Copyright | (c) The University of Glasgow 1994-2009 |
---|---|
License | see libraries/base/LICENSE |
Maintainer | libraries@haskell.org |
Stability | provisional |
Portability | non-portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
External API for GHC's Handle implementation
Synopsis
- data Handle
- data BufferMode
- mkFileHandle :: (RawIO dev, IODevice dev, BufferedIO dev, Typeable dev) => dev -> FilePath -> IOMode -> Maybe TextEncoding -> NewlineMode -> IO Handle
- mkDuplexHandle :: (RawIO dev, IODevice dev, BufferedIO dev, Typeable dev) => dev -> FilePath -> Maybe TextEncoding -> NewlineMode -> IO Handle
- hFileSize :: Handle -> IO Integer
- hSetFileSize :: Handle -> Integer -> IO ()
- hIsEOF :: Handle -> IO Bool
- isEOF :: IO Bool
- hLookAhead :: Handle -> IO Char
- hSetBuffering :: Handle -> BufferMode -> IO ()
- hSetBinaryMode :: Handle -> Bool -> IO ()
- hSetEncoding :: Handle -> TextEncoding -> IO ()
- hGetEncoding :: Handle -> IO (Maybe TextEncoding)
- hFlush :: Handle -> IO ()
- hFlushAll :: Handle -> IO ()
- hDuplicate :: Handle -> IO Handle
- hDuplicateTo :: Handle -> Handle -> IO ()
- hClose :: Handle -> IO ()
- hClose_help :: Handle__ -> IO (Handle__, Maybe SomeException)
- data LockMode
- hLock :: Handle -> LockMode -> IO ()
- hTryLock :: Handle -> LockMode -> IO Bool
- type HandlePosition = Integer
- data HandlePosn = HandlePosn Handle HandlePosition
- hGetPosn :: Handle -> IO HandlePosn
- hSetPosn :: HandlePosn -> IO ()
- data SeekMode
- hSeek :: Handle -> SeekMode -> Integer -> IO ()
- hTell :: Handle -> IO Integer
- hIsOpen :: Handle -> IO Bool
- hIsClosed :: Handle -> IO Bool
- hIsReadable :: Handle -> IO Bool
- hIsWritable :: Handle -> IO Bool
- hGetBuffering :: Handle -> IO BufferMode
- hIsSeekable :: Handle -> IO Bool
- hSetEcho :: Handle -> Bool -> IO ()
- hGetEcho :: Handle -> IO Bool
- hIsTerminalDevice :: Handle -> IO Bool
- hSetNewlineMode :: Handle -> NewlineMode -> IO ()
- data Newline
- data NewlineMode = NewlineMode {}
- nativeNewline :: Newline
- noNewlineTranslation :: NewlineMode
- universalNewlineMode :: NewlineMode
- nativeNewlineMode :: NewlineMode
- hShow :: Handle -> IO String
- hWaitForInput :: Handle -> Int -> IO Bool
- hGetChar :: Handle -> IO Char
- hGetLine :: Handle -> IO String
- hGetContents :: Handle -> IO String
- hGetContents' :: Handle -> IO String
- hPutChar :: Handle -> Char -> IO ()
- hPutStr :: Handle -> String -> IO ()
- hGetBuf :: Handle -> Ptr a -> Int -> IO Int
- hGetBufNonBlocking :: Handle -> Ptr a -> Int -> IO Int
- hPutBuf :: Handle -> Ptr a -> Int -> IO ()
- hPutBufNonBlocking :: Handle -> Ptr a -> Int -> IO Int
Documentation
Haskell defines operations to read and write characters from and to files,
represented by values of type Handle
. Each value of this type is a
handle: a record used by the Haskell run-time system to manage I/O
with file system objects. A handle has at least the following properties:
- whether it manages input or output or both;
- whether it is open, closed or semi-closed;
- whether the object is seekable;
- whether buffering is disabled, or enabled on a line or block basis;
- a buffer (whose length may be zero).
Most handles will also have a current I/O position indicating where the next
input or output operation will occur. A handle is readable if it
manages only input or both input and output; likewise, it is writable if
it manages only output or both input and output. A handle is open when
first allocated.
Once it is closed it can no longer be used for either input or output,
though an implementation cannot re-use its storage while references
remain to it. Handles are in the Show
and Eq
classes. The string
produced by showing a handle is system dependent; it should include
enough information to identify the handle for debugging. A handle is
equal according to ==
only to itself; no attempt
is made to compare the internal state of different handles for equality.
data BufferMode Source #
Three kinds of buffering are supported: line-buffering, block-buffering or no-buffering. These modes have the following effects. For output, items are written out, or flushed, from the internal buffer according to the buffer mode:
- line-buffering: the entire output buffer is flushed
whenever a newline is output, the buffer overflows,
a
hFlush
is issued, or the handle is closed. - block-buffering: the entire buffer is written out whenever it
overflows, a
hFlush
is issued, or the handle is closed. - no-buffering: output is written immediately, and never stored in the buffer.
An implementation is free to flush the buffer more frequently, but not less frequently, than specified above. The output buffer is emptied as soon as it has been written out.
Similarly, input occurs according to the buffer mode for the handle:
- line-buffering: when the buffer for the handle is not empty, the next item is obtained from the buffer; otherwise, when the buffer is empty, characters up to and including the next newline character are read into the buffer. No characters are available until the newline character is available or the buffer is full.
- block-buffering: when the buffer for the handle becomes empty, the next block of data is read into the buffer.
- no-buffering: the next input item is read and returned.
The
hLookAhead
operation implies that even a no-buffered handle may require a one-character buffer.
The default buffering mode when a handle is opened is implementation-dependent and may depend on the file system object which is attached to that handle. For most implementations, physical files will normally be block-buffered and terminals will normally be line-buffered.
NoBuffering | buffering is disabled if possible. |
LineBuffering | line-buffering should be enabled if possible. |
BlockBuffering (Maybe Int) | block-buffering should be enabled if possible.
The size of the buffer is |
Instances
Read BufferMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
Show BufferMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types | |
Eq BufferMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types (==) :: BufferMode -> BufferMode -> Bool Source # (/=) :: BufferMode -> BufferMode -> Bool Source # | |
Ord BufferMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types compare :: BufferMode -> BufferMode -> Ordering Source # (<) :: BufferMode -> BufferMode -> Bool Source # (<=) :: BufferMode -> BufferMode -> Bool Source # (>) :: BufferMode -> BufferMode -> Bool Source # (>=) :: BufferMode -> BufferMode -> Bool Source # max :: BufferMode -> BufferMode -> BufferMode Source # min :: BufferMode -> BufferMode -> BufferMode Source # |
:: (RawIO dev, IODevice dev, BufferedIO dev, Typeable dev) | |
=> dev | the underlying IO device, which must support
|
-> FilePath | a string describing the |
-> IOMode | |
-> Maybe TextEncoding | |
-> NewlineMode | |
-> IO Handle |
makes a new Handle
mkDuplexHandle :: (RawIO dev, IODevice dev, BufferedIO dev, Typeable dev) => dev -> FilePath -> Maybe TextEncoding -> NewlineMode -> IO Handle Source #
like mkFileHandle
, except that a Handle
is created with two
independent buffers, one for reading and one for writing. Used for
full-duplex streams, such as network sockets.
hFileSize :: Handle -> IO Integer Source #
For a handle hdl
which attached to a physical file,
hFileSize
hdl
returns the size of that file in 8-bit bytes.
hSetFileSize :: Handle -> Integer -> IO () Source #
hSetFileSize
hdl
size
truncates the physical file with handle hdl
to size
bytes.
hIsEOF :: Handle -> IO Bool Source #
For a readable handle hdl
, hIsEOF
hdl
returns
True
if no further input can be taken from hdl
or for a
physical file, if the current I/O position is equal to the length of
the file. Otherwise, it returns False
.
NOTE: hIsEOF
may block, because it has to attempt to read from
the stream to determine whether there is any more data to be read.
hLookAhead :: Handle -> IO Char Source #
Computation hLookAhead
returns the next character from the handle
without removing it from the input buffer, blocking until a character
is available.
This operation may fail with:
isEOFError
if the end of file has been reached.
hSetBuffering :: Handle -> BufferMode -> IO () Source #
Computation hSetBuffering
hdl mode
sets the mode of buffering for
handle hdl
on subsequent reads and writes.
If the buffer mode is changed from BlockBuffering
or
LineBuffering
to NoBuffering
, then
- if
hdl
is writable, the buffer is flushed as forhFlush
; - if
hdl
is not writable, the contents of the buffer are discarded.
This operation may fail with:
isPermissionError
if the handle has already been used for reading or writing and the implementation does not allow the buffering mode to be changed.
hSetBinaryMode :: Handle -> Bool -> IO () Source #
Select binary mode (True
) or text mode (False
) on a open handle.
(See also openBinaryFile
.)
This has the same effect as calling hSetEncoding
with char8
, together
with hSetNewlineMode
with noNewlineTranslation
.
hSetEncoding :: Handle -> TextEncoding -> IO () Source #
The action hSetEncoding
hdl
encoding
changes the text encoding
for the handle hdl
to encoding
. The default encoding when a Handle
is
created is localeEncoding
, namely the default encoding for the
current locale.
To create a Handle
with no encoding at all, use openBinaryFile
. To
stop further encoding or decoding on an existing Handle
, use
hSetBinaryMode
.
hSetEncoding
may need to flush buffered data in order to change
the encoding.
hGetEncoding :: Handle -> IO (Maybe TextEncoding) Source #
Return the current TextEncoding
for the specified Handle
, or
Nothing
if the Handle
is in binary mode.
Note that the TextEncoding
remembers nothing about the state of
the encoder/decoder in use on this Handle
. For example, if the
encoding in use is UTF-16, then using hGetEncoding
and
hSetEncoding
to save and restore the encoding may result in an
extra byte-order-mark being written to the file.
hFlush :: Handle -> IO () Source #
The action hFlush
hdl
causes any items buffered for output
in handle hdl
to be sent immediately to the operating system.
This operation may fail with:
isFullError
if the device is full;isPermissionError
if a system resource limit would be exceeded. It is unspecified whether the characters in the buffer are discarded or retained under these circumstances.
hFlushAll :: Handle -> IO () Source #
The action hFlushAll
hdl
flushes all buffered data in hdl
,
including any buffered read data. Buffered read data is flushed
by seeking the file position back to the point before the buffered
data was read, and hence only works if hdl
is seekable (see
hIsSeekable
).
This operation may fail with:
isFullError
if the device is full;isPermissionError
if a system resource limit would be exceeded. It is unspecified whether the characters in the buffer are discarded or retained under these circumstances;isIllegalOperation
ifhdl
has buffered read data, and is not seekable.
hDuplicate :: Handle -> IO Handle Source #
Returns a duplicate of the original handle, with its own buffer. The two Handles will share a file pointer, however. The original handle's buffer is flushed, including discarding any input data, before the handle is duplicated.
hDuplicateTo :: Handle -> Handle -> IO () Source #
Makes the second handle a duplicate of the first handle. The second handle will be closed first, if it is not already.
This can be used to retarget the standard Handles, for example:
do h <- openFile "mystdout" WriteMode hDuplicateTo h stdout
hClose :: Handle -> IO () Source #
Computation hClose
hdl
makes handle hdl
closed. Before the
computation finishes, if hdl
is writable its buffer is flushed as
for hFlush
.
Performing hClose
on a handle that has already been closed has no effect;
doing so is not an error. All other operations on a closed handle will fail.
If hClose
fails for any reason, any further operations (apart from
hClose
) on the handle will still fail as if hdl
had been successfully
closed.
hClose
is an interruptible operation in the sense described in
Control.Exception. If hClose
is interrupted by an asynchronous
exception in the process of flushing its buffers, then the I/O device
(e.g., file) will be closed anyway.
hClose_help :: Handle__ -> IO (Handle__, Maybe SomeException) Source #
hLock :: Handle -> LockMode -> IO () Source #
If a Handle
references a file descriptor, attempt to lock contents of the
underlying file in appropriate mode. If the file is already locked in
incompatible mode, this function blocks until the lock is established. The
lock is automatically released upon closing a Handle
.
Things to be aware of:
1) This function may block inside a C call. If it does, in order to be able to interrupt it with asynchronous exceptions and/or for other threads to continue working, you MUST use threaded version of the runtime system.
2) The implementation uses LockFileEx
on Windows and flock
otherwise,
hence all of their caveats also apply here.
3) On non-Windows platforms that don't support flock
(e.g. Solaris) this
function throws FileLockingNotImplemented
. We deliberately choose to not
provide fcntl based locking instead because of its broken semantics.
Since: base-4.10.0.0
type HandlePosition = Integer Source #
data HandlePosn Source #
Instances
Show HandlePosn Source # | Since: base-4.1.0.0 |
Defined in GHC.IO.Handle | |
Eq HandlePosn Source # | Since: base-4.1.0.0 |
Defined in GHC.IO.Handle (==) :: HandlePosn -> HandlePosn -> Bool Source # (/=) :: HandlePosn -> HandlePosn -> Bool Source # |
hGetPosn :: Handle -> IO HandlePosn Source #
Computation hGetPosn
hdl
returns the current I/O position of
hdl
as a value of the abstract type HandlePosn
.
hSetPosn :: HandlePosn -> IO () Source #
If a call to hGetPosn
hdl
returns a position p
,
then computation hSetPosn
p
sets the position of hdl
to the position it held at the time of the call to hGetPosn
.
This operation may fail with:
isPermissionError
if a system resource limit would be exceeded.
A mode that determines the effect of hSeek
hdl mode i
.
AbsoluteSeek | the position of |
RelativeSeek | the position of |
SeekFromEnd | the position of |
Instances
Enum SeekMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Device succ :: SeekMode -> SeekMode Source # pred :: SeekMode -> SeekMode Source # toEnum :: Int -> SeekMode Source # fromEnum :: SeekMode -> Int Source # enumFrom :: SeekMode -> [SeekMode] Source # enumFromThen :: SeekMode -> SeekMode -> [SeekMode] Source # enumFromTo :: SeekMode -> SeekMode -> [SeekMode] Source # enumFromThenTo :: SeekMode -> SeekMode -> SeekMode -> [SeekMode] Source # | |
Ix SeekMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Device | |
Read SeekMode Source # | Since: base-4.2.0.0 |
Show SeekMode Source # | Since: base-4.2.0.0 |
Eq SeekMode Source # | Since: base-4.2.0.0 |
Ord SeekMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Device |
hSeek :: Handle -> SeekMode -> Integer -> IO () Source #
Computation hSeek
hdl mode i
sets the position of handle
hdl
depending on mode
.
The offset i
is given in terms of 8-bit bytes.
If hdl
is block- or line-buffered, then seeking to a position which is not
in the current buffer will first cause any items in the output buffer to be
written to the device, and then cause the input buffer to be discarded.
Some handles may not be seekable (see hIsSeekable
), or only support a
subset of the possible positioning operations (for instance, it may only
be possible to seek to the end of a tape, or to a positive offset from
the beginning or current position).
It is not possible to set a negative I/O position, or for
a physical file, an I/O position beyond the current end-of-file.
This operation may fail with:
isIllegalOperationError
if the Handle is not seekable, or does not support the requested seek mode.isPermissionError
if a system resource limit would be exceeded.
hTell :: Handle -> IO Integer Source #
Computation hTell
hdl
returns the current position of the
handle hdl
, as the number of bytes from the beginning of
the file. The value returned may be subsequently passed to
hSeek
to reposition the handle to the current position.
This operation may fail with:
isIllegalOperationError
if the Handle is not seekable.
hGetBuffering :: Handle -> IO BufferMode Source #
Computation hGetBuffering
hdl
returns the current buffering mode
for hdl
.
hSetEcho :: Handle -> Bool -> IO () Source #
Set the echoing status of a handle connected to a terminal.
hIsTerminalDevice :: Handle -> IO Bool Source #
Is the handle connected to a terminal?
On Windows the result of hIsTerminalDevide
might be misleading,
because non-native terminals, such as MinTTY used in MSYS and Cygwin environments,
are implemented via redirection.
Use System.Win32.Types.withHandleToHANDLE System.Win32.MinTTY.isMinTTYHandle
to recognise it. Also consider ansi-terminal
package for crossplatform terminal
support.
hSetNewlineMode :: Handle -> NewlineMode -> IO () Source #
Set the NewlineMode
on the specified Handle
. All buffered
data is flushed first.
The representation of a newline in the external file or stream.
Instances
Read Newline Source # | Since: base-4.3.0.0 |
Show Newline Source # | Since: base-4.3.0.0 |
Eq Newline Source # | Since: base-4.2.0.0 |
Ord Newline Source # | Since: base-4.3.0.0 |
data NewlineMode Source #
Specifies the translation, if any, of newline characters between
internal Strings and the external file or stream. Haskell Strings
are assumed to represent newlines with the '\n'
character; the
newline mode specifies how to translate '\n'
on output, and what to
translate into '\n'
on input.
Instances
Read NewlineMode Source # | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types | |
Show NewlineMode Source # | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types | |
Eq NewlineMode Source # | Since: base-4.2.0.0 |
Defined in GHC.IO.Handle.Types (==) :: NewlineMode -> NewlineMode -> Bool Source # (/=) :: NewlineMode -> NewlineMode -> Bool Source # | |
Ord NewlineMode Source # | Since: base-4.3.0.0 |
Defined in GHC.IO.Handle.Types compare :: NewlineMode -> NewlineMode -> Ordering Source # (<) :: NewlineMode -> NewlineMode -> Bool Source # (<=) :: NewlineMode -> NewlineMode -> Bool Source # (>) :: NewlineMode -> NewlineMode -> Bool Source # (>=) :: NewlineMode -> NewlineMode -> Bool Source # max :: NewlineMode -> NewlineMode -> NewlineMode Source # min :: NewlineMode -> NewlineMode -> NewlineMode Source # |
noNewlineTranslation :: NewlineMode Source #
Do no newline translation at all.
noNewlineTranslation = NewlineMode { inputNL = LF, outputNL = LF }
universalNewlineMode :: NewlineMode Source #
Map '\r\n'
into '\n'
on input, and '\n'
to the native newline
representation on output. This mode can be used on any platform, and
works with text files using any newline convention. The downside is
that readFile >>= writeFile
might yield a different file.
universalNewlineMode = NewlineMode { inputNL = CRLF, outputNL = nativeNewline }
nativeNewlineMode :: NewlineMode Source #
Use the native newline representation on both input and output
nativeNewlineMode = NewlineMode { inputNL = nativeNewline outputNL = nativeNewline }
hWaitForInput :: Handle -> Int -> IO Bool Source #
Computation hWaitForInput
hdl t
waits until input is available on handle hdl
.
It returns True
as soon as input is available on hdl
,
or False
if no input is available within t
milliseconds. Note that
hWaitForInput
waits until one or more full characters are available,
which means that it needs to do decoding, and hence may fail
with a decoding error.
If t
is less than zero, then hWaitForInput
waits indefinitely.
This operation may fail with:
isEOFError
if the end of file has been reached.- a decoding error, if the input begins with an invalid byte sequence in this Handle's encoding.
NOTE for GHC users: unless you use the -threaded
flag,
hWaitForInput hdl t
where t >= 0
will block all other Haskell
threads for the duration of the call. It behaves like a
safe
foreign call in this respect.
hGetChar :: Handle -> IO Char Source #
Computation hGetChar
hdl
reads a character from the file or
channel managed by hdl
, blocking until a character is available.
This operation may fail with:
isEOFError
if the end of file has been reached.
hGetLine :: Handle -> IO String Source #
Computation hGetLine
hdl
reads a line from the file or
channel managed by hdl
.
This operation may fail with:
isEOFError
if the end of file is encountered when reading the first character of the line.
If hGetLine
encounters end-of-file at any other point while reading
in a line, it is treated as a line terminator and the (partial)
line is returned.
hGetContents :: Handle -> IO String Source #
Computation hGetContents
hdl
returns the list of characters
corresponding to the unread portion of the channel or file managed
by hdl
, which is put into an intermediate state, semi-closed.
In this state, hdl
is effectively closed,
but items are read from hdl
on demand and accumulated in a special
list returned by hGetContents
hdl
.
Any operation that fails because a handle is closed,
also fails if a handle is semi-closed. The only exception is
hClose
. A semi-closed handle becomes closed:
- if
hClose
is applied to it; - if an I/O error occurs when reading an item from the handle;
- or once the entire contents of the handle has been read.
Once a semi-closed handle becomes closed, the contents of the associated list becomes fixed. The contents of this final list is only partially specified: it will contain at least all the items of the stream that were evaluated prior to the handle becoming closed.
Any I/O errors encountered while a handle is semi-closed are simply discarded.
This operation may fail with:
isEOFError
if the end of file has been reached.
hGetContents' :: Handle -> IO String Source #
The hGetContents'
operation reads all input on the given handle
before returning it as a String
and closing the handle.
Since: base-4.15.0.0
hPutChar :: Handle -> Char -> IO () Source #
Computation hPutChar
hdl ch
writes the character ch
to the
file or channel managed by hdl
. Characters may be buffered if
buffering is enabled for hdl
.
This operation may fail with:
isFullError
if the device is full; orisPermissionError
if another system resource limit would be exceeded.
hPutStr :: Handle -> String -> IO () Source #
Computation hPutStr
hdl s
writes the string
s
to the file or channel managed by hdl
.
This operation may fail with:
isFullError
if the device is full; orisPermissionError
if another system resource limit would be exceeded.
hGetBuf :: Handle -> Ptr a -> Int -> IO Int Source #
hGetBuf
hdl buf count
reads data from the handle hdl
into the buffer buf
until either EOF is reached or
count
8-bit bytes have been read.
It returns the number of bytes actually read. This may be zero if
EOF was reached before any data was read (or if count
is zero).
hGetBuf
never raises an EOF exception, instead it returns a value
smaller than count
.
If the handle is a pipe or socket, and the writing end
is closed, hGetBuf
will behave as if EOF was reached.
hGetBuf
ignores the prevailing TextEncoding
and NewlineMode
on the Handle
, and reads bytes directly.
hGetBufNonBlocking :: Handle -> Ptr a -> Int -> IO Int Source #
hGetBufNonBlocking
hdl buf count
reads data from the handle hdl
into the buffer buf
until either EOF is reached, or
count
8-bit bytes have been read, or there is no more data available
to read immediately.
hGetBufNonBlocking
is identical to hGetBuf
, except that it will
never block waiting for data to become available, instead it returns
only whatever data is available. To wait for data to arrive before
calling hGetBufNonBlocking
, use hWaitForInput
.
If the handle is a pipe or socket, and the writing end
is closed, hGetBufNonBlocking
will behave as if EOF was reached.
hGetBufNonBlocking
ignores the prevailing TextEncoding
and
NewlineMode
on the Handle
, and reads bytes directly.
NOTE: on Windows, this function does not work correctly; it
behaves identically to hGetBuf
.
hPutBuf :: Handle -> Ptr a -> Int -> IO () Source #
hPutBuf
hdl buf count
writes count
8-bit bytes from the
buffer buf
to the handle hdl
. It returns ().
hPutBuf
ignores any text encoding that applies to the Handle
,
writing the bytes directly to the underlying file or device.
hPutBuf
ignores the prevailing TextEncoding
and
NewlineMode
on the Handle
, and writes bytes directly.
This operation may fail with:
ResourceVanished
if the handle is a pipe or socket, and the reading end is closed. (If this is a POSIX system, and the program has not asked to ignore SIGPIPE, then a SIGPIPE may be delivered instead, whose default action is to terminate the program).