{-# LANGUAGE Safe #-}
module Language.Haskell.TH.Lib (
InfoQ, ExpQ, TExpQ, CodeQ, DecQ, DecsQ, ConQ, TypeQ, KindQ,
TyLitQ, CxtQ, PredQ, DerivClauseQ, MatchQ, ClauseQ, BodyQ, GuardQ,
StmtQ, RangeQ, SourceStrictnessQ, SourceUnpackednessQ, BangQ,
BangTypeQ, VarBangTypeQ, StrictTypeQ, VarStrictTypeQ, FieldExpQ, PatQ,
FieldPatQ, RuleBndrQ, TySynEqnQ, PatSynDirQ, PatSynArgsQ,
FamilyResultSigQ, DerivStrategyQ,
TyVarBndrUnit, TyVarBndrSpec,
intPrimL, wordPrimL, floatPrimL, doublePrimL, integerL, rationalL,
charL, stringL, stringPrimL, charPrimL, bytesPrimL, mkBytes,
litP, varP, tupP, unboxedTupP, unboxedSumP, conP, uInfixP, parensP,
infixP, tildeP, bangP, asP, wildP, recP,
listP, sigP, viewP,
fieldPat,
normalB, guardedB, normalG, normalGE, patG, patGE, match, clause,
dyn, varE, unboundVarE, labelE, implicitParamVarE, conE, litE, staticE,
appE, appTypeE, uInfixE, parensE, infixE, infixApp, sectionL, sectionR,
lamE, lam1E, lamCaseE, tupE, unboxedTupE, unboxedSumE, condE, multiIfE,
letE, caseE, appsE, listE, sigE, recConE, recUpdE, stringE, fieldExp,
getFieldE, projectionE,
fromE, fromThenE, fromToE, fromThenToE,
arithSeqE,
fromR, fromThenR, fromToR, fromThenToR,
doE, mdoE, compE,
bindS, letS, noBindS, parS, recS,
forallT, forallVisT, varT, conT, appT, appKindT, arrowT, infixT,
mulArrowT,
uInfixT, parensT, equalityT, listT, tupleT, unboxedTupleT, unboxedSumT,
sigT, litT, wildCardT, promotedT, promotedTupleT, promotedNilT,
promotedConsT, implicitParamT,
numTyLit, strTyLit, charTyLit,
noSourceUnpackedness, sourceNoUnpack, sourceUnpack,
noSourceStrictness, sourceLazy, sourceStrict,
isStrict, notStrict, unpacked,
bang, bangType, varBangType, strictType, varStrictType,
cxt, classP, equalP,
normalC, recC, infixC, forallC, gadtC, recGadtC,
varK, conK, tupleK, arrowK, listK, appK, starK, constraintK,
plainTV, kindedTV,
plainInvisTV, kindedInvisTV,
specifiedSpec, inferredSpec,
nominalR, representationalR, phantomR, inferR,
valD, funD, tySynD, dataD, newtypeD,
derivClause, DerivClause(..),
stockStrategy, anyclassStrategy, newtypeStrategy,
viaStrategy, DerivStrategy(..),
classD, instanceD, instanceWithOverlapD, Overlap(..),
sigD, kiSigD, standaloneDerivD, standaloneDerivWithStrategyD, defaultSigD,
roleAnnotD,
dataFamilyD, openTypeFamilyD, closedTypeFamilyD, dataInstD,
newtypeInstD, tySynInstD,
tySynEqn, injectivityAnn, noSig, kindSig, tyVarSig,
infixLD, infixRD, infixND,
cCall, stdCall, cApi, prim, javaScript,
unsafe, safe, interruptible, forImpD,
funDep,
ruleVar, typedRuleVar,
valueAnnotation, typeAnnotation, moduleAnnotation,
pragInlD, pragSpecD, pragSpecInlD, pragSpecInstD, pragRuleD, pragAnnD,
pragLineD, pragCompleteD,
patSynD, patSynSigD, unidir, implBidir, explBidir, prefixPatSyn,
infixPatSyn, recordPatSyn,
implicitParamBindD,
thisModule,
withDecDoc, withDecsDoc, funD_doc, dataD_doc, newtypeD_doc, dataInstD_doc,
newtypeInstD_doc, patSynD_doc
) where
import Language.Haskell.TH.Lib.Internal hiding
( tySynD
, dataD
, newtypeD
, classD
, pragRuleD
, dataInstD
, newtypeInstD
, dataFamilyD
, openTypeFamilyD
, closedTypeFamilyD
, tySynEqn
, forallC
, forallT
, sigT
, plainTV
, kindedTV
, starK
, constraintK
, noSig
, kindSig
, tyVarSig
, derivClause
, standaloneDerivWithStrategyD
, doE
, mdoE
, tupE
, unboxedTupE
, conP
, Role
, InjectivityAnn
)
import qualified Language.Haskell.TH.Lib.Internal as Internal
import Language.Haskell.TH.Syntax
import Control.Applicative ( liftA2 )
import Foreign.ForeignPtr
import Data.Word
import Prelude
tySynD :: Quote m => Name -> [TyVarBndr ()] -> m Type -> m Dec
tySynD :: forall (m :: * -> *).
Quote m =>
Name -> [TyVarBndr ()] -> m Type -> m Dec
tySynD Name
tc [TyVarBndr ()]
tvs m Type
rhs = do { Type
rhs1 <- m Type
rhs; Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Name -> [TyVarBndr ()] -> Type -> Dec
TySynD Name
tc [TyVarBndr ()]
tvs Type
rhs1) }
dataD :: Quote m => m Cxt -> Name -> [TyVarBndr ()] -> Maybe Kind -> [m Con] -> [m DerivClause]
-> m Dec
dataD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [TyVarBndr ()]
-> Maybe Type
-> [m Con]
-> [m DerivClause]
-> m Dec
dataD m Cxt
ctxt Name
tc [TyVarBndr ()]
tvs Maybe Type
ksig [m Con]
cons [m DerivClause]
derivs =
do
Cxt
ctxt1 <- m Cxt
ctxt
[Con]
cons1 <- [m Con] -> m [Con]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m Con]
cons
[DerivClause]
derivs1 <- [m DerivClause] -> m [DerivClause]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m DerivClause]
derivs
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Cxt
-> Name
-> [TyVarBndr ()]
-> Maybe Type
-> [Con]
-> [DerivClause]
-> Dec
DataD Cxt
ctxt1 Name
tc [TyVarBndr ()]
tvs Maybe Type
ksig [Con]
cons1 [DerivClause]
derivs1)
newtypeD :: Quote m => m Cxt -> Name -> [TyVarBndr ()] -> Maybe Kind -> m Con -> [m DerivClause]
-> m Dec
newtypeD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [TyVarBndr ()]
-> Maybe Type
-> m Con
-> [m DerivClause]
-> m Dec
newtypeD m Cxt
ctxt Name
tc [TyVarBndr ()]
tvs Maybe Type
ksig m Con
con [m DerivClause]
derivs =
do
Cxt
ctxt1 <- m Cxt
ctxt
Con
con1 <- m Con
con
[DerivClause]
derivs1 <- [m DerivClause] -> m [DerivClause]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m DerivClause]
derivs
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Cxt
-> Name
-> [TyVarBndr ()]
-> Maybe Type
-> Con
-> [DerivClause]
-> Dec
NewtypeD Cxt
ctxt1 Name
tc [TyVarBndr ()]
tvs Maybe Type
ksig Con
con1 [DerivClause]
derivs1)
classD :: Quote m => m Cxt -> Name -> [TyVarBndr ()] -> [FunDep] -> [m Dec] -> m Dec
classD :: forall (m :: * -> *).
Quote m =>
m Cxt -> Name -> [TyVarBndr ()] -> [FunDep] -> [m Dec] -> m Dec
classD m Cxt
ctxt Name
cls [TyVarBndr ()]
tvs [FunDep]
fds [m Dec]
decs =
do
[Dec]
decs1 <- [m Dec] -> m [Dec]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m Dec]
decs
Cxt
ctxt1 <- m Cxt
ctxt
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Dec -> m Dec) -> Dec -> m Dec
forall a b. (a -> b) -> a -> b
$ Cxt -> Name -> [TyVarBndr ()] -> [FunDep] -> [Dec] -> Dec
ClassD Cxt
ctxt1 Name
cls [TyVarBndr ()]
tvs [FunDep]
fds [Dec]
decs1
pragRuleD :: Quote m => String -> [m RuleBndr] -> m Exp -> m Exp -> Phases -> m Dec
pragRuleD :: forall (m :: * -> *).
Quote m =>
String -> [m RuleBndr] -> m Exp -> m Exp -> Phases -> m Dec
pragRuleD String
n [m RuleBndr]
bndrs m Exp
lhs m Exp
rhs Phases
phases
= do
[RuleBndr]
bndrs1 <- [m RuleBndr] -> m [RuleBndr]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m RuleBndr]
bndrs
Exp
lhs1 <- m Exp
lhs
Exp
rhs1 <- m Exp
rhs
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Dec -> m Dec) -> Dec -> m Dec
forall a b. (a -> b) -> a -> b
$ Pragma -> Dec
PragmaD (Pragma -> Dec) -> Pragma -> Dec
forall a b. (a -> b) -> a -> b
$ String
-> Maybe [TyVarBndr ()]
-> [RuleBndr]
-> Exp
-> Exp
-> Phases
-> Pragma
RuleP String
n Maybe [TyVarBndr ()]
forall a. Maybe a
Nothing [RuleBndr]
bndrs1 Exp
lhs1 Exp
rhs1 Phases
phases
dataInstD :: Quote m => m Cxt -> Name -> [m Type] -> Maybe Kind -> [m Con] -> [m DerivClause]
-> m Dec
dataInstD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [m Type]
-> Maybe Type
-> [m Con]
-> [m DerivClause]
-> m Dec
dataInstD m Cxt
ctxt Name
tc [m Type]
tys Maybe Type
ksig [m Con]
cons [m DerivClause]
derivs =
do
Cxt
ctxt1 <- m Cxt
ctxt
Type
ty1 <- (m Type -> m Type -> m Type) -> m Type -> [m Type] -> m Type
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl m Type -> m Type -> m Type
forall (m :: * -> *). Quote m => m Type -> m Type -> m Type
appT (Name -> m Type
forall (m :: * -> *). Quote m => Name -> m Type
conT Name
tc) [m Type]
tys
[Con]
cons1 <- [m Con] -> m [Con]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m Con]
cons
[DerivClause]
derivs1 <- [m DerivClause] -> m [DerivClause]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m DerivClause]
derivs
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Cxt
-> Maybe [TyVarBndr ()]
-> Type
-> Maybe Type
-> [Con]
-> [DerivClause]
-> Dec
DataInstD Cxt
ctxt1 Maybe [TyVarBndr ()]
forall a. Maybe a
Nothing Type
ty1 Maybe Type
ksig [Con]
cons1 [DerivClause]
derivs1)
newtypeInstD :: Quote m => m Cxt -> Name -> [m Type] -> Maybe Kind -> m Con -> [m DerivClause]
-> m Dec
newtypeInstD :: forall (m :: * -> *).
Quote m =>
m Cxt
-> Name
-> [m Type]
-> Maybe Type
-> m Con
-> [m DerivClause]
-> m Dec
newtypeInstD m Cxt
ctxt Name
tc [m Type]
tys Maybe Type
ksig m Con
con [m DerivClause]
derivs =
do
Cxt
ctxt1 <- m Cxt
ctxt
Type
ty1 <- (m Type -> m Type -> m Type) -> m Type -> [m Type] -> m Type
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl m Type -> m Type -> m Type
forall (m :: * -> *). Quote m => m Type -> m Type -> m Type
appT (Name -> m Type
forall (m :: * -> *). Quote m => Name -> m Type
conT Name
tc) [m Type]
tys
Con
con1 <- m Con
con
[DerivClause]
derivs1 <- [m DerivClause] -> m [DerivClause]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m DerivClause]
derivs
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Cxt
-> Maybe [TyVarBndr ()]
-> Type
-> Maybe Type
-> Con
-> [DerivClause]
-> Dec
NewtypeInstD Cxt
ctxt1 Maybe [TyVarBndr ()]
forall a. Maybe a
Nothing Type
ty1 Maybe Type
ksig Con
con1 [DerivClause]
derivs1)
dataFamilyD :: Quote m => Name -> [TyVarBndr ()] -> Maybe Kind -> m Dec
dataFamilyD :: forall (m :: * -> *).
Quote m =>
Name -> [TyVarBndr ()] -> Maybe Type -> m Dec
dataFamilyD Name
tc [TyVarBndr ()]
tvs Maybe Type
kind
= Dec -> m Dec
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Dec -> m Dec) -> Dec -> m Dec
forall a b. (a -> b) -> a -> b
$ Name -> [TyVarBndr ()] -> Maybe Type -> Dec
DataFamilyD Name
tc [TyVarBndr ()]
tvs Maybe Type
kind
openTypeFamilyD :: Quote m => Name -> [TyVarBndr ()] -> FamilyResultSig
-> Maybe InjectivityAnn -> m Dec
openTypeFamilyD :: forall (m :: * -> *).
Quote m =>
Name
-> [TyVarBndr ()]
-> FamilyResultSig
-> Maybe InjectivityAnn
-> m Dec
openTypeFamilyD Name
tc [TyVarBndr ()]
tvs FamilyResultSig
res Maybe InjectivityAnn
inj
= Dec -> m Dec
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Dec -> m Dec) -> Dec -> m Dec
forall a b. (a -> b) -> a -> b
$ TypeFamilyHead -> Dec
OpenTypeFamilyD (Name
-> [TyVarBndr ()]
-> FamilyResultSig
-> Maybe InjectivityAnn
-> TypeFamilyHead
TypeFamilyHead Name
tc [TyVarBndr ()]
tvs FamilyResultSig
res Maybe InjectivityAnn
inj)
closedTypeFamilyD :: Quote m => Name -> [TyVarBndr ()] -> FamilyResultSig
-> Maybe InjectivityAnn -> [m TySynEqn] -> m Dec
closedTypeFamilyD :: forall (m :: * -> *).
Quote m =>
Name
-> [TyVarBndr ()]
-> FamilyResultSig
-> Maybe InjectivityAnn
-> [m TySynEqn]
-> m Dec
closedTypeFamilyD Name
tc [TyVarBndr ()]
tvs FamilyResultSig
result Maybe InjectivityAnn
injectivity [m TySynEqn]
eqns =
do [TySynEqn]
eqns1 <- [m TySynEqn] -> m [TySynEqn]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m TySynEqn]
eqns
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (TypeFamilyHead -> [TySynEqn] -> Dec
ClosedTypeFamilyD (Name
-> [TyVarBndr ()]
-> FamilyResultSig
-> Maybe InjectivityAnn
-> TypeFamilyHead
TypeFamilyHead Name
tc [TyVarBndr ()]
tvs FamilyResultSig
result Maybe InjectivityAnn
injectivity) [TySynEqn]
eqns1)
tySynEqn :: Quote m => (Maybe [TyVarBndr ()]) -> m Type -> m Type -> m TySynEqn
tySynEqn :: forall (m :: * -> *).
Quote m =>
Maybe [TyVarBndr ()] -> m Type -> m Type -> m TySynEqn
tySynEqn Maybe [TyVarBndr ()]
tvs m Type
lhs m Type
rhs =
do
Type
lhs1 <- m Type
lhs
Type
rhs1 <- m Type
rhs
TySynEqn -> m TySynEqn
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe [TyVarBndr ()] -> Type -> Type -> TySynEqn
TySynEqn Maybe [TyVarBndr ()]
tvs Type
lhs1 Type
rhs1)
forallC :: Quote m => [TyVarBndr Specificity] -> m Cxt -> m Con -> m Con
forallC :: forall (m :: * -> *).
Quote m =>
[TyVarBndr Specificity] -> m Cxt -> m Con -> m Con
forallC [TyVarBndr Specificity]
ns m Cxt
ctxt m Con
con = (Cxt -> Con -> Con) -> m Cxt -> m Con -> m Con
forall (f :: * -> *) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 ([TyVarBndr Specificity] -> Cxt -> Con -> Con
ForallC [TyVarBndr Specificity]
ns) m Cxt
ctxt m Con
con
forallT :: Quote m => [TyVarBndr Specificity] -> m Cxt -> m Type -> m Type
forallT :: forall (m :: * -> *).
Quote m =>
[TyVarBndr Specificity] -> m Cxt -> m Type -> m Type
forallT [TyVarBndr Specificity]
tvars m Cxt
ctxt m Type
ty = do
Cxt
ctxt1 <- m Cxt
ctxt
Type
ty1 <- m Type
ty
Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> m Type) -> Type -> m Type
forall a b. (a -> b) -> a -> b
$ [TyVarBndr Specificity] -> Cxt -> Type -> Type
ForallT [TyVarBndr Specificity]
tvars Cxt
ctxt1 Type
ty1
sigT :: Quote m => m Type -> Kind -> m Type
sigT :: forall (m :: * -> *). Quote m => m Type -> Type -> m Type
sigT m Type
t Type
k
= do
Type
t' <- m Type
t
Type -> m Type
forall (m :: * -> *) a. Monad m => a -> m a
return (Type -> m Type) -> Type -> m Type
forall a b. (a -> b) -> a -> b
$ Type -> Type -> Type
SigT Type
t' Type
k
plainTV :: Name -> TyVarBndr ()
plainTV :: Name -> TyVarBndr ()
plainTV Name
n = Name -> () -> TyVarBndr ()
forall flag. Name -> flag -> TyVarBndr flag
PlainTV Name
n ()
kindedTV :: Name -> Kind -> TyVarBndr ()
kindedTV :: Name -> Type -> TyVarBndr ()
kindedTV Name
n Type
k = Name -> () -> Type -> TyVarBndr ()
forall flag. Name -> flag -> Type -> TyVarBndr flag
KindedTV Name
n () Type
k
starK :: Kind
starK :: Type
starK = Type
StarT
constraintK :: Kind
constraintK :: Type
constraintK = Type
ConstraintT
noSig :: FamilyResultSig
noSig :: FamilyResultSig
noSig = FamilyResultSig
NoSig
kindSig :: Kind -> FamilyResultSig
kindSig :: Type -> FamilyResultSig
kindSig = Type -> FamilyResultSig
KindSig
tyVarSig :: TyVarBndr () -> FamilyResultSig
tyVarSig :: TyVarBndr () -> FamilyResultSig
tyVarSig = TyVarBndr () -> FamilyResultSig
TyVarSig
derivClause :: Quote m => Maybe DerivStrategy -> [m Pred] -> m DerivClause
derivClause :: forall (m :: * -> *).
Quote m =>
Maybe DerivStrategy -> [m Type] -> m DerivClause
derivClause Maybe DerivStrategy
mds [m Type]
p = do
Cxt
p' <- [m Type] -> m Cxt
forall (m :: * -> *). Quote m => [m Type] -> m Cxt
cxt [m Type]
p
DerivClause -> m DerivClause
forall (m :: * -> *) a. Monad m => a -> m a
return (DerivClause -> m DerivClause) -> DerivClause -> m DerivClause
forall a b. (a -> b) -> a -> b
$ Maybe DerivStrategy -> Cxt -> DerivClause
DerivClause Maybe DerivStrategy
mds Cxt
p'
standaloneDerivWithStrategyD :: Quote m => Maybe DerivStrategy -> m Cxt -> m Type -> m Dec
standaloneDerivWithStrategyD :: forall (m :: * -> *).
Quote m =>
Maybe DerivStrategy -> m Cxt -> m Type -> m Dec
standaloneDerivWithStrategyD Maybe DerivStrategy
mds m Cxt
ctxt m Type
ty = do
Cxt
ctxt' <- m Cxt
ctxt
Type
ty' <- m Type
ty
Dec -> m Dec
forall (m :: * -> *) a. Monad m => a -> m a
return (Dec -> m Dec) -> Dec -> m Dec
forall a b. (a -> b) -> a -> b
$ Maybe DerivStrategy -> Cxt -> Type -> Dec
StandaloneDerivD Maybe DerivStrategy
mds Cxt
ctxt' Type
ty'
mkBytes
:: ForeignPtr Word8
-> Word
-> Word
-> Bytes
mkBytes :: ForeignPtr Word8 -> Word -> Word -> Bytes
mkBytes = ForeignPtr Word8 -> Word -> Word -> Bytes
Bytes
tupE :: Quote m => [m Exp] -> m Exp
tupE :: forall (m :: * -> *). Quote m => [m Exp] -> m Exp
tupE [m Exp]
es = do { [Exp]
es1 <- [m Exp] -> m [Exp]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m Exp]
es; Exp -> m Exp
forall (m :: * -> *) a. Monad m => a -> m a
return ([Maybe Exp] -> Exp
TupE ([Maybe Exp] -> Exp) -> [Maybe Exp] -> Exp
forall a b. (a -> b) -> a -> b
$ (Exp -> Maybe Exp) -> [Exp] -> [Maybe Exp]
forall a b. (a -> b) -> [a] -> [b]
map Exp -> Maybe Exp
forall a. a -> Maybe a
Just [Exp]
es1)}
unboxedTupE :: Quote m => [m Exp] -> m Exp
unboxedTupE :: forall (m :: * -> *). Quote m => [m Exp] -> m Exp
unboxedTupE [m Exp]
es = do { [Exp]
es1 <- [m Exp] -> m [Exp]
forall (t :: * -> *) (f :: * -> *) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA [m Exp]
es; Exp -> m Exp
forall (m :: * -> *) a. Monad m => a -> m a
return ([Maybe Exp] -> Exp
UnboxedTupE ([Maybe Exp] -> Exp) -> [Maybe Exp] -> Exp
forall a b. (a -> b) -> a -> b
$ (Exp -> Maybe Exp) -> [Exp] -> [Maybe Exp]
forall a b. (a -> b) -> [a] -> [b]
map Exp -> Maybe Exp
forall a. a -> Maybe a
Just [Exp]
es1)}
doE :: Quote m => [m Stmt] -> m Exp
doE :: forall (m :: * -> *). Quote m => [m Stmt] -> m Exp
doE = Maybe ModName -> [m Stmt] -> m Exp
forall (m :: * -> *). Quote m => Maybe ModName -> [m Stmt] -> m Exp
Internal.doE Maybe ModName
forall a. Maybe a
Nothing
mdoE :: Quote m => [m Stmt] -> m Exp
mdoE :: forall (m :: * -> *). Quote m => [m Stmt] -> m Exp
mdoE = Maybe ModName -> [m Stmt] -> m Exp
forall (m :: * -> *). Quote m => Maybe ModName -> [m Stmt] -> m Exp
Internal.mdoE Maybe ModName
forall a. Maybe a
Nothing
conP :: Quote m => Name -> [m Pat] -> m Pat
conP :: forall (m :: * -> *). Quote m => Name -> [m Pat] -> m Pat
conP Name
n [m Pat]
xs = Name -> [m Type] -> [m Pat] -> m Pat
forall (m :: * -> *).
Quote m =>
Name -> [m Type] -> [m Pat] -> m Pat
Internal.conP Name
n [] [m Pat]
xs