ghc-internal-9.1001.0: Basic libraries
Copyright(c) The University of Glasgow 2001
LicenseBSD-style (see the file libraries/base/LICENSE)
Maintainerlibraries@haskell.org
Stabilityprovisional
Portabilityportable
Safe HaskellTrustworthy
LanguageHaskell2010

GHC.Internal.Control.Monad

Description

The Functor, Monad and MonadPlus classes, with some useful operations on monads.

Synopsis

Functor and monad classes

class Functor (f :: Type -> Type) where Source #

A type f is a Functor if it provides a function fmap which, given any types a and b lets you apply any function from (a -> b) to turn an f a into an f b, preserving the structure of f. Furthermore f needs to adhere to the following:

Identity
fmap id == id
Composition
fmap (f . g) == fmap f . fmap g

Note, that the second law follows from the free theorem of the type fmap and the first law, so you need only check that the former condition holds. See these articles by School of Haskell or David Luposchainsky for an explanation.

Minimal complete definition

fmap

Methods

fmap :: (a -> b) -> f a -> f b Source #

fmap is used to apply a function of type (a -> b) to a value of type f a, where f is a functor, to produce a value of type f b. Note that for any type constructor with more than one parameter (e.g., Either), only the last type parameter can be modified with fmap (e.g., b in `Either a b`).

Some type constructors with two parameters or more have a Bifunctor instance that allows both the last and the penultimate parameters to be mapped over.

Examples

Expand

Convert from a Maybe Int to a Maybe String using show:

>>> fmap show Nothing
Nothing
>>> fmap show (Just 3)
Just "3"

Convert from an Either Int Int to an Either Int String using show:

>>> fmap show (Left 17)
Left 17
>>> fmap show (Right 17)
Right "17"

Double each element of a list:

>>> fmap (*2) [1,2,3]
[2,4,6]

Apply even to the second element of a pair:

>>> fmap even (2,2)
(2,True)

It may seem surprising that the function is only applied to the last element of the tuple compared to the list example above which applies it to every element in the list. To understand, remember that tuples are type constructors with multiple type parameters: a tuple of 3 elements (a,b,c) can also be written (,,) a b c and its Functor instance is defined for Functor ((,,) a b) (i.e., only the third parameter is free to be mapped over with fmap).

It explains why fmap can be used with tuples containing values of different types as in the following example:

>>> fmap even ("hello", 1.0, 4)
("hello",1.0,True)

(<$) :: a -> f b -> f a infixl 4 Source #

Replace all locations in the input with the same value. The default definition is fmap . const, but this may be overridden with a more efficient version.

Examples

Expand

Perform a computation with Maybe and replace the result with a constant value if it is Just:

>>> 'a' <$ Just 2
Just 'a'
>>> 'a' <$ Nothing
Nothing

Instances

Instances details
Functor NonEmpty Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> NonEmpty a -> NonEmpty b Source #

(<$) :: a -> NonEmpty b -> NonEmpty a Source #

Functor STM Source #

@since base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

fmap :: (a -> b) -> STM a -> STM b Source #

(<$) :: a -> STM b -> STM a Source #

Functor Handler Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Control.Exception

Methods

fmap :: (a -> b) -> Handler a -> Handler b Source #

(<$) :: a -> Handler b -> Handler a Source #

Functor Identity Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

fmap :: (a -> b) -> Identity a -> Identity b Source #

(<$) :: a -> Identity b -> Identity a Source #

Functor First Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fmap :: (a -> b) -> First a -> First b Source #

(<$) :: a -> First b -> First a Source #

Functor Last Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fmap :: (a -> b) -> Last a -> Last b Source #

(<$) :: a -> Last b -> Last a Source #

Functor Down Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

fmap :: (a -> b) -> Down a -> Down b Source #

(<$) :: a -> Down b -> Down a Source #

Functor Dual Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Dual a -> Dual b Source #

(<$) :: a -> Dual b -> Dual a Source #

Functor Product Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Product a -> Product b Source #

(<$) :: a -> Product b -> Product a Source #

Functor Sum Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Sum a -> Sum b Source #

(<$) :: a -> Sum b -> Sum a Source #

Functor ZipList Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Functor.ZipList

Methods

fmap :: (a -> b) -> ZipList a -> ZipList b Source #

(<$) :: a -> ZipList b -> ZipList a Source #

Functor NoIO Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.GHCi

Methods

fmap :: (a -> b) -> NoIO a -> NoIO b Source #

(<$) :: a -> NoIO b -> NoIO a Source #

Functor Par1 Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> Par1 a -> Par1 b Source #

(<$) :: a -> Par1 b -> Par1 a Source #

Functor ReadP Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

fmap :: (a -> b) -> ReadP a -> ReadP b Source #

(<$) :: a -> ReadP b -> ReadP a Source #

Functor ReadPrec Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

fmap :: (a -> b) -> ReadPrec a -> ReadPrec b Source #

(<$) :: a -> ReadPrec b -> ReadPrec a Source #

Functor IO Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> IO a -> IO b Source #

(<$) :: a -> IO b -> IO a Source #

Functor Maybe Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> Maybe a -> Maybe b Source #

(<$) :: a -> Maybe b -> Maybe a Source #

Functor Solo Source #

@since base-4.15

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> Solo a -> Solo b Source #

(<$) :: a -> Solo b -> Solo a Source #

Functor [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> [a] -> [b] Source #

(<$) :: a -> [b] -> [a] Source #

Functor (Array i) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Arr

Methods

fmap :: (a -> b) -> Array i a -> Array i b Source #

(<$) :: a -> Array i b -> Array i a Source #

Arrow a => Functor (ArrowMonad a) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

fmap :: (a0 -> b) -> ArrowMonad a a0 -> ArrowMonad a b Source #

(<$) :: a0 -> ArrowMonad a b -> ArrowMonad a a0 Source #

Functor (ST s) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Monad.ST.Lazy.Imp

Methods

fmap :: (a -> b) -> ST s a -> ST s b Source #

(<$) :: a -> ST s b -> ST s a Source #

Functor (Either a) Source #

@since base-3.0

Instance details

Defined in GHC.Internal.Data.Either

Methods

fmap :: (a0 -> b) -> Either a a0 -> Either a b Source #

(<$) :: a0 -> Either a b -> Either a a0 Source #

Functor (StateL s) Source #

@since base-4.0

Instance details

Defined in GHC.Internal.Data.Functor.Utils

Methods

fmap :: (a -> b) -> StateL s a -> StateL s b Source #

(<$) :: a -> StateL s b -> StateL s a Source #

Functor (StateR s) Source #

@since base-4.0

Instance details

Defined in GHC.Internal.Data.Functor.Utils

Methods

fmap :: (a -> b) -> StateR s a -> StateR s b Source #

(<$) :: a -> StateR s b -> StateR s a Source #

Functor (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b Source #

(<$) :: a -> Proxy b -> Proxy a Source #

Functor (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b Source #

(<$) :: a -> U1 b -> U1 a Source #

Functor (V1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b Source #

(<$) :: a -> V1 b -> V1 a Source #

Functor (ST s) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.ST

Methods

fmap :: (a -> b) -> ST s a -> ST s b Source #

(<$) :: a -> ST s b -> ST s a Source #

Functor ((,) a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a0 -> b) -> (a, a0) -> (a, b) Source #

(<$) :: a0 -> (a, b) -> (a, a0) Source #

Functor m => Functor (Kleisli m a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

fmap :: (a0 -> b) -> Kleisli m a a0 -> Kleisli m a b Source #

(<$) :: a0 -> Kleisli m a b -> Kleisli m a a0 Source #

Functor (Const m :: Type -> Type) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b Source #

(<$) :: a -> Const m b -> Const m a Source #

Monad m => Functor (StateT s m) Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Utils

Methods

fmap :: (a -> b) -> StateT s m a -> StateT s m b Source #

(<$) :: a -> StateT s m b -> StateT s m a Source #

Functor f => Functor (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fmap :: (a -> b) -> Ap f a -> Ap f b Source #

(<$) :: a -> Ap f b -> Ap f a Source #

Functor f => Functor (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b Source #

(<$) :: a -> Alt f b -> Alt f a Source #

(Generic1 f, Functor (Rep1 f)) => Functor (Generically1 f) Source #

@since base-4.17.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> Generically1 f a -> Generically1 f b Source #

(<$) :: a -> Generically1 f b -> Generically1 f a Source #

Functor f => Functor (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b Source #

(<$) :: a -> Rec1 f b -> Rec1 f a Source #

Functor (URec (Ptr ()) :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Functor (URec Char :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Functor (URec Double :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Functor (URec Float :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Functor (URec Int :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Functor (URec Word :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

Functor ((,,) a b) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a0 -> b0) -> (a, b, a0) -> (a, b, b0) Source #

(<$) :: a0 -> (a, b, b0) -> (a, b, a0) Source #

(Functor f, Functor g) => Functor (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

(<$) :: a -> (f :*: g) b -> (f :*: g) a Source #

(Functor f, Functor g) => Functor (f :+: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b Source #

(<$) :: a -> (f :+: g) b -> (f :+: g) a Source #

Functor (K1 i c :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b Source #

(<$) :: a -> K1 i c b -> K1 i c a Source #

Functor ((,,,) a b c) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a0 -> b0) -> (a, b, c, a0) -> (a, b, c, b0) Source #

(<$) :: a0 -> (a, b, c, b0) -> (a, b, c, a0) Source #

Functor ((->) r) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a -> b) -> (r -> a) -> r -> b Source #

(<$) :: a -> (r -> b) -> r -> a Source #

(Functor f, Functor g) => Functor (f :.: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(<$) :: a -> (f :.: g) b -> (f :.: g) a Source #

Functor f => Functor (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b Source #

(<$) :: a -> M1 i c f b -> M1 i c f a Source #

Functor ((,,,,) a b c d) Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a0 -> b0) -> (a, b, c, d, a0) -> (a, b, c, d, b0) Source #

(<$) :: a0 -> (a, b, c, d, b0) -> (a, b, c, d, a0) Source #

Functor ((,,,,,) a b c d e) Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a0 -> b0) -> (a, b, c, d, e, a0) -> (a, b, c, d, e, b0) Source #

(<$) :: a0 -> (a, b, c, d, e, b0) -> (a, b, c, d, e, a0) Source #

Functor ((,,,,,,) a b c d e f) Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.Base

Methods

fmap :: (a0 -> b0) -> (a, b, c, d, e, f, a0) -> (a, b, c, d, e, f, b0) Source #

(<$) :: a0 -> (a, b, c, d, e, f, b0) -> (a, b, c, d, e, f, a0) Source #

class Applicative m => Monad (m :: Type -> Type) where Source #

The Monad class defines the basic operations over a monad, a concept from a branch of mathematics known as category theory. From the perspective of a Haskell programmer, however, it is best to think of a monad as an abstract datatype of actions. Haskell's do expressions provide a convenient syntax for writing monadic expressions.

Instances of Monad should satisfy the following:

Left identity
return a >>= k = k a
Right identity
m >>= return = m
Associativity
m >>= (\x -> k x >>= h) = (m >>= k) >>= h

Furthermore, the Monad and Applicative operations should relate as follows:

The above laws imply:

and that pure and (<*>) satisfy the applicative functor laws.

The instances of Monad for List, Maybe and IO defined in the Prelude satisfy these laws.

Minimal complete definition

(>>=)

Methods

(>>=) :: m a -> (a -> m b) -> m b infixl 1 Source #

Sequentially compose two actions, passing any value produced by the first as an argument to the second.

'as >>= bs' can be understood as the do expression

do a <- as
   bs a

An alternative name for this function is 'bind', but some people may refer to it as 'flatMap', which results from it being equivialent to

\x f -> join (fmap f x) :: Monad m => m a -> (a -> m b) -> m b

which can be seen as mapping a value with Monad m => m a -> m (m b) and then 'flattening' m (m b) to m b using join.

(>>) :: m a -> m b -> m b infixl 1 Source #

Sequentially compose two actions, discarding any value produced by the first, like sequencing operators (such as the semicolon) in imperative languages.

'as >> bs' can be understood as the do expression

do as
   bs

or in terms of (>>=) as

as >>= const bs

return :: a -> m a Source #

Inject a value into the monadic type. This function should not be different from its default implementation as pure. The justification for the existence of this function is merely historic.

Instances

Instances details
Monad NonEmpty Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: NonEmpty a -> (a -> NonEmpty b) -> NonEmpty b Source #

(>>) :: NonEmpty a -> NonEmpty b -> NonEmpty b Source #

return :: a -> NonEmpty a Source #

Monad STM Source #

@since base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

(>>=) :: STM a -> (a -> STM b) -> STM b Source #

(>>) :: STM a -> STM b -> STM b Source #

return :: a -> STM a Source #

Monad Identity Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Identity

Methods

(>>=) :: Identity a -> (a -> Identity b) -> Identity b Source #

(>>) :: Identity a -> Identity b -> Identity b Source #

return :: a -> Identity a Source #

Monad First Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(>>=) :: First a -> (a -> First b) -> First b Source #

(>>) :: First a -> First b -> First b Source #

return :: a -> First a Source #

Monad Last Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(>>=) :: Last a -> (a -> Last b) -> Last b Source #

(>>) :: Last a -> Last b -> Last b Source #

return :: a -> Last a Source #

Monad Down Source #

@since base-4.11.0.0

Instance details

Defined in GHC.Internal.Data.Ord

Methods

(>>=) :: Down a -> (a -> Down b) -> Down b Source #

(>>) :: Down a -> Down b -> Down b Source #

return :: a -> Down a Source #

Monad Dual Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(>>=) :: Dual a -> (a -> Dual b) -> Dual b Source #

(>>) :: Dual a -> Dual b -> Dual b Source #

return :: a -> Dual a Source #

Monad Product Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(>>=) :: Product a -> (a -> Product b) -> Product b Source #

(>>) :: Product a -> Product b -> Product b Source #

return :: a -> Product a Source #

Monad Sum Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(>>=) :: Sum a -> (a -> Sum b) -> Sum b Source #

(>>) :: Sum a -> Sum b -> Sum b Source #

return :: a -> Sum a Source #

Monad NoIO Source #

@since base-4.4.0.0

Instance details

Defined in GHC.Internal.GHCi

Methods

(>>=) :: NoIO a -> (a -> NoIO b) -> NoIO b Source #

(>>) :: NoIO a -> NoIO b -> NoIO b Source #

return :: a -> NoIO a Source #

Monad Par1 Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: Par1 a -> (a -> Par1 b) -> Par1 b Source #

(>>) :: Par1 a -> Par1 b -> Par1 b Source #

return :: a -> Par1 a Source #

Monad ReadP Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

(>>=) :: ReadP a -> (a -> ReadP b) -> ReadP b Source #

(>>) :: ReadP a -> ReadP b -> ReadP b Source #

return :: a -> ReadP a Source #

Monad ReadPrec Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

(>>=) :: ReadPrec a -> (a -> ReadPrec b) -> ReadPrec b Source #

(>>) :: ReadPrec a -> ReadPrec b -> ReadPrec b Source #

return :: a -> ReadPrec a Source #

Monad IO Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: IO a -> (a -> IO b) -> IO b Source #

(>>) :: IO a -> IO b -> IO b Source #

return :: a -> IO a Source #

Monad Maybe Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b Source #

(>>) :: Maybe a -> Maybe b -> Maybe b Source #

return :: a -> Maybe a Source #

Monad Solo Source #

@since base-4.15

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: Solo a -> (a -> Solo b) -> Solo b Source #

(>>) :: Solo a -> Solo b -> Solo b Source #

return :: a -> Solo a Source #

Monad [] Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: [a] -> (a -> [b]) -> [b] Source #

(>>) :: [a] -> [b] -> [b] Source #

return :: a -> [a] Source #

ArrowApply a => Monad (ArrowMonad a) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

(>>=) :: ArrowMonad a a0 -> (a0 -> ArrowMonad a b) -> ArrowMonad a b Source #

(>>) :: ArrowMonad a a0 -> ArrowMonad a b -> ArrowMonad a b Source #

return :: a0 -> ArrowMonad a a0 Source #

Monad (ST s) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Control.Monad.ST.Lazy.Imp

Methods

(>>=) :: ST s a -> (a -> ST s b) -> ST s b Source #

(>>) :: ST s a -> ST s b -> ST s b Source #

return :: a -> ST s a Source #

Monad (Either e) Source #

@since base-4.4.0.0

Instance details

Defined in GHC.Internal.Data.Either

Methods

(>>=) :: Either e a -> (a -> Either e b) -> Either e b Source #

(>>) :: Either e a -> Either e b -> Either e b Source #

return :: a -> Either e a Source #

Monad (Proxy :: Type -> Type) Source #

@since base-4.7.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b Source #

(>>) :: Proxy a -> Proxy b -> Proxy b Source #

return :: a -> Proxy a Source #

Monad (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b Source #

(>>) :: U1 a -> U1 b -> U1 b Source #

return :: a -> U1 a Source #

Monad (ST s) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.ST

Methods

(>>=) :: ST s a -> (a -> ST s b) -> ST s b Source #

(>>) :: ST s a -> ST s b -> ST s b Source #

return :: a -> ST s a Source #

Monoid a => Monad ((,) a) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: (a, a0) -> (a0 -> (a, b)) -> (a, b) Source #

(>>) :: (a, a0) -> (a, b) -> (a, b) Source #

return :: a0 -> (a, a0) Source #

Monad m => Monad (Kleisli m a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

(>>=) :: Kleisli m a a0 -> (a0 -> Kleisli m a b) -> Kleisli m a b Source #

(>>) :: Kleisli m a a0 -> Kleisli m a b -> Kleisli m a b Source #

return :: a0 -> Kleisli m a a0 Source #

Monad m => Monad (StateT s m) Source #

@since base-4.18.0.0

Instance details

Defined in GHC.Internal.Data.Functor.Utils

Methods

(>>=) :: StateT s m a -> (a -> StateT s m b) -> StateT s m b Source #

(>>) :: StateT s m a -> StateT s m b -> StateT s m b Source #

return :: a -> StateT s m a Source #

Monad f => Monad (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

(>>=) :: Ap f a -> (a -> Ap f b) -> Ap f b Source #

(>>) :: Ap f a -> Ap f b -> Ap f b Source #

return :: a -> Ap f a Source #

Monad f => Monad (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b Source #

(>>) :: Alt f a -> Alt f b -> Alt f b Source #

return :: a -> Alt f a Source #

Monad f => Monad (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b Source #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

return :: a -> Rec1 f a Source #

(Monoid a, Monoid b) => Monad ((,,) a b) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: (a, b, a0) -> (a0 -> (a, b, b0)) -> (a, b, b0) Source #

(>>) :: (a, b, a0) -> (a, b, b0) -> (a, b, b0) Source #

return :: a0 -> (a, b, a0) Source #

(Monad f, Monad g) => Monad (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b Source #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

return :: a -> (f :*: g) a Source #

(Monoid a, Monoid b, Monoid c) => Monad ((,,,) a b c) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: (a, b, c, a0) -> (a0 -> (a, b, c, b0)) -> (a, b, c, b0) Source #

(>>) :: (a, b, c, a0) -> (a, b, c, b0) -> (a, b, c, b0) Source #

return :: a0 -> (a, b, c, a0) Source #

Monad ((->) r) Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

(>>=) :: (r -> a) -> (a -> r -> b) -> r -> b Source #

(>>) :: (r -> a) -> (r -> b) -> r -> b Source #

return :: a -> r -> a Source #

Monad f => Monad (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b Source #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

return :: a -> M1 i c f a Source #

class Monad m => MonadFail (m :: Type -> Type) where Source #

When a value is bound in do-notation, the pattern on the left hand side of <- might not match. In this case, this class provides a function to recover.

A Monad without a MonadFail instance may only be used in conjunction with pattern that always match, such as newtypes, tuples, data types with only a single data constructor, and irrefutable patterns (~pat).

Instances of MonadFail should satisfy the following law: fail s should be a left zero for >>=,

fail s >>= f  =  fail s

If your Monad is also MonadPlus, a popular definition is

fail _ = mzero

fail s should be an action that runs in the monad itself, not an exception (except in instances of MonadIO). In particular, fail should not be implemented in terms of error.

@since base-4.9.0.0

Methods

fail :: String -> m a Source #

Instances

Instances details
MonadFail ReadP Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

fail :: String -> ReadP a Source #

MonadFail ReadPrec Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

Methods

fail :: String -> ReadPrec a Source #

MonadFail IO Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fail

Methods

fail :: String -> IO a Source #

MonadFail Maybe Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fail

Methods

fail :: String -> Maybe a Source #

MonadFail [] Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Control.Monad.Fail

Methods

fail :: String -> [a] Source #

MonadFail f => MonadFail (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

fail :: String -> Ap f a Source #

class (Alternative m, Monad m) => MonadPlus (m :: Type -> Type) where Source #

Monads that also support choice and failure.

Minimal complete definition

Nothing

Methods

mzero :: m a Source #

The identity of mplus. It should also satisfy the equations

mzero >>= f  =  mzero
v >> mzero   =  mzero

The default definition is

mzero = empty

mplus :: m a -> m a -> m a Source #

An associative operation. The default definition is

mplus = (<|>)

Instances

Instances details
MonadPlus STM Source #

Takes the first non-retrying STM action.

@since base-4.3.0.0

Instance details

Defined in GHC.Internal.Conc.Sync

Methods

mzero :: STM a Source #

mplus :: STM a -> STM a -> STM a Source #

MonadPlus ReadP Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadP

Methods

mzero :: ReadP a Source #

mplus :: ReadP a -> ReadP a -> ReadP a Source #

MonadPlus ReadPrec Source #

@since base-2.01

Instance details

Defined in GHC.Internal.Text.ParserCombinators.ReadPrec

MonadPlus IO Source #

Takes the first non-throwing IO action's result. mzero throws an exception.

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Base

Methods

mzero :: IO a Source #

mplus :: IO a -> IO a -> IO a Source #

MonadPlus Maybe Source #

Picks the leftmost Just value, or, alternatively, Nothing.

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

mzero :: Maybe a Source #

mplus :: Maybe a -> Maybe a -> Maybe a Source #

MonadPlus [] Source #

Combines lists by concatenation, starting from the empty list.

@since base-2.01

Instance details

Defined in GHC.Internal.Base

Methods

mzero :: [a] Source #

mplus :: [a] -> [a] -> [a] Source #

(ArrowApply a, ArrowPlus a) => MonadPlus (ArrowMonad a) Source #

@since base-4.6.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

mzero :: ArrowMonad a a0 Source #

mplus :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 Source #

MonadPlus (Proxy :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Data.Proxy

Methods

mzero :: Proxy a Source #

mplus :: Proxy a -> Proxy a -> Proxy a Source #

MonadPlus (U1 :: Type -> Type) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: U1 a Source #

mplus :: U1 a -> U1 a -> U1 a Source #

MonadPlus m => MonadPlus (Kleisli m a) Source #

@since base-4.14.0.0

Instance details

Defined in GHC.Internal.Control.Arrow

Methods

mzero :: Kleisli m a a0 Source #

mplus :: Kleisli m a a0 -> Kleisli m a a0 -> Kleisli m a a0 Source #

MonadPlus f => MonadPlus (Ap f) Source #

@since base-4.12.0.0

Instance details

Defined in GHC.Internal.Data.Monoid

Methods

mzero :: Ap f a Source #

mplus :: Ap f a -> Ap f a -> Ap f a Source #

MonadPlus f => MonadPlus (Alt f) Source #

@since base-4.8.0.0

Instance details

Defined in GHC.Internal.Data.Semigroup.Internal

Methods

mzero :: Alt f a Source #

mplus :: Alt f a -> Alt f a -> Alt f a Source #

MonadPlus f => MonadPlus (Rec1 f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: Rec1 f a Source #

mplus :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: (f :*: g) a Source #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

MonadPlus f => MonadPlus (M1 i c f) Source #

@since base-4.9.0.0

Instance details

Defined in GHC.Internal.Generics

Methods

mzero :: M1 i c f a Source #

mplus :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

Functions

Naming conventions

Basic Monad functions

mapM :: (Traversable t, Monad m) => (a -> m b) -> t a -> m (t b) Source #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and collect the results. For a version that ignores the results see mapM_.

Examples

Expand

mapM is literally a traverse with a type signature restricted to Monad. Its implementation may be more efficient due to additional power of Monad.

mapM_ :: (Foldable t, Monad m) => (a -> m b) -> t a -> m () Source #

Map each element of a structure to a monadic action, evaluate these actions from left to right, and ignore the results. For a version that doesn't ignore the results see mapM.

mapM_ is just like traverse_, but specialised to monadic actions.

forM :: (Traversable t, Monad m) => t a -> (a -> m b) -> m (t b) Source #

forM is mapM with its arguments flipped. For a version that ignores the results see forM_.

forM_ :: (Foldable t, Monad m) => t a -> (a -> m b) -> m () Source #

forM_ is mapM_ with its arguments flipped. For a version that doesn't ignore the results see forM.

forM_ is just like for_, but specialised to monadic actions.

sequence :: (Traversable t, Monad m) => t (m a) -> m (t a) Source #

Evaluate each monadic action in the structure from left to right, and collect the results. For a version that ignores the results see sequence_.

Examples

Expand

Basic usage:

The first two examples are instances where the input and and output of sequence are isomorphic.

>>> sequence $ Right [1,2,3,4]
[Right 1,Right 2,Right 3,Right 4]
>>> sequence $ [Right 1,Right 2,Right 3,Right 4]
Right [1,2,3,4]

The following examples demonstrate short circuit behavior for sequence.

>>> sequence $ Left [1,2,3,4]
Left [1,2,3,4]
>>> sequence $ [Left 0, Right 1,Right 2,Right 3,Right 4]
Left 0

sequence_ :: (Foldable t, Monad m) => t (m a) -> m () Source #

Evaluate each monadic action in the structure from left to right, and ignore the results. For a version that doesn't ignore the results see sequence.

sequence_ is just like sequenceA_, but specialised to monadic actions.

(=<<) :: Monad m => (a -> m b) -> m a -> m b infixr 1 Source #

Same as >>=, but with the arguments interchanged.

as >>= f == f =<< as

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> a -> m c infixr 1 Source #

Left-to-right composition of Kleisli arrows.

'(bs >=> cs) a' can be understood as the do expression

do b <- bs a
   cs b

or in terms of (>>=) as

bs a >>= cs

(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c infixr 1 Source #

Right-to-left composition of Kleisli arrows. (>=>), with the arguments flipped.

Note how this operator resembles function composition (.):

(.)   ::            (b ->   c) -> (a ->   b) -> a ->   c
(<=<) :: Monad m => (b -> m c) -> (a -> m b) -> a -> m c

forever :: Applicative f => f a -> f b Source #

Repeat an action indefinitely.

Examples

Expand

A common use of forever is to process input from network sockets, Handles, and channels (e.g. MVar and Chan).

For example, here is how we might implement an echo server, using forever both to listen for client connections on a network socket and to echo client input on client connection handles:

echoServer :: Socket -> IO ()
echoServer socket = forever $ do
  client <- accept socket
  forkFinally (echo client) (\_ -> hClose client)
  where
    echo :: Handle -> IO ()
    echo client = forever $
      hGetLine client >>= hPutStrLn client

Note that "forever" isn't necessarily non-terminating. If the action is in a MonadPlus and short-circuits after some number of iterations. then forever actually returns mzero, effectively short-circuiting its caller.

void :: Functor f => f a -> f () Source #

void value discards or ignores the result of evaluation, such as the return value of an IO action.

Examples

Expand

Replace the contents of a Maybe Int with unit:

>>> void Nothing
Nothing
>>> void (Just 3)
Just ()

Replace the contents of an Either Int Int with unit, resulting in an Either Int ():

>>> void (Left 8675309)
Left 8675309
>>> void (Right 8675309)
Right ()

Replace every element of a list with unit:

>>> void [1,2,3]
[(),(),()]

Replace the second element of a pair with unit:

>>> void (1,2)
(1,())

Discard the result of an IO action:

>>> mapM print [1,2]
1
2
[(),()]
>>> void $ mapM print [1,2]
1
2

Generalisations of list functions

join :: Monad m => m (m a) -> m a Source #

The join function is the conventional monad join operator. It is used to remove one level of monadic structure, projecting its bound argument into the outer level.

'join bss' can be understood as the do expression

do bs <- bss
   bs

Examples

Expand
>>> join [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
[1,2,3,4,5,6,7,8,9]
>>> join (Just (Just 3))
Just 3

A common use of join is to run an IO computation returned from an STM transaction, since STM transactions can't perform IO directly. Recall that

atomically :: STM a -> IO a

is used to run STM transactions atomically. So, by specializing the types of atomically and join to

atomically :: STM (IO b) -> IO (IO b)
join       :: IO (IO b)  -> IO b

we can compose them as

join . atomically :: STM (IO b) -> IO b

to run an STM transaction and the IO action it returns.

msum :: (Foldable t, MonadPlus m) => t (m a) -> m a Source #

The sum of a collection of actions using (<|>), generalizing concat.

msum is just like asum, but specialised to MonadPlus.

Examples

Expand

Basic usage, using the MonadPlus instance for Maybe:

>>> msum [Just "Hello", Nothing, Just "World"]
Just "Hello"

mfilter :: MonadPlus m => (a -> Bool) -> m a -> m a Source #

Direct MonadPlus equivalent of filter.

Examples

Expand

The filter function is just mfilter specialized to the list monad:

filter = ( mfilter :: (a -> Bool) -> [a] -> [a] )

An example using mfilter with the Maybe monad:

>>> mfilter odd (Just 1)
Just 1
>>> mfilter odd (Just 2)
Nothing

filterM :: Applicative m => (a -> m Bool) -> [a] -> m [a] Source #

This generalizes the list-based filter function.

runIdentity (filterM (Identity . p) xs) == filter p xs

Examples

Expand
>>> filterM (\x -> do
      putStrLn ("Keep: " ++ show x ++ "?")
      answer <- getLine
      pure (answer == "y"))
    [1, 2, 3]
Keep: 1?
y
Keep: 2?
n
Keep: 3?
y
[1,3]
>>> filterM (\x -> do
      putStr (show x)
      x' <- readLn
      pure (x == x'))
    [1, 2, 3]
12
22
33
[2,3]

mapAndUnzipM :: Applicative m => (a -> m (b, c)) -> [a] -> m ([b], [c]) Source #

The mapAndUnzipM function maps its first argument over a list, returning the result as a pair of lists. This function is mainly used with complicated data structures or a state monad.

zipWithM :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m [c] Source #

The zipWithM function generalizes zipWith to arbitrary applicative functors.

zipWithM_ :: Applicative m => (a -> b -> m c) -> [a] -> [b] -> m () Source #

zipWithM_ is the extension of zipWithM which ignores the final result.

foldM :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m b Source #

The foldM function is analogous to foldl, except that its result is encapsulated in a monad. Note that foldM works from left-to-right over the list arguments. This could be an issue where (>>) and the `folded function' are not commutative.

foldM f a1 [x1, x2, ..., xm]

==

do
  a2 <- f a1 x1
  a3 <- f a2 x2
  ...
  f am xm

If right-to-left evaluation is required, the input list should be reversed.

Note: foldM is the same as foldlM

foldM_ :: (Foldable t, Monad m) => (b -> a -> m b) -> b -> t a -> m () Source #

Like foldM, but discards the result.

replicateM :: Applicative m => Int -> m a -> m [a] Source #

replicateM n act performs the action act n times, and then returns the list of results.

replicateM n (pure x) == replicate n x

Examples

Expand
>>> replicateM 3 getLine
hi
heya
hiya
["hi","heya","hiya"]
>>> import Control.Monad.State
>>> runState (replicateM 3 $ state $ \s -> (s, s + 1)) 1
([1,2,3],4)

replicateM_ :: Applicative m => Int -> m a -> m () Source #

Like replicateM, but discards the result.

Examples

Expand
>>> replicateM_ 3 (putStr "a")
aaa

Conditional execution of monadic expressions

guard :: Alternative f => Bool -> f () Source #

Conditional failure of Alternative computations. Defined by

guard True  = pure ()
guard False = empty

Examples

Expand

Common uses of guard include conditionally signalling an error in an error monad and conditionally rejecting the current choice in an Alternative-based parser.

As an example of signalling an error in the error monad Maybe, consider a safe division function safeDiv x y that returns Nothing when the denominator y is zero and Just (x `div` y) otherwise. For example:

>>> safeDiv 4 0
Nothing
>>> safeDiv 4 2
Just 2

A definition of safeDiv using guards, but not guard:

safeDiv :: Int -> Int -> Maybe Int
safeDiv x y | y /= 0    = Just (x `div` y)
            | otherwise = Nothing

A definition of safeDiv using guard and Monad do-notation:

safeDiv :: Int -> Int -> Maybe Int
safeDiv x y = do
  guard (y /= 0)
  return (x `div` y)

when :: Applicative f => Bool -> f () -> f () Source #

Conditional execution of Applicative expressions. For example,

Examples

Expand
when debug (putStrLn "Debugging")

will output the string Debugging if the Boolean value debug is True, and otherwise do nothing.

>>> putStr "pi:" >> when False (print 3.14159)
pi:

unless :: Applicative f => Bool -> f () -> f () Source #

The reverse of when.

Examples

Expand
>>> do x <- getLine
       unless (x == "hi") (putStrLn "hi!")
comingupwithexamplesisdifficult
hi!
>>> unless (pi > exp 1) Nothing
Just ()

Monadic lifting operators

liftM :: Monad m => (a1 -> r) -> m a1 -> m r Source #

Promote a function to a monad. This is equivalent to fmap but specialised to Monads.

liftM2 :: Monad m => (a1 -> a2 -> r) -> m a1 -> m a2 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right.

Examples

Expand
>>> liftM2 (+) [0,1] [0,2]
[0,2,1,3]
>>> liftM2 (+) (Just 1) Nothing
Nothing
>>> liftM2 (+) (+ 3) (* 2) 5
18

liftM3 :: Monad m => (a1 -> a2 -> a3 -> r) -> m a1 -> m a2 -> m a3 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM4 :: Monad m => (a1 -> a2 -> a3 -> a4 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

liftM5 :: Monad m => (a1 -> a2 -> a3 -> a4 -> a5 -> r) -> m a1 -> m a2 -> m a3 -> m a4 -> m a5 -> m r Source #

Promote a function to a monad, scanning the monadic arguments from left to right (cf. liftM2).

ap :: Monad m => m (a -> b) -> m a -> m b Source #

In many situations, the liftM operations can be replaced by uses of ap, which promotes function application.

return f `ap` x1 `ap` ... `ap` xn

is equivalent to

liftM<n> f x1 x2 ... xn

Examples

Expand
>>> pure (\x y z -> x + y * z) `ap` Just 1 `ap` Just 5 `ap` Just 10
Just 51

Strict monadic functions

(<$!>) :: Monad m => (a -> b) -> m a -> m b infixl 4 Source #

Strict version of <$>.

@since base-4.8.0.0