutputableBndrId idR,
                                  Outputable body)
        => (StmtLR (GhcPass idL) (GhcPass idR) body) -> SDoc
pprStmt :: forall (pl :: Pass) (pr :: Pass) body.
(OutputableBndrId pl, OutputableBndrId pr, Outputable body) =>
StmtLR (GhcPass pl) (GhcPass pr) body -> SDoc
pprStmt (LastStmt XLastStmt (GhcPass idL) (GhcPass idR) body
_ body
expr Maybe Bool
m_dollar_stripped SyntaxExpr (GhcPass idR)
_)
  = SDoc -> SDoc
whenPprDebug (String -> SDoc
text String
"[last]") SDoc -> SDoc -> SDoc
<+>
      (case Maybe Bool
m_dollar_stripped of
        Just Bool
True -> String -> SDoc
text String
"return $"
        Just Bool
False -> String -> SDoc
text String
"return"
        Maybe Bool
Nothing -> SDoc
empty) SDoc -> SDoc -> SDoc
<+>
      body -> SDoc
forall a. Outputable a => a -> SDoc
ppr body
expr
pprStmt (BindStmt XBindStmt (GhcPass idL) (GhcPass idR) body
_ LPat (GhcPass idL)
pat body
expr) = [SDoc] -> SDoc
hsep [Located (Pat (GhcPass idL)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (Pat (GhcPass idL))
LPat (GhcPass idL)
pat, SDoc
larrow, body -> SDoc
forall a. Outputable a => a -> SDoc
ppr body
expr]
pprStmt (LetStmt XLetStmt (GhcPass idL) (GhcPass idR) body
_ (L SrcSpan
_ HsLocalBindsLR (GhcPass idL) (GhcPass idR)
binds))   = [SDoc] -> SDoc
hsep [String -> SDoc
text String
"let", HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
forall (idL :: Pass) (idR :: Pass).
(OutputableBndrId idL, OutputableBndrId idR) =>
HsLocalBindsLR (GhcPass idL) (GhcPass idR) -> SDoc
pprBinds HsLocalBindsLR (GhcPass idL) (GhcPass idR)
binds]
pprStmt (BodyStmt XBodyStmt (GhcPass idL) (GhcPass idR) body
_ body
expr SyntaxExpr (GhcPass idR)
_ SyntaxExpr (GhcPass idR)
_)     = body -> SDoc
forall a. Outputable a => a -> SDoc
ppr body
expr
pprStmt (ParStmt XParStmt (GhcPass idL) (GhcPass idR) body
_ [ParStmtBlock (GhcPass idL) (GhcPass idR)]
stmtss HsExpr (GhcPass idR)
_ SyntaxExpr (GhcPass idR)
_)   = [SDoc] -> SDoc
sep (SDoc -> [SDoc] -> [SDoc]
punctuate (String -> SDoc
text String
" | ") ((ParStmtBlock (GhcPass idL) (GhcPass idR) -> SDoc)
-> [ParStmtBlock (GhcPass idL) (GhcPass idR)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map ParStmtBlock (GhcPass idL) (GhcPass idR) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [ParStmtBlock (GhcPass idL) (GhcPass idR)]
stmtss))

pprStmt (TransStmt { trS_stmts :: forall idL idR body. StmtLR idL idR body -> [ExprLStmt idL]
trS_stmts = [ExprLStmt (GhcPass idL)]
stmts, trS_by :: forall idL idR body. StmtLR idL idR body -> Maybe (LHsExpr idR)
trS_by = Maybe (LHsExpr (GhcPass idR))
by
                   , trS_using :: forall idL idR body. StmtLR idL idR body -> LHsExpr idR
trS_using = LHsExpr (GhcPass idR)
using, trS_form :: forall idL idR body. StmtLR idL idR body -> TransForm
trS_form = TransForm
form })
  = [SDoc] -> SDoc
sep ([SDoc] -> SDoc) -> [SDoc] -> SDoc
forall a b. (a -> b) -> a -> b
$ SDoc -> [SDoc] -> [SDoc]
punctuate SDoc
comma ((ExprLStmt (GhcPass idL) -> SDoc)
-> [ExprLStmt (GhcPass idL)] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map ExprLStmt (GhcPass idL) -> SDoc
forall a. Outputable a => a -> SDoc
ppr [ExprLStmt (GhcPass idL)]
stmts [SDoc] -> [SDoc] -> [SDoc]
forall a. [a] -> [a] -> [a]
++ [Maybe (LHsExpr (GhcPass idR))
-> LHsExpr (GhcPass idR) -> TransForm -> SDoc
forall body.
Outputable body =>
Maybe body -> body -> TransForm -> SDoc
pprTransStmt Maybe (LHsExpr (GhcPass idR))
by LHsExpr (GhcPass idR)
using TransForm
form])

pprStmt (RecStmt { recS_stmts :: forall idL idR body. StmtLR idL idR body -> [LStmtLR idL idR body]
recS_stmts = [LStmtLR (GhcPass idL) (GhcPass idR) body]
segment, recS_rec_ids :: forall idL idR body. StmtLR idL idR body -> [IdP idR]
recS_rec_ids = [IdP (GhcPass idR)]
rec_ids
                 , recS_later_ids :: forall idL idR body. StmtLR idL idR body -> [IdP idR]
recS_later_ids = [IdP (GhcPass idR)]
later_ids })
  = String -> SDoc
text String
"rec" SDoc -> SDoc -> SDoc
<+>
    [SDoc] -> SDoc
vcat [ [LStmtLR (GhcPass idL) (GhcPass idR) body] -> SDoc
forall (idL :: Pass) (idR :: Pass) body.
(OutputableBndrId idL, OutputableBndrId idR, Outputable body) =>
[LStmtLR (GhcPass idL) (GhcPass idR) body] -> SDoc
ppr_do_stmts [LStmtLR (GhcPass idL) (GhcPass idR) body]
segment
         , SDoc -> SDoc
whenPprDebug ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"rec_ids=" SDoc -> SDoc -> SDoc
<> [IdGhcP idR] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [IdGhcP idR]
[IdP (GhcPass idR)]
rec_ids
                            , String -> SDoc
text String
"later_ids=" SDoc -> SDoc -> SDoc
<> [IdGhcP idR] -> SDoc
forall a. Outputable a => a -> SDoc
ppr [IdGhcP idR]
[IdP (GhcPass idR)]
later_ids])]

pprStmt (ApplicativeStmt XApplicativeStmt (GhcPass idL) (GhcPass idR) body
_ [(SyntaxExpr (GhcPass idR), ApplicativeArg (GhcPass idL))]
args Maybe (SyntaxExpr (GhcPass idR))
mb_join)
  = (PprStyle -> SDoc) -> SDoc
getPprStyle ((PprStyle -> SDoc) -> SDoc) -> (PprStyle -> SDoc) -> SDoc
forall a b. (a -> b) -> a -> b
$ \PprStyle
style ->
      if PprStyle -> Bool
userStyle PprStyle
style
         then SDoc
pp_for_user
         else SDoc
pp_debug
  where
  -- make all the Applicative stuff invisible in error messages by
  -- flattening the whole ApplicativeStmt nest back to a sequence
  -- of statements.
   pp_for_user :: SDoc
pp_for_user = [SDoc] -> SDoc
vcat ([SDoc] -> SDoc) -> [SDoc] -> SDoc
forall a b. (a -> b) -> a -> b
$ ((SyntaxExprGhc idR, ApplicativeArg (GhcPass idL)) -> [SDoc])
-> [(SyntaxExprGhc idR, ApplicativeArg (GhcPass idL))] -> [SDoc]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (SyntaxExprGhc idR, ApplicativeArg (GhcPass idL)) -> [SDoc]
forall a. (a, ApplicativeArg (GhcPass idL)) -> [SDoc]
flattenArg [(SyntaxExpr (GhcPass idR), ApplicativeArg (GhcPass idL))]
[(SyntaxExprGhc idR, ApplicativeArg (GhcPass idL))]
args

   -- ppr directly rather than transforming here, because we need to
   -- inject a "return" which is hard when we're polymorphic in the id
   -- type.
   flattenStmt :: ExprLStmt (GhcPass idL) -> [SDoc]
   flattenStmt :: ExprLStmt (GhcPass idL) -> [SDoc]
flattenStmt (L SrcSpan
_ (ApplicativeStmt XApplicativeStmt
  (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))
_ [(SyntaxExpr (GhcPass idL), ApplicativeArg (GhcPass idL))]
args Maybe (SyntaxExpr (GhcPass idL))
_)) = ((SyntaxExprGhc idL, ApplicativeArg (GhcPass idL)) -> [SDoc])
-> [(SyntaxExprGhc idL, ApplicativeArg (GhcPass idL))] -> [SDoc]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (SyntaxExprGhc idL, ApplicativeArg (GhcPass idL)) -> [SDoc]
forall a. (a, ApplicativeArg (GhcPass idL)) -> [SDoc]
flattenArg [(SyntaxExpr (GhcPass idL), ApplicativeArg (GhcPass idL))]
[(SyntaxExprGhc idL, ApplicativeArg (GhcPass idL))]
args
   flattenStmt ExprLStmt (GhcPass idL)
stmt = [ExprLStmt (GhcPass idL) -> SDoc
forall a. Outputable a => a -> SDoc
ppr ExprLStmt (GhcPass idL)
stmt]

   flattenArg :: forall a . (a, ApplicativeArg (GhcPass idL)) -> [SDoc]
   flattenArg :: forall a. (a, ApplicativeArg (GhcPass idL)) -> [SDoc]
flattenArg (a
_, ApplicativeArgOne XApplicativeArgOne (GhcPass idL)
_ LPat (GhcPass idL)
pat LHsExpr (GhcPass idL)
expr Bool
isBody)
     | Bool
isBody =  -- See Note [Applicative BodyStmt]
     [StmtLR (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (XBodyStmt (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))
-> LHsExpr (GhcPass idL)
-> SyntaxExpr (GhcPass idL)
-> SyntaxExpr (GhcPass idL)
-> StmtLR (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))
forall idL idR body.
XBodyStmt idL idR body
-> body -> SyntaxExpr idR -> SyntaxExpr idR -> StmtLR idL idR body
BodyStmt (String
-> XBodyStmt (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))
forall a. String -> a
panic String
"pprStmt") LHsExpr (GhcPass idL)
expr SyntaxExpr (GhcPass idL)
forall (p :: Pass). IsPass p => SyntaxExpr (GhcPass p)
noSyntaxExpr SyntaxExpr (GhcPass idL)
forall (p :: Pass). IsPass p => SyntaxExpr (GhcPass p)
noSyntaxExpr
             :: ExprStmt (GhcPass idL))]
     | Bool
otherwise =
     [StmtLR (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (XBindStmt (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))
-> LPat (GhcPass idL)
-> LHsExpr (GhcPass idL)
-> StmtLR (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))
forall idL idR body.
XBindStmt idL idR body -> LPat idL -> body -> StmtLR idL idR body
BindStmt (String
-> XBindStmt (GhcPass idL) (GhcPass idL) (LHsExpr (GhcPass idL))
forall a. String -> a
panic String
"pprStmt") LPat (GhcPass idL)
pat LHsExpr (GhcPass idL)
expr :: ExprStmt (GhcPass idL))]
   flattenArg (a
_, ApplicativeArgMany XApplicativeArgMany (GhcPass idL)
_ [ExprLStmt (GhcPass idL)]
stmts HsExpr (GhcPass idL)
_ LPat (GhcPass idL)
_ HsStmtContext GhcRn
_) =
     (ExprLStmt (GhcPass idL) -> [SDoc])
-> [ExprLStmt (GhcPass idL)] -> [SDoc]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap ExprLStmt (GhcPass idL) -> [SDoc]
flattenStmt [ExprLStmt (GhcPass idL)]
stmts

   pp_debug :: SDoc
pp_debug =
     let
         ap_expr :: SDoc
ap_expr = [SDoc] -> SDoc
sep (SDoc -> [SDoc] -> [SDoc]
punctuate (String -> SDoc
text String
" |") (((SyntaxExprGhc idR, ApplicativeArg (GhcPass idL)) -> SDoc)
-> [(SyntaxExprGhc idR, ApplicativeArg (GhcPass idL))] -> [SDoc]
forall a b. (a -> b) -> [a] -> [b]
map (SyntaxExprGhc idR, ApplicativeArg (GhcPass idL)) -> SDoc
forall a. (a, ApplicativeArg (GhcPass idL)) -> SDoc
pp_arg [(SyntaxExpr (GhcPass idR), ApplicativeArg (GhcPass idL))]
[(SyntaxExprGhc idR, ApplicativeArg (GhcPass idL))]
args))
     in
       SDoc -> SDoc
whenPprDebug (if Maybe (SyntaxExprGhc idR) -> Bool
forall a. Maybe a -> Bool
isJust Maybe (SyntaxExpr (GhcPass idR))
Maybe (SyntaxExprGhc idR)
mb_join then String -> SDoc
text String
"[join]" else SDoc
empty) SDoc -> SDoc -> SDoc
<+>
       (if [(SyntaxExprGhc idR, ApplicativeArg (GhcPass idL))] -> Int -> Bool
forall a. [a] -> Int -> Bool
lengthAtLeast [(SyntaxExpr (GhcPass idR), ApplicativeArg (GhcPass idL))]
[(SyntaxExprGhc idR, ApplicativeArg (GhcPass idL))]
args Int
2 then SDoc -> SDoc
parens else SDoc -> SDoc
forall a. a -> a
id) SDoc
ap_expr

   pp_arg :: (a, ApplicativeArg (GhcPass idL)) -> SDoc
   pp_arg :: forall a. (a, ApplicativeArg (GhcPass idL)) -> SDoc
pp_arg (a
_, ApplicativeArg (GhcPass idL)
applicativeArg) = ApplicativeArg (GhcPass idL) -> SDoc
forall a. Outputable a => a -> SDoc
ppr ApplicativeArg (GhcPass idL)
applicativeArg


instance (OutputableBndrId idL)
      => Outputable (ApplicativeArg (GhcPass idL)) where
  ppr :: ApplicativeArg (GhcPass idL) -> SDoc
ppr = ApplicativeArg (GhcPass idL) -> SDoc
forall (idL :: Pass).
OutputableBndrId idL =>
ApplicativeArg (GhcPass idL) -> SDoc
pprArg

pprArg :: forall idL . (OutputableBndrId idL) => ApplicativeArg (GhcPass idL) -> SDoc
pprArg :: forall (idL :: Pass).
OutputableBndrId idL =>
ApplicativeArg (GhcPass idL) -> SDoc
pprArg (ApplicativeArgOne XApplicativeArgOne (GhcPass idL)
_ LPat (GhcPass idL)
pat GenLocated SrcSpan (HsExpr (GhcPass idL))
expr Bool
isBody)
  | Bool
isBody =  -- See Note [Applicative BodyStmt]
    ExprStmt (GhcPass idL) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (XBodyStmt
  (GhcPass idL)
  (GhcPass idL)
  (GenLocated SrcSpan (HsExpr (GhcPass idL)))
-> GenLocated SrcSpan (HsExpr (GhcPass idL))
-> SyntaxExpr (GhcPass idL)
-> SyntaxExpr (GhcPass idL)
-> ExprStmt (GhcPass idL)
forall idL idR body.
XBodyStmt idL idR body
-> body -> SyntaxExpr idR -> SyntaxExpr idR -> StmtLR idL idR body
BodyStmt (String
-> XBodyStmt
     (GhcPass idL)
     (GhcPass idL)
     (GenLocated SrcSpan (HsExpr (GhcPass idL)))
forall a. String -> a
panic String
"pprStmt") GenLocated SrcSpan (HsExpr (GhcPass idL))
expr SyntaxExpr (GhcPass idL)
forall (p :: Pass). IsPass p => SyntaxExpr (GhcPass p)
noSyntaxExpr SyntaxExpr (GhcPass idL)
forall (p :: Pass). IsPass p => SyntaxExpr (GhcPass p)
noSyntaxExpr
            :: ExprStmt (GhcPass idL))
  | Bool
otherwise =
    ExprStmt (GhcPass idL) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (XBindStmt
  (GhcPass idL)
  (GhcPass idL)
  (GenLocated SrcSpan (HsExpr (GhcPass idL)))
-> LPat (GhcPass idL)
-> GenLocated SrcSpan (HsExpr (GhcPass idL))
-> ExprStmt (GhcPass idL)
forall idL idR body.
XBindStmt idL idR body -> LPat idL -> body -> StmtLR idL idR body
BindStmt (String
-> XBindStmt
     (GhcPass idL)
     (GhcPass idL)
     (GenLocated SrcSpan (HsExpr (GhcPass idL)))
forall a. String -> a
panic String
"pprStmt") LPat (GhcPass idL)
pat GenLocated SrcSpan (HsExpr (GhcPass idL))
expr :: ExprStmt (GhcPass idL))
pprArg (ApplicativeArgMany XApplicativeArgMany (GhcPass idL)
_ [ExprLStmt (GhcPass idL)]
stmts HsExpr (GhcPass idL)
return LPat (GhcPass idL)
pat HsStmtContext GhcRn
ctxt) =
     Located (Pat (GhcPass idL)) -> SDoc
forall a. Outputable a => a -> SDoc
ppr Located (Pat (GhcPass idL))
LPat (GhcPass idL)
pat SDoc -> SDoc -> SDoc
<+>
     String -> SDoc
text String
"<-" SDoc -> SDoc -> SDoc
<+>
     HsExpr (GhcPass idL) -> SDoc
forall a. Outputable a => a -> SDoc
ppr (XDo (GhcPass idL)
-> HsStmtContext