-- (c) The University of Glasgow, 1997-2006

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE UnboxedTuples #-}
{-# LANGUAGE UnliftedFFITypes #-}

{-# OPTIONS_GHC -O2 -funbox-strict-fields #-}
-- We always optimise this, otherwise performance of a non-optimised
-- compiler is severely affected

-- |
-- There are two principal string types used internally by GHC:
--
-- ['FastString']
--
--   * A compact, hash-consed, representation of character strings.
--   * Generated by 'fsLit'.
--   * You can get a 'GHC.Types.Unique.Unique' from them.
--   * Equality test is O(1) (it uses the Unique).
--   * Comparison is O(1) or O(n):
--       * O(n) but deterministic with lexical comparison (`lexicalCompareFS`)
--       * O(1) but non-deterministic with Unique comparison (`uniqCompareFS`)
--   * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ftext'.
--
-- ['PtrString']
--
--   * Pointer and size of a Latin-1 encoded string.
--   * Practically no operations.
--   * Outputting them is fast.
--   * Generated by 'sLit'.
--   * Turn into 'GHC.Utils.Outputable.SDoc' with 'GHC.Utils.Outputable.ptext'
--   * Requires manual memory management.
--     Improper use may lead to memory leaks or dangling pointers.
--   * It assumes Latin-1 as the encoding, therefore it cannot represent
--     arbitrary Unicode strings.
--
-- Use 'PtrString' unless you want the facilities of 'FastString'.
module GHC.Data.FastString
       (
        -- * ByteString
        bytesFS,
        fastStringToByteString,
        mkFastStringByteString,
        fastZStringToByteString,
        unsafeMkByteString,

        -- * ShortByteString
        fastStringToShortByteString,
        mkFastStringShortByteString,

        -- * FastZString
        FastZString,
        hPutFZS,
        zString,
        lengthFZS,

        -- * FastStrings
        FastString(..),     -- not abstract, for now.
        NonDetFastString (..),
        LexicalFastString (..),

        -- ** Construction
        fsLit,
        mkFastString,
        mkFastStringBytes,
        mkFastStringByteList,
        mkFastString#,

        -- ** Deconstruction
        unpackFS,           -- :: FastString -> String
        unconsFS,           -- :: FastString -> Maybe (Char, FastString)

        -- ** Encoding
        zEncodeFS,

        -- ** Operations
        uniqueOfFS,
        lengthFS,
        nullFS,
        appendFS,
        headFS,
        concatFS,
        consFS,
        nilFS,
        isUnderscoreFS,
        lexicalCompareFS,
        uniqCompareFS,

        -- ** Outputting
        hPutFS,

        -- ** Internal
        getFastStringTable,
        getFastStringZEncCounter,

        -- * PtrStrings
        PtrString (..),

        -- ** Construction
        sLit,
        mkPtrString#,
        mkPtrString,

        -- ** Deconstruction
        unpackPtrString,

        -- ** Operations
        lengthPS
       ) where

#include "HsVersions.h"

import GHC.Prelude as Prelude

import GHC.Utils.Encoding
import GHC.Utils.IO.Unsafe
import GHC.Utils.Panic.Plain
import GHC.Utils.Misc
import GHC.Data.FastMutInt

import Control.Concurrent.MVar
import Control.DeepSeq
import Control.Monad
import Data.ByteString (ByteString)
import Data.ByteString.Short (ShortByteString)
import qualified Data.ByteString          as BS
import qualified Data.ByteString.Char8    as BSC
import qualified Data.ByteString.Unsafe   as BS
import qualified Data.ByteString.Short    as SBS
#if !MIN_VERSION_bytestring(0,11,0)
import qualified Data.ByteString.Short.Internal as SBS
#endif
import Foreign.C
import System.IO
import Data.Data
import Data.IORef
import Data.Char
import Data.Semigroup as Semi

import Foreign

#if GHC_STAGE >= 2
import GHC.Conc.Sync    (sharedCAF)
#endif

#if __GLASGOW_HASKELL__ < 811
import GHC.Base (unpackCString#,unpackNBytes#)
#endif
import GHC.Exts
import GHC.IO

-- | Gives the Modified UTF-8 encoded bytes corresponding to a 'FastString'
bytesFS, fastStringToByteString :: FastString -> ByteString
bytesFS :: FastString -> ByteString
bytesFS = FastString -> ByteString
fastStringToByteString

{-# DEPRECATED fastStringToByteString "Use `bytesFS` instead" #-}
fastStringToByteString :: FastString -> ByteString
fastStringToByteString FastString
f = ShortByteString -> ByteString
SBS.fromShort forall a b. (a -> b) -> a -> b
$ FastString -> ShortByteString
fs_sbs FastString
f

fastStringToShortByteString :: FastString -> ShortByteString
fastStringToShortByteString :: FastString -> ShortByteString
fastStringToShortByteString = FastString -> ShortByteString
fs_sbs

fastZStringToByteString :: FastZString -> ByteString
fastZStringToByteString :: FastZString -> ByteString
fastZStringToByteString (FastZString ByteString
bs) = ByteString
bs

-- This will drop information if any character > '\xFF'
unsafeMkByteString :: String -> ByteString
unsafeMkByteString :: String -> ByteString
unsafeMkByteString = String -> ByteString
BSC.pack

hashFastString :: FastString -> Int
hashFastString :: FastString -> Int
hashFastString FastString
fs = ShortByteString -> Int
hashStr forall a b. (a -> b) -> a -> b
$ FastString -> ShortByteString
fs_sbs FastString
fs

-- -----------------------------------------------------------------------------

newtype FastZString = FastZString ByteString
  deriving FastZString -> ()
forall a. (a -> ()) -> NFData a
rnf :: FastZString -> ()
$crnf :: FastZString -> ()
NFData

hPutFZS :: Handle -> FastZString -> IO ()
hPutFZS :: Handle -> FastZString -> IO ()
hPutFZS Handle
handle (FastZString ByteString
bs) = Handle -> ByteString -> IO ()
BS.hPut Handle
handle ByteString
bs

zString :: FastZString -> String
zString :: FastZString -> String
zString (FastZString ByteString
bs) =
    forall a. IO a -> a
inlinePerformIO forall a b. (a -> b) -> a -> b
$ forall a. ByteString -> (CStringLen -> IO a) -> IO a
BS.unsafeUseAsCStringLen ByteString
bs CStringLen -> IO String
peekCAStringLen

lengthFZS :: FastZString -> Int
lengthFZS :: FastZString -> Int
lengthFZS (FastZString ByteString
bs) = ByteString -> Int
BS.length ByteString
bs

mkFastZStringString :: String -> FastZString
mkFastZStringString :: String -> FastZString
mkFastZStringString String
str = ByteString -> FastZString
FastZString (String -> ByteString
BSC.pack String
str)

-- -----------------------------------------------------------------------------

{-| A 'FastString' is a UTF-8 encoded string together with a unique ID. All
'FastString's are stored in a global hashtable to support fast O(1)
comparison.

It is also associated with a lazy reference to the Z-encoding
of this string which is used by the compiler internally.
-}
data FastString = FastString {
      FastString -> Int
uniq    :: {-# UNPACK #-} !Int, -- unique id
      FastString -> Int
n_chars :: {-# UNPACK #-} !Int, -- number of chars
      FastString -> ShortByteString
fs_sbs  :: {-# UNPACK #-} !ShortByteString,
      FastString -> FastZString
fs_zenc :: FastZString
      -- ^ Lazily computed Z-encoding of this string. See Note [Z-Encoding] in
      -- GHC.Utils.Encoding.
      --
      -- Since 'FastString's are globally memoized this is computed at most
      -- once for any given string.
  }

instance Eq FastString where
  FastString
f1 == :: FastString -> FastString -> Bool
== FastString
f2  =  FastString -> Int
uniq FastString
f1 forall a. Eq a => a -> a -> Bool
== FastString -> Int
uniq FastString
f2

-- We don't provide any "Ord FastString" instance to force you to think about
-- which ordering you want:
--    * lexical:   deterministic,     O(n). Cf lexicalCompareFS and LexicalFastString.
--    * by unique: non-deterministic, O(1). Cf uniqCompareFS    and NonDetFastString.

instance IsString FastString where
    fromString :: String -> FastString
fromString = String -> FastString
fsLit

instance Semi.Semigroup FastString where
    <> :: FastString -> FastString -> FastString
(<>) = FastString -> FastString -> FastString
appendFS

instance Monoid FastString where
    mempty :: FastString
mempty = FastString
nilFS
    mappend :: FastString -> FastString -> FastString
mappend = forall a. Semigroup a => a -> a -> a
(Semi.<>)
    mconcat :: [FastString] -> FastString
mconcat = [FastString] -> FastString
concatFS

instance Show FastString where
   show :: FastString -> String
show FastString
fs = forall a. Show a => a -> String
show (FastString -> String
unpackFS FastString
fs)

instance Data FastString where
  -- don't traverse?
  toConstr :: FastString -> Constr
toConstr FastString
_   = String -> Constr
abstractConstr String
"FastString"
  gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c FastString
gunfold forall b r. Data b => c (b -> r) -> c r
_ forall r. r -> c r
_  = forall a. HasCallStack => String -> a
error String
"gunfold"
  dataTypeOf :: FastString -> DataType
dataTypeOf FastString
_ = String -> DataType
mkNoRepType String
"FastString"

instance NFData FastString where
  rnf :: FastString -> ()
rnf FastString
fs = seq :: forall a b. a -> b -> b
seq FastString
fs ()

-- | Compare FastString lexically
--
-- If you don't care about the lexical ordering, use `uniqCompareFS` instead.
lexicalCompareFS :: FastString -> FastString -> Ordering
lexicalCompareFS :: FastString -> FastString -> Ordering
lexicalCompareFS FastString
fs1 FastString
fs2 =
  if FastString -> Int
uniq FastString
fs1 forall a. Eq a => a -> a -> Bool
== FastString -> Int
uniq FastString
fs2 then Ordering
EQ else
  ShortByteString -> ShortByteString -> Ordering
utf8CompareShortByteString (FastString -> ShortByteString
fs_sbs FastString
fs1) (FastString -> ShortByteString
fs_sbs FastString
fs2)
  -- perform a lexical comparison taking into account the Modified UTF-8
  -- encoding we use (cf #18562)

-- | Compare FastString by their Unique (not lexically).
--
-- Much cheaper than `lexicalCompareFS` but non-deterministic!
uniqCompareFS :: FastString -> FastString -> Ordering
uniqCompareFS :: FastString -> FastString -> Ordering
uniqCompareFS FastString
fs1 FastString
fs2 = forall a. Ord a => a -> a -> Ordering
compare (FastString -> Int
uniq FastString
fs1) (FastString -> Int
uniq FastString
fs2)

-- | Non-deterministic FastString
--
-- This is a simple FastString wrapper with an Ord instance using
-- `uniqCompareFS` (i.e. which compares FastStrings on their Uniques). Hence it
-- is not deterministic from one run to the other.
newtype NonDetFastString
   = NonDetFastString FastString
   deriving (NonDetFastString -> NonDetFastString -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: NonDetFastString -> NonDetFastString -> Bool
$c/= :: NonDetFastString -> NonDetFastString -> Bool
== :: NonDetFastString -> NonDetFastString -> Bool
$c== :: NonDetFastString -> NonDetFastString -> Bool
Eq,Typeable NonDetFastString
NonDetFastString -> DataType
NonDetFastString -> Constr
(forall b. Data b => b -> b)
-> NonDetFastString -> NonDetFastString
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u.
Int -> (forall d. Data d => d -> u) -> NonDetFastString -> u
forall u. (forall d. Data d => d -> u) -> NonDetFastString -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> NonDetFastString -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> NonDetFastString -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c NonDetFastString
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> NonDetFastString -> c NonDetFastString
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c NonDetFastString)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c NonDetFastString)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> NonDetFastString -> m NonDetFastString
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> NonDetFastString -> u
$cgmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> NonDetFastString -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> NonDetFastString -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> NonDetFastString -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> NonDetFastString -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> NonDetFastString -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> NonDetFastString -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> NonDetFastString -> r
gmapT :: (forall b. Data b => b -> b)
-> NonDetFastString -> NonDetFastString
$cgmapT :: (forall b. Data b => b -> b)
-> NonDetFastString -> NonDetFastString
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c NonDetFastString)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c NonDetFastString)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c NonDetFastString)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c NonDetFastString)
dataTypeOf :: NonDetFastString -> DataType
$cdataTypeOf :: NonDetFastString -> DataType
toConstr :: NonDetFastString -> Constr
$ctoConstr :: NonDetFastString -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c NonDetFastString
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c NonDetFastString
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> NonDetFastString -> c NonDetFastString
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> NonDetFastString -> c NonDetFastString
Data)

instance Ord NonDetFastString where
   compare :: NonDetFastString -> NonDetFastString -> Ordering
compare (NonDetFastString FastString
fs1) (NonDetFastString FastString
fs2) = FastString -> FastString -> Ordering
uniqCompareFS FastString
fs1 FastString
fs2

instance Show NonDetFastString where
   show :: NonDetFastString -> String
show (NonDetFastString FastString
fs) = forall a. Show a => a -> String
show FastString
fs

-- | Lexical FastString
--
-- This is a simple FastString wrapper with an Ord instance using
-- `lexicalCompareFS` (i.e. which compares FastStrings on their String
-- representation). Hence it is deterministic from one run to the other.
newtype LexicalFastString
   = LexicalFastString FastString
   deriving (LexicalFastString -> LexicalFastString -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: LexicalFastString -> LexicalFastString -> Bool
$c/= :: LexicalFastString -> LexicalFastString -> Bool
== :: LexicalFastString -> LexicalFastString -> Bool
$c== :: LexicalFastString -> LexicalFastString -> Bool
Eq,Typeable LexicalFastString
LexicalFastString -> DataType
LexicalFastString -> Constr
(forall b. Data b => b -> b)
-> LexicalFastString -> LexicalFastString
forall a.
Typeable a
-> (forall (c :: * -> *).
    (forall d b. Data d => c (d -> b) -> d -> c b)
    -> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
    (forall b r. Data b => c (b -> r) -> c r)
    -> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
    Typeable t =>
    (forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
    Typeable t =>
    (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
    (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
    (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
    Monad m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
    MonadPlus m =>
    (forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u.
Int -> (forall d. Data d => d -> u) -> LexicalFastString -> u
forall u. (forall d. Data d => d -> u) -> LexicalFastString -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> LexicalFastString -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> LexicalFastString -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c LexicalFastString
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> LexicalFastString -> c LexicalFastString
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c LexicalFastString)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c LexicalFastString)
gmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
gmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
gmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d)
-> LexicalFastString -> m LexicalFastString
gmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> LexicalFastString -> u
$cgmapQi :: forall u.
Int -> (forall d. Data d => d -> u) -> LexicalFastString -> u
gmapQ :: forall u. (forall d. Data d => d -> u) -> LexicalFastString -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> LexicalFastString -> [u]
gmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> LexicalFastString -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> LexicalFastString -> r
gmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> LexicalFastString -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> LexicalFastString -> r
gmapT :: (forall b. Data b => b -> b)
-> LexicalFastString -> LexicalFastString
$cgmapT :: (forall b. Data b => b -> b)
-> LexicalFastString -> LexicalFastString
dataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c LexicalFastString)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c LexicalFastString)
dataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c LexicalFastString)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c LexicalFastString)
dataTypeOf :: LexicalFastString -> DataType
$cdataTypeOf :: LexicalFastString -> DataType
toConstr :: LexicalFastString -> Constr
$ctoConstr :: LexicalFastString -> Constr
gunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c LexicalFastString
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c LexicalFastString
gfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> LexicalFastString -> c LexicalFastString
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> LexicalFastString -> c LexicalFastString
Data)

instance Ord LexicalFastString where
   compare :: LexicalFastString -> LexicalFastString -> Ordering
compare (LexicalFastString FastString
fs1) (LexicalFastString FastString
fs2) = FastString -> FastString -> Ordering
lexicalCompareFS FastString
fs1 FastString
fs2

instance Show LexicalFastString where
   show :: LexicalFastString -> String
show (LexicalFastString FastString
fs) = forall a. Show a => a -> String
show FastString
fs

-- -----------------------------------------------------------------------------
-- Construction

{-
Internally, the compiler will maintain a fast string symbol table, providing
sharing and fast comparison. Creation of new @FastString@s then covertly does a
lookup, re-using the @FastString@ if there was a hit.

The design of the FastString hash table allows for lockless concurrent reads
and updates to multiple buckets with low synchronization overhead.

See Note [Updating the FastString table] on how it's updated.
-}
data FastStringTable = FastStringTable
  {-# UNPACK #-} !FastMutInt -- the unique ID counter shared with all buckets
  {-# UNPACK #-} !FastMutInt -- number of computed z-encodings for all buckets
  (Array# (IORef FastStringTableSegment)) -- concurrent segments

data FastStringTableSegment = FastStringTableSegment
  {-# UNPACK #-} !(MVar ())  -- the lock for write in each segment
  {-# UNPACK #-} !FastMutInt -- the number of elements
  (MutableArray# RealWorld [FastString]) -- buckets in this segment

{-
Following parameters are determined based on:

* Benchmark based on testsuite/tests/utils/should_run/T14854.hs
* Stats of @echo :browse | ghc --interactive -dfaststring-stats >/dev/null@:
  on 2018-10-24, we have 13920 entries.
-}
segmentBits, numSegments, segmentMask, initialNumBuckets :: Int
segmentBits :: Int
segmentBits = Int
8
numSegments :: Int
numSegments = Int
256   -- bit segmentBits
segmentMask :: Int
segmentMask = Int
0xff  -- bit segmentBits - 1
initialNumBuckets :: Int
initialNumBuckets = Int
64

hashToSegment# :: Int# -> Int#
hashToSegment# :: Int# -> Int#
hashToSegment# Int#
hash# = Int#
hash# Int# -> Int# -> Int#
`andI#` Int#
segmentMask#
  where
    !(I# Int#
segmentMask#) = Int
segmentMask

hashToIndex# :: MutableArray# RealWorld [FastString] -> Int# -> Int#
hashToIndex# :: MutableArray# RealWorld [FastString] -> Int# -> Int#
hashToIndex# MutableArray# RealWorld [FastString]
buckets# Int#
hash# =
  (Int#
hash# Int# -> Int# -> Int#
`uncheckedIShiftRL#` Int#
segmentBits#) Int# -> Int# -> Int#
`remInt#` Int#
size#
  where
    !(I# Int#
segmentBits#) = Int
segmentBits
    size# :: Int#
size# = forall d a. MutableArray# d a -> Int#
sizeofMutableArray# MutableArray# RealWorld [FastString]
buckets#

maybeResizeSegment :: IORef FastStringTableSegment -> IO FastStringTableSegment
maybeResizeSegment :: IORef FastStringTableSegment -> IO FastStringTableSegment
maybeResizeSegment IORef FastStringTableSegment
segmentRef = do
  segment :: FastStringTableSegment
segment@(FastStringTableSegment MVar ()
lock FastMutInt
counter MutableArray# RealWorld [FastString]
old#) <- forall a. IORef a -> IO a
readIORef IORef FastStringTableSegment
segmentRef
  let oldSize# :: Int#
oldSize# = forall d a. MutableArray# d a -> Int#
sizeofMutableArray# MutableArray# RealWorld [FastString]
old#
      newSize# :: Int#
newSize# = Int#
oldSize# Int# -> Int# -> Int#
*# Int#
2#
  (I# Int#
n#) <- FastMutInt -> IO Int
readFastMutInt FastMutInt
counter
  if Int# -> Bool
isTrue# (Int#
n# Int# -> Int# -> Int#
<# Int#
newSize#) -- maximum load of 1
  then forall (m :: * -> *) a. Monad m => a -> m a
return FastStringTableSegment
segment
  else do
    resizedSegment :: FastStringTableSegment
resizedSegment@(FastStringTableSegment MVar ()
_ FastMutInt
_ MutableArray# RealWorld [FastString]
new#) <- forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s1# ->
      case forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
newSize# [] State# RealWorld
s1# of
        (# State# RealWorld
s2#, MutableArray# RealWorld [FastString]
arr# #) -> (# State# RealWorld
s2#, MVar ()
-> FastMutInt
-> MutableArray# RealWorld [FastString]
-> FastStringTableSegment
FastStringTableSegment MVar ()
lock FastMutInt
counter MutableArray# RealWorld [FastString]
arr# #)
    forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [Int
0 .. (Int# -> Int
I# Int#
oldSize#) forall a. Num a => a -> a -> a
- Int
1] forall a b. (a -> b) -> a -> b
$ \(I# Int#
i#) -> do
      [FastString]
fsList <- forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# RealWorld [FastString]
old# Int#
i#
      forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
t a -> (a -> m b) -> m ()
forM_ [FastString]
fsList forall a b. (a -> b) -> a -> b
$ \FastString
fs -> do
        let -- Shall we store in hash value in FastString instead?
            !(I# Int#
hash#) = FastString -> Int
hashFastString FastString
fs
            idx# :: Int#
idx# = MutableArray# RealWorld [FastString] -> Int# -> Int#
hashToIndex# MutableArray# RealWorld [FastString]
new# Int#
hash#
        forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s1# ->
          case forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# RealWorld [FastString]
new# Int#
idx# State# RealWorld
s1# of
            (# State# RealWorld
s2#, [FastString]
bucket #) -> case forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# RealWorld [FastString]
new# Int#
idx# (FastString
fsforall a. a -> [a] -> [a]
: [FastString]
bucket) State# RealWorld
s2# of
              State# RealWorld
s3# -> (# State# RealWorld
s3#, () #)
    forall a. IORef a -> a -> IO ()
writeIORef IORef FastStringTableSegment
segmentRef FastStringTableSegment
resizedSegment
    forall (m :: * -> *) a. Monad m => a -> m a
return FastStringTableSegment
resizedSegment

{-# NOINLINE stringTable #-}
stringTable :: FastStringTable
stringTable :: FastStringTable
stringTable = forall a. IO a -> a
unsafePerformIO forall a b. (a -> b) -> a -> b
$ do
  let !(I# Int#
numSegments#) = Int
numSegments
      !(I# Int#
initialNumBuckets#) = Int
initialNumBuckets
      loop :: MutableArray# RealWorld (IORef FastStringTableSegment)
-> Int# -> State# RealWorld -> State# RealWorld
loop MutableArray# RealWorld (IORef FastStringTableSegment)
a# Int#
i# State# RealWorld
s1#
        | Int# -> Bool
isTrue# (Int#
i# Int# -> Int# -> Int#
==# Int#
numSegments#) = State# RealWorld
s1#
        | Bool
otherwise = case forall a. a -> IO (MVar a)
newMVar () forall a. IO a -> State# RealWorld -> (# State# RealWorld, a #)
`unIO` State# RealWorld
s1# of
            (# State# RealWorld
s2#, MVar ()
lock #) -> case Int -> IO FastMutInt
newFastMutInt Int
0 forall a. IO a -> State# RealWorld -> (# State# RealWorld, a #)
`unIO` State# RealWorld
s2# of
              (# State# RealWorld
s3#, FastMutInt
counter #) -> case forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
initialNumBuckets# [] State# RealWorld
s3# of
                (# State# RealWorld
s4#, MutableArray# RealWorld [FastString]
buckets# #) -> case forall a. a -> IO (IORef a)
newIORef
                    (MVar ()
-> FastMutInt
-> MutableArray# RealWorld [FastString]
-> FastStringTableSegment
FastStringTableSegment MVar ()
lock FastMutInt
counter MutableArray# RealWorld [FastString]
buckets#) forall a. IO a -> State# RealWorld -> (# State# RealWorld, a #)
`unIO` State# RealWorld
s4# of
                  (# State# RealWorld
s5#, IORef FastStringTableSegment
segment #) -> case forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# RealWorld (IORef FastStringTableSegment)
a# Int#
i# IORef FastStringTableSegment
segment State# RealWorld
s5# of
                    State# RealWorld
s6# -> MutableArray# RealWorld (IORef FastStringTableSegment)
-> Int# -> State# RealWorld -> State# RealWorld
loop MutableArray# RealWorld (IORef FastStringTableSegment)
a# (Int#
i# Int# -> Int# -> Int#
+# Int#
1#) State# RealWorld
s6#
  FastMutInt
uid <- Int -> IO FastMutInt
newFastMutInt Int
603979776 -- ord '$' * 0x01000000
  FastMutInt
n_zencs <- Int -> IO FastMutInt
newFastMutInt Int
0
  FastStringTable
tab <- forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s1# ->
    case forall a d.
Int# -> a -> State# d -> (# State# d, MutableArray# d a #)
newArray# Int#
numSegments# (forall a. String -> a
panic String
"string_table") State# RealWorld
s1# of
      (# State# RealWorld
s2#, MutableArray# RealWorld (IORef FastStringTableSegment)
arr# #) -> case MutableArray# RealWorld (IORef FastStringTableSegment)
-> Int# -> State# RealWorld -> State# RealWorld
loop MutableArray# RealWorld (IORef FastStringTableSegment)
arr# Int#
0# State# RealWorld
s2# of
        State# RealWorld
s3# -> case forall d a.
MutableArray# d a -> State# d -> (# State# d, Array# a #)
unsafeFreezeArray# MutableArray# RealWorld (IORef FastStringTableSegment)
arr# State# RealWorld
s3# of
          (# State# RealWorld
s4#, Array# (IORef FastStringTableSegment)
segments# #) ->
            (# State# RealWorld
s4#, FastMutInt
-> FastMutInt
-> Array# (IORef FastStringTableSegment)
-> FastStringTable
FastStringTable FastMutInt
uid FastMutInt
n_zencs Array# (IORef FastStringTableSegment)
segments# #)

  -- use the support wired into the RTS to share this CAF among all images of
  -- libHSghc
#if GHC_STAGE < 2
  return tab
#else
  forall a. a -> (Ptr a -> IO (Ptr a)) -> IO a
sharedCAF FastStringTable
tab forall a. Ptr a -> IO (Ptr a)
getOrSetLibHSghcFastStringTable

-- from the RTS; thus we cannot use this mechanism when GHC_STAGE<2; the previous
-- RTS might not have this symbol
foreign import ccall unsafe "getOrSetLibHSghcFastStringTable"
  getOrSetLibHSghcFastStringTable :: Ptr a -> IO (Ptr a)
#endif

{-

We include the FastString table in the `sharedCAF` mechanism because we'd like
FastStrings created by a Core plugin to have the same uniques as corresponding
strings created by the host compiler itself.  For example, this allows plugins
to lookup known names (eg `mkTcOcc "MySpecialType"`) in the GlobalRdrEnv or
even re-invoke the parser.

In particular, the following little sanity test was failing in a plugin
prototyping safe newtype-coercions: GHC.NT.Type.NT was imported, but could not
be looked up /by the plugin/.

   let rdrName = mkModuleName "GHC.NT.Type" `mkRdrQual` mkTcOcc "NT"
   putMsgS $ showSDoc dflags $ ppr $ lookupGRE_RdrName rdrName $ mg_rdr_env guts

`mkTcOcc` involves the lookup (or creation) of a FastString.  Since the
plugin's FastString.string_table is empty, constructing the RdrName also
allocates new uniques for the FastStrings "GHC.NT.Type" and "NT".  These
uniques are almost certainly unequal to the ones that the host compiler
originally assigned to those FastStrings.  Thus the lookup fails since the
domain of the GlobalRdrEnv is affected by the RdrName's OccName's FastString's
unique.

Maintaining synchronization of the two instances of this global is rather
difficult because of the uses of `unsafePerformIO` in this module.  Not
synchronizing them risks breaking the rather major invariant that two
FastStrings with the same unique have the same string. Thus we use the
lower-level `sharedCAF` mechanism that relies on Globals.c.

-}

mkFastString# :: Addr# -> FastString
{-# INLINE mkFastString# #-}
mkFastString# :: Addr# -> FastString
mkFastString# Addr#
a# = Ptr Word8 -> Int -> FastString
mkFastStringBytes Ptr Word8
ptr (Ptr Word8 -> Int
ptrStrLength Ptr Word8
ptr)
  where ptr :: Ptr Word8
ptr = forall a. Addr# -> Ptr a
Ptr Addr#
a#

{- Note [Updating the FastString table]

We use a concurrent hashtable which contains multiple segments, each hash value
always maps to the same segment. Read is lock-free, write to the a segment
should acquire a lock for that segment to avoid race condition, writes to
different segments are independent.

The procedure goes like this:

1. Find out which segment to operate on based on the hash value
2. Read the relevant bucket and perform a look up of the string.
3. If it exists, return it.
4. Otherwise grab a unique ID, create a new FastString and atomically attempt
   to update the relevant segment with this FastString:

   * Resize the segment by doubling the number of buckets when the number of
     FastStrings in this segment grows beyond the threshold.
   * Double check that the string is not in the bucket. Another thread may have
     inserted it while we were creating our string.
   * Return the existing FastString if it exists. The one we preemptively
     created will get GCed.
   * Otherwise, insert and return the string we created.
-}

mkFastStringWith
    :: (Int -> FastMutInt-> IO FastString) -> ShortByteString -> IO FastString
mkFastStringWith :: (Int -> FastMutInt -> IO FastString)
-> ShortByteString -> IO FastString
mkFastStringWith Int -> FastMutInt -> IO FastString
mk_fs ShortByteString
sbs = do
  FastStringTableSegment MVar ()
lock FastMutInt
_ MutableArray# RealWorld [FastString]
buckets# <- forall a. IORef a -> IO a
readIORef IORef FastStringTableSegment
segmentRef
  let idx# :: Int#
idx# = MutableArray# RealWorld [FastString] -> Int# -> Int#
hashToIndex# MutableArray# RealWorld [FastString]
buckets# Int#
hash#
  [FastString]
bucket <- forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# RealWorld [FastString]
buckets# Int#
idx#
  Maybe FastString
res <- [FastString] -> ShortByteString -> IO (Maybe FastString)
bucket_match [FastString]
bucket ShortByteString
sbs
  case Maybe FastString
res of
    Just FastString
found -> forall (m :: * -> *) a. Monad m => a -> m a
return FastString
found
    Maybe FastString
Nothing -> do
      -- The withMVar below is not dupable. It can lead to deadlock if it is
      -- only run partially and putMVar is not called after takeMVar.
      IO ()
noDuplicate
      Int
n <- IO Int
get_uid
      FastString
new_fs <- Int -> FastMutInt -> IO FastString
mk_fs Int
n FastMutInt
n_zencs
      forall a b. MVar a -> (a -> IO b) -> IO b
withMVar MVar ()
lock forall a b. (a -> b) -> a -> b
$ \()
_ -> FastString -> IO FastString
insert FastString
new_fs
  where
    !(FastStringTable FastMutInt
uid FastMutInt
n_zencs Array# (IORef FastStringTableSegment)
segments#) = FastStringTable
stringTable
    get_uid :: IO Int
get_uid = FastMutInt -> Int -> IO Int
atomicFetchAddFastMut FastMutInt
uid Int
1

    !(I# Int#
hash#) = ShortByteString -> Int
hashStr ShortByteString
sbs
    (# IORef FastStringTableSegment
segmentRef #) = forall a. Array# a -> Int# -> (# a #)
indexArray# Array# (IORef FastStringTableSegment)
segments# (Int# -> Int#
hashToSegment# Int#
hash#)
    insert :: FastString -> IO FastString
insert FastString
fs = do
      FastStringTableSegment MVar ()
_ FastMutInt
counter MutableArray# RealWorld [FastString]
buckets# <- IORef FastStringTableSegment -> IO FastStringTableSegment
maybeResizeSegment IORef FastStringTableSegment
segmentRef
      let idx# :: Int#
idx# = MutableArray# RealWorld [FastString] -> Int# -> Int#
hashToIndex# MutableArray# RealWorld [FastString]
buckets# Int#
hash#
      [FastString]
bucket <- forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# RealWorld [FastString]
buckets# Int#
idx#
      Maybe FastString
res <- [FastString] -> ShortByteString -> IO (Maybe FastString)
bucket_match [FastString]
bucket ShortByteString
sbs
      case Maybe FastString
res of
        -- The FastString was added by another thread after previous read and
        -- before we acquired the write lock.
        Just FastString
found -> forall (m :: * -> *) a. Monad m => a -> m a
return FastString
found
        Maybe FastString
Nothing -> do
          forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s1# ->
            case forall d a. MutableArray# d a -> Int# -> a -> State# d -> State# d
writeArray# MutableArray# RealWorld [FastString]
buckets# Int#
idx# (FastString
fs forall a. a -> [a] -> [a]
: [FastString]
bucket) State# RealWorld
s1# of
              State# RealWorld
s2# -> (# State# RealWorld
s2#, () #)
          Int
_ <- FastMutInt -> Int -> IO Int
atomicFetchAddFastMut FastMutInt
counter Int
1
          forall (m :: * -> *) a. Monad m => a -> m a
return FastString
fs

bucket_match :: [FastString] -> ShortByteString -> IO (Maybe FastString)
bucket_match :: [FastString] -> ShortByteString -> IO (Maybe FastString)
bucket_match [] ShortByteString
_ = forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing
bucket_match (fs :: FastString
fs@(FastString {fs_sbs :: FastString -> ShortByteString
fs_sbs=ShortByteString
fs_sbs}) : [FastString]
ls) ShortByteString
sbs
  | ShortByteString
fs_sbs forall a. Eq a => a -> a -> Bool
== ShortByteString
sbs = forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just FastString
fs)
  | Bool
otherwise     =  [FastString] -> ShortByteString -> IO (Maybe FastString)
bucket_match [FastString]
ls ShortByteString
sbs

mkFastStringBytes :: Ptr Word8 -> Int -> FastString
mkFastStringBytes :: Ptr Word8 -> Int -> FastString
mkFastStringBytes !Ptr Word8
ptr !Int
len =
    -- NB: Might as well use unsafeDupablePerformIO, since mkFastStringWith is
    -- idempotent.
    forall a. IO a -> a
unsafeDupablePerformIO forall a b. (a -> b) -> a -> b
$ do
        ShortByteString
sbs <- forall a. Ptr a -> Int -> IO ShortByteString
newSBSFromPtr Ptr Word8
ptr Int
len
        (Int -> FastMutInt -> IO FastString)
-> ShortByteString -> IO FastString
mkFastStringWith (ShortByteString -> Int -> FastMutInt -> IO FastString
mkNewFastStringShortByteString ShortByteString
sbs) ShortByteString
sbs

newSBSFromPtr :: Ptr a -> Int -> IO ShortByteString
newSBSFromPtr :: forall a. Ptr a -> Int -> IO ShortByteString
newSBSFromPtr (Ptr Addr#
src#) (I# Int#
len#) =
  forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ \State# RealWorld
s ->
    case forall d. Int# -> State# d -> (# State# d, MutableByteArray# d #)
newByteArray# Int#
len# State# RealWorld
s of { (# State# RealWorld
s, MutableByteArray# RealWorld
dst# #) ->
    case forall d.
Addr#
-> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d
copyAddrToByteArray# Addr#
src# MutableByteArray# RealWorld
dst# Int#
0# Int#
len# State# RealWorld
s of { State# RealWorld
s ->
    case forall d.
MutableByteArray# d -> State# d -> (# State# d, ByteArray# #)
unsafeFreezeByteArray# MutableByteArray# RealWorld
dst# State# RealWorld
s of { (# State# RealWorld
s, ByteArray#
ba# #) ->
    (# State# RealWorld
s, ByteArray# -> ShortByteString
SBS.SBS ByteArray#
ba# #) }}}

-- | Create a 'FastString' by copying an existing 'ByteString'
mkFastStringByteString :: ByteString -> FastString
mkFastStringByteString :: ByteString -> FastString
mkFastStringByteString ByteString
bs =
  let sbs :: ShortByteString
sbs = ByteString -> ShortByteString
SBS.toShort ByteString
bs in
  forall a. IO a -> a
inlinePerformIO forall a b. (a -> b) -> a -> b
$
      (Int -> FastMutInt -> IO FastString)
-> ShortByteString -> IO FastString
mkFastStringWith (ShortByteString -> Int -> FastMutInt -> IO FastString
mkNewFastStringShortByteString ShortByteString
sbs) ShortByteString
sbs

-- | Create a 'FastString' from an existing 'ShortByteString' without
-- copying.
mkFastStringShortByteString :: ShortByteString -> FastString
mkFastStringShortByteString :: ShortByteString -> FastString
mkFastStringShortByteString ShortByteString
sbs =
  forall a. IO a -> a
inlinePerformIO forall a b. (a -> b) -> a -> b
$ (Int -> FastMutInt -> IO FastString)
-> ShortByteString -> IO FastString
mkFastStringWith (ShortByteString -> Int -> FastMutInt -> IO FastString
mkNewFastStringShortByteString ShortByteString
sbs) ShortByteString
sbs

-- | Creates a UTF-8 encoded 'FastString' from a 'String'
mkFastString :: String -> FastString
mkFastString :: String -> FastString
mkFastString String
str =
  forall a. IO a -> a
inlinePerformIO forall a b. (a -> b) -> a -> b
$ do
    ShortByteString
sbs <- String -> IO ShortByteString
utf8EncodeShortByteString String
str
    (Int -> FastMutInt -> IO FastString)
-> ShortByteString -> IO FastString
mkFastStringWith (ShortByteString -> Int -> FastMutInt -> IO FastString
mkNewFastStringShortByteString ShortByteString
sbs) ShortByteString
sbs

-- | Creates a 'FastString' from a UTF-8 encoded @[Word8]@
mkFastStringByteList :: [Word8] -> FastString
mkFastStringByteList :: [Word8] -> FastString
mkFastStringByteList [Word8]
str = ShortByteString -> FastString
mkFastStringShortByteString ([Word8] -> ShortByteString
SBS.pack [Word8]
str)

-- | Creates a (lazy) Z-encoded 'FastString' from a 'ShortByteString' and
-- account the number of forced z-strings into the passed 'FastMutInt'.
mkZFastString :: FastMutInt -> ShortByteString -> FastZString
mkZFastString :: FastMutInt -> ShortByteString -> FastZString
mkZFastString FastMutInt
n_zencs ShortByteString
sbs = forall a. IO a -> a
unsafePerformIO forall a b. (a -> b) -> a -> b
$ do
  Int
_ <- FastMutInt -> Int -> IO Int
atomicFetchAddFastMut FastMutInt
n_zencs Int
1
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ String -> FastZString
mkFastZStringString (ShowS
zEncodeString (ShortByteString -> String
utf8DecodeShortByteString ShortByteString
sbs))

mkNewFastStringShortByteString :: ShortByteString -> Int
                               -> FastMutInt -> IO FastString
mkNewFastStringShortByteString :: ShortByteString -> Int -> FastMutInt -> IO FastString
mkNewFastStringShortByteString ShortByteString
sbs Int
uid FastMutInt
n_zencs = do
  let zstr :: FastZString
zstr = FastMutInt -> ShortByteString -> FastZString
mkZFastString FastMutInt
n_zencs ShortByteString
sbs
  Int
chars <- ShortByteString -> IO Int
countUTF8Chars ShortByteString
sbs
  forall (m :: * -> *) a. Monad m => a -> m a
return (Int -> Int -> ShortByteString -> FastZString -> FastString
FastString Int
uid Int
chars ShortByteString
sbs FastZString
zstr)

hashStr  :: ShortByteString -> Int
 -- produce a hash value between 0 & m (inclusive)
hashStr :: ShortByteString -> Int
hashStr sbs :: ShortByteString
sbs@(SBS.SBS ByteArray#
ba#) = Int# -> Int# -> Int
loop Int#
0# Int#
0#
   where
    !(I# Int#
len#) = ShortByteString -> Int
SBS.length ShortByteString
sbs
    loop :: Int# -> Int# -> Int
loop Int#
h Int#
n =
      if Int# -> Bool
isTrue# (Int#
n Int# -> Int# -> Int#
==# Int#
len#) then
        Int# -> Int
I# Int#
h
      else
        let
          -- DO NOT move this let binding! indexCharOffAddr# reads from the
          -- pointer so we need to evaluate this based on the length check
          -- above. Not doing this right caused #17909.
#if __GLASGOW_HASKELL__ >= 901
          !c :: Int#
c = Int8# -> Int#
int8ToInt# (ByteArray# -> Int# -> Int8#
indexInt8Array# ByteArray#
ba# Int#
n)
#else
          !c = indexInt8Array# ba# n
#endif
          !h2 :: Int#
h2 = (Int#
h Int# -> Int# -> Int#
*# Int#
16777619#) Int# -> Int# -> Int#
`xorI#` Int#
c
        in
          Int# -> Int# -> Int
loop Int#
h2 (Int#
n Int# -> Int# -> Int#
+# Int#
1#)

-- -----------------------------------------------------------------------------
-- Operations

-- | Returns the length of the 'FastString' in characters
lengthFS :: FastString -> Int
lengthFS :: FastString -> Int
lengthFS FastString
fs = FastString -> Int
n_chars FastString
fs

-- | Returns @True@ if the 'FastString' is empty
nullFS :: FastString -> Bool
nullFS :: FastString -> Bool
nullFS FastString
fs = ShortByteString -> Bool
SBS.null forall a b. (a -> b) -> a -> b
$ FastString -> ShortByteString
fs_sbs FastString
fs

-- | Unpacks and decodes the FastString
unpackFS :: FastString -> String
unpackFS :: FastString -> String
unpackFS FastString
fs = ShortByteString -> String
utf8DecodeShortByteString forall a b. (a -> b) -> a -> b
$ FastString -> ShortByteString
fs_sbs FastString
fs

-- | Returns a Z-encoded version of a 'FastString'.  This might be the
-- original, if it was already Z-encoded.  The first time this
-- function is applied to a particular 'FastString', the results are
-- memoized.
--
zEncodeFS :: FastString -> FastZString
zEncodeFS :: FastString -> FastZString
zEncodeFS FastString
fs = FastString -> FastZString
fs_zenc FastString
fs

appendFS :: FastString -> FastString -> FastString
appendFS :: FastString -> FastString -> FastString
appendFS FastString
fs1 FastString
fs2 = ByteString -> FastString
mkFastStringByteString
                 forall a b. (a -> b) -> a -> b
$ ByteString -> ByteString -> ByteString
BS.append (FastString -> ByteString
bytesFS FastString
fs1) (FastString -> ByteString
bytesFS FastString
fs2)

concatFS :: [FastString] -> FastString
concatFS :: [FastString] -> FastString
concatFS = ShortByteString -> FastString
mkFastStringShortByteString forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. Monoid a => [a] -> a
mconcat forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a -> b) -> [a] -> [b]
map FastString -> ShortByteString
fs_sbs

headFS :: FastString -> Char
headFS :: FastString -> Char
headFS FastString
fs
  | ShortByteString -> Bool
SBS.null forall a b. (a -> b) -> a -> b
$ FastString -> ShortByteString
fs_sbs FastString
fs = forall a. String -> a
panic String
"headFS: Empty FastString"
headFS FastString
fs = forall a. [a] -> a
head forall a b. (a -> b) -> a -> b
$ FastString -> String
unpackFS FastString
fs

consFS :: Char -> FastString -> FastString
consFS :: Char -> FastString -> FastString
consFS Char
c FastString
fs = String -> FastString
mkFastString (Char
c forall a. a -> [a] -> [a]
: FastString -> String
unpackFS FastString
fs)

unconsFS :: FastString -> Maybe (Char, FastString)
unconsFS :: FastString -> Maybe (Char, FastString)
unconsFS FastString
fs =
  case FastString -> String
unpackFS FastString
fs of
    []          -> forall a. Maybe a
Nothing
    (Char
chr : String
str) -> forall a. a -> Maybe a
Just (Char
chr, String -> FastString
mkFastString String
str)

uniqueOfFS :: FastString -> Int
uniqueOfFS :: FastString -> Int
uniqueOfFS FastString
fs = FastString -> Int
uniq FastString
fs

nilFS :: FastString
nilFS :: FastString
nilFS = String -> FastString
mkFastString String
""

isUnderscoreFS :: FastString -> Bool
isUnderscoreFS :: FastString -> Bool
isUnderscoreFS FastString
fs = FastString
fs forall a. Eq a => a -> a -> Bool
== String -> FastString
fsLit String
"_"

-- -----------------------------------------------------------------------------
-- Stats

getFastStringTable :: IO [[[FastString]]]
getFastStringTable :: IO [[[FastString]]]
getFastStringTable =
  forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Int
0 .. Int
numSegments forall a. Num a => a -> a -> a
- Int
1] forall a b. (a -> b) -> a -> b
$ \(I# Int#
i#) -> do
    let (# IORef FastStringTableSegment
segmentRef #) = forall a. Array# a -> Int# -> (# a #)
indexArray# Array# (IORef FastStringTableSegment)
segments# Int#
i#
    FastStringTableSegment MVar ()
_ FastMutInt
_ MutableArray# RealWorld [FastString]
buckets# <- forall a. IORef a -> IO a
readIORef IORef FastStringTableSegment
segmentRef
    let bucketSize :: Int
bucketSize = Int# -> Int
I# (forall d a. MutableArray# d a -> Int#
sizeofMutableArray# MutableArray# RealWorld [FastString]
buckets#)
    forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
t a -> (a -> m b) -> m (t b)
forM [Int
0 .. Int
bucketSize forall a. Num a => a -> a -> a
- Int
1] forall a b. (a -> b) -> a -> b
$ \(I# Int#
j#) ->
      forall a. (State# RealWorld -> (# State# RealWorld, a #)) -> IO a
IO forall a b. (a -> b) -> a -> b
$ forall d a.
MutableArray# d a -> Int# -> State# d -> (# State# d, a #)
readArray# MutableArray# RealWorld [FastString]
buckets# Int#
j#
  where
    !(FastStringTable FastMutInt
_ FastMutInt
_ Array# (IORef FastStringTableSegment)
segments#) = FastStringTable
stringTable

getFastStringZEncCounter :: IO Int
getFastStringZEncCounter :: IO Int
getFastStringZEncCounter = FastMutInt -> IO Int
readFastMutInt FastMutInt
n_zencs
  where
    !(FastStringTable FastMutInt
_ FastMutInt
n_zencs Array# (IORef FastStringTableSegment)
_) = FastStringTable
stringTable

-- -----------------------------------------------------------------------------
-- Outputting 'FastString's

-- |Outputs a 'FastString' with /no decoding at all/, that is, you
-- get the actual bytes in the 'FastString' written to the 'Handle'.
hPutFS :: Handle -> FastString -> IO ()
hPutFS :: Handle -> FastString -> IO ()
hPutFS Handle
handle FastString
fs = Handle -> ByteString -> IO ()
BS.hPut Handle
handle forall a b. (a -> b) -> a -> b
$ FastString -> ByteString
bytesFS FastString
fs

-- ToDo: we'll probably want an hPutFSLocal, or something, to output
-- in the current locale's encoding (for error messages and suchlike).

-- -----------------------------------------------------------------------------
-- PtrStrings, here for convenience only.

-- | A 'PtrString' is a pointer to some array of Latin-1 encoded chars.
data PtrString = PtrString !(Ptr Word8) !Int

-- | Wrap an unboxed address into a 'PtrString'.
mkPtrString# :: Addr# -> PtrString
{-# INLINE mkPtrString# #-}
mkPtrString# :: Addr# -> PtrString
mkPtrString# Addr#
a# = Ptr Word8 -> Int -> PtrString
PtrString (forall a. Addr# -> Ptr a
Ptr Addr#
a#) (Ptr Word8 -> Int
ptrStrLength (forall a. Addr# -> Ptr a
Ptr Addr#
a#))

-- | Encode a 'String' into a newly allocated 'PtrString' using Latin-1
-- encoding.  The original string must not contain non-Latin-1 characters
-- (above codepoint @0xff@).
{-# INLINE mkPtrString #-}
mkPtrString :: String -> PtrString
mkPtrString :: String -> PtrString
mkPtrString String
s =
 -- we don't use `unsafeDupablePerformIO` here to avoid potential memory leaks
 -- and because someone might be using `eqAddr#` to check for string equality.
 forall a. IO a -> a
unsafePerformIO (do
   let len :: Int
len = forall (t :: * -> *) a. Foldable t => t a -> Int
length String
s
   Ptr Word8
p <- forall a. Int -> IO (Ptr a)
mallocBytes Int
len
   let
     loop :: Int -> String -> IO ()
     loop :: Int -> String -> IO ()
loop !Int
_ []    = forall (m :: * -> *) a. Monad m => a -> m a
return ()
     loop Int
n (Char
c:String
cs) = do
        forall a b. Storable a => Ptr b -> Int -> a -> IO ()
pokeByteOff Ptr Word8
p Int
n (forall a b. (Integral a, Num b) => a -> b
fromIntegral (Char -> Int
ord Char
c) :: Word8)
        Int -> String -> IO ()
loop (Int
1forall a. Num a => a -> a -> a
+Int
n) String
cs
   Int -> String -> IO ()
loop Int
0 String
s
   forall (m :: * -> *) a. Monad m => a -> m a
return (Ptr Word8 -> Int -> PtrString
PtrString Ptr Word8
p Int
len)
 )

-- | Decode a 'PtrString' back into a 'String' using Latin-1 encoding.
-- This does not free the memory associated with 'PtrString'.
unpackPtrString :: PtrString -> String
unpackPtrString :: PtrString -> String
unpackPtrString (PtrString (Ptr Addr#
p#) (I# Int#
n#)) = Addr# -> Int# -> String
unpackNBytes# Addr#
p# Int#
n#

-- | Return the length of a 'PtrString'
lengthPS :: PtrString -> Int
lengthPS :: PtrString -> Int
lengthPS (PtrString Ptr Word8
_ Int
n) = Int
n

-- -----------------------------------------------------------------------------
-- under the carpet

#if !MIN_VERSION_GLASGOW_HASKELL(9,0,0,0)
foreign import ccall unsafe "strlen"
  cstringLength# :: Addr# -> Int#
#endif

ptrStrLength :: Ptr Word8 -> Int
{-# INLINE ptrStrLength #-}
ptrStrLength :: Ptr Word8 -> Int
ptrStrLength (Ptr Addr#
a) = Int# -> Int
I# (Addr# -> Int#
cstringLength# Addr#
a)

{-# NOINLINE sLit #-}
sLit :: String -> PtrString
sLit :: String -> PtrString
sLit String
x  = String -> PtrString
mkPtrString String
x

{-# NOINLINE fsLit #-}
fsLit :: String -> FastString
fsLit :: String -> FastString
fsLit String
x = String -> FastString
mkFastString String
x

{-# RULES "slit"
    forall x . sLit  (unpackCString# x) = mkPtrString#  x #-}
{-# RULES "fslit"
    forall x . fsLit (unpackCString# x) = mkFastString# x #-}