{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DeriveFunctor #-}
{-# LANGUAGE DeriveFoldable #-}
{-# LANGUAGE DeriveTraversable #-}
{-# LANGUAGE ScopedTypeVariables #-}

module Distribution.Types.CondTree (
    CondTree(..),
    CondBranch(..),
    condIfThen,
    condIfThenElse,
    mapCondTree,
    mapTreeConstrs,
    mapTreeConds,
    mapTreeData,
    traverseCondTreeV,
    traverseCondBranchV,
    traverseCondTreeC,
    traverseCondBranchC,
    extractCondition,
    simplifyCondTree,
    ignoreConditions,
) where

import Prelude ()
import Distribution.Compat.Prelude

import Distribution.Types.Condition

import qualified Distribution.Compat.Lens as L


-- | A 'CondTree' is used to represent the conditional structure of
-- a Cabal file, reflecting a syntax element subject to constraints,
-- and then any number of sub-elements which may be enabled subject
-- to some condition.  Both @a@ and @c@ are usually 'Monoid's.
--
-- To be more concrete, consider the following fragment of a @Cabal@
-- file:
--
-- @
-- build-depends: base >= 4.0
-- if flag(extra)
--     build-depends: base >= 4.2
-- @
--
-- One way to represent this is to have @'CondTree' 'ConfVar'
-- ['Dependency'] 'BuildInfo'@.  Here, 'condTreeData' represents
-- the actual fields which are not behind any conditional, while
-- 'condTreeComponents' recursively records any further fields
-- which are behind a conditional.  'condTreeConstraints' records
-- the constraints (in this case, @base >= 4.0@) which would
-- be applied if you use this syntax; in general, this is
-- derived off of 'targetBuildInfo' (perhaps a good refactoring
-- would be to convert this into an opaque type, with a smart
-- constructor that pre-computes the dependencies.)
--
data CondTree v c a = CondNode
    { forall v c a. CondTree v c a -> a
condTreeData        :: a
    , forall v c a. CondTree v c a -> c
condTreeConstraints :: c
    , forall v c a. CondTree v c a -> [CondBranch v c a]
condTreeComponents  :: [CondBranch v c a]
    }
    deriving (Int -> CondTree v c a -> ShowS
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall v c a.
(Show a, Show c, Show v) =>
Int -> CondTree v c a -> ShowS
forall v c a. (Show a, Show c, Show v) => [CondTree v c a] -> ShowS
forall v c a. (Show a, Show c, Show v) => CondTree v c a -> String
showList :: [CondTree v c a] -> ShowS
$cshowList :: forall v c a. (Show a, Show c, Show v) => [CondTree v c a] -> ShowS
show :: CondTree v c a -> String
$cshow :: forall v c a. (Show a, Show c, Show v) => CondTree v c a -> String
showsPrec :: Int -> CondTree v c a -> ShowS
$cshowsPrec :: forall v c a.
(Show a, Show c, Show v) =>
Int -> CondTree v c a -> ShowS
Show, CondTree v c a -> CondTree v c a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall v c a.
(Eq a, Eq c, Eq v) =>
CondTree v c a -> CondTree v c a -> Bool
/= :: CondTree v c a -> CondTree v c a -> Bool
$c/= :: forall v c a.
(Eq a, Eq c, Eq v) =>
CondTree v c a -> CondTree v c a -> Bool
== :: CondTree v c a -> CondTree v c a -> Bool
$c== :: forall v c a.
(Eq a, Eq c, Eq v) =>
CondTree v c a -> CondTree v c a -> Bool
Eq, Typeable, CondTree v c a -> DataType
CondTree v c a -> Constr
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall {v} {c} {a}.
(Data v, Data c, Data a) =>
Typeable (CondTree v c a)
forall v c a.
(Data v, Data c, Data a) =>
CondTree v c a -> DataType
forall v c a. (Data v, Data c, Data a) => CondTree v c a -> Constr
forall v c a.
(Data v, Data c, Data a) =>
(forall b. Data b => b -> b) -> CondTree v c a -> CondTree v c a
forall v c a u.
(Data v, Data c, Data a) =>
Int -> (forall d. Data d => d -> u) -> CondTree v c a -> u
forall v c a u.
(Data v, Data c, Data a) =>
(forall d. Data d => d -> u) -> CondTree v c a -> [u]
forall v c a r r'.
(Data v, Data c, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r
forall v c a r r'.
(Data v, Data c, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r
forall v c a (m :: * -> *).
(Data v, Data c, Data a, Monad m) =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
forall v c a (m :: * -> *).
(Data v, Data c, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondTree v c a)
forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondTree v c a -> c (CondTree v c a)
forall v c a (t :: * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (CondTree v c a))
forall v c a (t :: * -> * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (CondTree v c a))
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondTree v c a)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondTree v c a -> c (CondTree v c a)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
$cgmapMo :: forall v c a (m :: * -> *).
(Data v, Data c, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
$cgmapMp :: forall v c a (m :: * -> *).
(Data v, Data c, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
$cgmapM :: forall v c a (m :: * -> *).
(Data v, Data c, Data a, Monad m) =>
(forall d. Data d => d -> m d)
-> CondTree v c a -> m (CondTree v c a)
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> CondTree v c a -> u
$cgmapQi :: forall v c a u.
(Data v, Data c, Data a) =>
Int -> (forall d. Data d => d -> u) -> CondTree v c a -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> CondTree v c a -> [u]
$cgmapQ :: forall v c a u.
(Data v, Data c, Data a) =>
(forall d. Data d => d -> u) -> CondTree v c a -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r
$cgmapQr :: forall v c a r r'.
(Data v, Data c, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r
$cgmapQl :: forall v c a r r'.
(Data v, Data c, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CondTree v c a -> r
gmapT :: (forall b. Data b => b -> b) -> CondTree v c a -> CondTree v c a
$cgmapT :: forall v c a.
(Data v, Data c, Data a) =>
(forall b. Data b => b -> b) -> CondTree v c a -> CondTree v c a
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (CondTree v c a))
$cdataCast2 :: forall v c a (t :: * -> * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (CondTree v c a))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (CondTree v c a))
$cdataCast1 :: forall v c a (t :: * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (CondTree v c a))
dataTypeOf :: CondTree v c a -> DataType
$cdataTypeOf :: forall v c a.
(Data v, Data c, Data a) =>
CondTree v c a -> DataType
toConstr :: CondTree v c a -> Constr
$ctoConstr :: forall v c a. (Data v, Data c, Data a) => CondTree v c a -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondTree v c a)
$cgunfold :: forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondTree v c a)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondTree v c a -> c (CondTree v c a)
$cgfoldl :: forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondTree v c a -> c (CondTree v c a)
Data, forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall v c a x. Rep (CondTree v c a) x -> CondTree v c a
forall v c a x. CondTree v c a -> Rep (CondTree v c a) x
$cto :: forall v c a x. Rep (CondTree v c a) x -> CondTree v c a
$cfrom :: forall v c a x. CondTree v c a -> Rep (CondTree v c a) x
Generic, forall a b. a -> CondTree v c b -> CondTree v c a
forall a b. (a -> b) -> CondTree v c a -> CondTree v c b
forall v c a b. a -> CondTree v c b -> CondTree v c a
forall v c a b. (a -> b) -> CondTree v c a -> CondTree v c b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> CondTree v c b -> CondTree v c a
$c<$ :: forall v c a b. a -> CondTree v c b -> CondTree v c a
fmap :: forall a b. (a -> b) -> CondTree v c a -> CondTree v c b
$cfmap :: forall v c a b. (a -> b) -> CondTree v c a -> CondTree v c b
Functor, forall a. CondTree v c a -> Bool
forall m a. Monoid m => (a -> m) -> CondTree v c a -> m
forall a b. (a -> b -> b) -> b -> CondTree v c a -> b
forall v c a. Eq a => a -> CondTree v c a -> Bool
forall v c a. Num a => CondTree v c a -> a
forall v c a. Ord a => CondTree v c a -> a
forall v c m. Monoid m => CondTree v c m -> m
forall v c a. CondTree v c a -> Bool
forall v c a. CondTree v c a -> Int
forall v c a. CondTree v c a -> [a]
forall v c a. (a -> a -> a) -> CondTree v c a -> a
forall v c m a. Monoid m => (a -> m) -> CondTree v c a -> m
forall v c b a. (b -> a -> b) -> b -> CondTree v c a -> b
forall v c a b. (a -> b -> b) -> b -> CondTree v c a -> b
forall (t :: * -> *).
(forall m. Monoid m => t m -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall m a. Monoid m => (a -> m) -> t a -> m)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall a b. (a -> b -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall b a. (b -> a -> b) -> b -> t a -> b)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. (a -> a -> a) -> t a -> a)
-> (forall a. t a -> [a])
-> (forall a. t a -> Bool)
-> (forall a. t a -> Int)
-> (forall a. Eq a => a -> t a -> Bool)
-> (forall a. Ord a => t a -> a)
-> (forall a. Ord a => t a -> a)
-> (forall a. Num a => t a -> a)
-> (forall a. Num a => t a -> a)
-> Foldable t
product :: forall a. Num a => CondTree v c a -> a
$cproduct :: forall v c a. Num a => CondTree v c a -> a
sum :: forall a. Num a => CondTree v c a -> a
$csum :: forall v c a. Num a => CondTree v c a -> a
minimum :: forall a. Ord a => CondTree v c a -> a
$cminimum :: forall v c a. Ord a => CondTree v c a -> a
maximum :: forall a. Ord a => CondTree v c a -> a
$cmaximum :: forall v c a. Ord a => CondTree v c a -> a
elem :: forall a. Eq a => a -> CondTree v c a -> Bool
$celem :: forall v c a. Eq a => a -> CondTree v c a -> Bool
length :: forall a. CondTree v c a -> Int
$clength :: forall v c a. CondTree v c a -> Int
null :: forall a. CondTree v c a -> Bool
$cnull :: forall v c a. CondTree v c a -> Bool
toList :: forall a. CondTree v c a -> [a]
$ctoList :: forall v c a. CondTree v c a -> [a]
foldl1 :: forall a. (a -> a -> a) -> CondTree v c a -> a
$cfoldl1 :: forall v c a. (a -> a -> a) -> CondTree v c a -> a
foldr1 :: forall a. (a -> a -> a) -> CondTree v c a -> a
$cfoldr1 :: forall v c a. (a -> a -> a) -> CondTree v c a -> a
foldl' :: forall b a. (b -> a -> b) -> b -> CondTree v c a -> b
$cfoldl' :: forall v c b a. (b -> a -> b) -> b -> CondTree v c a -> b
foldl :: forall b a. (b -> a -> b) -> b -> CondTree v c a -> b
$cfoldl :: forall v c b a. (b -> a -> b) -> b -> CondTree v c a -> b
foldr' :: forall a b. (a -> b -> b) -> b -> CondTree v c a -> b
$cfoldr' :: forall v c a b. (a -> b -> b) -> b -> CondTree v c a -> b
foldr :: forall a b. (a -> b -> b) -> b -> CondTree v c a -> b
$cfoldr :: forall v c a b. (a -> b -> b) -> b -> CondTree v c a -> b
foldMap' :: forall m a. Monoid m => (a -> m) -> CondTree v c a -> m
$cfoldMap' :: forall v c m a. Monoid m => (a -> m) -> CondTree v c a -> m
foldMap :: forall m a. Monoid m => (a -> m) -> CondTree v c a -> m
$cfoldMap :: forall v c m a. Monoid m => (a -> m) -> CondTree v c a -> m
fold :: forall m. Monoid m => CondTree v c m -> m
$cfold :: forall v c m. Monoid m => CondTree v c m -> m
Foldable, forall v c. Functor (CondTree v c)
forall v c. Foldable (CondTree v c)
forall v c (m :: * -> *) a.
Monad m =>
CondTree v c (m a) -> m (CondTree v c a)
forall v c (f :: * -> *) a.
Applicative f =>
CondTree v c (f a) -> f (CondTree v c a)
forall v c (m :: * -> *) a b.
Monad m =>
(a -> m b) -> CondTree v c a -> m (CondTree v c b)
forall v c (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondTree v c a -> f (CondTree v c b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondTree v c a -> f (CondTree v c b)
sequence :: forall (m :: * -> *) a.
Monad m =>
CondTree v c (m a) -> m (CondTree v c a)
$csequence :: forall v c (m :: * -> *) a.
Monad m =>
CondTree v c (m a) -> m (CondTree v c a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> CondTree v c a -> m (CondTree v c b)
$cmapM :: forall v c (m :: * -> *) a b.
Monad m =>
(a -> m b) -> CondTree v c a -> m (CondTree v c b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
CondTree v c (f a) -> f (CondTree v c a)
$csequenceA :: forall v c (f :: * -> *) a.
Applicative f =>
CondTree v c (f a) -> f (CondTree v c a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondTree v c a -> f (CondTree v c b)
$ctraverse :: forall v c (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondTree v c a -> f (CondTree v c b)
Traversable)

instance (Binary v, Binary c, Binary a) => Binary (CondTree v c a)
instance (Structured v, Structured c, Structured a) => Structured (CondTree v c a)
instance (NFData v, NFData c, NFData a) => NFData (CondTree v c a) where rnf :: CondTree v c a -> ()
rnf = forall a. (Generic a, GNFData (Rep a)) => a -> ()
genericRnf

-- | A 'CondBranch' represents a conditional branch, e.g., @if
-- flag(foo)@ on some syntax @a@.  It also has an optional false
-- branch.
--
data CondBranch v c a = CondBranch
    { forall v c a. CondBranch v c a -> Condition v
condBranchCondition :: Condition v
    , forall v c a. CondBranch v c a -> CondTree v c a
condBranchIfTrue    :: CondTree v c a
    , forall v c a. CondBranch v c a -> Maybe (CondTree v c a)
condBranchIfFalse   :: Maybe (CondTree v c a)
    }
    deriving (Int -> CondBranch v c a -> ShowS
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
forall v c a.
(Show v, Show a, Show c) =>
Int -> CondBranch v c a -> ShowS
forall v c a.
(Show v, Show a, Show c) =>
[CondBranch v c a] -> ShowS
forall v c a.
(Show v, Show a, Show c) =>
CondBranch v c a -> String
showList :: [CondBranch v c a] -> ShowS
$cshowList :: forall v c a.
(Show v, Show a, Show c) =>
[CondBranch v c a] -> ShowS
show :: CondBranch v c a -> String
$cshow :: forall v c a.
(Show v, Show a, Show c) =>
CondBranch v c a -> String
showsPrec :: Int -> CondBranch v c a -> ShowS
$cshowsPrec :: forall v c a.
(Show v, Show a, Show c) =>
Int -> CondBranch v c a -> ShowS
Show, CondBranch v c a -> CondBranch v c a -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
forall v c a.
(Eq v, Eq a, Eq c) =>
CondBranch v c a -> CondBranch v c a -> Bool
/= :: CondBranch v c a -> CondBranch v c a -> Bool
$c/= :: forall v c a.
(Eq v, Eq a, Eq c) =>
CondBranch v c a -> CondBranch v c a -> Bool
== :: CondBranch v c a -> CondBranch v c a -> Bool
$c== :: forall v c a.
(Eq v, Eq a, Eq c) =>
CondBranch v c a -> CondBranch v c a -> Bool
Eq, Typeable, CondBranch v c a -> DataType
CondBranch v c a -> Constr
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall {v} {c} {a}.
(Data v, Data c, Data a) =>
Typeable (CondBranch v c a)
forall v c a.
(Data v, Data c, Data a) =>
CondBranch v c a -> DataType
forall v c a.
(Data v, Data c, Data a) =>
CondBranch v c a -> Constr
forall v c a.
(Data v, Data c, Data a) =>
(forall b. Data b => b -> b)
-> CondBranch v c a -> CondBranch v c a
forall v c a u.
(Data v, Data c, Data a) =>
Int -> (forall d. Data d => d -> u) -> CondBranch v c a -> u
forall v c a u.
(Data v, Data c, Data a) =>
(forall d. Data d => d -> u) -> CondBranch v c a -> [u]
forall v c a r r'.
(Data v, Data c, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r
forall v c a r r'.
(Data v, Data c, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r
forall v c a (m :: * -> *).
(Data v, Data c, Data a, Monad m) =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
forall v c a (m :: * -> *).
(Data v, Data c, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondBranch v c a)
forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondBranch v c a -> c (CondBranch v c a)
forall v c a (t :: * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (CondBranch v c a))
forall v c a (t :: * -> * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (CondBranch v c a))
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondBranch v c a)
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondBranch v c a -> c (CondBranch v c a)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
$cgmapMo :: forall v c a (m :: * -> *).
(Data v, Data c, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
$cgmapMp :: forall v c a (m :: * -> *).
(Data v, Data c, Data a, MonadPlus m) =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
$cgmapM :: forall v c a (m :: * -> *).
(Data v, Data c, Data a, Monad m) =>
(forall d. Data d => d -> m d)
-> CondBranch v c a -> m (CondBranch v c a)
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> CondBranch v c a -> u
$cgmapQi :: forall v c a u.
(Data v, Data c, Data a) =>
Int -> (forall d. Data d => d -> u) -> CondBranch v c a -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> CondBranch v c a -> [u]
$cgmapQ :: forall v c a u.
(Data v, Data c, Data a) =>
(forall d. Data d => d -> u) -> CondBranch v c a -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r
$cgmapQr :: forall v c a r r'.
(Data v, Data c, Data a) =>
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r
$cgmapQl :: forall v c a r r'.
(Data v, Data c, Data a) =>
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> CondBranch v c a -> r
gmapT :: (forall b. Data b => b -> b)
-> CondBranch v c a -> CondBranch v c a
$cgmapT :: forall v c a.
(Data v, Data c, Data a) =>
(forall b. Data b => b -> b)
-> CondBranch v c a -> CondBranch v c a
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (CondBranch v c a))
$cdataCast2 :: forall v c a (t :: * -> * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c (CondBranch v c a))
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c (CondBranch v c a))
$cdataCast1 :: forall v c a (t :: * -> *) (c :: * -> *).
(Data v, Data c, Data a, Typeable t) =>
(forall d. Data d => c (t d)) -> Maybe (c (CondBranch v c a))
dataTypeOf :: CondBranch v c a -> DataType
$cdataTypeOf :: forall v c a.
(Data v, Data c, Data a) =>
CondBranch v c a -> DataType
toConstr :: CondBranch v c a -> Constr
$ctoConstr :: forall v c a.
(Data v, Data c, Data a) =>
CondBranch v c a -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondBranch v c a)
$cgunfold :: forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c (CondBranch v c a)
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondBranch v c a -> c (CondBranch v c a)
$cgfoldl :: forall v c a (c :: * -> *).
(Data v, Data c, Data a) =>
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> CondBranch v c a -> c (CondBranch v c a)
Data, forall a.
(forall x. a -> Rep a x) -> (forall x. Rep a x -> a) -> Generic a
forall v c a x. Rep (CondBranch v c a) x -> CondBranch v c a
forall v c a x. CondBranch v c a -> Rep (CondBranch v c a) x
$cto :: forall v c a x. Rep (CondBranch v c a) x -> CondBranch v c a
$cfrom :: forall v c a x. CondBranch v c a -> Rep (CondBranch v c a) x
Generic, forall a b. a -> CondBranch v c b -> CondBranch v c a
forall a b. (a -> b) -> CondBranch v c a -> CondBranch v c b
forall v c a b. a -> CondBranch v c b -> CondBranch v c a
forall v c a b. (a -> b) -> CondBranch v c a -> CondBranch v c b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
<$ :: forall a b. a -> CondBranch v c b -> CondBranch v c a
$c<$ :: forall v c a b. a -> CondBranch v c b -> CondBranch v c a
fmap :: forall a b. (a -> b) -> CondBranch v c a -> CondBranch v c b
$cfmap :: forall v c a b. (a -> b) -> CondBranch v c a -> CondBranch v c b
Functor, forall v c. Functor (CondBranch v c)
forall v c. Foldable (CondBranch v c)
forall v c (m :: * -> *) a.
Monad m =>
CondBranch v c (m a) -> m (CondBranch v c a)
forall v c (f :: * -> *) a.
Applicative f =>
CondBranch v c (f a) -> f (CondBranch v c a)
forall v c (m :: * -> *) a b.
Monad m =>
(a -> m b) -> CondBranch v c a -> m (CondBranch v c b)
forall v c (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondBranch v c a -> f (CondBranch v c b)
forall (t :: * -> *).
Functor t
-> Foldable t
-> (forall (f :: * -> *) a b.
    Applicative f =>
    (a -> f b) -> t a -> f (t b))
-> (forall (f :: * -> *) a. Applicative f => t (f a) -> f (t a))
-> (forall (m :: * -> *) a b.
    Monad m =>
    (a -> m b) -> t a -> m (t b))
-> (forall (m :: * -> *) a. Monad m => t (m a) -> m (t a))
-> Traversable t
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondBranch v c a -> f (CondBranch v c b)
sequence :: forall (m :: * -> *) a.
Monad m =>
CondBranch v c (m a) -> m (CondBranch v c a)
$csequence :: forall v c (m :: * -> *) a.
Monad m =>
CondBranch v c (m a) -> m (CondBranch v c a)
mapM :: forall (m :: * -> *) a b.
Monad m =>
(a -> m b) -> CondBranch v c a -> m (CondBranch v c b)
$cmapM :: forall v c (m :: * -> *) a b.
Monad m =>
(a -> m b) -> CondBranch v c a -> m (CondBranch v c b)
sequenceA :: forall (f :: * -> *) a.
Applicative f =>
CondBranch v c (f a) -> f (CondBranch v c a)
$csequenceA :: forall v c (f :: * -> *) a.
Applicative f =>
CondBranch v c (f a) -> f (CondBranch v c a)
traverse :: forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondBranch v c a -> f (CondBranch v c b)
$ctraverse :: forall v c (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> CondBranch v c a -> f (CondBranch v c b)
Traversable)

-- This instance is written by hand because GHC 8.0.1/8.0.2 infinite
-- loops when trying to derive it with optimizations.  See
-- https://gitlab.haskell.org/ghc/ghc/-/issues/13056
instance Foldable (CondBranch v c) where
    foldMap :: forall m a. Monoid m => (a -> m) -> CondBranch v c a -> m
foldMap a -> m
f (CondBranch Condition v
_ CondTree v c a
c Maybe (CondTree v c a)
Nothing) = forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> m
f CondTree v c a
c
    foldMap a -> m
f (CondBranch Condition v
_ CondTree v c a
c (Just CondTree v c a
a)) = forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> m
f CondTree v c a
c forall a. Monoid a => a -> a -> a
`mappend` forall (t :: * -> *) m a.
(Foldable t, Monoid m) =>
(a -> m) -> t a -> m
foldMap a -> m
f CondTree v c a
a

instance (Binary v, Binary c, Binary a) => Binary (CondBranch v c a)
instance (Structured v, Structured c, Structured a) => Structured (CondBranch v c a)
instance (NFData v, NFData c, NFData a) => NFData (CondBranch v c a) where rnf :: CondBranch v c a -> ()
rnf = forall a. (Generic a, GNFData (Rep a)) => a -> ()
genericRnf

condIfThen :: Condition v -> CondTree v c a -> CondBranch v c a
condIfThen :: forall v c a. Condition v -> CondTree v c a -> CondBranch v c a
condIfThen Condition v
c CondTree v c a
t = forall v c a.
Condition v
-> CondTree v c a -> Maybe (CondTree v c a) -> CondBranch v c a
CondBranch Condition v
c CondTree v c a
t forall a. Maybe a
Nothing

condIfThenElse :: Condition v -> CondTree v c a -> CondTree v c a -> CondBranch v c a
condIfThenElse :: forall v c a.
Condition v -> CondTree v c a -> CondTree v c a -> CondBranch v c a
condIfThenElse Condition v
c CondTree v c a
t CondTree v c a
e = forall v c a.
Condition v
-> CondTree v c a -> Maybe (CondTree v c a) -> CondBranch v c a
CondBranch Condition v
c CondTree v c a
t (forall a. a -> Maybe a
Just CondTree v c a
e)

mapCondTree :: (a -> b) -> (c -> d) -> (Condition v -> Condition w)
            -> CondTree v c a -> CondTree w d b
mapCondTree :: forall a b c d v w.
(a -> b)
-> (c -> d)
-> (Condition v -> Condition w)
-> CondTree v c a
-> CondTree w d b
mapCondTree a -> b
fa c -> d
fc Condition v -> Condition w
fcnd (CondNode a
a c
c [CondBranch v c a]
ifs) =
    forall v c a. a -> c -> [CondBranch v c a] -> CondTree v c a
CondNode (a -> b
fa a
a) (c -> d
fc c
c) (forall a b. (a -> b) -> [a] -> [b]
map CondBranch v c a -> CondBranch w d b
g [CondBranch v c a]
ifs)
  where
    g :: CondBranch v c a -> CondBranch w d b
g (CondBranch Condition v
cnd CondTree v c a
t Maybe (CondTree v c a)
me)
        = forall v c a.
Condition v
-> CondTree v c a -> Maybe (CondTree v c a) -> CondBranch v c a
CondBranch (Condition v -> Condition w
fcnd Condition v
cnd)
                     (forall a b c d v w.
(a -> b)
-> (c -> d)
-> (Condition v -> Condition w)
-> CondTree v c a
-> CondTree w d b
mapCondTree a -> b
fa c -> d
fc Condition v -> Condition w
fcnd CondTree v c a
t)
                     (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a b c d v w.
(a -> b)
-> (c -> d)
-> (Condition v -> Condition w)
-> CondTree v c a
-> CondTree w d b
mapCondTree a -> b
fa c -> d
fc Condition v -> Condition w
fcnd) Maybe (CondTree v c a)
me)

mapTreeConstrs :: (c -> d) -> CondTree v c a -> CondTree v d a
mapTreeConstrs :: forall c d v a. (c -> d) -> CondTree v c a -> CondTree v d a
mapTreeConstrs c -> d
f = forall a b c d v w.
(a -> b)
-> (c -> d)
-> (Condition v -> Condition w)
-> CondTree v c a
-> CondTree w d b
mapCondTree forall a. a -> a
id c -> d
f forall a. a -> a
id

mapTreeConds :: (Condition v -> Condition w) -> CondTree v c a -> CondTree w c a
mapTreeConds :: forall v w c a.
(Condition v -> Condition w) -> CondTree v c a -> CondTree w c a
mapTreeConds Condition v -> Condition w
f = forall a b c d v w.
(a -> b)
-> (c -> d)
-> (Condition v -> Condition w)
-> CondTree v c a
-> CondTree w d b
mapCondTree forall a. a -> a
id forall a. a -> a
id Condition v -> Condition w
f

mapTreeData :: (a -> b) -> CondTree v c a -> CondTree v c b
mapTreeData :: forall a b v c. (a -> b) -> CondTree v c a -> CondTree v c b
mapTreeData a -> b
f = forall a b c d v w.
(a -> b)
-> (c -> d)
-> (Condition v -> Condition w)
-> CondTree v c a
-> CondTree w d b
mapCondTree a -> b
f forall a. a -> a
id forall a. a -> a
id

-- | @@Traversal@@ for the variables
traverseCondTreeV :: L.Traversal (CondTree v c a) (CondTree w c a) v w
traverseCondTreeV :: forall v c a w. Traversal (CondTree v c a) (CondTree w c a) v w
traverseCondTreeV v -> f w
f (CondNode a
a c
c [CondBranch v c a]
ifs) =
    forall v c a. a -> c -> [CondBranch v c a] -> CondTree v c a
CondNode a
a c
c forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall v c a w. Traversal (CondBranch v c a) (CondBranch w c a) v w
traverseCondBranchV v -> f w
f) [CondBranch v c a]
ifs

-- | @@Traversal@@ for the variables
traverseCondBranchV :: L.Traversal (CondBranch v c a) (CondBranch w c a) v w
traverseCondBranchV :: forall v c a w. Traversal (CondBranch v c a) (CondBranch w c a) v w
traverseCondBranchV v -> f w
f (CondBranch Condition v
cnd CondTree v c a
t Maybe (CondTree v c a)
me) = forall v c a.
Condition v
-> CondTree v c a -> Maybe (CondTree v c a) -> CondBranch v c a
CondBranch
    forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse v -> f w
f Condition v
cnd
    forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall v c a w. Traversal (CondTree v c a) (CondTree w c a) v w
traverseCondTreeV v -> f w
f CondTree v c a
t
    forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall v c a w. Traversal (CondTree v c a) (CondTree w c a) v w
traverseCondTreeV v -> f w
f) Maybe (CondTree v c a)
me

-- | @@Traversal@@ for the aggregated constraints
traverseCondTreeC :: L.Traversal (CondTree v c a) (CondTree v d a) c d
traverseCondTreeC :: forall v c a d. Traversal (CondTree v c a) (CondTree v d a) c d
traverseCondTreeC c -> f d
f (CondNode a
a c
c [CondBranch v c a]
ifs) =
    forall v c a. a -> c -> [CondBranch v c a] -> CondTree v c a
CondNode a
a forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> c -> f d
f c
c forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall v c a d. Traversal (CondBranch v c a) (CondBranch v d a) c d
traverseCondBranchC c -> f d
f) [CondBranch v c a]
ifs

-- | @@Traversal@@ for the aggregated constraints
traverseCondBranchC :: L.Traversal (CondBranch v c a) (CondBranch v d a) c d
traverseCondBranchC :: forall v c a d. Traversal (CondBranch v c a) (CondBranch v d a) c d
traverseCondBranchC c -> f d
f (CondBranch Condition v
cnd CondTree v c a
t Maybe (CondTree v c a)
me) = forall v c a.
Condition v
-> CondTree v c a -> Maybe (CondTree v c a) -> CondBranch v c a
CondBranch Condition v
cnd
    forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall v c a d. Traversal (CondTree v c a) (CondTree v d a) c d
traverseCondTreeC c -> f d
f CondTree v c a
t
    forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (forall v c a d. Traversal (CondTree v c a) (CondTree v d a) c d
traverseCondTreeC c -> f d
f) Maybe (CondTree v c a)
me


-- | Extract the condition matched by the given predicate from a cond tree.
--
-- We use this mainly for extracting buildable conditions (see the Note in
-- Distribution.PackageDescription.Configuration), but the function is in fact
-- more general.
extractCondition :: Eq v => (a -> Bool) -> CondTree v c a -> Condition v
extractCondition :: forall v a c. Eq v => (a -> Bool) -> CondTree v c a -> Condition v
extractCondition a -> Bool
p = forall {c} {c}. Eq c => CondTree c c a -> Condition c
go
  where
    go :: CondTree c c a -> Condition c
go (CondNode a
x c
_ [CondBranch c c a]
cs) | Bool -> Bool
not (a -> Bool
p a
x) = forall c. Bool -> Condition c
Lit Bool
False
                         | Bool
otherwise = [CondBranch c c a] -> Condition c
goList [CondBranch c c a]
cs

    goList :: [CondBranch c c a] -> Condition c
goList []               = forall c. Bool -> Condition c
Lit Bool
True
    goList (CondBranch Condition c
c CondTree c c a
t Maybe (CondTree c c a)
e : [CondBranch c c a]
cs) =
      let
        ct :: Condition c
ct = CondTree c c a -> Condition c
go CondTree c c a
t
        ce :: Condition c
ce = forall b a. b -> (a -> b) -> Maybe a -> b
maybe (forall c. Bool -> Condition c
Lit Bool
True) CondTree c c a -> Condition c
go Maybe (CondTree c c a)
e
      in
        ((Condition c
c forall a. Condition a -> Condition a -> Condition a
`cAnd` Condition c
ct) forall v. Eq v => Condition v -> Condition v -> Condition v
`cOr` (forall c. Condition c -> Condition c
CNot Condition c
c forall a. Condition a -> Condition a -> Condition a
`cAnd` Condition c
ce)) forall a. Condition a -> Condition a -> Condition a
`cAnd` [CondBranch c c a] -> Condition c
goList [CondBranch c c a]
cs

-- | Flattens a CondTree using a partial flag assignment.  When a condition
-- cannot be evaluated, both branches are ignored.
simplifyCondTree :: (Semigroup a, Semigroup d) =>
                    (v -> Either v Bool)
                 -> CondTree v d a
                 -> (d, a)
simplifyCondTree :: forall a d v.
(Semigroup a, Semigroup d) =>
(v -> Either v Bool) -> CondTree v d a -> (d, a)
simplifyCondTree v -> Either v Bool
env (CondNode a
a d
d [CondBranch v d a]
ifs) =
    forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl forall a. Semigroup a => a -> a -> a
(<>) (d
d, a
a) forall a b. (a -> b) -> a -> b
$ forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe forall {a} {d}.
(Semigroup a, Semigroup d) =>
CondBranch v d a -> Maybe (d, a)
simplifyIf [CondBranch v d a]
ifs
  where
    simplifyIf :: CondBranch v d a -> Maybe (d, a)
simplifyIf (CondBranch Condition v
cnd CondTree v d a
t Maybe (CondTree v d a)
me) =
        case forall c d.
Condition c -> (c -> Either d Bool) -> (Condition d, [d])
simplifyCondition Condition v
cnd v -> Either v Bool
env of
          (Lit Bool
True, [v]
_) -> forall a. a -> Maybe a
Just forall a b. (a -> b) -> a -> b
$ forall a d v.
(Semigroup a, Semigroup d) =>
(v -> Either v Bool) -> CondTree v d a -> (d, a)
simplifyCondTree v -> Either v Bool
env CondTree v d a
t
          (Lit Bool
False, [v]
_) -> forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a d v.
(Semigroup a, Semigroup d) =>
(v -> Either v Bool) -> CondTree v d a -> (d, a)
simplifyCondTree v -> Either v Bool
env) Maybe (CondTree v d a)
me
          (Condition v, [v])
_ -> forall a. Maybe a
Nothing

-- | Flatten a CondTree.  This will resolve the CondTree by taking all
--  possible paths into account.  Note that since branches represent exclusive
--  choices this may not result in a \"sane\" result.
ignoreConditions :: (Semigroup a, Semigroup c) => CondTree v c a -> (a, c)
ignoreConditions :: forall a c v.
(Semigroup a, Semigroup c) =>
CondTree v c a -> (a, c)
ignoreConditions (CondNode a
a c
c [CondBranch v c a]
ifs) = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl forall a. Semigroup a => a -> a -> a
(<>) (a
a, c
c) forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap forall {a} {c} {v}.
(Semigroup a, Semigroup c) =>
CondBranch v c a -> [(a, c)]
f [CondBranch v c a]
ifs
  where f :: CondBranch v c a -> [(a, c)]
f (CondBranch Condition v
_ CondTree v c a
t Maybe (CondTree v c a)
me) = forall a c v.
(Semigroup a, Semigroup c) =>
CondTree v c a -> (a, c)
ignoreConditions CondTree v c a
t
                       forall a. a -> [a] -> [a]
: forall a. Maybe a -> [a]
maybeToList (forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap forall a c v.
(Semigroup a, Semigroup c) =>
CondTree v c a -> (a, c)
ignoreConditions Maybe (CondTree v c a)
me)