{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs             #-}
{-# LANGUAGE LambdaCase        #-}
{-# LANGUAGE DisambiguateRecordFields #-}

-- | Desugaring step of the
-- [Lower Your Guards paper](https://dl.acm.org/doi/abs/10.1145/3408989).
--
-- Desugars Haskell source syntax into guard tree variants Pm*.
-- In terms of the paper, this module is concerned with Sections 3.1, Figure 4,
-- in particular.
module GHC.HsToCore.Pmc.Desugar (
      desugarPatBind, desugarGRHSs, desugarMatches, desugarEmptyCase
    ) where

import GHC.Prelude

import GHC.HsToCore.Pmc.Types
import GHC.HsToCore.Pmc.Utils
import GHC.Core (Expr(Var,App))
import GHC.Data.FastString (unpackFS, lengthFS)
import GHC.Driver.DynFlags
import GHC.Hs
import GHC.Tc.Utils.TcMType (shortCutLit)
import GHC.Types.Id
import GHC.Core.ConLike
import GHC.Types.Name
import GHC.Builtin.Types
import GHC.Builtin.Names (rationalTyConName, toListName)
import GHC.Types.SrcLoc
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Core.DataCon
import GHC.Types.Var (EvVar)
import GHC.Core.Coercion
import GHC.Tc.Types.Evidence (HsWrapper(..), isIdHsWrapper)
import {-# SOURCE #-} GHC.HsToCore.Expr (dsExpr, dsLExpr, dsSyntaxExpr)
import {-# SOURCE #-} GHC.HsToCore.Binds (dsHsWrapper)
import GHC.HsToCore.Utils (isTrueLHsExpr, selectMatchVar, decideBangHood, checkMultiplicityCoercions)
import GHC.HsToCore.Match.Literal (dsLit, dsOverLit)
import GHC.HsToCore.Monad
import GHC.Core.TyCo.Rep
import GHC.Core.TyCo.Compare( eqType )
import GHC.Core.Type
import GHC.Data.Maybe
import GHC.Types.SourceText (FractionalLit(..))
import Control.Monad (zipWithM, replicateM)
import Data.List (elemIndex)
import Data.List.NonEmpty ( NonEmpty(..) )
import qualified Data.List.NonEmpty as NE

-- import GHC.Driver.Ppr

-- | Smart constructor that eliminates trivial lets
mkPmLetVar :: Id -> Id -> GrdDag
mkPmLetVar :: Id -> Id -> GrdDag
mkPmLetVar Id
x Id
y = [PmGrd] -> GrdDag
sequencePmGrds [ Id -> CoreExpr -> PmGrd
PmLet Id
x (Id -> CoreExpr
forall b. Id -> Expr b
Var Id
y) | Id
x Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
/= Id
y ]

-- | ADT constructor pattern => no existentials, no local constraints
vanillaConGrd :: Id -> DataCon -> [Id] -> PmGrd
vanillaConGrd :: Id -> DataCon -> [Id] -> PmGrd
vanillaConGrd Id
scrut DataCon
con [Id]
arg_ids =
  PmCon { pm_id :: Id
pm_id = Id
scrut, pm_con_con :: PmAltCon
pm_con_con = ConLike -> PmAltCon
PmAltConLike (DataCon -> ConLike
RealDataCon DataCon
con)
        , pm_con_tvs :: [Id]
pm_con_tvs = [], pm_con_dicts :: [Id]
pm_con_dicts = [], pm_con_args :: [Id]
pm_con_args = [Id]
arg_ids }

-- | Creates a 'GrdDag' refining a match var of list type to a list,
-- where list fields are matched against the incoming tagged 'GrdDag's.
-- For example:
--   @mkListGrds "a" "[(x, True <- x),(y, !y)]"@
-- to
--   @"[(x:b) <- a, True <- x, (y:c) <- b, !y, [] <- c]"@
-- where @b@ and @c@ are freshly allocated in @mkListGrds@ and @a@ is the match
-- variable.
mkListGrds :: Id -> [(Id, GrdDag)] -> DsM GrdDag
-- See Note [Order of guards matters] for why we need to intertwine guards
-- on list elements.
mkListGrds :: Id -> [(Id, GrdDag)] -> DsM GrdDag
mkListGrds Id
a []                  = GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (PmGrd -> GrdDag
GdOne (Id -> DataCon -> [Id] -> PmGrd
vanillaConGrd Id
a DataCon
nilDataCon []))
mkListGrds Id
a ((Id
x, GrdDag
head_grds):[(Id, GrdDag)]
xs) = do
  b <- Kind -> DsM Id
mkPmId (Id -> Kind
idType Id
a)
  tail_grds <- mkListGrds b xs
  pure $ vanillaConGrd a consDataCon [x, b] `consGrdDag` head_grds `gdSeq` tail_grds

-- | Create a 'GrdDag' refining a match variable to a 'PmLit'.
mkPmLitGrds :: Id -> PmLit -> DsM GrdDag
mkPmLitGrds :: Id -> PmLit -> DsM GrdDag
mkPmLitGrds Id
x (PmLit Kind
_ (PmLitString FastString
s)) = do
  -- We desugar String literals to list literals for better overlap reasoning.
  -- It's a little unfortunate we do this here rather than in
  -- 'GHC.HsToCore.Pmc.Solver.trySolve' and
  -- 'GHC.HsToCore.Pmc.Solver.addRefutableAltCon', but it's so much simpler
  -- here. See Note [Representation of Strings in TmState] in
  -- GHC.HsToCore.Pmc.Solver
  vars <- Int -> DsM Id -> IOEnv (Env DsGblEnv DsLclEnv) [Id]
forall (m :: * -> *) a. Applicative m => Int -> m a -> m [a]
replicateM (FastString -> Int
lengthFS FastString
s) (Kind -> DsM Id
mkPmId Kind
charTy)
  let mk_char_lit Id
y Char
c = Id -> PmLit -> DsM GrdDag
mkPmLitGrds Id
y (Kind -> PmLitValue -> PmLit
PmLit Kind
charTy (Char -> PmLitValue
PmLitChar Char
c))
  char_grdss <- zipWithM mk_char_lit vars (unpackFS s)
  mkListGrds x (zip vars char_grdss)
mkPmLitGrds Id
x PmLit
lit = do
  let grd :: PmGrd
grd = PmCon { pm_id :: Id
pm_id = Id
x
                  , pm_con_con :: PmAltCon
pm_con_con = PmLit -> PmAltCon
PmAltLit PmLit
lit
                  , pm_con_tvs :: [Id]
pm_con_tvs = []
                  , pm_con_dicts :: [Id]
pm_con_dicts = []
                  , pm_con_args :: [Id]
pm_con_args = [] }
  GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (PmGrd -> GrdDag
GdOne PmGrd
grd)

-- | @desugarPat _ x pat@ transforms @pat@ into a 'GrdDag', where
-- the variable representing the match is @x@.
desugarPat :: Id -> Pat GhcTc -> DsM GrdDag
desugarPat :: Id -> Pat GhcTc -> DsM GrdDag
desugarPat Id
x Pat GhcTc
pat = case Pat GhcTc
pat of
  WildPat  XWildPat GhcTc
_ty -> GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure GrdDag
GdEnd
  VarPat XVarPat GhcTc
_ LIdP GhcTc
y   -> GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Id -> Id -> GrdDag
mkPmLetVar (GenLocated SrcSpanAnnN Id -> Id
forall l e. GenLocated l e -> e
unLoc LIdP GhcTc
GenLocated SrcSpanAnnN Id
y) Id
x)
  ParPat XParPat GhcTc
_ LPat GhcTc
p   -> Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
x LPat GhcTc
p
  LazyPat XLazyPat GhcTc
_ LPat GhcTc
_  -> GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure GrdDag
GdEnd -- like a wildcard
  BangPat XBangPat GhcTc
_ p :: LPat GhcTc
p@(L SrcSpanAnnA
l Pat GhcTc
p') ->
    -- Add the bang in front of the list, because it will happen before any
    -- nested stuff.
    PmGrd -> GrdDag -> GrdDag
consGrdDag (Id -> Maybe SrcInfo -> PmGrd
PmBang Id
x Maybe SrcInfo
pm_loc) (GrdDag -> GrdDag) -> DsM GrdDag -> DsM GrdDag
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
x LPat GhcTc
p
      where pm_loc :: Maybe SrcInfo
pm_loc = SrcInfo -> Maybe SrcInfo
forall a. a -> Maybe a
Just (Located SDoc -> SrcInfo
SrcInfo (SrcSpan -> SDoc -> Located SDoc
forall l e. l -> e -> GenLocated l e
L (SrcSpanAnnA -> SrcSpan
forall a. HasLoc a => a -> SrcSpan
locA SrcSpanAnnA
l) (Pat GhcTc -> SDoc
forall a. Outputable a => a -> SDoc
ppr Pat GhcTc
p')))

  -- (x@pat)   ==>   Desugar pat with x as match var and handle impedance
  --                 mismatch with incoming match var
  AsPat XAsPat GhcTc
_ (L SrcSpanAnnN
_ Id
y) LPat GhcTc
p -> (Id -> Id -> GrdDag
mkPmLetVar Id
y Id
x GrdDag -> GrdDag -> GrdDag
`gdSeq`) (GrdDag -> GrdDag) -> DsM GrdDag -> DsM GrdDag
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
y LPat GhcTc
p
  SigPat XSigPat GhcTc
_ LPat GhcTc
p HsPatSigType (NoGhcTc GhcTc)
_ty -> Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
x LPat GhcTc
p
  EmbTyPat XEmbTyPat GhcTc
_ HsTyPat (NoGhcTc GhcTc)
_ -> GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure GrdDag
GdEnd
  InvisPat XInvisPat GhcTc
_ HsTyPat (NoGhcTc GhcTc)
_ -> GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure GrdDag
GdEnd

  XPat XXPat GhcTc
ext -> case XXPat GhcTc
ext of

    ExpansionPat Pat GhcRn
orig Pat GhcTc
expansion -> do
      case Pat GhcRn
orig of
        -- We add special logic for overloaded list patterns. When:
        --   - a ViewPat is the expansion of a ListPat,
        --   - the type of the pattern is the built-in list type,
        -- then we assume that the view function, 'toList', is the identity.
        -- This improves pattern-match overload checks, as this will allow
        -- the pattern match checker to directly inspect the inner pattern.
        -- See #14547, and Note [Desugaring overloaded list patterns] (Wrinkle).
        ListPat {}
          | ViewPat XViewPat GhcTc
arg_ty LHsExpr GhcTc
lrhs LPat GhcTc
pat <- Pat GhcTc
expansion
          , Just TyCon
tc <- Kind -> Maybe TyCon
tyConAppTyCon_maybe XViewPat GhcTc
Kind
arg_ty
          , TyCon
tc TyCon -> TyCon -> Bool
forall a. Eq a => a -> a -> Bool
== TyCon
listTyCon
          -- `pat` looks like `coerce toList -> [p1,...,pn]`.
          -- Now take care of -XRebindableSyntax:
          , let is_to_list :: HsExpr GhcTc -> Bool
is_to_list (HsVar XVar GhcTc
_ (L SrcSpanAnnN
_ Id
to_list)) = Id -> Name
idName Id
to_list Name -> Name -> Bool
forall a. Eq a => a -> a -> Bool
== Name
toListName
                is_to_list (XExpr (WrapExpr HsWrapper
_ HsExpr GhcTc
e))  = HsExpr GhcTc -> Bool
is_to_list HsExpr GhcTc
e
                is_to_list HsExpr GhcTc
_                       = Bool
False
          , HsExpr GhcTc -> Bool
is_to_list (GenLocated SrcSpanAnnA (HsExpr GhcTc) -> HsExpr GhcTc
forall l e. GenLocated l e -> e
unLoc LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
lrhs)
          -> Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
x LPat GhcTc
pat

        Pat GhcRn
_ -> Id -> Pat GhcTc -> DsM GrdDag
desugarPat Id
x Pat GhcTc
expansion

    -- See Note [Desugar CoPats]
    -- Generally the translation is
    -- pat |> co   ===>   let y = x |> co, pat <- y  where y is a match var of pat
    CoPat HsWrapper
wrapper Pat GhcTc
p Kind
_ty
      | HsWrapper -> Bool
isIdHsWrapper HsWrapper
wrapper                   -> Id -> Pat GhcTc -> DsM GrdDag
desugarPat Id
x Pat GhcTc
p
      | WpCast TcCoercionR
co <-  HsWrapper
wrapper, TcCoercionR -> Bool
isReflexiveCo TcCoercionR
co -> Id -> Pat GhcTc -> DsM GrdDag
desugarPat Id
x Pat GhcTc
p
      | Bool
otherwise -> do
          (y, grds) <- Pat GhcTc -> DsM (Id, GrdDag)
desugarPatV Pat GhcTc
p
          dsHsWrapper wrapper $ \CoreExpr -> CoreExpr
wrap_rhs_y ->
            GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Id -> CoreExpr -> PmGrd
PmLet Id
y (CoreExpr -> CoreExpr
wrap_rhs_y (Id -> CoreExpr
forall b. Id -> Expr b
Var Id
x)) PmGrd -> GrdDag -> GrdDag
`consGrdDag` GrdDag
grds)  -- (n + k)  ===>   let b = x >= k, True <- b, let n = x-k
  NPlusKPat XNPlusKPat GhcTc
_pat_ty (L SrcSpanAnnN
_ Id
n) XRec GhcTc (HsOverLit GhcTc)
k1 HsOverLit GhcTc
k2 SyntaxExpr GhcTc
ge SyntaxExpr GhcTc
minus -> do
    b <- Kind -> DsM Id
mkPmId Kind
boolTy
    let grd_b = Id -> DataCon -> [Id] -> PmGrd
vanillaConGrd Id
b DataCon
trueDataCon []
    [ke1, ke2] <- traverse dsOverLit [unLoc k1, k2]
    rhs_b <- dsSyntaxExpr ge    [Var x, ke1]
    rhs_n <- dsSyntaxExpr minus [Var x, ke2]
    pure $ sequencePmGrds [PmLet b rhs_b, grd_b, PmLet n rhs_n]

  -- (fun -> pat)   ===>   let y = fun x, pat <- y where y is a match var of pat
  ViewPat XViewPat GhcTc
_arg_ty LHsExpr GhcTc
lexpr LPat GhcTc
pat -> do
    (y, grds) <- LPat GhcTc -> DsM (Id, GrdDag)
desugarLPatV LPat GhcTc
pat
    fun <- dsLExpr lexpr
    pure $ consGrdDag (PmLet y (App fun (Var x))) grds  -- list
  ListPat XListPat GhcTc
_ [LPat GhcTc]
ps ->
    Id -> [LPat GhcTc] -> DsM GrdDag
desugarListPat Id
x [LPat GhcTc]
ps

  ConPat { pat_con :: forall p. Pat p -> XRec p (ConLikeP p)
pat_con     = L SrcSpanAnnN
_ ConLike
con
         , pat_args :: forall p. Pat p -> HsConPatDetails p
pat_args    = HsConPatDetails GhcTc
ps
         , pat_con_ext :: forall p. Pat p -> XConPat p
pat_con_ext = ConPatTc
           { cpt_arg_tys :: ConPatTc -> [Kind]
cpt_arg_tys = [Kind]
arg_tys
           , cpt_tvs :: ConPatTc -> [Id]
cpt_tvs     = [Id]
ex_tvs
           , cpt_dicts :: ConPatTc -> [Id]
cpt_dicts   = [Id]
dicts
           }
         } ->
    Id
-> ConLike
-> [Kind]
-> [Id]
-> [Id]
-> HsConPatDetails GhcTc
-> DsM GrdDag
desugarConPatOut Id
x ConLike
con [Kind]
arg_tys [Id]
ex_tvs [Id]
dicts HsConPatDetails GhcTc
ps

  NPat XNPat GhcTc
ty (L EpAnnCO
_ HsOverLit GhcTc
olit) Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
_ -> do
    -- See Note [Literal short cut] in "GHC.HsToCore.Match.Literal"
    -- We inline the Literal short cut for @ty@ here, because @ty@ is more
    -- precise than the field of OverLitTc, which is all that dsOverLit (which
    -- normally does the literal short cut) can look at. Also @ty@ matches the
    -- type of the scrutinee, so info on both pattern and scrutinee (for which
    -- short cutting in dsOverLit works properly) is overloaded iff either is.
    dflags <- IOEnv (Env DsGblEnv DsLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
    let platform = DynFlags -> Platform
targetPlatform DynFlags
dflags
    pm_lit <- case olit of
      OverLit{ ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val = OverLitVal
val, ol_ext :: forall p. HsOverLit p -> XOverLit p
ol_ext = OverLitTc { ol_rebindable :: OverLitTc -> Bool
ol_rebindable = Bool
rebindable } }
        | Bool -> Bool
not Bool
rebindable
        , Just HsExpr GhcTc
expr <- Platform -> OverLitVal -> Kind -> Maybe (HsExpr GhcTc)
shortCutLit Platform
platform OverLitVal
val XNPat GhcTc
Kind
ty
        -> CoreExpr -> Maybe PmLit
coreExprAsPmLit (CoreExpr -> Maybe PmLit)
-> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
-> IOEnv (Env DsGblEnv DsLclEnv) (Maybe PmLit)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> HsExpr GhcTc -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
dsExpr HsExpr GhcTc
expr
        | Bool -> Bool
not Bool
rebindable
        , (HsFractional FractionalLit
f) <- OverLitVal
val
        , Int
negates <- if FractionalLit -> Bool
fl_neg FractionalLit
f then Int
1 else Int
0
        -> do
            rat_tc <- Name -> DsM TyCon
dsLookupTyCon Name
rationalTyConName
            let rat_ty = TyCon -> Kind
mkTyConTy TyCon
rat_tc
            return $ Just $ PmLit rat_ty (PmLitOverRat negates f)
        | Bool
otherwise
        -> do
           dsLit <- HsOverLit GhcTc -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
dsOverLit HsOverLit GhcTc
olit
           let !pmLit = CoreExpr -> Maybe PmLit
coreExprAsPmLit CoreExpr
dsLit :: Maybe PmLit
          --  pprTraceM "desugarPat"
          --     (
          --       text "val" <+> ppr val $$
          --       text "witness" <+> ppr (ol_witness olit) $$
          --       text "dsLit" <+> ppr dsLit $$
          --       text "asPmLit" <+> ppr pmLit
          --     )
           return pmLit

    let lit = case Maybe PmLit
pm_lit of
          Just PmLit
l -> PmLit
l
          Maybe PmLit
Nothing -> [Char] -> SDoc -> PmLit
forall a. HasCallStack => [Char] -> SDoc -> a
pprPanic [Char]
"failed to detect OverLit" (HsOverLit GhcTc -> SDoc
forall a. Outputable a => a -> SDoc
ppr HsOverLit GhcTc
olit)
    let lit' = case Maybe (SyntaxExpr GhcTc)
mb_neg of
          Just SyntaxExpr GhcTc
_  -> [Char] -> Maybe PmLit -> PmLit
forall a. HasDebugCallStack => [Char] -> Maybe a -> a
expectJust [Char]
"failed to negate lit" (PmLit -> Maybe PmLit
negatePmLit PmLit
lit)
          Maybe (SyntaxExpr GhcTc)
Nothing -> PmLit
lit
    mkPmLitGrds x lit'

  LitPat XLitPat GhcTc
_ HsLit GhcTc
lit -> do
    core_expr <- HsLit GhcRn -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
dsLit (HsLit GhcTc -> HsLit GhcRn
forall (p1 :: Pass) (p2 :: Pass).
HsLit (GhcPass p1) -> HsLit (GhcPass p2)
convertLit HsLit GhcTc
lit)
    let lit = [Char] -> Maybe PmLit -> PmLit
forall a. HasDebugCallStack => [Char] -> Maybe a -> a
expectJust [Char]
"failed to detect Lit" (CoreExpr -> Maybe PmLit
coreExprAsPmLit CoreExpr
core_expr)
    mkPmLitGrds x lit

  TuplePat XTuplePat GhcTc
_tys [LPat GhcTc]
pats Boxity
boxity -> do
    (vars, grdss) <- (GenLocated SrcSpanAnnA (Pat GhcTc) -> DsM (Id, GrdDag))
-> [GenLocated SrcSpanAnnA (Pat GhcTc)]
-> IOEnv (Env DsGblEnv DsLclEnv) ([Id], [GrdDag])
forall (m :: * -> *) a b c.
Applicative m =>
(a -> m (b, c)) -> [a] -> m ([b], [c])
mapAndUnzipM LPat GhcTc -> DsM (Id, GrdDag)
GenLocated SrcSpanAnnA (Pat GhcTc) -> DsM (Id, GrdDag)
desugarLPatV [LPat GhcTc]
[GenLocated SrcSpanAnnA (Pat GhcTc)]
pats
    let tuple_con = Boxity -> Int -> DataCon
tupleDataCon Boxity
boxity ([Id] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Id]
vars)
    pure $ vanillaConGrd x tuple_con vars `consGrdDag` sequenceGrdDags grdss

  OrPat XOrPat GhcTc
_tys NonEmpty (LPat GhcTc)
pats -> NonEmpty GrdDag -> GrdDag
alternativesGrdDags (NonEmpty GrdDag -> GrdDag)
-> IOEnv (Env DsGblEnv DsLclEnv) (NonEmpty GrdDag) -> DsM GrdDag
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GenLocated SrcSpanAnnA (Pat GhcTc) -> DsM GrdDag)
-> NonEmpty (GenLocated SrcSpanAnnA (Pat GhcTc))
-> IOEnv (Env DsGblEnv DsLclEnv) (NonEmpty GrdDag)
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> NonEmpty a -> f (NonEmpty b)
traverse (Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
x) NonEmpty (LPat GhcTc)
NonEmpty (GenLocated SrcSpanAnnA (Pat GhcTc))
pats

  SumPat XSumPat GhcTc
_ty LPat GhcTc
p Int
alt Int
arity -> do
    (y, grds) <- LPat GhcTc -> DsM (Id, GrdDag)
desugarLPatV LPat GhcTc
p
    let sum_con = Int -> Int -> DataCon
sumDataCon Int
alt Int
arity
    -- See Note [Unboxed tuple RuntimeRep vars] in GHC.Core.TyCon
    pure $ vanillaConGrd x sum_con [y] `consGrdDag` grds

  SplicePat {} -> [Char] -> DsM GrdDag
forall a. HasCallStack => [Char] -> a
panic [Char]
"Check.desugarPat: SplicePat"


-- | 'desugarPat', but also select and return a new match var.
desugarPatV :: Pat GhcTc -> DsM (Id, GrdDag)
desugarPatV :: Pat GhcTc -> DsM (Id, GrdDag)
desugarPatV Pat GhcTc
pat = do
  x <- Kind -> Pat GhcTc -> DsM Id
selectMatchVar Kind
ManyTy Pat GhcTc
pat
  grds <- desugarPat x pat
  pure (x, grds)

desugarLPat :: Id -> LPat GhcTc -> DsM GrdDag
desugarLPat :: Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
x = Id -> Pat GhcTc -> DsM GrdDag
desugarPat Id
x (Pat GhcTc -> DsM GrdDag)
-> (GenLocated SrcSpanAnnA (Pat GhcTc) -> Pat GhcTc)
-> GenLocated SrcSpanAnnA (Pat GhcTc)
-> DsM GrdDag
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated SrcSpanAnnA (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc

-- | 'desugarLPat', but also select and return a new match var.
desugarLPatV :: LPat GhcTc -> DsM (Id, GrdDag)
desugarLPatV :: LPat GhcTc -> DsM (Id, GrdDag)
desugarLPatV = Pat GhcTc -> DsM (Id, GrdDag)
desugarPatV (Pat GhcTc -> DsM (Id, GrdDag))
-> (GenLocated SrcSpanAnnA (Pat GhcTc) -> Pat GhcTc)
-> GenLocated SrcSpanAnnA (Pat GhcTc)
-> DsM (Id, GrdDag)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated SrcSpanAnnA (Pat GhcTc) -> Pat GhcTc
forall l e. GenLocated l e -> e
unLoc

-- | @desugarListPat _ x [p1, ..., pn]@ is basically
--   @desugarConPatOut _ x $(mkListConPatOuts [p1, ..., pn]>@ without ever
-- constructing the 'ConPatOut's.
desugarListPat :: Id -> [LPat GhcTc] -> DsM GrdDag
desugarListPat :: Id -> [LPat GhcTc] -> DsM GrdDag
desugarListPat Id
x [LPat GhcTc]
pats = do
  vars_and_grdss <- (GenLocated SrcSpanAnnA (Pat GhcTc) -> DsM (Id, GrdDag))
-> [GenLocated SrcSpanAnnA (Pat GhcTc)]
-> IOEnv (Env DsGblEnv DsLclEnv) [(Id, GrdDag)]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse LPat GhcTc -> DsM (Id, GrdDag)
GenLocated SrcSpanAnnA (Pat GhcTc) -> DsM (Id, GrdDag)
desugarLPatV [LPat GhcTc]
[GenLocated SrcSpanAnnA (Pat GhcTc)]
pats
  mkListGrds x vars_and_grdss

-- | Desugar a constructor pattern
desugarConPatOut :: Id -> ConLike -> [Type] -> [TyVar]
                 -> [EvVar] -> HsConPatDetails GhcTc -> DsM GrdDag
desugarConPatOut :: Id
-> ConLike
-> [Kind]
-> [Id]
-> [Id]
-> HsConPatDetails GhcTc
-> DsM GrdDag
desugarConPatOut Id
x ConLike
con [Kind]
univ_tys [Id]
ex_tvs [Id]
dicts = \case
    PrefixCon [HsConPatTyArg (NoGhcTc GhcTc)]
_ [LPat GhcTc]
ps               -> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))] -> DsM GrdDag
go_field_pats ([Int]
-> [GenLocated SrcSpanAnnA (Pat GhcTc)]
-> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
forall a b. [a] -> [b] -> [(a, b)]
zip [Int
0..] [LPat GhcTc]
[GenLocated SrcSpanAnnA (Pat GhcTc)]
ps)
    InfixCon  LPat GhcTc
p1 LPat GhcTc
p2              -> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))] -> DsM GrdDag
go_field_pats ([Int]
-> [GenLocated SrcSpanAnnA (Pat GhcTc)]
-> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
forall a b. [a] -> [b] -> [(a, b)]
zip [Int
0..] [LPat GhcTc
GenLocated SrcSpanAnnA (Pat GhcTc)
p1,LPat GhcTc
GenLocated SrcSpanAnnA (Pat GhcTc)
p2])
    RecCon    (HsRecFields XHsRecFields GhcTc
mult_cos [LHsRecField GhcTc (LPat GhcTc)]
fs Maybe (XRec GhcTc RecFieldsDotDot)
_) -> do
      MultiplicityCheckCoercions -> DsM ()
checkMultiplicityCoercions MultiplicityCheckCoercions
XHsRecFields GhcTc
mult_cos
      [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))] -> DsM GrdDag
go_field_pats ([GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
      (GenLocated SrcSpanAnnA (Pat GhcTc)))]
-> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
rec_field_ps [LHsRecField GhcTc (LPat GhcTc)]
[GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
      (GenLocated SrcSpanAnnA (Pat GhcTc)))]
fs)
  where
    -- The actual argument types (instantiated)
    arg_tys :: [Kind]
arg_tys     = (Scaled Kind -> Kind) -> [Scaled Kind] -> [Kind]
forall a b. (a -> b) -> [a] -> [b]
map Scaled Kind -> Kind
forall a. Scaled a -> a
scaledThing ([Scaled Kind] -> [Kind]) -> [Scaled Kind] -> [Kind]
forall a b. (a -> b) -> a -> b
$ ConLike -> [Kind] -> [Scaled Kind]
conLikeInstOrigArgTys ConLike
con ([Kind]
univ_tys [Kind] -> [Kind] -> [Kind]
forall a. [a] -> [a] -> [a]
++ [Id] -> [Kind]
mkTyVarTys [Id]
ex_tvs)

    -- Extract record field patterns tagged by field index from a list of
    -- LHsRecField
    rec_field_ps :: [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
      (GenLocated SrcSpanAnnA (Pat GhcTc)))]
-> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
rec_field_ps [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
      (GenLocated SrcSpanAnnA (Pat GhcTc)))]
fs = (GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
      (GenLocated SrcSpanAnnA (Pat GhcTc)))
 -> (Int, GenLocated SrcSpanAnnA (Pat GhcTc)))
-> [GenLocated
      SrcSpanAnnA
      (HsFieldBind
         (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
         (GenLocated SrcSpanAnnA (Pat GhcTc)))]
-> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
forall a b. (a -> b) -> [a] -> [b]
map (HsFieldBind
  (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
  (GenLocated SrcSpanAnnA (Pat GhcTc))
-> (Int, GenLocated SrcSpanAnnA (Pat GhcTc))
tagged_pat (HsFieldBind
   (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
   (GenLocated SrcSpanAnnA (Pat GhcTc))
 -> (Int, GenLocated SrcSpanAnnA (Pat GhcTc)))
-> (GenLocated
      SrcSpanAnnA
      (HsFieldBind
         (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
         (GenLocated SrcSpanAnnA (Pat GhcTc)))
    -> HsFieldBind
         (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
         (GenLocated SrcSpanAnnA (Pat GhcTc)))
-> GenLocated
     SrcSpanAnnA
     (HsFieldBind
        (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
        (GenLocated SrcSpanAnnA (Pat GhcTc)))
-> (Int, GenLocated SrcSpanAnnA (Pat GhcTc))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated
  SrcSpanAnnA
  (HsFieldBind
     (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
     (GenLocated SrcSpanAnnA (Pat GhcTc)))
-> HsFieldBind
     (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
     (GenLocated SrcSpanAnnA (Pat GhcTc))
forall l e. GenLocated l e -> e
unLoc) [GenLocated
   SrcSpanAnnA
   (HsFieldBind
      (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
      (GenLocated SrcSpanAnnA (Pat GhcTc)))]
fs
      where
        tagged_pat :: HsFieldBind
  (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
  (GenLocated SrcSpanAnnA (Pat GhcTc))
-> (Int, GenLocated SrcSpanAnnA (Pat GhcTc))
tagged_pat HsFieldBind
  (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
  (GenLocated SrcSpanAnnA (Pat GhcTc))
f = (Name -> Int
lbl_to_index (Id -> Name
forall a. NamedThing a => a -> Name
getName (HsRecField GhcTc (GenLocated SrcSpanAnnA (Pat GhcTc)) -> Id
forall arg. HsRecField GhcTc arg -> Id
hsRecFieldId HsRecField GhcTc (GenLocated SrcSpanAnnA (Pat GhcTc))
HsFieldBind
  (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
  (GenLocated SrcSpanAnnA (Pat GhcTc))
f)), HsFieldBind
  (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
  (GenLocated SrcSpanAnnA (Pat GhcTc))
-> GenLocated SrcSpanAnnA (Pat GhcTc)
forall lhs rhs. HsFieldBind lhs rhs -> rhs
hfbRHS HsFieldBind
  (GenLocated SrcSpanAnnA (FieldOcc GhcTc))
  (GenLocated SrcSpanAnnA (Pat GhcTc))
f)
        -- Unfortunately the label info is empty when the DataCon wasn't defined
        -- with record field labels, hence we desugar to field index.
        orig_lbls :: [Name]
orig_lbls        = (FieldLabel -> Name) -> [FieldLabel] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map FieldLabel -> Name
flSelector ([FieldLabel] -> [Name]) -> [FieldLabel] -> [Name]
forall a b. (a -> b) -> a -> b
$ ConLike -> [FieldLabel]
conLikeFieldLabels ConLike
con
        lbl_to_index :: Name -> Int
lbl_to_index Name
lbl = [Char] -> Maybe Int -> Int
forall a. HasDebugCallStack => [Char] -> Maybe a -> a
expectJust [Char]
"lbl_to_index" (Maybe Int -> Int) -> Maybe Int -> Int
forall a b. (a -> b) -> a -> b
$ Name -> [Name] -> Maybe Int
forall a. Eq a => a -> [a] -> Maybe Int
elemIndex Name
lbl [Name]
orig_lbls

    go_field_pats :: [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))] -> DsM GrdDag
go_field_pats [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
tagged_pats = do
      -- The fields that appear might not be in the correct order. So
      --   1. Do the PmCon match
      --   2. Then pattern match on the fields in the order given by the first
      --      field of @tagged_pats@.
      -- See Note [Field match order for RecCon]

      -- Desugar the mentioned field patterns. We're doing this first to get
      -- the Ids for pm_con_args and bring them in order afterwards.
      let trans_pat :: (a, GenLocated SrcSpanAnnA (Pat GhcTc))
-> IOEnv (Env DsGblEnv DsLclEnv) ((a, Id), GrdDag)
trans_pat (a
n, GenLocated SrcSpanAnnA (Pat GhcTc)
pat) = do
            (var, pvec) <- LPat GhcTc -> DsM (Id, GrdDag)
desugarLPatV LPat GhcTc
GenLocated SrcSpanAnnA (Pat GhcTc)
pat
            pure ((n, var), pvec)
      (tagged_vars, arg_grdss) <- ((Int, GenLocated SrcSpanAnnA (Pat GhcTc))
 -> IOEnv (Env DsGblEnv DsLclEnv) ((Int, Id), GrdDag))
-> [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
-> IOEnv (Env DsGblEnv DsLclEnv) ([(Int, Id)], [GrdDag])
forall (m :: * -> *) a b c.
Applicative m =>
(a -> m (b, c)) -> [a] -> m ([b], [c])
mapAndUnzipM (Int, GenLocated SrcSpanAnnA (Pat GhcTc))
-> IOEnv (Env DsGblEnv DsLclEnv) ((Int, Id), GrdDag)
forall {a}.
(a, GenLocated SrcSpanAnnA (Pat GhcTc))
-> IOEnv (Env DsGblEnv DsLclEnv) ((a, Id), GrdDag)
trans_pat [(Int, GenLocated SrcSpanAnnA (Pat GhcTc))]
tagged_pats

      let get_pat_id Int
n Kind
ty = case Int -> [(Int, Id)] -> Maybe Id
forall a b. Eq a => a -> [(a, b)] -> Maybe b
lookup Int
n [(Int, Id)]
tagged_vars of
            Just Id
var -> Id -> DsM Id
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure Id
var
            Maybe Id
Nothing  -> Kind -> DsM Id
mkPmId Kind
ty

      -- 1. the constructor pattern match itself
      arg_ids <- zipWithM get_pat_id [0..] arg_tys
      let con_grd = Id -> PmAltCon -> [Id] -> [Id] -> [Id] -> PmGrd
PmCon Id
x (ConLike -> PmAltCon
PmAltConLike ConLike
con) [Id]
ex_tvs [Id]
dicts [Id]
arg_ids

      -- 2. guards from field selector patterns
      let arg_grds = [GrdDag] -> GrdDag
sequenceGrdDags [GrdDag]
arg_grdss

      -- tracePm "ConPatOut" (ppr x $$ ppr con $$ ppr arg_ids)
      pure (con_grd `consGrdDag` arg_grds)

desugarPatBind :: SrcSpan -> Id -> Pat GhcTc -> DsM (PmPatBind Pre)
-- See 'GrdPatBind' for how this simply repurposes GrdGRHS.
desugarPatBind :: SrcSpan -> Id -> Pat GhcTc -> DsM (PmPatBind GrdDag)
desugarPatBind SrcSpan
loc Id
var Pat GhcTc
pat =
  PmGRHS GrdDag -> PmPatBind GrdDag
forall p. PmGRHS p -> PmPatBind p
PmPatBind (PmGRHS GrdDag -> PmPatBind GrdDag)
-> (GrdDag -> PmGRHS GrdDag) -> GrdDag -> PmPatBind GrdDag
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (GrdDag -> SrcInfo -> PmGRHS GrdDag)
-> SrcInfo -> GrdDag -> PmGRHS GrdDag
forall a b c. (a -> b -> c) -> b -> a -> c
flip GrdDag -> SrcInfo -> PmGRHS GrdDag
forall p. p -> SrcInfo -> PmGRHS p
PmGRHS (Located SDoc -> SrcInfo
SrcInfo (SrcSpan -> SDoc -> Located SDoc
forall l e. l -> e -> GenLocated l e
L SrcSpan
loc (Pat GhcTc -> SDoc
forall a. Outputable a => a -> SDoc
ppr Pat GhcTc
pat))) (GrdDag -> PmPatBind GrdDag)
-> DsM GrdDag -> DsM (PmPatBind GrdDag)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Id -> Pat GhcTc -> DsM GrdDag
desugarPat Id
var Pat GhcTc
pat

desugarEmptyCase :: Id -> DsM PmEmptyCase
desugarEmptyCase :: Id -> DsM PmEmptyCase
desugarEmptyCase Id
var = PmEmptyCase -> DsM PmEmptyCase
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure PmEmptyCase { pe_var :: Id
pe_var = Id
var }

-- | Desugar the non-empty 'Match'es of a 'MatchGroup'.
desugarMatches :: [Id] -> NonEmpty (LMatch GhcTc (LHsExpr GhcTc))
               -> DsM (PmMatchGroup Pre)
desugarMatches :: [Id]
-> NonEmpty (LMatch GhcTc (LHsExpr GhcTc))
-> DsM (PmMatchGroup GrdDag)
desugarMatches [Id]
vars NonEmpty (LMatch GhcTc (LHsExpr GhcTc))
matches =
  NonEmpty (PmMatch GrdDag) -> PmMatchGroup GrdDag
forall p. NonEmpty (PmMatch p) -> PmMatchGroup p
PmMatchGroup (NonEmpty (PmMatch GrdDag) -> PmMatchGroup GrdDag)
-> IOEnv (Env DsGblEnv DsLclEnv) (NonEmpty (PmMatch GrdDag))
-> DsM (PmMatchGroup GrdDag)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (GenLocated
   SrcSpanAnnA (Match GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
 -> IOEnv (Env DsGblEnv DsLclEnv) (PmMatch GrdDag))
-> NonEmpty
     (GenLocated
        SrcSpanAnnA (Match GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))))
-> IOEnv (Env DsGblEnv DsLclEnv) (NonEmpty (PmMatch GrdDag))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> NonEmpty a -> f (NonEmpty b)
traverse ([Id]
-> LMatch GhcTc (LHsExpr GhcTc)
-> IOEnv (Env DsGblEnv DsLclEnv) (PmMatch GrdDag)
desugarMatch [Id]
vars) NonEmpty (LMatch GhcTc (LHsExpr GhcTc))
NonEmpty
  (GenLocated
     SrcSpanAnnA (Match GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))))
matches

-- Desugar a single match
desugarMatch :: [Id] -> LMatch GhcTc (LHsExpr GhcTc) -> DsM (PmMatch Pre)
desugarMatch :: [Id]
-> LMatch GhcTc (LHsExpr GhcTc)
-> IOEnv (Env DsGblEnv DsLclEnv) (PmMatch GrdDag)
desugarMatch [Id]
vars (L SrcSpanAnnA
match_loc (Match { m_pats :: forall p body. Match p body -> XRec p [LPat p]
m_pats = L EpaLocation
_ [GenLocated SrcSpanAnnA (Pat GhcTc)]
pats, m_grhss :: forall p body. Match p body -> GRHSs p body
m_grhss = GRHSs GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
grhss })) = do
  dflags <- IOEnv (Env DsGblEnv DsLclEnv) DynFlags
forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
  -- decideBangHood: See Note [Desugaring -XStrict matches in Pmc]
  let banged_pats = (GenLocated SrcSpanAnnA (Pat GhcTc)
 -> GenLocated SrcSpanAnnA (Pat GhcTc))
-> [GenLocated SrcSpanAnnA (Pat GhcTc)]
-> [GenLocated SrcSpanAnnA (Pat GhcTc)]
forall a b. (a -> b) -> [a] -> [b]
map (DynFlags -> LPat GhcTc -> LPat GhcTc
decideBangHood DynFlags
dflags) [GenLocated SrcSpanAnnA (Pat GhcTc)]
pats
  pats'  <- sequenceGrdDags <$> zipWithM desugarLPat vars banged_pats
  grhss' <- desugarGRHSs (locA match_loc) (sep (map ppr pats)) grhss
  -- tracePm "desugarMatch" (vcat [ppr pats, ppr pats', ppr grhss'])
  return PmMatch { pm_pats = pats', pm_grhss = grhss' }

desugarGRHSs :: SrcSpan -> SDoc -> GRHSs GhcTc (LHsExpr GhcTc) -> DsM (PmGRHSs Pre)
desugarGRHSs :: SrcSpan
-> SDoc -> GRHSs GhcTc (LHsExpr GhcTc) -> DsM (PmGRHSs GrdDag)
desugarGRHSs SrcSpan
match_loc SDoc
pp_pats GRHSs GhcTc (LHsExpr GhcTc)
grhss = do
  lcls <- HsLocalBinds GhcTc -> DsM GrdDag
desugarLocalBinds (GRHSs GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
-> HsLocalBinds GhcTc
forall p body. GRHSs p body -> HsLocalBinds p
grhssLocalBinds GRHSs GhcTc (LHsExpr GhcTc)
GRHSs GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
grhss)
  grhss' <- traverse (desugarLGRHS match_loc pp_pats)
              . expectJust "desugarGRHSs"
              . NE.nonEmpty
              $ grhssGRHSs grhss
  return PmGRHSs { pgs_lcls = lcls, pgs_grhss = grhss' }

-- | Desugar a guarded right-hand side to a single 'GrdTree'
desugarLGRHS :: SrcSpan -> SDoc -> LGRHS GhcTc (LHsExpr GhcTc) -> DsM (PmGRHS Pre)
desugarLGRHS :: SrcSpan
-> SDoc
-> LGRHS GhcTc (LHsExpr GhcTc)
-> IOEnv (Env DsGblEnv DsLclEnv) (PmGRHS GrdDag)
desugarLGRHS SrcSpan
match_loc SDoc
pp_pats (L EpAnnCO
_loc (GRHS XCGRHS GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
_ [GuardLStmt GhcTc]
gs GenLocated SrcSpanAnnA (HsExpr GhcTc)
_)) = do
  -- _loc points to the match separator (ie =, ->) that comes after the guards.
  -- Hence we have to pass in the match_loc, which we use in case that the RHS
  -- is unguarded.
  -- pp_pats is the space-separated pattern of the current Match this
  -- GRHS belongs to, so the @A B x@ part in @A B x | 0 <- x@.
  let rhs_info :: Located SDoc
rhs_info = case [GuardLStmt GhcTc]
gs of
        []              -> SrcSpan -> SDoc -> Located SDoc
forall l e. l -> e -> GenLocated l e
L SrcSpan
match_loc      SDoc
pp_pats
        (L SrcSpanAnnA
grd_loc StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
_):[GuardLStmt GhcTc]
_ -> SrcSpan -> SDoc -> Located SDoc
forall l e. l -> e -> GenLocated l e
L (SrcSpanAnnA -> SrcSpan
forall a. HasLoc a => a -> SrcSpan
locA SrcSpanAnnA
grd_loc) (SDoc
pp_pats SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> SDoc
forall doc. IsLine doc => doc
vbar SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> [GenLocated
   SrcSpanAnnA
   (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))]
-> SDoc
forall a. Outputable a => [a] -> SDoc
interpp'SP [GuardLStmt GhcTc]
[GenLocated
   SrcSpanAnnA
   (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))]
gs)
  grdss <- (GenLocated
   SrcSpanAnnA
   (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
 -> DsM GrdDag)
-> [GenLocated
      SrcSpanAnnA
      (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))]
-> IOEnv (Env DsGblEnv DsLclEnv) [GrdDag]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse (GuardStmt GhcTc -> DsM GrdDag
StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
-> DsM GrdDag
desugarGuard (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
 -> DsM GrdDag)
-> (GenLocated
      SrcSpanAnnA
      (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
    -> StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
-> GenLocated
     SrcSpanAnnA
     (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
-> DsM GrdDag
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated
  SrcSpanAnnA
  (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))
-> StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
forall l e. GenLocated l e -> e
unLoc) [GuardLStmt GhcTc]
[GenLocated
   SrcSpanAnnA
   (StmtLR GhcTc GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc)))]
gs
  pure PmGRHS { pg_grds = sequenceGrdDags grdss, pg_rhs = SrcInfo rhs_info }

-- | Desugar a guard statement to a 'GrdDag'
desugarGuard :: GuardStmt GhcTc -> DsM GrdDag
desugarGuard :: GuardStmt GhcTc -> DsM GrdDag
desugarGuard GuardStmt GhcTc
guard = case GuardStmt GhcTc
guard of
  BodyStmt XBodyStmt GhcTc GhcTc (LHsExpr GhcTc)
_   LHsExpr GhcTc
e SyntaxExpr GhcTc
_ SyntaxExpr GhcTc
_ -> LHsExpr GhcTc -> DsM GrdDag
desugarBoolGuard LHsExpr GhcTc
e
  LetStmt  XLetStmt GhcTc GhcTc (LHsExpr GhcTc)
_   HsLocalBinds GhcTc
binds -> HsLocalBinds GhcTc -> DsM GrdDag
desugarLocalBinds HsLocalBinds GhcTc
binds
  BindStmt XBindStmt GhcTc GhcTc (LHsExpr GhcTc)
_ LPat GhcTc
p LHsExpr GhcTc
e     -> LPat GhcTc -> LHsExpr GhcTc -> DsM GrdDag
desugarBind LPat GhcTc
p LHsExpr GhcTc
e
  LastStmt        {} -> [Char] -> DsM GrdDag
forall a. HasCallStack => [Char] -> a
panic [Char]
"desugarGuard LastStmt"
  ParStmt         {} -> [Char] -> DsM GrdDag
forall a. HasCallStack => [Char] -> a
panic [Char]
"desugarGuard ParStmt"
  TransStmt       {} -> [Char] -> DsM GrdDag
forall a. HasCallStack => [Char] -> a
panic [Char]
"desugarGuard TransStmt"
  RecStmt         {} -> [Char] -> DsM GrdDag
forall a. HasCallStack => [Char] -> a
panic [Char]
"desugarGuard RecStmt"
  XStmtLR ApplicativeStmt{} -> [Char] -> DsM GrdDag
forall a. HasCallStack => [Char] -> a
panic [Char]
"desugarGuard ApplicativeLastStmt"

sequenceGrdDagMapM :: Applicative f => (a -> f GrdDag) -> [a] -> f GrdDag
sequenceGrdDagMapM :: forall (f :: * -> *) a.
Applicative f =>
(a -> f GrdDag) -> [a] -> f GrdDag
sequenceGrdDagMapM a -> f GrdDag
f [a]
as = [GrdDag] -> GrdDag
sequenceGrdDags ([GrdDag] -> GrdDag) -> f [GrdDag] -> f GrdDag
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (a -> f GrdDag) -> [a] -> f [GrdDag]
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> [a] -> f [b]
traverse a -> f GrdDag
f [a]
as

-- | Desugar local bindings to a bunch of 'PmLet' guards.
-- Deals only with simple @let@ or @where@ bindings without any polymorphism,
-- recursion, pattern bindings etc.
-- See Note [Long-distance information for HsLocalBinds].
desugarLocalBinds :: HsLocalBinds GhcTc -> DsM GrdDag
desugarLocalBinds :: HsLocalBinds GhcTc -> DsM GrdDag
desugarLocalBinds (HsValBinds XHsValBinds GhcTc GhcTc
_ (XValBindsLR (NValBinds [(RecFlag, LHsBinds GhcTc)]
binds [LSig GhcRn]
_))) =
  ([GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)] -> DsM GrdDag)
-> [[GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)]] -> DsM GrdDag
forall (f :: * -> *) a.
Applicative f =>
(a -> f GrdDag) -> [a] -> f GrdDag
sequenceGrdDagMapM ((GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc) -> DsM GrdDag)
-> [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)] -> DsM GrdDag
forall (f :: * -> *) a.
Applicative f =>
(a -> f GrdDag) -> [a] -> f GrdDag
sequenceGrdDagMapM LHsBind GhcTc -> DsM GrdDag
GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc) -> DsM GrdDag
go) (((RecFlag, [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)])
 -> [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)])
-> [(RecFlag, [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)])]
-> [[GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)]]
forall a b. (a -> b) -> [a] -> [b]
map (RecFlag, [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)])
-> [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)]
forall a b. (a, b) -> b
snd [(RecFlag, LHsBinds GhcTc)]
[(RecFlag, [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)])]
binds)
  where
    go :: LHsBind GhcTc -> DsM GrdDag
    go :: LHsBind GhcTc -> DsM GrdDag
go (L SrcSpanAnnA
_ FunBind{fun_id :: forall idL idR. HsBindLR idL idR -> LIdP idL
fun_id = L SrcSpanAnnN
_ Id
x, fun_matches :: forall idL idR. HsBindLR idL idR -> MatchGroup idR (LHsExpr idR)
fun_matches = MatchGroup GhcTc (LHsExpr GhcTc)
mg})
      -- See Note [Long-distance information for HsLocalBinds] for why this
      -- pattern match is so very specific.
      | L SrcSpanAnnL
_ [L SrcSpanAnnA
_ Match{m_pats :: forall p body. Match p body -> XRec p [LPat p]
m_pats = L EpaLocation
_ [], m_grhss :: forall p body. Match p body -> GRHSs p body
m_grhss = GRHSs GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
grhss}] <- MatchGroup GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
-> XRec
     GhcTc [LMatch GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))]
forall p body. MatchGroup p body -> XRec p [LMatch p body]
mg_alts MatchGroup GhcTc (LHsExpr GhcTc)
MatchGroup GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
mg
      , GRHSs{grhssGRHSs :: forall p body. GRHSs p body -> [LGRHS p body]
grhssGRHSs = [L EpAnnCO
_ (GRHS XCGRHS GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
_ [GuardLStmt GhcTc]
_grds GenLocated SrcSpanAnnA (HsExpr GhcTc)
rhs)]} <- GRHSs GhcTc (GenLocated SrcSpanAnnA (HsExpr GhcTc))
grhss = do
          core_rhs <- LHsExpr GhcTc -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
dsLExpr LHsExpr GhcTc
GenLocated SrcSpanAnnA (HsExpr GhcTc)
rhs
          return (GdOne (PmLet x core_rhs))
    go (L SrcSpanAnnA
_ (XHsBindsLR (AbsBinds
                          { abs_tvs :: AbsBinds -> [Id]
abs_tvs = [], abs_ev_vars :: AbsBinds -> [Id]
abs_ev_vars = []
                          , abs_exports :: AbsBinds -> [ABExport]
abs_exports=[ABExport]
exports, abs_binds :: AbsBinds -> LHsBinds GhcTc
abs_binds = LHsBinds GhcTc
binds }))) = do
      -- Typechecked HsLocalBinds are wrapped in AbsBinds, which carry
      -- renamings. See Note [Long-distance information for HsLocalBinds]
      -- for the details.
      let go_export :: ABExport -> Maybe PmGrd
          go_export :: ABExport -> Maybe PmGrd
go_export ABE{abe_poly :: ABExport -> Id
abe_poly = Id
x, abe_mono :: ABExport -> Id
abe_mono = Id
y, abe_wrap :: ABExport -> HsWrapper
abe_wrap = HsWrapper
wrap}
            | HsWrapper -> Bool
isIdHsWrapper HsWrapper
wrap
            = Bool -> SDoc -> Maybe PmGrd -> Maybe PmGrd
forall a. HasCallStack => Bool -> SDoc -> a -> a
assertPpr (Id -> Kind
idType Id
x HasCallStack => Kind -> Kind -> Bool
Kind -> Kind -> Bool
`eqType` Id -> Kind
idType Id
y)
                        (Id -> SDoc
forall a. Outputable a => a -> SDoc
ppr Id
x SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Kind -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Id -> Kind
idType Id
x) SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Id -> SDoc
forall a. Outputable a => a -> SDoc
ppr Id
y SDoc -> SDoc -> SDoc
forall doc. IsDoc doc => doc -> doc -> doc
$$ Kind -> SDoc
forall a. Outputable a => a -> SDoc
ppr (Id -> Kind
idType Id
y)) (Maybe PmGrd -> Maybe PmGrd) -> Maybe PmGrd -> Maybe PmGrd
forall a b. (a -> b) -> a -> b
$
              PmGrd -> Maybe PmGrd
forall a. a -> Maybe a
Just (PmGrd -> Maybe PmGrd) -> PmGrd -> Maybe PmGrd
forall a b. (a -> b) -> a -> b
$ Id -> CoreExpr -> PmGrd
PmLet Id
x (Id -> CoreExpr
forall b. Id -> Expr b
Var Id
y)
            | Bool
otherwise
            = Maybe PmGrd
forall a. Maybe a
Nothing
      let exps :: [PmGrd]
exps = (ABExport -> Maybe PmGrd) -> [ABExport] -> [PmGrd]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe ABExport -> Maybe PmGrd
go_export [ABExport]
exports
      bs <- (GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc) -> DsM GrdDag)
-> [GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)] -> DsM GrdDag
forall (f :: * -> *) a.
Applicative f =>
(a -> f GrdDag) -> [a] -> f GrdDag
sequenceGrdDagMapM LHsBind GhcTc -> DsM GrdDag
GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc) -> DsM GrdDag
go LHsBinds GhcTc
[GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc)]
binds
      return (sequencePmGrds exps `gdSeq` bs)
    go LHsBind GhcTc
_ = GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return GrdDag
GdEnd
desugarLocalBinds HsLocalBinds GhcTc
_binds = GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return GrdDag
GdEnd

-- | Desugar a pattern guard
--   @pat <- e ==>  let x = e;  <guards for pat <- x>@
desugarBind :: LPat GhcTc -> LHsExpr GhcTc -> DsM GrdDag
desugarBind :: LPat GhcTc -> LHsExpr GhcTc -> DsM GrdDag
desugarBind LPat GhcTc
p LHsExpr GhcTc
e = LHsExpr GhcTc -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
dsLExpr LHsExpr GhcTc
e IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
-> (CoreExpr -> DsM GrdDag) -> DsM GrdDag
forall a b.
IOEnv (Env DsGblEnv DsLclEnv) a
-> (a -> IOEnv (Env DsGblEnv DsLclEnv) b)
-> IOEnv (Env DsGblEnv DsLclEnv) b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
  Var Id
y
    | Maybe DataCon
Nothing <- Id -> Maybe DataCon
isDataConId_maybe Id
y
    -- RHS is a variable, so that will allow us to omit the let
    -> Id -> LPat GhcTc -> DsM GrdDag
desugarLPat Id
y LPat GhcTc
p
  CoreExpr
rhs -> do
    (x, grds) <- LPat GhcTc -> DsM (Id, GrdDag)
desugarLPatV LPat GhcTc
p
    pure (PmLet x rhs `consGrdDag` grds)

-- | Desugar a boolean guard
--   @e ==>  let x = e; True <- x@
desugarBoolGuard :: LHsExpr GhcTc -> DsM GrdDag
desugarBoolGuard :: LHsExpr GhcTc -> DsM GrdDag
desugarBoolGuard LHsExpr GhcTc
e
  | Maybe (CoreExpr -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr) -> Bool
forall a. Maybe a -> Bool
isJust (LHsExpr GhcTc
-> Maybe (CoreExpr -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr)
isTrueLHsExpr LHsExpr GhcTc
e) = GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return GrdDag
GdEnd
    -- The formal thing to do would be to generate (True <- True)
    -- but it is trivial to solve so instead we give back an empty
    -- GrdDag for efficiency
  | Bool
otherwise = LHsExpr GhcTc -> IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
dsLExpr LHsExpr GhcTc
e IOEnv (Env DsGblEnv DsLclEnv) CoreExpr
-> (CoreExpr -> DsM GrdDag) -> DsM GrdDag
forall a b.
IOEnv (Env DsGblEnv DsLclEnv) a
-> (a -> IOEnv (Env DsGblEnv DsLclEnv) b)
-> IOEnv (Env DsGblEnv DsLclEnv) b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
      Var Id
y
        | Maybe DataCon
Nothing <- Id -> Maybe DataCon
isDataConId_maybe Id
y
        -- Omit the let by matching on y
        -> GrdDag -> DsM GrdDag
forall a. a -> IOEnv (Env DsGblEnv DsLclEnv) a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (PmGrd -> GrdDag
GdOne (Id -> DataCon -> [Id] -> PmGrd
vanillaConGrd Id
y DataCon
trueDataCon []))
      CoreExpr
rhs -> do
        x <- Kind -> DsM Id
mkPmId Kind
boolTy
        pure $ sequencePmGrds [PmLet x rhs, vanillaConGrd x trueDataCon []]

{- Note [Field match order for RecCon]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The order for RecCon field patterns actually determines evaluation order of
the pattern match. For example:

  data T = T { a :: Char, b :: Int }
  f :: T -> ()
  f T{ b = 42, a = 'a' } = ()

Then @f (T (error "a") (error "b"))@ errors out with "b" because it is mentioned
first in the pattern match.

This means we can't just desugar the pattern match to
@[T a b <- x, 'a' <- a, 42 <- b]@. Instead we have to force them in the
right order: @[T a b <- x, 42 <- b, 'a' <- a]@.

Note [Order of guards matters]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Similar to Note [Field match order for RecCon], the order in which the guards
for a pattern match appear matter. Consider a situation similar to T5117:

  f (0:_)  = ()
  f (0:[]) = ()

The latter clause is clearly redundant. Yet if we desugar the second clause as

  [x:xs' <- xs, [] <- xs', 0 <- x]

We will say that the second clause only has an inaccessible RHS. That's because
we force the tail of the list before comparing its head! So the correct
translation would have been

  [x:xs' <- xs, 0 <- x, [] <- xs']

And we have to take in the guards on list cells into @mkListGrds@.

Note [Desugar CoPats]
~~~~~~~~~~~~~~~~~~~~~~~
The pattern match checker did not know how to handle coerced patterns
`CoPat` efficiently, which gave rise to #11276. The original approach
desugared `CoPat`s:

    pat |> co    ===>    x (pat <- (x |> co))

Why did we do this seemingly unnecessary expansion in the first place?
The reason is that the type of @pat |> co@ (which is the type of the value
abstraction we match against) might be different than that of @pat@. Data
instances such as @Sing (a :: Bool)@ are a good example of this: If we would
just drop the coercion, we'd get a type error when matching @pat@ against its
value abstraction, with the result being that pmIsSatisfiable decides that every
possible data constructor fitting @pat@ is rejected as uninhabited, leading to
a lot of false warnings.

But we can check whether the coercion is a hole or if it is just refl, in
which case we can drop it.

Note [Long-distance information for HsLocalBinds]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#18626)

  f :: Int -> ()
  f x | y = ()
    where
      y = True

  x :: ()
  x | let y = True, y = ()

Both definitions are exhaustive, but to make the necessary long-distance
connection from @y@'s binding to its use site in a guard, we have to collect
'PmLet' guards for the 'HsLocalBinds' which contain @y@'s definitions.

In principle, we are only interested in desugaring local binds that are
'FunBind's, that

  * Have no pattern matches. If @y@ above had any patterns, it would be a
    function and we can't reason about them anyway.
  * Have singleton match group with a single GRHS.
    Otherwise, what expression to pick in the generated guard @let y = <rhs>@?

It turns out that desugaring type-checked local binds in this way is a bit
more complex than expected: Apparently, all bindings are wrapped in 'AbsBinds'
Nfter type-checking. See Note [AbsBinds] in "GHC.Hs.Binds".

We make sure that there is no polymorphism in the way by checking that there
are no 'abs_tvs' or 'abs_ev_vars' (we don't reason about
@y :: forall a. Eq a => ...@) and that the exports carry no 'HsWrapper's. In
this case, the exports are a simple renaming substitution that we can capture
with 'PmLet'. Ultimately we'll hit those renamed 'FunBind's, though, which is
the whole point.

The place to store the 'PmLet' guards for @where@ clauses (which are per
'GRHSs') is as a field of 'PmGRHSs'. For plain @let@ guards as in the guards of
@x@, we can simply add them to the 'pg_grds' field of 'PmGRHS'.

Note [Desugaring -XStrict matches in Pmc]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider (#21761)

  {-# LANGUAGE Strict #-}
  idV :: Void -> Void
  idV v = v

Without -XStrict, we would not warn here. But with -XStrict, there is an
implicit bang on `v` and we should give an inaccessible warning for the RHS.
The way we account for that is by calling `decideBangHood` on patterns
in a `Match`, which inserts the implicit bang.

Making the call here actually seems redundant with the call to `decideBangHood`
in `GHC.HsToCore.Match.matchWrapper`, which does it *after* it calls the
pattern-match checker on the Match's patterns. It would be great if we could expect
`matchWrapper` to pass the bang-adorned `Match` to the pattern-match checker,
but sadly then we get worse warning messages which would print `idV` as if the
user *had* written a bang:

     Pattern match has inaccessible right hand side
-    In an equation for ‘idV’: idV v = ...
+    In an equation for ‘idV’: idV !v = ...

So we live with the duplication.
-}