{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

-}

{-# LANGUAGE CPP #-}
{-# LANGUAGE MultiWayIf #-}

-- | Functions for inferring (and simplifying) the context for derived instances.
module GHC.Tc.Deriv.Infer
   ( inferConstraints
   , simplifyInstanceContexts
   )
where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Data.Bag
import GHC.Types.Basic
import GHC.Core.Class
import GHC.Core.DataCon
import GHC.Utils.Error
import GHC.Tc.Utils.Instantiate
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.Pair
import GHC.Builtin.Names
import GHC.Tc.Deriv.Utils
import GHC.Tc.Utils.Env
import GHC.Tc.Deriv.Generate
import GHC.Tc.Deriv.Functor
import GHC.Tc.Deriv.Generics
import GHC.Tc.Utils.TcMType
import GHC.Tc.Utils.Monad
import GHC.Tc.Types.Origin
import GHC.Tc.Types.Constraint
import GHC.Core.Predicate
import GHC.Tc.Utils.TcType
import GHC.Core.TyCon
import GHC.Core.TyCo.Ppr (pprTyVars)
import GHC.Core.Type
import GHC.Tc.Solver
import GHC.Tc.Validity (validDerivPred)
import GHC.Tc.Utils.Unify (buildImplicationFor, checkConstraints)
import GHC.Builtin.Types (typeToTypeKind)
import GHC.Core.Unify (tcUnifyTy)
import GHC.Utils.Misc
import GHC.Types.Var
import GHC.Types.Var.Set

import Control.Monad
import Control.Monad.Trans.Class  (lift)
import Control.Monad.Trans.Reader (ask)
import Data.List                  (sortBy)
import Data.Maybe

----------------------

inferConstraints :: DerivSpecMechanism
                 -> DerivM ([ThetaOrigin], [TyVar], [TcType])
-- inferConstraints figures out the constraints needed for the
-- instance declaration generated by a 'deriving' clause on a
-- data type declaration. It also returns the new in-scope type
-- variables and instance types, in case they were changed due to
-- the presence of functor-like constraints.
-- See Note [Inferring the instance context]

-- e.g. inferConstraints
--        C Int (T [a])    -- Class and inst_tys
--        :RTList a        -- Rep tycon and its arg tys
-- where T [a] ~R :RTList a
--
-- Generate a sufficiently large set of constraints that typechecking the
-- generated method definitions should succeed.   This set will be simplified
-- before being used in the instance declaration
inferConstraints :: DerivSpecMechanism -> DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
inferConstraints DerivSpecMechanism
mechanism
  = do { DerivEnv { denv_tvs :: DerivEnv -> [TcTyVar]
denv_tvs      = [TcTyVar]
tvs
                  , denv_cls :: DerivEnv -> Class
denv_cls      = Class
main_cls
                  , denv_inst_tys :: DerivEnv -> ThetaType
denv_inst_tys = ThetaType
inst_tys } <- forall (m :: * -> *) r. Monad m => ReaderT r m r
ask
       ; Bool
wildcard <- DerivM Bool
isStandaloneWildcardDeriv
       ; let infer_constraints :: DerivM ([ThetaOrigin], [TyVar], [TcType])
             infer_constraints :: DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
infer_constraints =
               case DerivSpecMechanism
mechanism of
                 DerivSpecStock{dsm_stock_dit :: DerivSpecMechanism -> DerivInstTys
dsm_stock_dit = DerivInstTys
dit}
                   -> DerivInstTys -> DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
inferConstraintsStock DerivInstTys
dit
                 DerivSpecMechanism
DerivSpecAnyClass
                   -> DerivM [ThetaOrigin]
-> DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
infer_constraints_simple DerivM [ThetaOrigin]
inferConstraintsAnyclass
                 DerivSpecNewtype { dsm_newtype_dit :: DerivSpecMechanism -> DerivInstTys
dsm_newtype_dit =
                                      DerivInstTys{dit_cls_tys :: DerivInstTys -> ThetaType
dit_cls_tys = ThetaType
cls_tys}
                                  , dsm_newtype_rep_ty :: DerivSpecMechanism -> PredType
dsm_newtype_rep_ty = PredType
rep_ty }
                   -> DerivM [ThetaOrigin]
-> DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
infer_constraints_simple forall a b. (a -> b) -> a -> b
$
                      ThetaType -> PredType -> DerivM [ThetaOrigin]
inferConstraintsCoerceBased ThetaType
cls_tys PredType
rep_ty
                 DerivSpecVia { dsm_via_cls_tys :: DerivSpecMechanism -> ThetaType
dsm_via_cls_tys = ThetaType
cls_tys
                              , dsm_via_ty :: DerivSpecMechanism -> PredType
dsm_via_ty = PredType
via_ty }
                   -> DerivM [ThetaOrigin]
-> DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
infer_constraints_simple forall a b. (a -> b) -> a -> b
$
                      ThetaType -> PredType -> DerivM [ThetaOrigin]
inferConstraintsCoerceBased ThetaType
cls_tys PredType
via_ty

             -- Most deriving strategies do not need to do anything special to
             -- the type variables and arguments to the class in the derived
             -- instance, so they can pass through unchanged. The exception to
             -- this rule is stock deriving. See
             -- Note [Inferring the instance context].
             infer_constraints_simple
               :: DerivM [ThetaOrigin]
               -> DerivM ([ThetaOrigin], [TyVar], [TcType])
             infer_constraints_simple :: DerivM [ThetaOrigin]
-> DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
infer_constraints_simple DerivM [ThetaOrigin]
infer_thetas = do
               [ThetaOrigin]
thetas <- DerivM [ThetaOrigin]
infer_thetas
               forall (f :: * -> *) a. Applicative f => a -> f a
pure ([ThetaOrigin]
thetas, [TcTyVar]
tvs, ThetaType
inst_tys)

             -- Constraints arising from superclasses
             -- See Note [Superclasses of derived instance]
             cls_tvs :: [TcTyVar]
cls_tvs  = Class -> [TcTyVar]
classTyVars Class
main_cls
             sc_constraints :: [ThetaOrigin]
sc_constraints = ASSERT2( equalLength cls_tvs inst_tys
                                     , ppr main_cls <+> ppr inst_tys )
                              [ CtOrigin
-> TypeOrKind
-> [TcTyVar]
-> [TcTyVar]
-> ThetaType
-> ThetaType
-> ThetaOrigin
mkThetaOrigin (Bool -> CtOrigin
mkDerivOrigin Bool
wildcard)
                                              TypeOrKind
TypeLevel [] [] [] forall a b. (a -> b) -> a -> b
$
                                HasCallStack => TCvSubst -> ThetaType -> ThetaType
substTheta TCvSubst
cls_subst (Class -> ThetaType
classSCTheta Class
main_cls) ]
             cls_subst :: TCvSubst
cls_subst = ASSERT( equalLength cls_tvs inst_tys )
                         HasDebugCallStack => [TcTyVar] -> ThetaType -> TCvSubst
zipTvSubst [TcTyVar]
cls_tvs ThetaType
inst_tys

       ; ([ThetaOrigin]
inferred_constraints, [TcTyVar]
tvs', ThetaType
inst_tys') <- DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
infer_constraints
       ; forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$ String -> SDoc -> TcRn ()
traceTc String
"inferConstraints" forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
              [ forall a. Outputable a => a -> SDoc
ppr Class
main_cls SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr ThetaType
inst_tys'
              , forall a. Outputable a => a -> SDoc
ppr [ThetaOrigin]
inferred_constraints
              ]
       ; forall (m :: * -> *) a. Monad m => a -> m a
return ( [ThetaOrigin]
sc_constraints forall a. [a] -> [a] -> [a]
++ [ThetaOrigin]
inferred_constraints
                , [TcTyVar]
tvs', ThetaType
inst_tys' ) }

-- | Like 'inferConstraints', but used only in the case of the @stock@ deriving
-- strategy. The constraints are inferred by inspecting the fields of each data
-- constructor. In this example:
--
-- > data Foo = MkFoo Int Char deriving Show
--
-- We would infer the following constraints ('ThetaOrigin's):
--
-- > (Show Int, Show Char)
--
-- Note that this function also returns the type variables ('TyVar's) and
-- class arguments ('TcType's) for the resulting instance. This is because
-- when deriving 'Functor'-like classes, we must sometimes perform kind
-- substitutions to ensure the resulting instance is well kinded, which may
-- affect the type variables and class arguments. In this example:
--
-- > newtype Compose (f :: k -> Type) (g :: Type -> k) (a :: Type) =
-- >   Compose (f (g a)) deriving stock Functor
--
-- We must unify @k@ with @Type@ in order for the resulting 'Functor' instance
-- to be well kinded, so we return @[]@/@[Type, f, g]@ for the
-- 'TyVar's/'TcType's, /not/ @[k]@/@[k, f, g]@.
-- See Note [Inferring the instance context].
inferConstraintsStock :: DerivInstTys
                      -> DerivM ([ThetaOrigin], [TyVar], [TcType])
inferConstraintsStock :: DerivInstTys -> DerivM ([ThetaOrigin], [TcTyVar], ThetaType)
inferConstraintsStock (DerivInstTys { dit_cls_tys :: DerivInstTys -> ThetaType
dit_cls_tys     = ThetaType
cls_tys
                                    , dit_tc :: DerivInstTys -> TyCon
dit_tc          = TyCon
tc
                                    , dit_tc_args :: DerivInstTys -> ThetaType
dit_tc_args     = ThetaType
tc_args
                                    , dit_rep_tc :: DerivInstTys -> TyCon
dit_rep_tc      = TyCon
rep_tc
                                    , dit_rep_tc_args :: DerivInstTys -> ThetaType
dit_rep_tc_args = ThetaType
rep_tc_args })
  = do DerivEnv { denv_tvs :: DerivEnv -> [TcTyVar]
denv_tvs      = [TcTyVar]
tvs
                , denv_cls :: DerivEnv -> Class
denv_cls      = Class
main_cls
                , denv_inst_tys :: DerivEnv -> ThetaType
denv_inst_tys = ThetaType
inst_tys } <- forall (m :: * -> *) r. Monad m => ReaderT r m r
ask
       Bool
wildcard <- DerivM Bool
isStandaloneWildcardDeriv

       let inst_ty :: PredType
inst_ty    = TyCon -> ThetaType -> PredType
mkTyConApp TyCon
tc ThetaType
tc_args
           tc_binders :: [TyConBinder]
tc_binders = TyCon -> [TyConBinder]
tyConBinders TyCon
rep_tc
           choose_level :: TyConBinder -> TypeOrKind
choose_level TyConBinder
bndr
             | TyConBinder -> Bool
isNamedTyConBinder TyConBinder
bndr = TypeOrKind
KindLevel
             | Bool
otherwise               = TypeOrKind
TypeLevel
           t_or_ks :: [TypeOrKind]
t_or_ks = forall a b. (a -> b) -> [a] -> [b]
map TyConBinder -> TypeOrKind
choose_level [TyConBinder]
tc_binders forall a. [a] -> [a] -> [a]
++ forall a. a -> [a]
repeat TypeOrKind
TypeLevel
              -- want to report *kind* errors when possible

              -- Constraints arising from the arguments of each constructor
           con_arg_constraints
             :: (CtOrigin -> TypeOrKind
                          -> Type
                          -> [([PredOrigin], Maybe TCvSubst)])
             -> ([ThetaOrigin], [TyVar], [TcType])
           con_arg_constraints :: (CtOrigin
 -> TypeOrKind -> PredType -> [([PredOrigin], Maybe TCvSubst)])
-> ([ThetaOrigin], [TcTyVar], ThetaType)
con_arg_constraints CtOrigin
-> TypeOrKind -> PredType -> [([PredOrigin], Maybe TCvSubst)]
get_arg_constraints
             = let ([[PredOrigin]]
predss, [Maybe TCvSubst]
mbSubsts) = forall a b. [(a, b)] -> ([a], [b])
unzip
                     [ ([PredOrigin], Maybe TCvSubst)
preds_and_mbSubst
                     | DataCon
data_con <- TyCon -> [DataCon]
tyConDataCons TyCon
rep_tc
                     , (Int
arg_n, TypeOrKind
arg_t_or_k, Scaled PredType
arg_ty)
                         <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..] [TypeOrKind]
t_or_ks forall a b. (a -> b) -> a -> b
$
                            DataCon -> ThetaType -> [Scaled PredType]
dataConInstOrigArgTys DataCon
data_con ThetaType
all_rep_tc_args
                       -- No constraints for unlifted types
                       -- See Note [Deriving and unboxed types]
                     , Bool -> Bool
not (HasDebugCallStack => PredType -> Bool
isUnliftedType (forall a. Scaled a -> a
irrelevantMult Scaled PredType
arg_ty))
                     , let orig :: CtOrigin
orig = DataCon -> Int -> Bool -> CtOrigin
DerivOriginDC DataCon
data_con Int
arg_n Bool
wildcard
                     , ([PredOrigin], Maybe TCvSubst)
preds_and_mbSubst
                         <- CtOrigin
-> TypeOrKind -> PredType -> [([PredOrigin], Maybe TCvSubst)]
get_arg_constraints CtOrigin
orig TypeOrKind
arg_t_or_k (forall a. Scaled a -> a
irrelevantMult Scaled PredType
arg_ty)
                     ]
                   preds :: [PredOrigin]
preds = forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[PredOrigin]]
predss
                   -- If the constraints require a subtype to be of kind
                   -- (* -> *) (which is the case for functor-like
                   -- constraints), then we explicitly unify the subtype's
                   -- kinds with (* -> *).
                   -- See Note [Inferring the instance context]
                   subst :: TCvSubst
subst        = forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' TCvSubst -> TCvSubst -> TCvSubst
composeTCvSubst
                                         TCvSubst
emptyTCvSubst (forall a. [Maybe a] -> [a]
catMaybes [Maybe TCvSubst]
mbSubsts)
                   unmapped_tvs :: [TcTyVar]
unmapped_tvs = forall a. (a -> Bool) -> [a] -> [a]
filter (\TcTyVar
v -> TcTyVar
v TcTyVar -> TCvSubst -> Bool
`notElemTCvSubst` TCvSubst
subst
                                             Bool -> Bool -> Bool
&& Bool -> Bool
not (TcTyVar
v TcTyVar -> TCvSubst -> Bool
`isInScope` TCvSubst
subst)) [TcTyVar]
tvs
                   (TCvSubst
subst', [TcTyVar]
_)  = HasCallStack => TCvSubst -> [TcTyVar] -> (TCvSubst, [TcTyVar])
substTyVarBndrs TCvSubst
subst [TcTyVar]
unmapped_tvs
                   preds' :: [PredOrigin]
preds'       = forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => TCvSubst -> PredOrigin -> PredOrigin
substPredOrigin TCvSubst
subst') [PredOrigin]
preds
                   inst_tys' :: ThetaType
inst_tys'    = HasCallStack => TCvSubst -> ThetaType -> ThetaType
substTys TCvSubst
subst' ThetaType
inst_tys
                   tvs' :: [TcTyVar]
tvs'         = ThetaType -> [TcTyVar]
tyCoVarsOfTypesWellScoped ThetaType
inst_tys'
               in ([[PredOrigin] -> ThetaOrigin
mkThetaOriginFromPreds [PredOrigin]
preds'], [TcTyVar]
tvs', ThetaType
inst_tys')

           is_generic :: Bool
is_generic  = Class
main_cls forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
genClassKey
           is_generic1 :: Bool
is_generic1 = Class
main_cls forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
gen1ClassKey
           -- is_functor_like: see Note [Inferring the instance context]
           is_functor_like :: Bool
is_functor_like = HasDebugCallStack => PredType -> PredType
tcTypeKind PredType
inst_ty HasDebugCallStack => PredType -> PredType -> Bool
`tcEqKind` PredType
typeToTypeKind
                          Bool -> Bool -> Bool
|| Bool
is_generic1

           get_gen1_constraints :: Class -> CtOrigin -> TypeOrKind -> Type
                                -> [([PredOrigin], Maybe TCvSubst)]
           get_gen1_constraints :: Class
-> CtOrigin
-> TypeOrKind
-> PredType
-> [([PredOrigin], Maybe TCvSubst)]
get_gen1_constraints Class
functor_cls CtOrigin
orig TypeOrKind
t_or_k PredType
ty
              = CtOrigin
-> TypeOrKind
-> Class
-> ThetaType
-> [([PredOrigin], Maybe TCvSubst)]
mk_functor_like_constraints CtOrigin
orig TypeOrKind
t_or_k Class
functor_cls forall a b. (a -> b) -> a -> b
$
                TcTyVar -> PredType -> ThetaType
get_gen1_constrained_tys TcTyVar
last_tv PredType
ty

           get_std_constrained_tys :: CtOrigin -> TypeOrKind -> Type
                                   -> [([PredOrigin], Maybe TCvSubst)]
           get_std_constrained_tys :: CtOrigin
-> TypeOrKind -> PredType -> [([PredOrigin], Maybe TCvSubst)]
get_std_constrained_tys CtOrigin
orig TypeOrKind
t_or_k PredType
ty
               | Bool
is_functor_like
               = CtOrigin
-> TypeOrKind
-> Class
-> ThetaType
-> [([PredOrigin], Maybe TCvSubst)]
mk_functor_like_constraints CtOrigin
orig TypeOrKind
t_or_k Class
main_cls forall a b. (a -> b) -> a -> b
$
                 TcTyVar -> PredType -> ThetaType
deepSubtypesContaining TcTyVar
last_tv PredType
ty
               | Bool
otherwise
               = [( [CtOrigin -> TypeOrKind -> Class -> PredType -> PredOrigin
mk_cls_pred CtOrigin
orig TypeOrKind
t_or_k Class
main_cls PredType
ty]
                  , forall a. Maybe a
Nothing )]

           mk_functor_like_constraints :: CtOrigin -> TypeOrKind
                                       -> Class -> [Type]
                                       -> [([PredOrigin], Maybe TCvSubst)]
           -- 'cls' is usually main_cls (Functor or Traversable etc), but if
           -- main_cls = Generic1, then 'cls' can be Functor; see
           -- get_gen1_constraints
           --
           -- For each type, generate two constraints,
           -- [cls ty, kind(ty) ~ (*->*)], and a kind substitution that results
           -- from unifying  kind(ty) with * -> *. If the unification is
           -- successful, it will ensure that the resulting instance is well
           -- kinded. If not, the second constraint will result in an error
           -- message which points out the kind mismatch.
           -- See Note [Inferring the instance context]
           mk_functor_like_constraints :: CtOrigin
-> TypeOrKind
-> Class
-> ThetaType
-> [([PredOrigin], Maybe TCvSubst)]
mk_functor_like_constraints CtOrigin
orig TypeOrKind
t_or_k Class
cls
              = forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a -> b) -> a -> b
$ \PredType
ty -> let ki :: PredType
ki = HasDebugCallStack => PredType -> PredType
tcTypeKind PredType
ty in
                             ( [ CtOrigin -> TypeOrKind -> Class -> PredType -> PredOrigin
mk_cls_pred CtOrigin
orig TypeOrKind
t_or_k Class
cls PredType
ty
                               , CtOrigin -> TypeOrKind -> PredType -> PredOrigin
mkPredOrigin CtOrigin
orig TypeOrKind
KindLevel
                                   (PredType -> PredType -> PredType
mkPrimEqPred PredType
ki PredType
typeToTypeKind) ]
                             , PredType -> PredType -> Maybe TCvSubst
tcUnifyTy PredType
ki PredType
typeToTypeKind
                             )

           rep_tc_tvs :: [TcTyVar]
rep_tc_tvs      = TyCon -> [TcTyVar]
tyConTyVars TyCon
rep_tc
           last_tv :: TcTyVar
last_tv         = forall a. [a] -> a
last [TcTyVar]
rep_tc_tvs
           -- When we first gather up the constraints to solve, most of them
           -- contain rep_tc_tvs, i.e., the type variables from the derived
           -- datatype's type constructor. We don't want these type variables
           -- to appear in the final instance declaration, so we must
           -- substitute each type variable with its counterpart in the derived
           -- instance. rep_tc_args lists each of these counterpart types in
           -- the same order as the type variables.
           all_rep_tc_args :: ThetaType
all_rep_tc_args = TyCon -> ThetaType -> ThetaType
tyConInstArgTys TyCon
rep_tc ThetaType
rep_tc_args

               -- Stupid constraints
           stupid_constraints :: [ThetaOrigin]
stupid_constraints
             = [ CtOrigin
-> TypeOrKind
-> [TcTyVar]
-> [TcTyVar]
-> ThetaType
-> ThetaType
-> ThetaOrigin
mkThetaOrigin CtOrigin
deriv_origin TypeOrKind
TypeLevel [] [] [] forall a b. (a -> b) -> a -> b
$
                 HasCallStack => TCvSubst -> ThetaType -> ThetaType
substTheta TCvSubst
tc_subst (TyCon -> ThetaType
tyConStupidTheta TyCon
rep_tc) ]
           tc_subst :: TCvSubst
tc_subst = -- See the comment with all_rep_tc_args for an
                      -- explanation of this assertion
                      ASSERT( equalLength rep_tc_tvs all_rep_tc_args )
                      HasDebugCallStack => [TcTyVar] -> ThetaType -> TCvSubst
zipTvSubst [TcTyVar]
rep_tc_tvs ThetaType
all_rep_tc_args

           -- Extra Data constraints
           -- The Data class (only) requires that for
           --    instance (...) => Data (T t1 t2)
           -- IF   t1:*, t2:*
           -- THEN (Data t1, Data t2) are among the (...) constraints
           -- Reason: when the IF holds, we generate a method
           --             dataCast2 f = gcast2 f
           --         and we need the Data constraints to typecheck the method
           extra_constraints :: [ThetaOrigin]
extra_constraints = [[PredOrigin] -> ThetaOrigin
mkThetaOriginFromPreds [PredOrigin]
constrs]
             where
               constrs :: [PredOrigin]
constrs
                 | Class
main_cls forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
dataClassKey
                 , forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (PredType -> Bool
isLiftedTypeKind forall b c a. (b -> c) -> (a -> b) -> a -> c
. HasDebugCallStack => PredType -> PredType
tcTypeKind) ThetaType
rep_tc_args
                 = [ CtOrigin -> TypeOrKind -> Class -> PredType -> PredOrigin
mk_cls_pred CtOrigin
deriv_origin TypeOrKind
t_or_k Class
main_cls PredType
ty
                   | (TypeOrKind
t_or_k, PredType
ty) <- forall a b. [a] -> [b] -> [(a, b)]
zip [TypeOrKind]
t_or_ks ThetaType
rep_tc_args]
                 | Bool
otherwise
                 = []

           mk_cls_pred :: CtOrigin -> TypeOrKind -> Class -> PredType -> PredOrigin
mk_cls_pred CtOrigin
orig TypeOrKind
t_or_k Class
cls PredType
ty
                -- Don't forget to apply to cls_tys' too
              = CtOrigin -> TypeOrKind -> PredType -> PredOrigin
mkPredOrigin CtOrigin
orig TypeOrKind
t_or_k (Class -> ThetaType -> PredType
mkClassPred Class
cls (ThetaType
cls_tys' forall a. [a] -> [a] -> [a]
++ [PredType
ty]))
           cls_tys' :: ThetaType
cls_tys' | Bool
is_generic1 = []
                      -- In the awkward Generic1 case, cls_tys' should be
                      -- empty, since we are applying the class Functor.

                    | Bool
otherwise   = ThetaType
cls_tys

           deriv_origin :: CtOrigin
deriv_origin = Bool -> CtOrigin
mkDerivOrigin Bool
wildcard

       if    -- Generic constraints are easy
          |  Bool
is_generic
           -> forall (m :: * -> *) a. Monad m => a -> m a
return ([], [TcTyVar]
tvs, ThetaType
inst_tys)

             -- Generic1 needs Functor
             -- See Note [Getting base classes]
          |  Bool
is_generic1
           -> ASSERT( rep_tc_tvs `lengthExceeds` 0 )
              -- Generic1 has a single kind variable
              ASSERT( cls_tys `lengthIs` 1 )
              do { Class
functorClass <- forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$ Name -> TcM Class
tcLookupClass Name
functorClassName
                 ; forall (f :: * -> *) a. Applicative f => a -> f a
pure forall a b. (a -> b) -> a -> b
$ (CtOrigin
 -> TypeOrKind -> PredType -> [([PredOrigin], Maybe TCvSubst)])
-> ([ThetaOrigin], [TcTyVar], ThetaType)
con_arg_constraints
                        forall a b. (a -> b) -> a -> b
$ Class
-> CtOrigin
-> TypeOrKind
-> PredType
-> [([PredOrigin], Maybe TCvSubst)]
get_gen1_constraints Class
functorClass }

             -- The others are a bit more complicated
          |  Bool
otherwise
           -> -- See the comment with all_rep_tc_args for an explanation of
              -- this assertion
              ASSERT2( equalLength rep_tc_tvs all_rep_tc_args
                     , ppr main_cls <+> ppr rep_tc
                       $$ ppr rep_tc_tvs $$ ppr all_rep_tc_args )
                do { let ([ThetaOrigin]
arg_constraints, [TcTyVar]
tvs', ThetaType
inst_tys')
                           = (CtOrigin
 -> TypeOrKind -> PredType -> [([PredOrigin], Maybe TCvSubst)])
-> ([ThetaOrigin], [TcTyVar], ThetaType)
con_arg_constraints CtOrigin
-> TypeOrKind -> PredType -> [([PredOrigin], Maybe TCvSubst)]
get_std_constrained_tys
                   ; forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$ String -> SDoc -> TcRn ()
traceTc String
"inferConstraintsStock" forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat
                          [ forall a. Outputable a => a -> SDoc
ppr Class
main_cls SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr ThetaType
inst_tys'
                          , forall a. Outputable a => a -> SDoc
ppr [ThetaOrigin]
arg_constraints
                          ]
                   ; forall (m :: * -> *) a. Monad m => a -> m a
return ( [ThetaOrigin]
stupid_constraints forall a. [a] -> [a] -> [a]
++ [ThetaOrigin]
extra_constraints
                                                 forall a. [a] -> [a] -> [a]
++ [ThetaOrigin]
arg_constraints
                            , [TcTyVar]
tvs', ThetaType
inst_tys') }

-- | Like 'inferConstraints', but used only in the case of @DeriveAnyClass@,
-- which gathers its constraints based on the type signatures of the class's
-- methods instead of the types of the data constructor's field.
--
-- See Note [Gathering and simplifying constraints for DeriveAnyClass]
-- for an explanation of how these constraints are used to determine the
-- derived instance context.
inferConstraintsAnyclass :: DerivM [ThetaOrigin]
inferConstraintsAnyclass :: DerivM [ThetaOrigin]
inferConstraintsAnyclass
  = do { DerivEnv { denv_cls :: DerivEnv -> Class
denv_cls      = Class
cls
                  , denv_inst_tys :: DerivEnv -> ThetaType
denv_inst_tys = ThetaType
inst_tys } <- forall (m :: * -> *) r. Monad m => ReaderT r m r
ask
       ; Bool
wildcard <- DerivM Bool
isStandaloneWildcardDeriv

       ; let gen_dms :: [(TcTyVar, PredType)]
gen_dms = [ (TcTyVar
sel_id, PredType
dm_ty)
                       | (TcTyVar
sel_id, Just (Name
_, GenericDM PredType
dm_ty)) <- Class -> [(TcTyVar, DefMethInfo)]
classOpItems Class
cls ]

             cls_tvs :: [TcTyVar]
cls_tvs = Class -> [TcTyVar]
classTyVars Class
cls

             do_one_meth :: (Id, Type) -> TcM ThetaOrigin
               -- (Id,Type) are the selector Id and the generic default method type
               -- NB: the latter is /not/ quantified over the class variables
               -- See Note [Gathering and simplifying constraints for DeriveAnyClass]
             do_one_meth :: (TcTyVar, PredType) -> TcM ThetaOrigin
do_one_meth (TcTyVar
sel_id, PredType
gen_dm_ty)
               = do { let ([TcTyVar]
sel_tvs, PredType
_cls_pred, PredType
meth_ty)
                                   = PredType -> ([TcTyVar], PredType, PredType)
tcSplitMethodTy (TcTyVar -> PredType
varType TcTyVar
sel_id)
                          meth_ty' :: PredType
meth_ty' = HasCallStack => [TcTyVar] -> ThetaType -> PredType -> PredType
substTyWith [TcTyVar]
sel_tvs ThetaType
inst_tys PredType
meth_ty
                          ([TcTyVar]
meth_tvs, ThetaType
meth_theta, PredType
meth_tau)
                                   = PredType -> ([TcTyVar], ThetaType, PredType)
tcSplitNestedSigmaTys PredType
meth_ty'

                          gen_dm_ty' :: PredType
gen_dm_ty' = HasCallStack => [TcTyVar] -> ThetaType -> PredType -> PredType
substTyWith [TcTyVar]
cls_tvs ThetaType
inst_tys PredType
gen_dm_ty
                          ([TcTyVar]
dm_tvs, ThetaType
dm_theta, PredType
dm_tau)
                                     = PredType -> ([TcTyVar], ThetaType, PredType)
tcSplitNestedSigmaTys PredType
gen_dm_ty'
                          tau_eq :: PredType
tau_eq     = PredType -> PredType -> PredType
mkPrimEqPred PredType
meth_tau PredType
dm_tau
                    ; forall (m :: * -> *) a. Monad m => a -> m a
return (CtOrigin
-> TypeOrKind
-> [TcTyVar]
-> [TcTyVar]
-> ThetaType
-> ThetaType
-> ThetaOrigin
mkThetaOrigin (Bool -> CtOrigin
mkDerivOrigin Bool
wildcard) TypeOrKind
TypeLevel
                                [TcTyVar]
meth_tvs [TcTyVar]
dm_tvs ThetaType
meth_theta (PredType
tau_eqforall a. a -> [a] -> [a]
:ThetaType
dm_theta)) }

       ; forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (TcTyVar, PredType) -> TcM ThetaOrigin
do_one_meth [(TcTyVar, PredType)]
gen_dms }

-- Like 'inferConstraints', but used only for @GeneralizedNewtypeDeriving@ and
-- @DerivingVia@. Since both strategies generate code involving 'coerce', the
-- inferred constraints set up the scaffolding needed to typecheck those uses
-- of 'coerce'. In this example:
--
-- > newtype Age = MkAge Int deriving newtype Num
--
-- We would infer the following constraints ('ThetaOrigin's):
--
-- > (Num Int, Coercible Age Int)
inferConstraintsCoerceBased :: [Type] -> Type
                            -> DerivM [ThetaOrigin]
inferConstraintsCoerceBased :: ThetaType -> PredType -> DerivM [ThetaOrigin]
inferConstraintsCoerceBased ThetaType
cls_tys PredType
rep_ty = do
  DerivEnv { denv_tvs :: DerivEnv -> [TcTyVar]
denv_tvs      = [TcTyVar]
tvs
           , denv_cls :: DerivEnv -> Class
denv_cls      = Class
cls
           , denv_inst_tys :: DerivEnv -> ThetaType
denv_inst_tys = ThetaType
inst_tys } <- forall (m :: * -> *) r. Monad m => ReaderT r m r
ask
  Bool
sa_wildcard <- DerivM Bool
isStandaloneWildcardDeriv
  let -- The following functions are polymorphic over the representation
      -- type, since we might either give it the underlying type of a
      -- newtype (for GeneralizedNewtypeDeriving) or a @via@ type
      -- (for DerivingVia).
      rep_tys :: PredType -> ThetaType
rep_tys PredType
ty  = ThetaType
cls_tys forall a. [a] -> [a] -> [a]
++ [PredType
ty]
      rep_pred :: PredType -> PredType
rep_pred PredType
ty = Class -> ThetaType -> PredType
mkClassPred Class
cls (PredType -> ThetaType
rep_tys PredType
ty)
      rep_pred_o :: PredType -> PredOrigin
rep_pred_o PredType
ty = CtOrigin -> TypeOrKind -> PredType -> PredOrigin
mkPredOrigin CtOrigin
deriv_origin TypeOrKind
TypeLevel (PredType -> PredType
rep_pred PredType
ty)
              -- rep_pred is the representation dictionary, from where
              -- we are going to get all the methods for the final
              -- dictionary
      deriv_origin :: CtOrigin
deriv_origin = Bool -> CtOrigin
mkDerivOrigin Bool
sa_wildcard

      -- Next we collect constraints for the class methods
      -- If there are no methods, we don't need any constraints
      -- Otherwise we need (C rep_ty), for the representation methods,
      -- and constraints to coerce each individual method
      meth_preds :: Type -> [PredOrigin]
      meth_preds :: PredType -> [PredOrigin]
meth_preds PredType
ty
        | forall (t :: * -> *) a. Foldable t => t a -> Bool
null [TcTyVar]
meths = [] -- No methods => no constraints
                          -- (#12814)
        | Bool
otherwise = PredType -> PredOrigin
rep_pred_o PredType
ty forall a. a -> [a] -> [a]
: PredType -> [PredOrigin]
coercible_constraints PredType
ty
      meths :: [TcTyVar]
meths = Class -> [TcTyVar]
classMethods Class
cls
      coercible_constraints :: PredType -> [PredOrigin]
coercible_constraints PredType
ty
        = [ CtOrigin -> TypeOrKind -> PredType -> PredOrigin
mkPredOrigin (TcTyVar -> PredType -> PredType -> Bool -> CtOrigin
DerivOriginCoerce TcTyVar
meth PredType
t1 PredType
t2 Bool
sa_wildcard)
                         TypeOrKind
TypeLevel (PredType -> PredType -> PredType
mkReprPrimEqPred PredType
t1 PredType
t2)
          | TcTyVar
meth <- [TcTyVar]
meths
          , let (Pair PredType
t1 PredType
t2) = Class
-> [TcTyVar] -> ThetaType -> PredType -> TcTyVar -> Pair PredType
mkCoerceClassMethEqn Class
cls [TcTyVar]
tvs
                                       ThetaType
inst_tys PredType
ty TcTyVar
meth ]

      all_thetas :: Type -> [ThetaOrigin]
      all_thetas :: PredType -> [ThetaOrigin]
all_thetas PredType
ty = [[PredOrigin] -> ThetaOrigin
mkThetaOriginFromPreds forall a b. (a -> b) -> a -> b
$ PredType -> [PredOrigin]
meth_preds PredType
ty]

  forall (f :: * -> *) a. Applicative f => a -> f a
pure (PredType -> [ThetaOrigin]
all_thetas PredType
rep_ty)

{- Note [Inferring the instance context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There are two sorts of 'deriving', as represented by the two constructors
for DerivContext:

  * InferContext mb_wildcard: This can either be:
    - The deriving clause for a data type.
        (e.g, data T a = T1 a deriving( Eq ))
      In this case, mb_wildcard = Nothing.
    - A standalone declaration with an extra-constraints wildcard
        (e.g., deriving instance _ => Eq (Foo a))
      In this case, mb_wildcard = Just loc, where loc is the location
      of the extra-constraints wildcard.

    Here we must infer an instance context,
    and generate instance declaration
      instance Eq a => Eq (T a) where ...

  * SupplyContext theta: standalone deriving
      deriving instance Eq a => Eq (T a)
    Here we only need to fill in the bindings;
    the instance context (theta) is user-supplied

For the InferContext case, we must figure out the
instance context (inferConstraintsStock). Suppose we are inferring
the instance context for
    C t1 .. tn (T s1 .. sm)
There are two cases

  * (T s1 .. sm) :: *         (the normal case)
    Then we behave like Eq and guess (C t1 .. tn t)
    for each data constructor arg of type t.  More
    details below.

  * (T s1 .. sm) :: * -> *    (the functor-like case)
    Then we behave like Functor.

In both cases we produce a bunch of un-simplified constraints
and them simplify them in simplifyInstanceContexts; see
Note [Simplifying the instance context].

In the functor-like case, we may need to unify some kind variables with * in
order for the generated instance to be well-kinded. An example from #10524:

  newtype Compose (f :: k2 -> *) (g :: k1 -> k2) (a :: k1)
    = Compose (f (g a)) deriving Functor

Earlier in the deriving pipeline, GHC unifies the kind of Compose f g
(k1 -> *) with the kind of Functor's argument (* -> *), so k1 := *. But this
alone isn't enough, since k2 wasn't unified with *:

  instance (Functor (f :: k2 -> *), Functor (g :: * -> k2)) =>
    Functor (Compose f g) where ...

The two Functor constraints are ill-kinded. To ensure this doesn't happen, we:

  1. Collect all of a datatype's subtypes which require functor-like
     constraints.
  2. For each subtype, create a substitution by unifying the subtype's kind
     with (* -> *).
  3. Compose all the substitutions into one, then apply that substitution to
     all of the in-scope type variables and the instance types.

Note [Getting base classes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Functor and Typeable are defined in package 'base', and that is not available
when compiling 'ghc-prim'.  So we must be careful that 'deriving' for stuff in
ghc-prim does not use Functor or Typeable implicitly via these lookups.

Note [Deriving and unboxed types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We have some special hacks to support things like
   data T = MkT Int# deriving ( Show )

Specifically, we use GHC.Tc.Deriv.Generate.box to box the Int# into an Int
(which we know how to show), and append a '#'. Parentheses are not required
for unboxed values (`MkT -3#` is a valid expression).

Note [Superclasses of derived instance]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In general, a derived instance decl needs the superclasses of the derived
class too.  So if we have
        data T a = ...deriving( Ord )
then the initial context for Ord (T a) should include Eq (T a).  Often this is
redundant; we'll also generate an Ord constraint for each constructor argument,
and that will probably generate enough constraints to make the Eq (T a) constraint
be satisfied too.  But not always; consider:

 data S a = S
 instance Eq (S a)
 instance Ord (S a)

 data T a = MkT (S a) deriving( Ord )
 instance Num a => Eq (T a)

The derived instance for (Ord (T a)) must have a (Num a) constraint!
Similarly consider:
        data T a = MkT deriving( Data )
Here there *is* no argument field, but we must nevertheless generate
a context for the Data instances:
        instance Typeable a => Data (T a) where ...


************************************************************************
*                                                                      *
         Finding the fixed point of deriving equations
*                                                                      *
************************************************************************

Note [Simplifying the instance context]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider

        data T a b = C1 (Foo a) (Bar b)
                   | C2 Int (T b a)
                   | C3 (T a a)
                   deriving (Eq)

We want to come up with an instance declaration of the form

        instance (Ping a, Pong b, ...) => Eq (T a b) where
                x == y = ...

It is pretty easy, albeit tedious, to fill in the code "...".  The
trick is to figure out what the context for the instance decl is,
namely Ping, Pong and friends.

Let's call the context reqd for the T instance of class C at types
(a,b, ...)  C (T a b).  Thus:

        Eq (T a b) = (Ping a, Pong b, ...)

Now we can get a (recursive) equation from the data decl.  This part
is done by inferConstraintsStock.

        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3


Foo and Bar may have explicit instances for Eq, in which case we can
just substitute for them.  Alternatively, either or both may have
their Eq instances given by deriving clauses, in which case they
form part of the system of equations.

Now all we need do is simplify and solve the equations, iterating to
find the least fixpoint.  This is done by simplifyInstanceConstraints.
Notice that the order of the arguments can
switch around, as here in the recursive calls to T.

Let's suppose Eq (Foo a) = Eq a, and Eq (Bar b) = Ping b.

We start with:

        Eq (T a b) = {}         -- The empty set

Next iteration:
        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3

        After simplification:
                   = Eq a u Ping b u {} u {} u {}
                   = Eq a u Ping b

Next iteration:

        Eq (T a b) = Eq (Foo a) u Eq (Bar b)    -- From C1
                   u Eq (T b a) u Eq Int        -- From C2
                   u Eq (T a a)                 -- From C3

        After simplification:
                   = Eq a u Ping b
                   u (Eq b u Ping a)
                   u (Eq a u Ping a)

                   = Eq a u Ping b u Eq b u Ping a

The next iteration gives the same result, so this is the fixpoint.  We
need to make a canonical form of the RHS to ensure convergence.  We do
this by simplifying the RHS to a form in which

        - the classes constrain only tyvars
        - the list is sorted by tyvar (major key) and then class (minor key)
        - no duplicates, of course

Note [Deterministic simplifyInstanceContexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Canonicalisation uses nonDetCmpType which is nondeterministic. Sorting
with nonDetCmpType puts the returned lists in a nondeterministic order.
If we were to return them, we'd get class constraints in
nondeterministic order.

Consider:

  data ADT a b = Z a b deriving Eq

The generated code could be either:

  instance (Eq a, Eq b) => Eq (Z a b) where

Or:

  instance (Eq b, Eq a) => Eq (Z a b) where

To prevent the order from being nondeterministic we only
canonicalize when comparing and return them in the same order as
simplifyDeriv returned them.
See also Note [nonDetCmpType nondeterminism]
-}


simplifyInstanceContexts :: [DerivSpec [ThetaOrigin]]
                         -> TcM [DerivSpec ThetaType]
-- Used only for deriving clauses or standalone deriving with an
-- extra-constraints wildcard (InferContext)
-- See Note [Simplifying the instance context]

simplifyInstanceContexts :: [DerivSpec [ThetaOrigin]] -> TcM [DerivSpec ThetaType]
simplifyInstanceContexts [] = forall (m :: * -> *) a. Monad m => a -> m a
return []

simplifyInstanceContexts [DerivSpec [ThetaOrigin]]
infer_specs
  = do  { String -> SDoc -> TcRn ()
traceTc String
"simplifyInstanceContexts" forall a b. (a -> b) -> a -> b
$ [SDoc] -> SDoc
vcat (forall a b. (a -> b) -> [a] -> [b]
map forall theta. Outputable theta => DerivSpec theta -> SDoc
pprDerivSpec [DerivSpec [ThetaOrigin]]
infer_specs)
        ; Int -> [ThetaType] -> TcM [DerivSpec ThetaType]
iterate_deriv Int
1 [ThetaType]
initial_solutions }
  where
    ------------------------------------------------------------------
        -- The initial solutions for the equations claim that each
        -- instance has an empty context; this solution is certainly
        -- in canonical form.
    initial_solutions :: [ThetaType]
    initial_solutions :: [ThetaType]
initial_solutions = [ [] | DerivSpec [ThetaOrigin]
_ <- [DerivSpec [ThetaOrigin]]
infer_specs ]

    ------------------------------------------------------------------
        -- iterate_deriv calculates the next batch of solutions,
        -- compares it with the current one; finishes if they are the
        -- same, otherwise recurses with the new solutions.
        -- It fails if any iteration fails
    iterate_deriv :: Int -> [ThetaType] -> TcM [DerivSpec ThetaType]
    iterate_deriv :: Int -> [ThetaType] -> TcM [DerivSpec ThetaType]
iterate_deriv Int
n [ThetaType]
current_solns
      | Int
n forall a. Ord a => a -> a -> Bool
> Int
20  -- Looks as if we are in an infinite loop
                -- This can happen if we have -XUndecidableInstances
                -- (See GHC.Tc.Solver.tcSimplifyDeriv.)
      = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"solveDerivEqns: probable loop"
                 ([SDoc] -> SDoc
vcat (forall a b. (a -> b) -> [a] -> [b]
map forall theta. Outputable theta => DerivSpec theta -> SDoc
pprDerivSpec [DerivSpec [ThetaOrigin]]
infer_specs) SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [ThetaType]
current_solns)
      | Bool
otherwise
      = do {      -- Extend the inst info from the explicit instance decls
                  -- with the current set of solutions, and simplify each RHS
             [ClsInst]
inst_specs <- forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
zipWithM forall theta. ThetaType -> DerivSpec theta -> TcM ClsInst
newDerivClsInst [ThetaType]
current_solns [DerivSpec [ThetaOrigin]]
infer_specs
           ; [ThetaType]
new_solns <- forall r. TcM r -> TcM r
checkNoErrs forall a b. (a -> b) -> a -> b
$
                          forall a. [ClsInst] -> TcM a -> TcM a
extendLocalInstEnv [ClsInst]
inst_specs forall a b. (a -> b) -> a -> b
$
                          forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM DerivSpec [ThetaOrigin] -> TcM ThetaType
gen_soln [DerivSpec [ThetaOrigin]]
infer_specs

           ; if ([ThetaType]
current_solns [ThetaType] -> [ThetaType] -> Bool
`eqSolution` [ThetaType]
new_solns) then
                forall (m :: * -> *) a. Monad m => a -> m a
return [ DerivSpec [ThetaOrigin]
spec { ds_theta :: ThetaType
ds_theta = ThetaType
soln }
                       | (DerivSpec [ThetaOrigin]
spec, ThetaType
soln) <- forall a b. [a] -> [b] -> [(a, b)]
zip [DerivSpec [ThetaOrigin]]
infer_specs [ThetaType]
current_solns ]
             else
                Int -> [ThetaType] -> TcM [DerivSpec ThetaType]
iterate_deriv (Int
nforall a. Num a => a -> a -> a
+Int
1) [ThetaType]
new_solns }

    eqSolution :: [ThetaType] -> [ThetaType] -> Bool
eqSolution [ThetaType]
a [ThetaType]
b = forall a. (a -> a -> Bool) -> [a] -> [a] -> Bool
eqListBy (forall a. (a -> a -> Bool) -> [a] -> [a] -> Bool
eqListBy PredType -> PredType -> Bool
eqType) ([ThetaType] -> [ThetaType]
canSolution [ThetaType]
a) ([ThetaType] -> [ThetaType]
canSolution [ThetaType]
b)
       -- Canonicalise for comparison
       -- See Note [Deterministic simplifyInstanceContexts]
    canSolution :: [ThetaType] -> [ThetaType]
canSolution = forall a b. (a -> b) -> [a] -> [b]
map (forall a. (a -> a -> Ordering) -> [a] -> [a]
sortBy PredType -> PredType -> Ordering
nonDetCmpType)
    ------------------------------------------------------------------
    gen_soln :: DerivSpec [ThetaOrigin] -> TcM ThetaType
    gen_soln :: DerivSpec [ThetaOrigin] -> TcM ThetaType
gen_soln (DS { ds_loc :: forall theta. DerivSpec theta -> SrcSpan
ds_loc = SrcSpan
loc, ds_tvs :: forall theta. DerivSpec theta -> [TcTyVar]
ds_tvs = [TcTyVar]
tyvars
                 , ds_cls :: forall theta. DerivSpec theta -> Class
ds_cls = Class
clas, ds_tys :: forall theta. DerivSpec theta -> ThetaType
ds_tys = ThetaType
inst_tys, ds_theta :: forall theta. DerivSpec theta -> theta
ds_theta = [ThetaOrigin]
deriv_rhs })
      = forall a. SrcSpan -> TcRn a -> TcRn a
setSrcSpan SrcSpan
loc  forall a b. (a -> b) -> a -> b
$
        forall a. SDoc -> TcM a -> TcM a
addErrCtxt (PredType -> SDoc
derivInstCtxt PredType
the_pred) forall a b. (a -> b) -> a -> b
$
        do { ThetaType
theta <- PredType -> [TcTyVar] -> [ThetaOrigin] -> TcM ThetaType
simplifyDeriv PredType
the_pred [TcTyVar]
tyvars [ThetaOrigin]
deriv_rhs
                -- checkValidInstance tyvars theta clas inst_tys
                -- Not necessary; see Note [Exotic derived instance contexts]

           ; String -> SDoc -> TcRn ()
traceTc String
"GHC.Tc.Deriv" (forall a. Outputable a => a -> SDoc
ppr [ThetaOrigin]
deriv_rhs SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr ThetaType
theta)
                -- Claim: the result instance declaration is guaranteed valid
                -- Hence no need to call:
                --   checkValidInstance tyvars theta clas inst_tys
           ; forall (m :: * -> *) a. Monad m => a -> m a
return ThetaType
theta }
      where
        the_pred :: PredType
the_pred = Class -> ThetaType -> PredType
mkClassPred Class
clas ThetaType
inst_tys

derivInstCtxt :: PredType -> SDoc
derivInstCtxt :: PredType -> SDoc
derivInstCtxt PredType
pred
  = String -> SDoc
text String
"When deriving the instance for" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
parens (forall a. Outputable a => a -> SDoc
ppr PredType
pred)

{-
***********************************************************************************
*                                                                                 *
*            Simplify derived constraints
*                                                                                 *
***********************************************************************************
-}

-- | Given @instance (wanted) => C inst_ty@, simplify 'wanted' as much
-- as possible. Fail if not possible.
simplifyDeriv :: PredType -- ^ @C inst_ty@, head of the instance we are
                          -- deriving.  Only used for SkolemInfo.
              -> [TyVar]  -- ^ The tyvars bound by @inst_ty@.
              -> [ThetaOrigin] -- ^ Given and wanted constraints
              -> TcM ThetaType -- ^ Needed constraints (after simplification),
                               -- i.e. @['PredType']@.
simplifyDeriv :: PredType -> [TcTyVar] -> [ThetaOrigin] -> TcM ThetaType
simplifyDeriv PredType
pred [TcTyVar]
tvs [ThetaOrigin]
thetas
  = do { (TCvSubst
skol_subst, [TcTyVar]
tvs_skols) <- [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
tcInstSkolTyVars [TcTyVar]
tvs -- Skolemize
                -- The constraint solving machinery
                -- expects *TcTyVars* not TyVars.
                -- We use *non-overlappable* (vanilla) skolems
                -- See Note [Overlap and deriving]

       ; let skol_set :: VarSet
skol_set  = [TcTyVar] -> VarSet
mkVarSet [TcTyVar]
tvs_skols
             skol_info :: SkolemInfo
skol_info = PredType -> SkolemInfo
DerivSkol PredType
pred
             doc :: SDoc
doc = String -> SDoc
text String
"deriving" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
parens (forall a. Outputable a => a -> SDoc
ppr PredType
pred)

             mk_given_ev :: PredType -> TcM EvVar
             mk_given_ev :: PredType -> TcM TcTyVar
mk_given_ev PredType
given =
               let given_pred :: PredType
given_pred = HasCallStack => TCvSubst -> PredType -> PredType
substTy TCvSubst
skol_subst PredType
given
               in forall gbl lcl. PredType -> TcRnIf gbl lcl TcTyVar
newEvVar PredType
given_pred

             emit_wanted_constraints :: [TyVar] -> [PredOrigin] -> TcM ()
             emit_wanted_constraints :: [TcTyVar] -> [PredOrigin] -> TcRn ()
emit_wanted_constraints [TcTyVar]
metas_to_be [PredOrigin]
preds
               = do { -- We instantiate metas_to_be with fresh meta type
                      -- variables. Currently, these can only be type variables
                      -- quantified in generic default type signatures.
                      -- See Note [Gathering and simplifying constraints for
                      -- DeriveAnyClass]
                      (TCvSubst
meta_subst, [TcTyVar]
_meta_tvs) <- [TcTyVar] -> TcM (TCvSubst, [TcTyVar])
newMetaTyVars [TcTyVar]
metas_to_be

                    -- Now make a constraint for each of the instantiated predicates
                    ; let wanted_subst :: TCvSubst
wanted_subst = TCvSubst
skol_subst TCvSubst -> TCvSubst -> TCvSubst
`unionTCvSubst` TCvSubst
meta_subst
                          mk_wanted_ct :: PredOrigin -> IOEnv (Env TcGblEnv TcLclEnv) Ct
mk_wanted_ct (PredOrigin PredType
wanted CtOrigin
orig TypeOrKind
t_or_k)
                            = do { CtEvidence
ev <- CtOrigin -> Maybe TypeOrKind -> PredType -> TcM CtEvidence
newWanted CtOrigin
orig (forall a. a -> Maybe a
Just TypeOrKind
t_or_k) forall a b. (a -> b) -> a -> b
$
                                         TCvSubst -> PredType -> PredType
substTyUnchecked TCvSubst
wanted_subst PredType
wanted
                                 ; forall (m :: * -> *) a. Monad m => a -> m a
return (CtEvidence -> Ct
mkNonCanonical CtEvidence
ev) }
                    ; [Ct]
cts <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM PredOrigin -> IOEnv (Env TcGblEnv TcLclEnv) Ct
mk_wanted_ct [PredOrigin]
preds

                    -- And emit them into the monad
                    ; Cts -> TcRn ()
emitSimples ([Ct] -> Cts
listToCts [Ct]
cts) }

             -- Create the implications we need to solve. For stock and newtype
             -- deriving, these implication constraints will be simple class
             -- constraints like (C a, Ord b).
             -- But with DeriveAnyClass, we make an implication constraint.
             -- See Note [Gathering and simplifying constraints for DeriveAnyClass]
             mk_wanteds :: ThetaOrigin -> TcM WantedConstraints
             mk_wanteds :: ThetaOrigin -> TcM WantedConstraints
mk_wanteds (ThetaOrigin { to_anyclass_skols :: ThetaOrigin -> [TcTyVar]
to_anyclass_skols  = [TcTyVar]
ac_skols
                                     , to_anyclass_metas :: ThetaOrigin -> [TcTyVar]
to_anyclass_metas  = [TcTyVar]
ac_metas
                                     , to_anyclass_givens :: ThetaOrigin -> ThetaType
to_anyclass_givens = ThetaType
ac_givens
                                     , to_wanted_origins :: ThetaOrigin -> [PredOrigin]
to_wanted_origins  = [PredOrigin]
preds })
               = do { [TcTyVar]
ac_given_evs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM PredType -> TcM TcTyVar
mk_given_ev ThetaType
ac_givens
                    ; ((TcEvBinds, ())
_, WantedConstraints
wanteds)
                        <- forall a. TcM a -> TcM (a, WantedConstraints)
captureConstraints forall a b. (a -> b) -> a -> b
$
                           forall result.
SkolemInfo
-> [TcTyVar] -> [TcTyVar] -> TcM result -> TcM (TcEvBinds, result)
checkConstraints SkolemInfo
skol_info [TcTyVar]
ac_skols [TcTyVar]
ac_given_evs forall a b. (a -> b) -> a -> b
$
                              -- The checkConstraints bumps the TcLevel, and
                              -- wraps the wanted constraints in an implication,
                              -- when (but only when) necessary
                           [TcTyVar] -> [PredOrigin] -> TcRn ()
emit_wanted_constraints [TcTyVar]
ac_metas [PredOrigin]
preds
                    ; forall (f :: * -> *) a. Applicative f => a -> f a
pure WantedConstraints
wanteds }

       -- See [STEP DAC BUILD]
       -- Generate the implication constraints, one for each method, to solve
       -- with the skolemized variables.  Start "one level down" because
       -- we are going to wrap the result in an implication with tvs_skols,
       -- in step [DAC RESIDUAL]
       ; (TcLevel
tc_lvl, [WantedConstraints]
wanteds) <- forall a. TcM a -> TcM (TcLevel, a)
pushTcLevelM forall a b. (a -> b) -> a -> b
$
                              forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM ThetaOrigin -> TcM WantedConstraints
mk_wanteds [ThetaOrigin]
thetas

       ; String -> SDoc -> TcRn ()
traceTc String
"simplifyDeriv inputs" forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ [TcTyVar] -> SDoc
pprTyVars [TcTyVar]
tvs SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [ThetaOrigin]
thetas SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr [WantedConstraints]
wanteds, SDoc
doc ]

       -- See [STEP DAC SOLVE]
       -- Simplify the constraints, starting at the same level at which
       -- they are generated (c.f. the call to runTcSWithEvBinds in
       -- simplifyInfer)
       ; WantedConstraints
solved_wanteds <- forall a. TcLevel -> TcM a -> TcM a
setTcLevel TcLevel
tc_lvl   forall a b. (a -> b) -> a -> b
$
                           forall a. TcS a -> TcM a
runTcSDeriveds      forall a b. (a -> b) -> a -> b
$
                           WantedConstraints -> TcS WantedConstraints
solveWantedsAndDrop forall a b. (a -> b) -> a -> b
$
                           [WantedConstraints] -> WantedConstraints
unionsWC [WantedConstraints]
wanteds

       -- It's not yet zonked!  Obviously zonk it before peering at it
       ; WantedConstraints
solved_wanteds <- WantedConstraints -> TcM WantedConstraints
zonkWC WantedConstraints
solved_wanteds

       -- See [STEP DAC HOIST]
       -- From the simplified constraints extract a subset 'good' that will
       -- become the context 'min_theta' for the derived instance.
       ; let residual_simple :: Cts
residual_simple = Bool -> WantedConstraints -> Cts
approximateWC Bool
True WantedConstraints
solved_wanteds
             good :: Bag PredType
good = forall a b. (a -> Maybe b) -> Bag a -> Bag b
mapMaybeBag Ct -> Maybe PredType
get_good Cts
residual_simple

             -- Returns @Just p@ (where @p@ is the type of the Ct) if a Ct is
             -- suitable to be inferred in the context of a derived instance.
             -- Returns @Nothing@ if the Ct is too exotic.
             -- See Note [Exotic derived instance contexts] for what
             -- constitutes an exotic constraint.
             get_good :: Ct -> Maybe PredType
             get_good :: Ct -> Maybe PredType
get_good Ct
ct | VarSet -> PredType -> Bool
validDerivPred VarSet
skol_set PredType
p
                         , Ct -> Bool
isWantedCt Ct
ct
                         = forall a. a -> Maybe a
Just PredType
p
                          -- TODO: This is wrong
                          -- NB re 'isWantedCt': residual_wanted may contain
                          -- unsolved CtDerived and we stick them into the
                          -- bad set so that reportUnsolved may decide what
                          -- to do with them
                         | Bool
otherwise
                         = forall a. Maybe a
Nothing
                           where p :: PredType
p = Ct -> PredType
ctPred Ct
ct

       ; String -> SDoc -> TcRn ()
traceTc String
"simplifyDeriv outputs" forall a b. (a -> b) -> a -> b
$
         [SDoc] -> SDoc
vcat [ forall a. Outputable a => a -> SDoc
ppr [TcTyVar]
tvs_skols, forall a. Outputable a => a -> SDoc
ppr Cts
residual_simple, forall a. Outputable a => a -> SDoc
ppr Bag PredType
good ]

       -- Return the good unsolved constraints (unskolemizing on the way out.)
       ; let min_theta :: ThetaType
min_theta = forall a. (a -> PredType) -> [a] -> [a]
mkMinimalBySCs forall a. a -> a
id (forall a. Bag a -> [a]
bagToList Bag PredType
good)
             -- An important property of mkMinimalBySCs (used above) is that in
             -- addition to removing constraints that are made redundant by
             -- superclass relationships, it also removes _duplicate_
             -- constraints.
             -- See Note [Gathering and simplifying constraints for
             --           DeriveAnyClass]
             subst_skol :: TCvSubst
subst_skol = HasDebugCallStack => [TcTyVar] -> ThetaType -> TCvSubst
zipTvSubst [TcTyVar]
tvs_skols forall a b. (a -> b) -> a -> b
$ [TcTyVar] -> ThetaType
mkTyVarTys [TcTyVar]
tvs
                          -- The reverse substitution (sigh)

       -- See [STEP DAC RESIDUAL]
       -- Ensure that min_theta is enough to solve /all/ the constraints in
       -- solved_wanteds, by solving the implication constraint
       --
       --    forall tvs. min_theta => solved_wanteds
       ; [TcTyVar]
min_theta_vars <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM forall gbl lcl. PredType -> TcRnIf gbl lcl TcTyVar
newEvVar ThetaType
min_theta
       ; (Bag Implication
leftover_implic, TcEvBinds
_)
           <- TcLevel
-> SkolemInfo
-> [TcTyVar]
-> [TcTyVar]
-> WantedConstraints
-> TcM (Bag Implication, TcEvBinds)
buildImplicationFor TcLevel
tc_lvl SkolemInfo
skol_info [TcTyVar]
tvs_skols
                                  [TcTyVar]
min_theta_vars WantedConstraints
solved_wanteds
       -- This call to simplifyTop is purely for error reporting
       -- See Note [Error reporting for deriving clauses]
       -- See also Note [Exotic derived instance contexts], which are caught
       -- in this line of code.
       ; Bag Implication -> TcRn ()
simplifyTopImplic Bag Implication
leftover_implic

       ; forall (m :: * -> *) a. Monad m => a -> m a
return (HasCallStack => TCvSubst -> ThetaType -> ThetaType
substTheta TCvSubst
subst_skol ThetaType
min_theta) }

{-
Note [Overlap and deriving]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider some overlapping instances:
  instance Show a => Show [a] where ..
  instance Show [Char] where ...

Now a data type with deriving:
  data T a = MkT [a] deriving( Show )

We want to get the derived instance
  instance Show [a] => Show (T a) where...
and NOT
  instance Show a => Show (T a) where...
so that the (Show (T Char)) instance does the Right Thing

It's very like the situation when we're inferring the type
of a function
   f x = show [x]
and we want to infer
   f :: Show [a] => a -> String

BOTTOM LINE: use vanilla, non-overlappable skolems when inferring
             the context for the derived instance.
             Hence tcInstSkolTyVars not tcInstSuperSkolTyVars

Note [Gathering and simplifying constraints for DeriveAnyClass]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DeriveAnyClass works quite differently from stock and newtype deriving in
the way it gathers and simplifies constraints to be used in a derived
instance's context. Stock and newtype deriving gather constraints by looking
at the data constructors of the data type for which we are deriving an
instance. But DeriveAnyClass doesn't need to know about a data type's
definition at all!

To see why, consider this example of DeriveAnyClass:

  class Foo a where
    bar :: forall b. Ix b => a -> b -> String
    default bar :: (Show a, Ix c) => a -> c -> String
    bar x y = show x ++ show (range (y,y))

    baz :: Eq a => a -> a -> Bool
    default baz :: (Ord a, Show a) => a -> a -> Bool
    baz x y = compare x y == EQ

Because 'bar' and 'baz' have default signatures, this generates a top-level
definition for these generic default methods

  $gdm_bar :: forall a. Foo a
           => forall c. (Show a, Ix c)
           => a -> c -> String
  $gdm_bar x y = show x ++ show (range (y,y))

(and similarly for baz).  Now consider a 'deriving' clause
  data Maybe s = ... deriving Foo

This derives an instance of the form:
  instance (CX) => Foo (Maybe s) where
    bar = $gdm_bar
    baz = $gdm_baz

Now it is GHC's job to fill in a suitable instance context (CX).  If
GHC were typechecking the binding
   bar = $gdm bar
it would
   * skolemise the expected type of bar
   * instantiate the type of $gdm_bar with meta-type variables
   * build an implication constraint

[STEP DAC BUILD]
So that's what we do.  We build the constraint (call it C1)

   forall[2] b. Ix b => (Show (Maybe s), Ix cc,
                        Maybe s -> b -> String
                            ~ Maybe s -> cc -> String)

Here:
* The level of this forall constraint is forall[2], because we are later
  going to wrap it in a forall[1] in [STEP DAC RESIDUAL]

* The 'b' comes from the quantified type variable in the expected type
  of bar (i.e., 'to_anyclass_skols' in 'ThetaOrigin'). The 'cc' is a unification
  variable that comes from instantiating the quantified type variable 'c' in
  $gdm_bar's type (i.e., 'to_anyclass_metas' in 'ThetaOrigin).

* The (Ix b) constraint comes from the context of bar's type
  (i.e., 'to_wanted_givens' in 'ThetaOrigin'). The (Show (Maybe s)) and (Ix cc)
  constraints come from the context of $gdm_bar's type
  (i.e., 'to_anyclass_givens' in 'ThetaOrigin').

* The equality constraint (Maybe s -> b -> String) ~ (Maybe s -> cc -> String)
  comes from marrying up the instantiated type of $gdm_bar with the specified
  type of bar. Notice that the type variables from the instance, 's' in this
  case, are global to this constraint.

Note that it is vital that we instantiate the `c` in $gdm_bar's type with a new
unification variable for each iteration of simplifyDeriv. If we re-use the same
unification variable across multiple iterations, then bad things can happen,
such as #14933.

Similarly for 'baz', giving the constraint C2

   forall[2]. Eq (Maybe s) => (Ord a, Show a,
                              Maybe s -> Maybe s -> Bool
                                ~ Maybe s -> Maybe s -> Bool)

In this case baz has no local quantification, so the implication
constraint has no local skolems and there are no unification
variables.

[STEP DAC SOLVE]
We can combine these two implication constraints into a single
constraint (C1, C2), and simplify, unifying cc:=b, to get:

   forall[2] b. Ix b => Show a
   /\
   forall[2]. Eq (Maybe s) => (Ord a, Show a)

[STEP DAC HOIST]
Let's call that (C1', C2').  Now we need to hoist the unsolved
constraints out of the implications to become our candidate for
(CX). That is done by approximateWC, which will return:

  (Show a, Ord a, Show a)

Now we can use mkMinimalBySCs to remove superclasses and duplicates, giving

  (Show a, Ord a)

And that's what GHC uses for CX.

[STEP DAC RESIDUAL]
In this case we have solved all the leftover constraints, but what if
we don't?  Simple!  We just form the final residual constraint

   forall[1] s. CX => (C1',C2')

and simplify that. In simple cases it'll succeed easily, because CX
literally contains the constraints in C1', C2', but if there is anything
more complicated it will be reported in a civilised way.

Note [Error reporting for deriving clauses]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A surprisingly tricky aspect of deriving to get right is reporting sensible
error messages. In particular, if simplifyDeriv reaches a constraint that it
cannot solve, which might include:

1. Insoluble constraints
2. "Exotic" constraints (See Note [Exotic derived instance contexts])

Then we report an error immediately in simplifyDeriv.

Another possible choice is to punt and let another part of the typechecker
(e.g., simplifyInstanceContexts) catch the errors. But this tends to lead
to worse error messages, so we do it directly in simplifyDeriv.

simplifyDeriv checks for errors in a clever way. If the deriving machinery
infers the context (Foo a)--that is, if this instance is to be generated:

  instance Foo a => ...

Then we form an implication of the form:

  forall a. Foo a => <residual_wanted_constraints>

And pass it to the simplifier. If the context (Foo a) is enough to discharge
all the constraints in <residual_wanted_constraints>, then everything is
hunky-dory. But if <residual_wanted_constraints> contains, say, an insoluble
constraint, then (Foo a) won't be able to solve it, causing GHC to error.

Note [Exotic derived instance contexts]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In a 'derived' instance declaration, we *infer* the context.  It's a
bit unclear what rules we should apply for this; the Haskell report is
silent.  Obviously, constraints like (Eq a) are fine, but what about
        data T f a = MkT (f a) deriving( Eq )
where we'd get an Eq (f a) constraint.  That's probably fine too.

One could go further: consider
        data T a b c = MkT (Foo a b c) deriving( Eq )
        instance (C Int a, Eq b, Eq c) => Eq (Foo a b c)

Notice that this instance (just) satisfies the Paterson termination
conditions.  Then we *could* derive an instance decl like this:

        instance (C Int a, Eq b, Eq c) => Eq (T a b c)
even though there is no instance for (C Int a), because there just
*might* be an instance for, say, (C Int Bool) at a site where we
need the equality instance for T's.

However, this seems pretty exotic, and it's quite tricky to allow
this, and yet give sensible error messages in the (much more common)
case where we really want that instance decl for C.

So for now we simply require that the derived instance context
should have only type-variable constraints.

Here is another example:
        data Fix f = In (f (Fix f)) deriving( Eq )
Here, if we are prepared to allow -XUndecidableInstances we
could derive the instance
        instance Eq (f (Fix f)) => Eq (Fix f)
but this is so delicate that I don't think it should happen inside
'deriving'. If you want this, write it yourself!

NB: if you want to lift this condition, make sure you still meet the
termination conditions!  If not, the deriving mechanism generates
larger and larger constraints.  Example:
  data Succ a = S a
  data Seq a = Cons a (Seq (Succ a)) | Nil deriving Show

Note the lack of a Show instance for Succ.  First we'll generate
  instance (Show (Succ a), Show a) => Show (Seq a)
and then
  instance (Show (Succ (Succ a)), Show (Succ a), Show a) => Show (Seq a)
and so on.  Instead we want to complain of no instance for (Show (Succ a)).

The bottom line
~~~~~~~~~~~~~~~
Allow constraints which consist only of type variables, with no repeats.
-}