{-# LANGUAGE TypeApplications           #-}
{-# LANGUAGE DeriveFunctor              #-}
{-# LANGUAGE FlexibleContexts           #-}
{-# LANGUAGE RankNTypes                 #-}
{-# LANGUAGE ScopedTypeVariables        #-}
{-# LANGUAGE TypeFamilies               #-}
{-# LANGUAGE ViewPatterns               #-}
{-# LANGUAGE DisambiguateRecordFields   #-}
{-# LANGUAGE NamedFieldPuns             #-}
{-# LANGUAGE MultiWayIf                 #-}
{-# LANGUAGE DerivingStrategies         #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

{-
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998

Renaming of patterns

Basically dependency analysis.

Handles @Match@, @GRHSs@, @HsExpr@, and @Qualifier@ datatypes.  In
general, all of these functions return a renamed thing, and a set of
free variables.
-}
module GHC.Rename.Pat (-- main entry points
              rnPat, rnPats, rnBindPat,

              NameMaker, applyNameMaker,     -- a utility for making names:
              localRecNameMaker, topRecNameMaker,  --   sometimes we want to make local names,
                                             --   sometimes we want to make top (qualified) names.
              isTopRecNameMaker,

              rnHsRecFields, HsRecFieldContext(..),
              rnHsRecUpdFields,

              -- CpsRn monad
              CpsRn, liftCps, liftCpsWithCont,

              -- Literals
              rnLit, rnOverLit,
             ) where

-- ENH: thin imports to only what is necessary for patterns

import GHC.Prelude

import {-# SOURCE #-} GHC.Rename.Expr ( rnLExpr )
import {-# SOURCE #-} GHC.Rename.Splice ( rnSplicePat, rnSpliceTyPat )

import GHC.Hs
import GHC.Tc.Errors.Types
import GHC.Tc.Utils.Monad
import GHC.Tc.Utils.TcMType ( hsOverLitName )
import GHC.Rename.Env
import GHC.Rename.Fixity
import GHC.Rename.Utils    ( newLocalBndrRn, bindLocalNames
                           , warnUnusedMatches, newLocalBndrRn
                           , checkUnusedRecordWildcard
                           , checkDupNames, checkDupAndShadowedNames
                           , wrapGenSpan, genHsApps, genLHsVar, genHsIntegralLit, delLocalNames, typeAppErr )
import GHC.Rename.HsType
import GHC.Builtin.Names

import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Name.Reader
import GHC.Types.Unique.Set

import GHC.Types.Basic
import GHC.Types.SourceText
import GHC.Utils.Misc
import GHC.Data.FastString ( uniqCompareFS )
import GHC.Data.List.SetOps( removeDups )
import GHC.Utils.Outputable
import GHC.Utils.Panic.Plain
import GHC.Types.SrcLoc
import GHC.Types.Literal   ( inCharRange )
import GHC.Types.GREInfo   ( ConInfo(..), conInfoFields, ConFieldInfo (..) )
import GHC.Builtin.Types   ( nilDataCon )
import GHC.Core.DataCon
import GHC.Core.TyCon      ( isKindName )
import qualified GHC.LanguageExtensions as LangExt

import Control.Monad       ( when, ap, guard, unless )
import Data.Foldable
import Data.Function       ( on )
import Data.Functor.Identity ( Identity (..) )
import qualified Data.List.NonEmpty as NE
import Data.Maybe
import Data.Ratio
import Control.Monad.Trans.Writer.CPS
import Control.Monad.Trans.Class
import Control.Monad.Trans.Reader
import Data.Functor ((<&>))
import GHC.Rename.Doc (rnLHsDoc)
import GHC.Types.Hint
import GHC.Types.Fixity (LexicalFixity(..))
import Data.Coerce

{-
*********************************************************
*                                                      *
        The CpsRn Monad
*                                                      *
*********************************************************

Note [CpsRn monad]
~~~~~~~~~~~~~~~~~~
The CpsRn monad uses continuation-passing style to support this
style of programming:

        do { ...
           ; ns <- bindNames rs
           ; ...blah... }

   where rs::[RdrName], ns::[Name]

The idea is that '...blah...'
  a) sees the bindings of ns
  b) returns the free variables it mentions
     so that bindNames can report unused ones

In particular,
    mapM rnPatAndThen [p1, p2, p3]
has a *left-to-right* scoping: it makes the binders in
p1 scope over p2,p3.
-}

newtype CpsRn b = CpsRn { forall b.
CpsRn b -> forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
unCpsRn :: forall r. (b -> RnM (r, FreeVars))
                                            -> RnM (r, FreeVars) }
        deriving ((forall a b. (a -> b) -> CpsRn a -> CpsRn b)
-> (forall a b. a -> CpsRn b -> CpsRn a) -> Functor CpsRn
forall a b. a -> CpsRn b -> CpsRn a
forall a b. (a -> b) -> CpsRn a -> CpsRn b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
$cfmap :: forall a b. (a -> b) -> CpsRn a -> CpsRn b
fmap :: forall a b. (a -> b) -> CpsRn a -> CpsRn b
$c<$ :: forall a b. a -> CpsRn b -> CpsRn a
<$ :: forall a b. a -> CpsRn b -> CpsRn a
Functor)
        -- See Note [CpsRn monad]

instance Applicative CpsRn where
    pure :: forall a. a -> CpsRn a
pure a
x = (forall r. (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn a
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\a -> RnM (r, FreeVars)
k -> a -> RnM (r, FreeVars)
k a
x)
    <*> :: forall a b. CpsRn (a -> b) -> CpsRn a -> CpsRn b
(<*>) = CpsRn (a -> b) -> CpsRn a -> CpsRn b
forall (m :: * -> *) a b. Monad m => m (a -> b) -> m a -> m b
ap

instance Monad CpsRn where
  (CpsRn forall r. (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
m) >>= :: forall a b. CpsRn a -> (a -> CpsRn b) -> CpsRn b
>>= a -> CpsRn b
mk = (forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\b -> RnM (r, FreeVars)
k -> (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall r. (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
m (\a
v -> CpsRn b -> forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall b.
CpsRn b -> forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
unCpsRn (a -> CpsRn b
mk a
v) b -> RnM (r, FreeVars)
k))

runCps :: CpsRn a -> RnM (a, FreeVars)
runCps :: forall a. CpsRn a -> RnM (a, FreeVars)
runCps (CpsRn forall r. (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
m) = (a -> RnM (a, FreeVars)) -> RnM (a, FreeVars)
forall r. (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
m (\a
r -> (a, FreeVars) -> RnM (a, FreeVars)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (a
r, FreeVars
emptyFVs))

liftCps :: RnM a -> CpsRn a
liftCps :: forall a. RnM a -> CpsRn a
liftCps RnM a
rn_thing = (forall r. (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn a
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\a -> RnM (r, FreeVars)
k -> RnM a
rn_thing RnM a -> (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall a b.
IOEnv (Env TcGblEnv TcLclEnv) a
-> (a -> IOEnv (Env TcGblEnv TcLclEnv) b)
-> IOEnv (Env TcGblEnv TcLclEnv) b
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= a -> RnM (r, FreeVars)
k)

liftCpsFV :: RnM (a, FreeVars) -> CpsRn a
liftCpsFV :: forall a. RnM (a, FreeVars) -> CpsRn a
liftCpsFV RnM (a, FreeVars)
rn_thing = (forall r. (a -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn a
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\a -> RnM (r, FreeVars)
k -> do { (v,fvs1) <- RnM (a, FreeVars)
rn_thing
                                     ; (r,fvs2) <- k v
                                     ; return (r, fvs1 `plusFV` fvs2) })

liftCpsWithCont :: (forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)) -> CpsRn b
liftCpsWithCont :: forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
liftCpsWithCont = (forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn

wrapSrcSpanCps :: (a -> CpsRn b) -> LocatedA a -> CpsRn (LocatedA b)
-- Set the location, and also wrap it around the value returned
wrapSrcSpanCps :: forall a b. (a -> CpsRn b) -> LocatedA a -> CpsRn (LocatedA b)
wrapSrcSpanCps a -> CpsRn b
fn (L EpAnn AnnListItem
loc a
a)
  = (forall r. (LocatedA b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn (LocatedA b)
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\LocatedA b -> RnM (r, FreeVars)
k -> EpAnn AnnListItem -> RnM (r, FreeVars) -> RnM (r, FreeVars)
forall ann a. EpAnn ann -> TcRn a -> TcRn a
setSrcSpanA EpAnn AnnListItem
loc (RnM (r, FreeVars) -> RnM (r, FreeVars))
-> RnM (r, FreeVars) -> RnM (r, FreeVars)
forall a b. (a -> b) -> a -> b
$
                 CpsRn b -> forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall b.
CpsRn b -> forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
unCpsRn (a -> CpsRn b
fn a
a) ((b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall a b. (a -> b) -> a -> b
$ \b
v ->
                 LocatedA b -> RnM (r, FreeVars)
k (EpAnn AnnListItem -> b -> LocatedA b
forall l e. l -> e -> GenLocated l e
L EpAnn AnnListItem
loc b
v))

lookupConCps :: LocatedN RdrName -> CpsRn (LocatedN Name)
lookupConCps :: LocatedN RdrName -> CpsRn (LocatedN Name)
lookupConCps LocatedN RdrName
con_rdr
  = (forall r.
 (LocatedN Name -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn (LocatedN Name)
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\LocatedN Name -> RnM (r, FreeVars)
k -> do { con_name <- LocatedN RdrName -> TcRn (LocatedN Name)
forall ann.
GenLocated (EpAnn ann) RdrName
-> TcRn (GenLocated (EpAnn ann) Name)
lookupLocatedOccRnConstr LocatedN RdrName
con_rdr
                    ; (r, fvs) <- k con_name
                    ; return (r, addOneFV fvs (unLoc con_name)) })
    -- We add the constructor name to the free vars
    -- See Note [Patterns are uses]

{-
Note [Patterns are uses]
~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  module Foo( f, g ) where
  data T = T1 | T2

  f T1 = True
  f T2 = False

  g _ = T1

Arguably we should report T2 as unused, even though it appears in a
pattern, because it never occurs in a constructed position.
See #7336.
However, implementing this in the face of pattern synonyms would be
less straightforward, since given two pattern synonyms

  pattern P1 <- P2
  pattern P2 <- ()

we need to observe the dependency between P1 and P2 so that type
checking can be done in the correct order (just like for value
bindings). Dependencies between bindings is analyzed in the renamer,
where we don't know yet whether P2 is a constructor or a pattern
synonym. So for now, we do report conid occurrences in patterns as
uses.

*********************************************************
*                                                      *
        Name makers
*                                                      *
*********************************************************

Externally abstract type of name makers,
which is how you go from a RdrName to a Name
-}

data NameMaker
  = LamMk       -- Lambdas
      Bool      -- True <=> report unused bindings
                --   (even if True, the warning only comes out
                --    if -Wunused-matches is on)

  | LetMk       -- Let bindings, incl top level
                -- Do *not* check for unused bindings
      TopLevelFlag
      MiniFixityEnv

topRecNameMaker :: MiniFixityEnv -> NameMaker
topRecNameMaker :: MiniFixityEnv -> NameMaker
topRecNameMaker MiniFixityEnv
fix_env = TopLevelFlag -> MiniFixityEnv -> NameMaker
LetMk TopLevelFlag
TopLevel MiniFixityEnv
fix_env

isTopRecNameMaker :: NameMaker -> Bool
isTopRecNameMaker :: NameMaker -> Bool
isTopRecNameMaker (LetMk TopLevelFlag
TopLevel MiniFixityEnv
_) = Bool
True
isTopRecNameMaker NameMaker
_ = Bool
False

localRecNameMaker :: MiniFixityEnv -> NameMaker
localRecNameMaker :: MiniFixityEnv -> NameMaker
localRecNameMaker MiniFixityEnv
fix_env = TopLevelFlag -> MiniFixityEnv -> NameMaker
LetMk TopLevelFlag
NotTopLevel MiniFixityEnv
fix_env

matchNameMaker :: HsMatchContext fn -> NameMaker
matchNameMaker :: forall fn. HsMatchContext fn -> NameMaker
matchNameMaker HsMatchContext fn
ctxt = Bool -> NameMaker
LamMk Bool
report_unused
  where
    -- Do not report unused names in interactive contexts
    -- i.e. when you type 'x <- e' at the GHCi prompt
    report_unused :: Bool
report_unused = case HsMatchContext fn
ctxt of
                      StmtCtxt (HsDoStmt HsDoFlavour
GhciStmtCtxt) -> Bool
False
                      -- also, don't warn in pattern quotes, as there
                      -- is no RHS where the variables can be used!
                      HsMatchContext fn
ThPatQuote            -> Bool
False
                      HsMatchContext fn
_                     -> Bool
True

newPatLName :: NameMaker -> LocatedN RdrName -> CpsRn (LocatedN Name)
newPatLName :: NameMaker -> LocatedN RdrName -> CpsRn (LocatedN Name)
newPatLName NameMaker
name_maker rdr_name :: LocatedN RdrName
rdr_name@(L SrcSpanAnnN
loc RdrName
_)
  = do { name <- NameMaker -> LocatedN RdrName -> CpsRn Name
newPatName NameMaker
name_maker LocatedN RdrName
rdr_name
       ; return (L loc name) }

newPatName :: NameMaker -> LocatedN RdrName -> CpsRn Name
newPatName :: NameMaker -> LocatedN RdrName -> CpsRn Name
newPatName (LamMk Bool
report_unused) LocatedN RdrName
rdr_name
  = (forall r. (Name -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn Name
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\ Name -> RnM (r, FreeVars)
thing_inside ->
        do { name <- LocatedN RdrName -> RnM Name
newLocalBndrRn LocatedN RdrName
rdr_name
           ; (res, fvs) <- bindLocalNames [name] (thing_inside name)
           ; when report_unused $ warnUnusedMatches [name] fvs
           ; return (res, name `delFV` fvs) })

newPatName (LetMk TopLevelFlag
is_top MiniFixityEnv
fix_env) LocatedN RdrName
rdr_name
  = (forall r. (Name -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn Name
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\ Name -> RnM (r, FreeVars)
thing_inside ->
        do { name <- case TopLevelFlag
is_top of
                       TopLevelFlag
NotTopLevel -> LocatedN RdrName -> RnM Name
newLocalBndrRn LocatedN RdrName
rdr_name
                       TopLevelFlag
TopLevel    -> LocatedN RdrName -> RnM Name
newTopSrcBinder LocatedN RdrName
rdr_name
           ; bindLocalNames [name] $
                 -- Do *not* use bindLocalNameFV here;
                 --   see Note [View pattern usage]
                 -- For the TopLevel case
                 --   see Note [bindLocalNames for an External name]
             addLocalFixities fix_env [name] $
             thing_inside name })

{- Note [bindLocalNames for an External name]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the TopLevel case, the use of bindLocalNames here is somewhat
suspicious because it binds a top-level External name in the
LocalRdrEnv.  c.f. Note [LocalRdrEnv] in GHC.Types.Name.Reader.

However, this only happens when renaming the LHS (only) of a top-level
pattern binding.  Even though this only the LHS, we need to bring the
binder into scope in the pattern itself in case the binder is used in
subsequent view patterns.  A bit bizarre, something like
  (x, Just y <- f x) = e

Anyway, bindLocalNames does work, and the binding only exists for the
duration of the pattern; then the top-level name is added to the
global env before going on to the RHSes (see GHC.Rename.Module).

Note [View pattern usage]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  let (r, (r -> x)) = x in ...
Here the pattern binds 'r', and then uses it *only* in the view pattern.
We want to "see" this use, and in let-bindings we collect all uses and
report unused variables at the binding level. So we must use bindLocalNames
here, *not* bindLocalNameFV.  #3943.


Note [Don't report shadowing for pattern synonyms]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is one special context where a pattern doesn't introduce any new binders -
pattern synonym declarations. Therefore we don't check to see if pattern
variables shadow existing identifiers as they are never bound to anything
and have no scope.

Without this check, there would be quite a cryptic warning that the `x`
in the RHS of the pattern synonym declaration shadowed the top level `x`.

```
x :: ()
x = ()

pattern P x = Just x
```

See #12615 for some more examples.

Note [Handling overloaded and rebindable patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Overloaded patterns and rebindable patterns are desugared in the renamer
using the HsPatExpansion mechanism detailed in:
Note [Rebindable syntax and XXExprGhcRn]
The approach is similar to that of expressions, which is further detailed
in Note [Handling overloaded and rebindable constructs] in GHC.Rename.Expr.

Here are the patterns that are currently desugared in this way:

* ListPat (list patterns [p1,p2,p3])
  When (and only when) OverloadedLists is on, desugar to a view pattern:
    [p1, p2, p3]
  ==>
    toList -> [p1, p2, p3]
              ^^^^^^^^^^^^ built-in (non-overloaded) list pattern
  NB: the type checker and desugarer still see ListPat,
      but to them it always means the built-in list pattern.
  See Note [Desugaring overloaded list patterns] below for more details.

We expect to add to this list as we deal with more patterns via the expansion
mechanism.

Note [Desugaring overloaded list patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If OverloadedLists is enabled, we desugar a list pattern to a view pattern:

  [p1, p2, p3]
==>
  toList -> [p1, p2, p3]

This happens directly in the renamer, using the HsPatExpansion mechanism
detailed in Note [Rebindable syntax and XXExprGhcRn].

Note that we emit a special view pattern: we additionally keep track of an
inverse to the pattern.
See Note [Invertible view patterns] in GHC.Tc.TyCl.PatSyn for details.

== Wrinkle ==

This is all fine, except in one very specific case:
When the type being matched on is already a list type, so that the
pattern looks like
     toList @[ty] dict -> pat
then we know for certain that `toList` is an identity function, so we can
behave exactly as if the pattern was just `pat`.  This is important when
we have `OverloadedLists`.  For example (#14547, #25257)

> {-# LANGUAGE OverloadedLists #-}
>
> f []    = True
> f (_:_) = False

Without any special logic, the pattern `[]` is desugared to `(toList -> [])`,
whereas `(_:_)` remains a constructor pattern. This implies that the argument
of `f` is necessarily a list (even though `OverloadedLists` is enabled).
After desugaring the overloaded list pattern `[]`, and type-checking, we obtain:

> f :: [a] -> Bool
> f (toList -> []) = True
> f (_:_)          = False

The pattern match checker then warns that the pattern `[]` is not covered,
as it isn't able to look through view patterns.
We can see that this is silly: as we are matching on a list, `toList` doesn't
actually do anything. So we ignore it, and desugar the pattern to an explicit
list pattern, instead of a view pattern.
(NB: Because of -XRebindableSyntax we have to check that the `toList` we see is
actually resolved to `GHC.Exts.toList`.)

Note however that this is not necessarily sound, because it is possible to have
a list `l` such that `toList l` is not the same as `l`.
This can happen with an overlapping instance, such as the following:

instance {-# OVERLAPPING #-} IsList [Int] where
  type Item [Int] = Int
  toList = reverse
  fromList = reverse

We make the assumption that no such instance exists, in order to avoid worsening
pattern-match warnings (see #14547).

*********************************************************
*                                                      *
        External entry points
*                                                      *
*********************************************************

There are various entry points to renaming patterns, depending on
 (1) whether the names created should be top-level names or local names
 (2) whether the scope of the names is entirely given in a continuation
     (e.g., in a case or lambda, but not in a let or at the top-level,
      because of the way mutually recursive bindings are handled)
 (3) whether the a type signature in the pattern can bind
        lexically-scoped type variables (for unpacking existential
        type vars in data constructors)
 (4) whether we do duplicate and unused variable checking
 (5) whether there are fixity declarations associated with the names
     bound by the patterns that need to be brought into scope with them.

 Rather than burdening the clients of this module with all of these choices,
 we export the three points in this design space that we actually need:
-}

-- ----------- Entry point 1: rnPats -------------------
-- Binds local names; the scope of the bindings is entirely in the thing_inside
--   * allows type sigs to bind type vars
--   * local namemaker
--   * unused and duplicate checking
--   * no fixities

-- rn_pats_general is the generalisation of two functions:
--    rnPats, rnPat
-- Those are the only call sites, so we inline it for improved performance.
-- Kind of like a macro.
{-# INLINE rn_pats_general #-}
rn_pats_general :: Traversable f => HsMatchContextRn
  -> f (LPat GhcPs)
  -> (f (LPat GhcRn) -> RnM (r, FreeVars))
  -> RnM (r, FreeVars)
rn_pats_general :: forall (f :: * -> *) r.
Traversable f =>
HsMatchContextRn
-> f (LPat GhcPs)
-> (f (LPat (GhcPass 'Renamed)) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
rn_pats_general HsMatchContextRn
ctxt f (LPat GhcPs)
pats f (LPat (GhcPass 'Renamed)) -> RnM (r, FreeVars)
thing_inside = do
  envs_before <- TcRn (GlobalRdrEnv, LocalRdrEnv)
getRdrEnvs

  -- (1) rename the patterns, bringing into scope all of the term variables
  -- (2) then do the thing inside.
  unCpsRn (rn_pats_fun (matchNameMaker ctxt) pats) $ \ f (LocatedA (Pat (GhcPass 'Renamed)))
pats' -> do
    -- Check for duplicated and shadowed names
    -- Must do this *after* renaming the patterns
    -- See Note [Collect binders only after renaming] in GHC.Hs.Utils
    -- Because we don't bind the vars all at once, we can't
    --    check incrementally for duplicates;
    -- Nor can we check incrementally for shadowing, else we'll
    --    complain *twice* about duplicates e.g. f (x,x) = ...
    --
    -- See Note [Don't report shadowing for pattern synonyms]
    let bndrs :: [IdP (GhcPass 'Renamed)]
bndrs = CollectFlag (GhcPass 'Renamed)
-> [LPat (GhcPass 'Renamed)] -> [IdP (GhcPass 'Renamed)]
forall p. CollectPass p => CollectFlag p -> [LPat p] -> [IdP p]
collectPatsBinders CollectFlag (GhcPass 'Renamed)
CollVarTyVarBinders (f (LocatedA (Pat (GhcPass 'Renamed)))
-> [LocatedA (Pat (GhcPass 'Renamed))]
forall a. f a -> [a]
forall (t :: * -> *) a. Foldable t => t a -> [a]
toList f (LocatedA (Pat (GhcPass 'Renamed)))
pats')
    SDoc
-> IOEnv (Env TcGblEnv TcLclEnv) ()
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall a. SDoc -> TcM a -> TcM a
addErrCtxt SDoc
doc_pat (IOEnv (Env TcGblEnv TcLclEnv) ()
 -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> IOEnv (Env TcGblEnv TcLclEnv) ()
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall a b. (a -> b) -> a -> b
$
      if HsMatchContext (LocatedN Name) -> Bool
forall fn. HsMatchContext fn -> Bool
isPatSynCtxt HsMatchContextRn
HsMatchContext (LocatedN Name)
ctxt
         then [Name] -> IOEnv (Env TcGblEnv TcLclEnv) ()
checkDupNames [IdP (GhcPass 'Renamed)]
[Name]
bndrs
         else (GlobalRdrEnv, LocalRdrEnv)
-> [Name] -> IOEnv (Env TcGblEnv TcLclEnv) ()
checkDupAndShadowedNames (GlobalRdrEnv, LocalRdrEnv)
envs_before [IdP (GhcPass 'Renamed)]
[Name]
bndrs
    f (LPat (GhcPass 'Renamed)) -> RnM (r, FreeVars)
thing_inside f (LPat (GhcPass 'Renamed))
f (LocatedA (Pat (GhcPass 'Renamed)))
pats'
  where
    doc_pat :: SDoc
doc_pat = String -> SDoc
forall doc. IsLine doc => String -> doc
text String
"In" SDoc -> SDoc -> SDoc
forall doc. IsLine doc => doc -> doc -> doc
<+> HsMatchContext (LocatedN Name) -> SDoc
forall fn. Outputable fn => HsMatchContext fn -> SDoc
pprMatchContext HsMatchContextRn
HsMatchContext (LocatedN Name)
ctxt

    -- See Note [Invisible binders in functions] in GHC.Hs.Pat
    --
    -- BTW, Or-patterns would be awesome here
    rn_pats_fun :: NameMaker
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
rn_pats_fun = case HsMatchContextRn
ctxt of
      FunRhs{} -> (LocatedA (Pat GhcPs) -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> f a -> m (f b)
mapM ((LocatedA (Pat GhcPs)
  -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
 -> f (LocatedA (Pat GhcPs))
 -> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed)))))
-> (NameMaker
    -> LocatedA (Pat GhcPs)
    -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> NameMaker
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NameMaker
-> LocatedA (Pat GhcPs)
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
rnLArgPatAndThen
      LamAlt HsLamVariant
LamSingle -> (LocatedA (Pat GhcPs) -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> f a -> m (f b)
mapM ((LocatedA (Pat GhcPs)
  -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
 -> f (LocatedA (Pat GhcPs))
 -> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed)))))
-> (NameMaker
    -> LocatedA (Pat GhcPs)
    -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> NameMaker
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NameMaker
-> LocatedA (Pat GhcPs)
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
rnLArgPatAndThen
      LamAlt HsLamVariant
LamCases -> (LocatedA (Pat GhcPs) -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> f a -> m (f b)
mapM ((LocatedA (Pat GhcPs)
  -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
 -> f (LocatedA (Pat GhcPs))
 -> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed)))))
-> (NameMaker
    -> LocatedA (Pat GhcPs)
    -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> NameMaker
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NameMaker
-> LocatedA (Pat GhcPs)
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
rnLArgPatAndThen
      HsMatchContextRn
_ -> (LocatedA (Pat GhcPs) -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> f a -> m (f b)
mapM ((LocatedA (Pat GhcPs)
  -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
 -> f (LocatedA (Pat GhcPs))
 -> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed)))))
-> (NameMaker
    -> LocatedA (Pat GhcPs)
    -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> NameMaker
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
NameMaker
-> LocatedA (Pat GhcPs)
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
rnLPatAndThen

rnPats :: HsMatchContextRn   -- For error messages and choosing if @-patterns are allowed
       -> [LPat GhcPs]
       -> ([LPat GhcRn] -> RnM (a, FreeVars))
       -> RnM (a, FreeVars)
rnPats :: forall a.
HsMatchContextRn
-> [LPat GhcPs]
-> ([LPat (GhcPass 'Renamed)] -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
rnPats = HsMatchContextRn
-> [LPat GhcPs]
-> ([LPat (GhcPass 'Renamed)] -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
forall (f :: * -> *) r.
Traversable f =>
HsMatchContextRn
-> f (LPat GhcPs)
-> (f (LPat (GhcPass 'Renamed)) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
rn_pats_general

rnPat :: forall a. HsMatchContextRn      -- For error messages and choosing if @-patterns are allowed
      -> LPat GhcPs
      -> (LPat GhcRn -> RnM (a, FreeVars))
      -> RnM (a, FreeVars)     -- Variables bound by pattern do not
                               -- appear in the result FreeVars
rnPat :: forall a.
HsMatchContextRn
-> LPat GhcPs
-> (LPat (GhcPass 'Renamed) -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
rnPat
       = (HsMatchContext (LocatedN Name)
 -> Identity (LocatedA (Pat GhcPs))
 -> (Identity (LocatedA (Pat (GhcPass 'Renamed)))
     -> RnM (a, FreeVars))
 -> RnM (a, FreeVars))
-> HsMatchContext (LocatedN Name)
-> LocatedA (Pat GhcPs)
-> (LocatedA (Pat (GhcPass 'Renamed)) -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
forall a b. Coercible a b => a -> b
coerce (forall (f :: * -> *) r.
Traversable f =>
HsMatchContextRn
-> f (LPat GhcPs)
-> (f (LPat (GhcPass 'Renamed)) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
rn_pats_general @Identity @a)

applyNameMaker :: NameMaker -> LocatedN RdrName -> RnM (LocatedN Name)
applyNameMaker :: NameMaker -> LocatedN RdrName -> TcRn (LocatedN Name)
applyNameMaker NameMaker
mk LocatedN RdrName
rdr = do { (n, _fvs) <- CpsRn (LocatedN Name) -> RnM (LocatedN Name, FreeVars)
forall a. CpsRn a -> RnM (a, FreeVars)
runCps (NameMaker -> LocatedN RdrName -> CpsRn (LocatedN Name)
newPatLName NameMaker
mk LocatedN RdrName
rdr)
                           ; return n }

-- ----------- Entry point 2: rnBindPat -------------------
-- Binds local names; in a recursive scope that involves other bound vars
--      e.g let { (x, Just y) = e1; ... } in ...
--   * does NOT allows type sig to bind type vars
--   * local namemaker
--   * no unused and duplicate checking
--   * fixities might be coming in
rnBindPat :: NameMaker
          -> LPat GhcPs
          -> RnM (LPat GhcRn, FreeVars)
   -- Returned FreeVars are the free variables of the pattern,
   -- of course excluding variables bound by this pattern

rnBindPat :: NameMaker -> LPat GhcPs -> RnM (LPat (GhcPass 'Renamed), FreeVars)
rnBindPat NameMaker
name_maker LPat GhcPs
pat = CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
-> RnM (LocatedA (Pat (GhcPass 'Renamed)), FreeVars)
forall a. CpsRn a -> RnM (a, FreeVars)
runCps (NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
name_maker LPat GhcPs
pat)

{-
*********************************************************
*                                                      *
        The main event
*                                                      *
*********************************************************
-}


rnLArgPatAndThen :: NameMaker -> LocatedA (Pat GhcPs) -> CpsRn (LocatedA (Pat GhcRn))
rnLArgPatAndThen :: NameMaker
-> LocatedA (Pat GhcPs)
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
rnLArgPatAndThen NameMaker
mk = (Pat GhcPs -> CpsRn (Pat (GhcPass 'Renamed)))
-> LocatedA (Pat GhcPs)
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
forall a b. (a -> CpsRn b) -> LocatedA a -> CpsRn (LocatedA b)
wrapSrcSpanCps Pat GhcPs -> CpsRn (Pat (GhcPass 'Renamed))
rnArgPatAndThen where

  rnArgPatAndThen :: Pat GhcPs -> CpsRn (Pat (GhcPass 'Renamed))
rnArgPatAndThen (InvisPat (EpToken "@"
_, Specificity
spec) HsTyPat (NoGhcTc GhcPs)
tp) = do
    IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ()
forall a. RnM a -> CpsRn a
liftCps (IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ())
-> IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ()
forall a b. (a -> b) -> a -> b
$ Extension
-> IOEnv (Env TcGblEnv TcLclEnv) ()
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall gbl lcl. Extension -> TcRnIf gbl lcl () -> TcRnIf gbl lcl ()
unlessXOptM Extension
LangExt.TypeAbstractions (IOEnv (Env TcGblEnv TcLclEnv) ()
 -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> IOEnv (Env TcGblEnv TcLclEnv) ()
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall a b. (a -> b) -> a -> b
$
      TcRnMessage -> IOEnv (Env TcGblEnv TcLclEnv) ()
addErr (HsTyPat GhcPs -> TcRnMessage
TcRnIllegalInvisibleTypePattern HsTyPat (NoGhcTc GhcPs)
HsTyPat GhcPs
tp)
    tp' <- HsDocContext -> HsTyPat GhcPs -> CpsRn (HsTyPat (GhcPass 'Renamed))
rnHsTyPat HsDocContext
HsTypePatCtx HsTyPat (NoGhcTc GhcPs)
HsTyPat GhcPs
tp
    pure (InvisPat spec tp')
  rnArgPatAndThen Pat GhcPs
p = NameMaker -> Pat GhcPs -> CpsRn (Pat (GhcPass 'Renamed))
rnPatAndThen NameMaker
mk Pat GhcPs
p

-- ----------- Entry point 3: rnLPatAndThen -------------------
-- General version: parameterized by how you make new names

rnLPatsAndThen :: Traversable f => NameMaker -> f (LPat GhcPs) -> CpsRn (f (LPat GhcRn))
rnLPatsAndThen :: forall (f :: * -> *).
Traversable f =>
NameMaker -> f (LPat GhcPs) -> CpsRn (f (LPat (GhcPass 'Renamed)))
rnLPatsAndThen NameMaker
mk = (LocatedA (Pat GhcPs) -> CpsRn (LocatedA (Pat (GhcPass 'Renamed))))
-> f (LocatedA (Pat GhcPs))
-> CpsRn (f (LocatedA (Pat (GhcPass 'Renamed))))
forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
forall (f :: * -> *) a b.
Applicative f =>
(a -> f b) -> f a -> f (f b)
traverse (NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
mk)
  -- Despite the map, the monad ensures that each pattern binds
  -- variables that may be mentioned in subsequent patterns in the list
{-# SPECIALISE rnLPatsAndThen :: NameMaker -> [LPat GhcPs] -> CpsRn [LPat GhcRn] #-}
{-# SPECIALISE rnLPatsAndThen :: NameMaker -> NE.NonEmpty (LPat GhcPs) -> CpsRn (NE.NonEmpty (LPat GhcRn)) #-}

--------------------
-- The workhorse
rnLPatAndThen :: NameMaker -> LPat GhcPs -> CpsRn (LPat GhcRn)
rnLPatAndThen :: NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
nm LPat GhcPs
lpat = (Pat GhcPs -> CpsRn (Pat (GhcPass 'Renamed)))
-> LocatedA (Pat GhcPs)
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
forall a b. (a -> CpsRn b) -> LocatedA a -> CpsRn (LocatedA b)
wrapSrcSpanCps (NameMaker -> Pat GhcPs -> CpsRn (Pat (GhcPass 'Renamed))
rnPatAndThen NameMaker
nm) LPat GhcPs
LocatedA (Pat GhcPs)
lpat

rnPatAndThen :: NameMaker -> Pat GhcPs -> CpsRn (Pat GhcRn)
rnPatAndThen :: NameMaker -> Pat GhcPs -> CpsRn (Pat (GhcPass 'Renamed))
rnPatAndThen NameMaker
_  (WildPat XWildPat GhcPs
_)   = Pat (GhcPass 'Renamed) -> CpsRn (Pat (GhcPass 'Renamed))
forall a. a -> CpsRn a
forall (m :: * -> *) a. Monad m => a -> m a
return (XWildPat (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
forall p. XWildPat p -> Pat p
WildPat XWildPat (GhcPass 'Renamed)
NoExtField
noExtField)
rnPatAndThen NameMaker
mk (ParPat XParPat GhcPs
_ LPat GhcPs
pat) =
  do { pat' <- NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
mk LPat GhcPs
pat
     ; return (ParPat noExtField pat') }
rnPatAndThen NameMaker
mk (LazyPat XLazyPat GhcPs
_ LPat GhcPs
pat) = do { pat' <- NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
mk LPat GhcPs
pat
                                     ; return (LazyPat noExtField pat') }
rnPatAndThen NameMaker
mk (BangPat XBangPat GhcPs
_ LPat GhcPs
pat) = do { pat' <- NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
mk LPat GhcPs
pat
                                     ; return (BangPat noExtField pat') }
rnPatAndThen NameMaker
mk (VarPat XVarPat GhcPs
x (L SrcSpanAnnN
l RdrName
rdr))
    = do { loc <- RnM SrcSpan -> CpsRn SrcSpan
forall a. RnM a -> CpsRn a
liftCps RnM SrcSpan
getSrcSpanM
         ; name <- newPatName mk (L (noAnnSrcSpan loc) rdr)
         ; return (VarPat x (L l name)) }
     -- we need to bind pattern variables for view pattern expressions
     -- (e.g. in the pattern (x, x -> y) x needs to be bound in the rhs of the tuple)

rnPatAndThen NameMaker
mk (SigPat XSigPat GhcPs
_ LPat GhcPs
pat HsPatSigType (NoGhcTc GhcPs)
sig)
  -- When renaming a pattern type signature (e.g. f (a :: T) = ...), it is
  -- important to rename its type signature _before_ renaming the rest of the
  -- pattern, so that type variables are first bound by the _outermost_ pattern
  -- type signature they occur in. This keeps the type checker happy when
  -- pattern type signatures happen to be nested (#7827)
  --
  -- f ((Just (x :: a) :: Maybe a)
  -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~^       `a' is first bound here
  -- ~~~~~~~~~~~~~~~^                   the same `a' then used here
  = do { sig' <- HsPatSigType GhcPs -> CpsRn (HsPatSigType (GhcPass 'Renamed))
rnHsPatSigTypeAndThen HsPatSigType (NoGhcTc GhcPs)
HsPatSigType GhcPs
sig
       ; pat' <- rnLPatAndThen mk pat
       ; return (SigPat noExtField pat' sig' ) }
  where
    rnHsPatSigTypeAndThen :: HsPatSigType GhcPs -> CpsRn (HsPatSigType GhcRn)
    rnHsPatSigTypeAndThen :: HsPatSigType GhcPs -> CpsRn (HsPatSigType (GhcPass 'Renamed))
rnHsPatSigTypeAndThen HsPatSigType GhcPs
sig = (forall r.
 (HsPatSigType (GhcPass 'Renamed) -> RnM (r, FreeVars))
 -> RnM (r, FreeVars))
-> CpsRn (HsPatSigType (GhcPass 'Renamed))
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
liftCpsWithCont (HsPatSigTypeScoping
-> HsDocContext
-> HsPatSigType GhcPs
-> (HsPatSigType (GhcPass 'Renamed) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
forall a.
HsPatSigTypeScoping
-> HsDocContext
-> HsPatSigType GhcPs
-> (HsPatSigType (GhcPass 'Renamed) -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
rnHsPatSigType HsPatSigTypeScoping
AlwaysBind HsDocContext
PatCtx HsPatSigType GhcPs
sig)

rnPatAndThen NameMaker
mk (LitPat XLitPat GhcPs
x HsLit GhcPs
lit)
  | HsString XHsString GhcPs
src FastString
s <- HsLit GhcPs
lit
  = do { ovlStr <- RnM Bool -> CpsRn Bool
forall a. RnM a -> CpsRn a
liftCps (Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.OverloadedStrings)
       ; if ovlStr
         then rnPatAndThen mk
                           (mkNPat (noLocA (mkHsIsString src s))
                                      Nothing noAnn)
         else normal_lit }
  | Bool
otherwise = CpsRn (Pat (GhcPass 'Renamed))
normal_lit
  where
    normal_lit :: CpsRn (Pat (GhcPass 'Renamed))
normal_lit = do { IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ()
forall a. RnM a -> CpsRn a
liftCps (HsLit GhcPs -> IOEnv (Env TcGblEnv TcLclEnv) ()
forall p. HsLit p -> IOEnv (Env TcGblEnv TcLclEnv) ()
rnLit HsLit GhcPs
lit); Pat (GhcPass 'Renamed) -> CpsRn (Pat (GhcPass 'Renamed))
forall a. a -> CpsRn a
forall (m :: * -> *) a. Monad m => a -> m a
return (XLitPat (GhcPass 'Renamed)
-> HsLit (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
forall p. XLitPat p -> HsLit p -> Pat p
LitPat XLitPat GhcPs
XLitPat (GhcPass 'Renamed)
x (HsLit GhcPs -> HsLit (GhcPass 'Renamed)
forall (p1 :: Pass) (p2 :: Pass).
HsLit (GhcPass p1) -> HsLit (GhcPass p2)
convertLit HsLit GhcPs
lit)) }

rnPatAndThen NameMaker
_ (NPat XNPat GhcPs
x (L EpAnn NoEpAnns
l HsOverLit GhcPs
lit) Maybe (SyntaxExpr GhcPs)
mb_neg SyntaxExpr GhcPs
_eq)
  = do { (lit', mb_neg') <- RnM
  ((HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed))),
   FreeVars)
-> CpsRn
     (HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed)))
forall a. RnM (a, FreeVars) -> CpsRn a
liftCpsFV (RnM
   ((HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed))),
    FreeVars)
 -> CpsRn
      (HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed))))
-> RnM
     ((HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed))),
      FreeVars)
-> CpsRn
     (HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed)))
forall a b. (a -> b) -> a -> b
$ HsOverLit GhcPs
-> RnM
     ((HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed))),
      FreeVars)
forall t.
(XXOverLit t ~ DataConCantHappen) =>
HsOverLit t
-> RnM
     ((HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed))),
      FreeVars)
rnOverLit HsOverLit GhcPs
lit
       ; mb_neg' -- See Note [Negative zero]
           <- let negative = do { (neg, fvs) <- Name -> RnM (SyntaxExpr (GhcPass 'Renamed), FreeVars)
lookupSyntax Name
negateName
                                ; return (Just neg, fvs) }
                  positive = (Maybe a, FreeVars)
-> IOEnv (Env TcGblEnv TcLclEnv) (Maybe a, FreeVars)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (Maybe a
forall a. Maybe a
Nothing, FreeVars
emptyFVs)
              in liftCpsFV $ case (mb_neg , mb_neg') of
                                  (Maybe NoExtField
Nothing, Just HsExpr (GhcPass 'Renamed)
_ ) -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe SyntaxExprRn, FreeVars)
negative
                                  (Just NoExtField
_ , Maybe (HsExpr (GhcPass 'Renamed))
Nothing) -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe SyntaxExprRn, FreeVars)
negative
                                  (Maybe NoExtField
Nothing, Maybe (HsExpr (GhcPass 'Renamed))
Nothing) -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe SyntaxExprRn, FreeVars)
forall {a}. IOEnv (Env TcGblEnv TcLclEnv) (Maybe a, FreeVars)
positive
                                  (Just NoExtField
_ , Just HsExpr (GhcPass 'Renamed)
_ ) -> IOEnv (Env TcGblEnv TcLclEnv) (Maybe SyntaxExprRn, FreeVars)
forall {a}. IOEnv (Env TcGblEnv TcLclEnv) (Maybe a, FreeVars)
positive
       ; eq' <- liftCpsFV $ lookupSyntax eqName
       ; return (NPat x (L l lit') mb_neg' eq') }

rnPatAndThen NameMaker
mk (NPlusKPat XNPlusKPat GhcPs
_ XRec GhcPs (IdP GhcPs)
rdr (L EpAnn NoEpAnns
l HsOverLit GhcPs
lit) HsOverLit GhcPs
_ SyntaxExpr GhcPs
_ SyntaxExpr GhcPs
_ )
  = do { new_name <- NameMaker -> LocatedN RdrName -> CpsRn Name
newPatName NameMaker
mk (LocatedN RdrName -> LocatedN RdrName
forall l l2 a.
(HasLoc l, HasAnnotation l2) =>
GenLocated l a -> GenLocated l2 a
la2la XRec GhcPs (IdP GhcPs)
LocatedN RdrName
rdr)
       ; (lit', _) <- liftCpsFV $ rnOverLit lit -- See Note [Negative zero]
                                                -- We skip negateName as
                                                -- negative zero doesn't make
                                                -- sense in n + k patterns
       ; minus <- liftCpsFV $ lookupSyntax minusName
       ; ge    <- liftCpsFV $ lookupSyntax geName
       ; return (NPlusKPat noExtField (L (noAnnSrcSpan $ nameSrcSpan new_name) new_name)
                                      (L l lit') lit' ge minus) }
                -- The Report says that n+k patterns must be in Integral

rnPatAndThen NameMaker
mk (AsPat XAsPat GhcPs
_ XRec GhcPs (IdP GhcPs)
rdr LPat GhcPs
pat)
  = do { new_name <- NameMaker -> LocatedN RdrName -> CpsRn (LocatedN Name)
newPatLName NameMaker
mk XRec GhcPs (IdP GhcPs)
LocatedN RdrName
rdr
       ; pat' <- rnLPatAndThen mk pat
       ; return (AsPat noExtField new_name pat') }

rnPatAndThen NameMaker
mk p :: Pat GhcPs
p@(ViewPat XViewPat GhcPs
_ LHsExpr GhcPs
expr LPat GhcPs
pat)
  = do { IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ()
forall a. RnM a -> CpsRn a
liftCps (IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ())
-> IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ()
forall a b. (a -> b) -> a -> b
$ do { vp_flag <- Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.ViewPatterns
                      ; checkErr vp_flag (TcRnIllegalViewPattern p) }
         -- Because of the way we're arranging the recursive calls,
         -- this will be in the right context
       ; expr' <- RnM (LHsExpr (GhcPass 'Renamed), FreeVars)
-> CpsRn (LHsExpr (GhcPass 'Renamed))
forall a. RnM (a, FreeVars) -> CpsRn a
liftCpsFV (RnM (LHsExpr (GhcPass 'Renamed), FreeVars)
 -> CpsRn (LHsExpr (GhcPass 'Renamed)))
-> RnM (LHsExpr (GhcPass 'Renamed), FreeVars)
-> CpsRn (LHsExpr (GhcPass 'Renamed))
forall a b. (a -> b) -> a -> b
$ LHsExpr GhcPs -> RnM (LHsExpr (GhcPass 'Renamed), FreeVars)
rnLExpr LHsExpr GhcPs
expr
       ; pat' <- rnLPatAndThen mk pat
       -- Note: at this point the PreTcType in ty can only be a placeHolder
       -- ; return (ViewPat expr' pat' ty) }

       -- Note: we can't cook up an inverse for an arbitrary view pattern,
       -- so we pass 'Nothing'.
       ; return (ViewPat Nothing expr' pat') }

rnPatAndThen NameMaker
mk (ConPat XConPat GhcPs
_ XRec GhcPs (ConLikeP GhcPs)
con HsConPatDetails GhcPs
args)
   -- rnConPatAndThen takes care of reconstructing the pattern
   -- The pattern for the empty list needs to be replaced by an empty explicit list pattern when overloaded lists is turned on.
  = case LocatedN RdrName -> RdrName
forall l e. GenLocated l e -> e
unLoc XRec GhcPs (ConLikeP GhcPs)
LocatedN RdrName
con RdrName -> RdrName -> Bool
forall a. Eq a => a -> a -> Bool
== Name -> RdrName
nameRdrName (DataCon -> Name
dataConName DataCon
nilDataCon) of
      Bool
True    -> do { ol_flag <- RnM Bool -> CpsRn Bool
forall a. RnM a -> CpsRn a
liftCps (RnM Bool -> CpsRn Bool) -> RnM Bool -> CpsRn Bool
forall a b. (a -> b) -> a -> b
$ Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.OverloadedLists
                    ; if ol_flag then rnPatAndThen mk (ListPat noAnn [])
                                 else rnConPatAndThen mk con args}
      Bool
False   -> NameMaker
-> LocatedN RdrName
-> HsConPatDetails GhcPs
-> CpsRn (Pat (GhcPass 'Renamed))
rnConPatAndThen NameMaker
mk XRec GhcPs (ConLikeP GhcPs)
LocatedN RdrName
con HsConPatDetails GhcPs
args

rnPatAndThen NameMaker
mk (ListPat XListPat GhcPs
_ [LPat GhcPs]
pats)
  = do { opt_OverloadedLists  <- RnM Bool -> CpsRn Bool
forall a. RnM a -> CpsRn a
liftCps (RnM Bool -> CpsRn Bool) -> RnM Bool -> CpsRn Bool
forall a b. (a -> b) -> a -> b
$ Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.OverloadedLists
       ; pats' <- rnLPatsAndThen mk pats
       ; if not opt_OverloadedLists
         then return (ListPat noExtField pats')
         else
    -- If OverloadedLists is enabled, desugar to a view pattern.
    -- See Note [Desugaring overloaded list patterns]
    do { (to_list_name,_)     <- liftCps $ lookupSyntaxName toListName
       -- Use 'fromList' as proof of invertibility of the view pattern.
       -- See Note [Invertible view patterns] in GHC.Tc.TyCl.PatSyn
       ; (from_list_n_name,_) <- liftCps $ lookupSyntaxName fromListNName
       ; let
           lit_n   = Int -> IntegralLit
forall a. Integral a => a -> IntegralLit
mkIntegralLit ([LocatedA (Pat GhcPs)] -> Int
forall a. [a] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LPat GhcPs]
[LocatedA (Pat GhcPs)]
pats)
           hs_lit  = IntegralLit -> LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))
forall an.
NoAnn an =>
IntegralLit -> LocatedAn an (HsExpr (GhcPass 'Renamed))
genHsIntegralLit IntegralLit
lit_n
           inverse = Name -> [LHsExpr (GhcPass 'Renamed)] -> HsExpr (GhcPass 'Renamed)
genHsApps Name
from_list_n_name [LHsExpr (GhcPass 'Renamed)
LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))
hs_lit]
           rn_list_pat  = XListPat (GhcPass 'Renamed)
-> [LPat (GhcPass 'Renamed)] -> Pat (GhcPass 'Renamed)
forall p. XListPat p -> [LPat p] -> Pat p
ListPat XListPat (GhcPass 'Renamed)
NoExtField
noExtField [LPat (GhcPass 'Renamed)]
[LocatedA (Pat (GhcPass 'Renamed))]
pats'
           exp_expr     = Name -> LHsExpr (GhcPass 'Renamed)
genLHsVar Name
to_list_name
           exp_list_pat = XViewPat (GhcPass 'Renamed)
-> LHsExpr (GhcPass 'Renamed)
-> LPat (GhcPass 'Renamed)
-> Pat (GhcPass 'Renamed)
forall p. XViewPat p -> LHsExpr p -> LPat p -> Pat p
ViewPat (HsExpr (GhcPass 'Renamed) -> Maybe (HsExpr (GhcPass 'Renamed))
forall a. a -> Maybe a
Just HsExpr (GhcPass 'Renamed)
inverse) LHsExpr (GhcPass 'Renamed)
exp_expr (Pat (GhcPass 'Renamed) -> LocatedA (Pat (GhcPass 'Renamed))
forall e a. HasAnnotation e => a -> GenLocated e a
wrapGenSpan Pat (GhcPass 'Renamed)
rn_list_pat)
       ; return $ mkExpandedPat rn_list_pat exp_list_pat }}

rnPatAndThen NameMaker
mk (TuplePat XTuplePat GhcPs
_ [LPat GhcPs]
pats Boxity
boxed)
  = do { pats' <- NameMaker -> [LPat GhcPs] -> CpsRn [LPat (GhcPass 'Renamed)]
forall (f :: * -> *).
Traversable f =>
NameMaker -> f (LPat GhcPs) -> CpsRn (f (LPat (GhcPass 'Renamed)))
rnLPatsAndThen NameMaker
mk [LPat GhcPs]
pats
       ; return (TuplePat noExtField pats' boxed) }

rnPatAndThen NameMaker
mk (OrPat XOrPat GhcPs
_ NonEmpty (LPat GhcPs)
pats)
  = do { loc <- RnM SrcSpan -> CpsRn SrcSpan
forall a. RnM a -> CpsRn a
liftCps RnM SrcSpan
getSrcSpanM
       ; pats' <- rnLPatsAndThen mk pats
       ; let bndrs = CollectFlag (GhcPass 'Renamed)
-> [LPat (GhcPass 'Renamed)] -> [IdP (GhcPass 'Renamed)]
forall p. CollectPass p => CollectFlag p -> [LPat p] -> [IdP p]
collectPatsBinders CollectFlag (GhcPass 'Renamed)
CollVarTyVarBinders (NonEmpty (LocatedA (Pat (GhcPass 'Renamed)))
-> [LocatedA (Pat (GhcPass 'Renamed))]
forall a. NonEmpty a -> [a]
NE.toList NonEmpty (LocatedA (Pat (GhcPass 'Renamed)))
pats')
       ; liftCps $ setSrcSpan loc $ checkErr (null bndrs) $
           TcRnOrPatBindsVariables (NE.fromList (ordNubOn getOccName bndrs))
       ; return (OrPat noExtField pats') }

rnPatAndThen NameMaker
mk (SumPat XSumPat GhcPs
_ LPat GhcPs
pat Int
alt Int
arity)
  = do { pat <- NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
mk LPat GhcPs
pat
       ; return (SumPat noExtField pat alt arity)
       }

rnPatAndThen NameMaker
mk (SplicePat XSplicePat GhcPs
_ HsUntypedSplice GhcPs
splice)
  = do { eith <- RnM
  ((HsUntypedSplice (GhcPass 'Renamed),
    HsUntypedSpliceResult (LPat GhcPs)),
   FreeVars)
-> CpsRn
     (HsUntypedSplice (GhcPass 'Renamed),
      HsUntypedSpliceResult (LPat GhcPs))
forall a. RnM (a, FreeVars) -> CpsRn a
liftCpsFV (RnM
   ((HsUntypedSplice (GhcPass 'Renamed),
     HsUntypedSpliceResult (LPat GhcPs)),
    FreeVars)
 -> CpsRn
      (HsUntypedSplice (GhcPass 'Renamed),
       HsUntypedSpliceResult (LPat GhcPs)))
-> RnM
     ((HsUntypedSplice (GhcPass 'Renamed),
       HsUntypedSpliceResult (LPat GhcPs)),
      FreeVars)
-> CpsRn
     (HsUntypedSplice (GhcPass 'Renamed),
      HsUntypedSpliceResult (LPat GhcPs))
forall a b. (a -> b) -> a -> b
$ HsUntypedSplice GhcPs
-> RnM
     ((HsUntypedSplice (GhcPass 'Renamed),
       HsUntypedSpliceResult (LPat GhcPs)),
      FreeVars)
rnSplicePat HsUntypedSplice GhcPs
splice
       ; case eith of   -- See Note [rnSplicePat] in GHC.Rename.Splice
           (HsUntypedSplice (GhcPass 'Renamed)
rn_splice, HsUntypedSpliceTop ThModFinalizers
mfs LPat GhcPs
pat) -> -- Splice was top-level and thus run, creating Pat GhcPs
               LPat (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
LocatedA (Pat (GhcPass 'Renamed)) -> Pat (GhcPass 'Renamed)
forall (p :: Pass). IsPass p => LPat (GhcPass p) -> Pat (GhcPass p)
gParPat (LocatedA (Pat (GhcPass 'Renamed)) -> Pat (GhcPass 'Renamed))
-> (LocatedA (Pat (GhcPass 'Renamed))
    -> LocatedA (Pat (GhcPass 'Renamed)))
-> LocatedA (Pat (GhcPass 'Renamed))
-> Pat (GhcPass 'Renamed)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Pat (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed))
-> LocatedA (Pat (GhcPass 'Renamed))
-> LocatedA (Pat (GhcPass 'Renamed))
forall a b.
(a -> b)
-> GenLocated (EpAnn AnnListItem) a
-> GenLocated (EpAnn AnnListItem) b
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap ((HsUntypedSpliceResult (Pat (GhcPass 'Renamed))
 -> HsUntypedSplice (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed))
-> HsUntypedSplice (GhcPass 'Renamed)
-> HsUntypedSpliceResult (Pat (GhcPass 'Renamed))
-> Pat (GhcPass 'Renamed)
forall a b c. (a -> b -> c) -> b -> a -> c
flip XSplicePat (GhcPass 'Renamed)
-> HsUntypedSplice (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
HsUntypedSpliceResult (Pat (GhcPass 'Renamed))
-> HsUntypedSplice (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
forall p. XSplicePat p -> HsUntypedSplice p -> Pat p
SplicePat HsUntypedSplice (GhcPass 'Renamed)
rn_splice (HsUntypedSpliceResult (Pat (GhcPass 'Renamed))
 -> Pat (GhcPass 'Renamed))
-> (Pat (GhcPass 'Renamed)
    -> HsUntypedSpliceResult (Pat (GhcPass 'Renamed)))
-> Pat (GhcPass 'Renamed)
-> Pat (GhcPass 'Renamed)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ThModFinalizers
-> Pat (GhcPass 'Renamed)
-> HsUntypedSpliceResult (Pat (GhcPass 'Renamed))
forall thing.
ThModFinalizers -> thing -> HsUntypedSpliceResult thing
HsUntypedSpliceTop ThModFinalizers
mfs)) (LocatedA (Pat (GhcPass 'Renamed)) -> Pat (GhcPass 'Renamed))
-> CpsRn (LocatedA (Pat (GhcPass 'Renamed)))
-> CpsRn (Pat (GhcPass 'Renamed))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen NameMaker
mk LPat GhcPs
pat
           (HsUntypedSplice (GhcPass 'Renamed)
rn_splice, HsUntypedSpliceNested Name
splice_name) -> Pat (GhcPass 'Renamed) -> CpsRn (Pat (GhcPass 'Renamed))
forall a. a -> CpsRn a
forall (m :: * -> *) a. Monad m => a -> m a
return (XSplicePat (GhcPass 'Renamed)
-> HsUntypedSplice (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
forall p. XSplicePat p -> HsUntypedSplice p -> Pat p
SplicePat (Name -> HsUntypedSpliceResult (Pat (GhcPass 'Renamed))
forall thing. Name -> HsUntypedSpliceResult thing
HsUntypedSpliceNested Name
splice_name) HsUntypedSplice (GhcPass 'Renamed)
rn_splice) -- Splice was nested and thus already renamed
       }

rnPatAndThen NameMaker
_ (EmbTyPat XEmbTyPat GhcPs
_ HsTyPat (NoGhcTc GhcPs)
tp)
  = do { tp' <- HsDocContext -> HsTyPat GhcPs -> CpsRn (HsTyPat (GhcPass 'Renamed))
rnHsTyPat HsDocContext
HsTypePatCtx HsTyPat (NoGhcTc GhcPs)
HsTyPat GhcPs
tp
       ; return (EmbTyPat noExtField tp') }
rnPatAndThen NameMaker
_ (InvisPat (EpToken "@"
_, Specificity
spec) HsTyPat (NoGhcTc GhcPs)
tp)
  = do { IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ()
forall a. RnM a -> CpsRn a
liftCps (IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ())
-> IOEnv (Env TcGblEnv TcLclEnv) () -> CpsRn ()
forall a b. (a -> b) -> a -> b
$ TcRnMessage -> IOEnv (Env TcGblEnv TcLclEnv) ()
addErr (HsTyPat GhcPs -> TcRnMessage
TcRnMisplacedInvisPat HsTyPat (NoGhcTc GhcPs)
HsTyPat GhcPs
tp)
         -- Invisible patterns are handled in `rnLArgPatAndThen`
         -- so unconditionally emit error here
       ; tp' <- HsDocContext -> HsTyPat GhcPs -> CpsRn (HsTyPat (GhcPass 'Renamed))
rnHsTyPat HsDocContext
HsTypePatCtx HsTyPat (NoGhcTc GhcPs)
HsTyPat GhcPs
tp
       ; return (InvisPat spec tp')
       }

--------------------
rnConPatAndThen :: NameMaker
                -> LocatedN RdrName    -- the constructor
                -> HsConPatDetails GhcPs
                -> CpsRn (Pat GhcRn)

rnConPatAndThen :: NameMaker
-> LocatedN RdrName
-> HsConPatDetails GhcPs
-> CpsRn (Pat (GhcPass 'Renamed))
rnConPatAndThen NameMaker
mk LocatedN RdrName
con (PrefixCon [HsConPatTyArg (NoGhcTc GhcPs)]
tyargs [LPat GhcPs]
pats)
  = do  { con' <- LocatedN RdrName -> CpsRn (LocatedN Name)
lookupConCps LocatedN RdrName
con
        ; liftCps check_lang_exts
        ; tyargs' <- mapM rnConPatTyArg tyargs
        ; pats' <- rnLPatsAndThen mk pats
        ; return $ ConPat
            { pat_con_ext = noExtField
            , pat_con = con'
            , pat_args = PrefixCon tyargs' pats'
            }
        }
  where
    check_lang_exts :: RnM ()
    check_lang_exts :: IOEnv (Env TcGblEnv TcLclEnv) ()
check_lang_exts =
      Maybe (HsConPatTyArg GhcPs)
-> (HsConPatTyArg GhcPs -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall (t :: * -> *) (f :: * -> *) a b.
(Foldable t, Applicative f) =>
t a -> (a -> f b) -> f ()
for_ ([HsConPatTyArg GhcPs] -> Maybe (HsConPatTyArg GhcPs)
forall a. [a] -> Maybe a
listToMaybe [HsConPatTyArg (NoGhcTc GhcPs)]
[HsConPatTyArg GhcPs]
tyargs) ((HsConPatTyArg GhcPs -> IOEnv (Env TcGblEnv TcLclEnv) ())
 -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> (HsConPatTyArg GhcPs -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall a b. (a -> b) -> a -> b
$ \ HsConPatTyArg GhcPs
arg ->
        do { type_abs   <- Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.TypeAbstractions
           ; type_app   <- xoptM LangExt.TypeApplications
           ; scoped_tvs <- xoptM LangExt.ScopedTypeVariables
           -- See Note [Deprecated type abstractions in constructor patterns]
           ; if | type_abs -> return ()
                | type_app && scoped_tvs -> addDiagnostic TcRnDeprecatedInvisTyArgInConPat
                | otherwise -> addErrTc $ TcRnTypeApplicationsDisabled (TypeApplicationInPattern arg)
           }

    rnConPatTyArg :: HsConPatTyArg GhcPs -> CpsRn (HsConPatTyArg (GhcPass 'Renamed))
rnConPatTyArg (HsConPatTyArg XConPatTyArg GhcPs
_ HsTyPat GhcPs
t) = do
      t' <- HsDocContext -> HsTyPat GhcPs -> CpsRn (HsTyPat (GhcPass 'Renamed))
rnHsTyPat HsDocContext
HsTypePatCtx HsTyPat GhcPs
t
      return (HsConPatTyArg noExtField t')

rnConPatAndThen NameMaker
mk LocatedN RdrName
con (InfixCon LPat GhcPs
pat1 LPat GhcPs
pat2)
  = do  { con' <- LocatedN RdrName -> CpsRn (LocatedN Name)
lookupConCps LocatedN RdrName
con
        ; pat1' <- rnLPatAndThen mk pat1
        ; pat2' <- rnLPatAndThen mk pat2
        ; fixity <- liftCps $ lookupFixityRn (unLoc con')
        ; liftCps $ mkConOpPatRn con' fixity pat1' pat2' }

rnConPatAndThen NameMaker
mk LocatedN RdrName
con (RecCon HsRecFields GhcPs (LPat GhcPs)
rpats)
  = do  { con' <- LocatedN RdrName -> CpsRn (LocatedN Name)
lookupConCps LocatedN RdrName
con
        ; rpats' <- rnHsRecPatsAndThen mk con' rpats
        ; return $ ConPat
            { pat_con_ext = noExtField
            , pat_con = con'
            , pat_args = RecCon rpats'
            }
        }

{- Note [Deprecated type abstractions in constructor patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type abstractions in constructor patterns allow the user to bind
existential type variables:

    import Type.Reflection (Typeable, typeRep)
    data Ex = forall e. (Typeable e, Show e) => MkEx e
    showEx (MkEx @e a) = show a ++ " :: " ++ show (typeRep @e)

Note the pattern `MkEx @e a`, and specifically the `@e` binder.

For historical reasons, using this feature only required TypeApplications
and ScopedTypeVariables to be enabled. As per GHC Proposal #448 (and especially
its amendment #604) we are now transitioning towards guarding this feature
behind TypeAbstractions instead.

As a compatibility measure, we continue to support old programs that use
TypeApplications with ScopedTypeVariables instead of TypeAbstractions,
but emit the appropriate compatibility warning, -Wdeprecated-type-abstractions.
This warning is scheduled to become an error in GHC 9.14, at which point
we can simply require TypeAbstractions.
-}

checkUnusedRecordWildcardCps :: SrcSpan
                             -> Maybe [ImplicitFieldBinders]
                             -> CpsRn ()
checkUnusedRecordWildcardCps :: SrcSpan -> Maybe [ImplicitFieldBinders] -> CpsRn ()
checkUnusedRecordWildcardCps SrcSpan
loc Maybe [ImplicitFieldBinders]
dotdot_names =
  (forall r. (() -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn ()
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
CpsRn (\() -> RnM (r, FreeVars)
thing -> do
                    (r, fvs) <- () -> RnM (r, FreeVars)
thing ()
                    checkUnusedRecordWildcard loc fvs dotdot_names
                    return (r, fvs) )

--------------------
rnHsRecPatsAndThen :: NameMaker
                   -> LocatedN Name      -- Constructor
                   -> HsRecFields GhcPs (LPat GhcPs)
                   -> CpsRn (HsRecFields GhcRn (LPat GhcRn))
rnHsRecPatsAndThen :: NameMaker
-> LocatedN Name
-> HsRecFields GhcPs (LPat GhcPs)
-> CpsRn (HsRecFields (GhcPass 'Renamed) (LPat (GhcPass 'Renamed)))
rnHsRecPatsAndThen NameMaker
mk (L SrcSpanAnnN
_ Name
con)
     hs_rec_fields :: HsRecFields GhcPs (LPat GhcPs)
hs_rec_fields@(HsRecFields { rec_dotdot :: forall p arg. HsRecFields p arg -> Maybe (XRec p RecFieldsDotDot)
rec_dotdot = Maybe (XRec GhcPs RecFieldsDotDot)
dd })
  = do { flds <- RnM
  ([GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind
         (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
         (LocatedA (Pat GhcPs)))],
   FreeVars)
-> CpsRn
     [GenLocated
        (EpAnn AnnListItem)
        (HsFieldBind
           (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
           (LocatedA (Pat GhcPs)))]
forall a. RnM (a, FreeVars) -> CpsRn a
liftCpsFV (RnM
   ([GenLocated
       (EpAnn AnnListItem)
       (HsFieldBind
          (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
          (LocatedA (Pat GhcPs)))],
    FreeVars)
 -> CpsRn
      [GenLocated
         (EpAnn AnnListItem)
         (HsFieldBind
            (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
            (LocatedA (Pat GhcPs)))])
-> RnM
     ([GenLocated
         (EpAnn AnnListItem)
         (HsFieldBind
            (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
            (LocatedA (Pat GhcPs)))],
      FreeVars)
-> CpsRn
     [GenLocated
        (EpAnn AnnListItem)
        (HsFieldBind
           (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
           (LocatedA (Pat GhcPs)))]
forall a b. (a -> b) -> a -> b
$ HsRecFieldContext
-> (SrcSpan -> RdrName -> Pat GhcPs)
-> HsRecFields GhcPs (LocatedA (Pat GhcPs))
-> RnM
     ([LHsRecField (GhcPass 'Renamed) (LocatedA (Pat GhcPs))], FreeVars)
forall arg.
HsRecFieldContext
-> (SrcSpan -> RdrName -> arg)
-> HsRecFields GhcPs (LocatedA arg)
-> RnM ([LHsRecField (GhcPass 'Renamed) (LocatedA arg)], FreeVars)
rnHsRecFields (Name -> HsRecFieldContext
HsRecFieldPat Name
con) SrcSpan -> IdP GhcPs -> Pat GhcPs
SrcSpan -> RdrName -> Pat GhcPs
forall {p} {l}.
(XVarPat p ~ NoExtField, XRec p (IdP p) ~ GenLocated l (IdP p),
 HasAnnotation l) =>
SrcSpan -> IdP p -> Pat p
mkVarPat
                                            HsRecFields GhcPs (LPat GhcPs)
HsRecFields GhcPs (LocatedA (Pat GhcPs))
hs_rec_fields
       ; flds' <- mapM rn_field (flds `zip` [1..])
       ; check_unused_wildcard (lHsRecFieldsImplicits flds' <$> unLoc <$> dd)
       ; return (HsRecFields { rec_ext = noExtField, rec_flds = flds', rec_dotdot = dd }) }
  where
    mkVarPat :: SrcSpan -> IdP p -> Pat p
mkVarPat SrcSpan
l IdP p
n = XVarPat p -> XRec p (IdP p) -> Pat p
forall p. XVarPat p -> LIdP p -> Pat p
VarPat XVarPat p
NoExtField
noExtField (l -> IdP p -> GenLocated l (IdP p)
forall l e. l -> e -> GenLocated l e
L (SrcSpan -> l
forall e. HasAnnotation e => SrcSpan -> e
noAnnSrcSpan SrcSpan
l) IdP p
n)
    rn_field :: (GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA (Pat GhcPs))),
 Int)
-> CpsRn
     (GenLocated
        (EpAnn AnnListItem)
        (HsFieldBind
           (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
           (LocatedA (Pat (GhcPass 'Renamed)))))
rn_field (L EpAnn AnnListItem
l HsFieldBind
  (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
  (LocatedA (Pat GhcPs))
fld, Int
n') =
      do { arg' <- NameMaker -> LPat GhcPs -> CpsRn (LPat (GhcPass 'Renamed))
rnLPatAndThen (Maybe (GenLocated EpaLocation RecFieldsDotDot)
-> NameMaker -> RecFieldsDotDot -> NameMaker
forall {a} {l}.
Ord a =>
Maybe (GenLocated l a) -> NameMaker -> a -> NameMaker
nested_mk Maybe (XRec GhcPs RecFieldsDotDot)
Maybe (GenLocated EpaLocation RecFieldsDotDot)
dd NameMaker
mk (Int -> RecFieldsDotDot
RecFieldsDotDot Int
n')) (HsFieldBind
  (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
  (LocatedA (Pat GhcPs))
-> LocatedA (Pat GhcPs)
forall lhs rhs. HsFieldBind lhs rhs -> rhs
hfbRHS HsFieldBind
  (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
  (LocatedA (Pat GhcPs))
fld)
         ; return (L l (fld { hfbRHS = arg' })) }

    loc :: SrcSpan
loc = SrcSpan
-> (GenLocated EpaLocation RecFieldsDotDot -> SrcSpan)
-> Maybe (GenLocated EpaLocation RecFieldsDotDot)
-> SrcSpan
forall b a. b -> (a -> b) -> Maybe a -> b
maybe SrcSpan
noSrcSpan GenLocated EpaLocation RecFieldsDotDot -> SrcSpan
forall a e. HasLoc a => GenLocated a e -> SrcSpan
getLocA Maybe (XRec GhcPs RecFieldsDotDot)
Maybe (GenLocated EpaLocation RecFieldsDotDot)
dd

    -- Don't warn for let P{..} = ... in ...
    check_unused_wildcard :: Maybe [ImplicitFieldBinders] -> CpsRn ()
check_unused_wildcard = case NameMaker
mk of
                              LetMk{} -> CpsRn () -> Maybe [ImplicitFieldBinders] -> CpsRn ()
forall a b. a -> b -> a
const (() -> CpsRn ()
forall a. a -> CpsRn a
forall (m :: * -> *) a. Monad m => a -> m a
return ())
                              LamMk{} -> SrcSpan -> Maybe [ImplicitFieldBinders] -> CpsRn ()
checkUnusedRecordWildcardCps SrcSpan
loc

        -- Suppress unused-match reporting for fields introduced by ".."
    nested_mk :: Maybe (GenLocated l a) -> NameMaker -> a -> NameMaker
nested_mk Maybe (GenLocated l a)
Nothing  NameMaker
mk                    a
_  = NameMaker
mk
    nested_mk (Just GenLocated l a
_) mk :: NameMaker
mk@(LetMk {})         a
_  = NameMaker
mk
    nested_mk (Just (GenLocated l a -> a
forall l e. GenLocated l e -> e
unLoc -> a
n)) (LamMk Bool
report_unused) a
n'
      = Bool -> NameMaker
LamMk (Bool
report_unused Bool -> Bool -> Bool
&& (a
n' a -> a -> Bool
forall a. Ord a => a -> a -> Bool
<= a
n))


{- *********************************************************************
*                                                                      *
              Generating code for HsPatExpanded
      See Note [Handling overloaded and rebindable constructs]
*                                                                      *
********************************************************************* -}

-- | Build a 'HsPatExpansion' out of an extension constructor,
--   and the two components of the expansion: original and
--   desugared patterns
mkExpandedPat
  :: Pat GhcRn -- ^ source pattern
  -> Pat GhcRn -- ^ expanded pattern
  -> Pat GhcRn -- ^ suitably wrapped 'HsPatExpansion'
mkExpandedPat :: Pat (GhcPass 'Renamed)
-> Pat (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
mkExpandedPat Pat (GhcPass 'Renamed)
a Pat (GhcPass 'Renamed)
b = XXPat (GhcPass 'Renamed) -> Pat (GhcPass 'Renamed)
forall p. XXPat p -> Pat p
XPat (Pat (GhcPass 'Renamed)
-> Pat (GhcPass 'Renamed)
-> HsPatExpansion (Pat (GhcPass 'Renamed)) (Pat (GhcPass 'Renamed))
forall a b. a -> b -> HsPatExpansion a b
HsPatExpanded Pat (GhcPass 'Renamed)
a Pat (GhcPass 'Renamed)
b)

{-
************************************************************************
*                                                                      *
        Record fields
*                                                                      *
************************************************************************
-}

data HsRecFieldContext
  = HsRecFieldCon Name
  | HsRecFieldPat Name
  | HsRecFieldUpd

rnHsRecFields
    :: forall arg.
       HsRecFieldContext
    -> (SrcSpan -> RdrName -> arg)
         -- When punning, use this to build a new field
    -> HsRecFields GhcPs (LocatedA arg)
    -> RnM ([LHsRecField GhcRn (LocatedA arg)], FreeVars)

-- This surprisingly complicated pass
--   a) looks up the field name (possibly using disambiguation)
--   b) fills in puns and dot-dot stuff
-- When we've finished, we've renamed the LHS, but not the RHS,
-- of each x=e binding
--
-- This is used for record construction and pattern-matching, but not updates.

rnHsRecFields :: forall arg.
HsRecFieldContext
-> (SrcSpan -> RdrName -> arg)
-> HsRecFields GhcPs (LocatedA arg)
-> RnM ([LHsRecField (GhcPass 'Renamed) (LocatedA arg)], FreeVars)
rnHsRecFields HsRecFieldContext
ctxt SrcSpan -> RdrName -> arg
mk_arg (HsRecFields { rec_flds :: forall p arg. HsRecFields p arg -> [LHsRecField p arg]
rec_flds = [LHsRecField GhcPs (LocatedA arg)]
flds, rec_dotdot :: forall p arg. HsRecFields p arg -> Maybe (XRec p RecFieldsDotDot)
rec_dotdot = Maybe (XRec GhcPs RecFieldsDotDot)
dotdot })
  = do { pun_ok      <- Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.NamedFieldPuns
       ; disambig_ok <- xoptM LangExt.DisambiguateRecordFields
       ; let parent = Bool -> Maybe ()
forall (f :: * -> *). Alternative f => Bool -> f ()
guard Bool
disambig_ok Maybe () -> Maybe Name -> Maybe Name
forall a b. Maybe a -> Maybe b -> Maybe b
forall (m :: * -> *) a b. Monad m => m a -> m b -> m b
>> Maybe Name
mb_con
       ; flds1  <- mapM (rn_fld pun_ok parent) flds
       ; mapM_ (addErr . dupFieldErr ctxt) dup_flds
       ; dotdot_flds <- rn_dotdot dotdot mb_con flds1
       ; let all_flds | [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
-> Bool
forall a. [a] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
dotdot_flds = [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
flds1
                      | Bool
otherwise        = [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
flds1 [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
-> [GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind
         (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
         (LocatedA arg))]
-> [GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind
         (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
         (LocatedA arg))]
forall a. [a] -> [a] -> [a]
++ [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
dotdot_flds
       ; return (all_flds, mkFVs (getFieldIds all_flds)) }
  where
    mb_con :: Maybe Name
mb_con = case HsRecFieldContext
ctxt of
                HsRecFieldCon Name
con  -> Name -> Maybe Name
forall a. a -> Maybe a
Just Name
con
                HsRecFieldPat Name
con  -> Name -> Maybe Name
forall a. a -> Maybe a
Just Name
con
                HsRecFieldContext
HsRecFieldUpd      -> Maybe Name
forall a. Maybe a
Nothing

    rn_fld :: Bool -> Maybe Name -> LHsRecField GhcPs (LocatedA arg)
           -> RnM (LHsRecField GhcRn (LocatedA arg))
    rn_fld :: Bool
-> Maybe Name
-> LHsRecField GhcPs (LocatedA arg)
-> RnM
     (XRec
        (GhcPass 'Renamed)
        (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg)))
rn_fld Bool
pun_ok Maybe Name
parent (L EpAnn AnnListItem
l
                           (HsFieldBind
                              { hfbLHS :: forall lhs rhs. HsFieldBind lhs rhs -> lhs
hfbLHS = L EpAnn AnnListItem
loc (FieldOcc XCFieldOcc GhcPs
_ (L SrcSpanAnnN
ll RdrName
lbl))
                              , hfbRHS :: forall lhs rhs. HsFieldBind lhs rhs -> rhs
hfbRHS = LocatedA arg
arg
                              , hfbPun :: forall lhs rhs. HsFieldBind lhs rhs -> Bool
hfbPun = Bool
pun }))
      = do { sel <- EpAnn AnnListItem -> RnM Name -> RnM Name
forall ann a. EpAnn ann -> TcRn a -> TcRn a
setSrcSpanA EpAnn AnnListItem
loc (RnM Name -> RnM Name) -> RnM Name -> RnM Name
forall a b. (a -> b) -> a -> b
$ Maybe Name -> RdrName -> RnM Name
lookupRecFieldOcc Maybe Name
parent RdrName
lbl
           ; let arg_rdr = OccName -> RdrName
mkRdrUnqual (OccName -> RdrName) -> OccName -> RdrName
forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => OccName -> OccName
OccName -> OccName
recFieldToVarOcc (OccName -> OccName) -> OccName -> OccName
forall a b. (a -> b) -> a -> b
$ Name -> OccName
forall name. HasOccName name => name -> OccName
occName Name
sel
                 -- Discard any module qualifier (#11662)
           ; arg' <- if pun
                     then do { checkErr pun_ok $
                                TcRnIllegalFieldPunning (L (locA loc) arg_rdr)
                             ; return $ L (l2l loc) $
                                 mk_arg (locA loc) arg_rdr }
                     else return arg
           ; return $ L l $
               HsFieldBind
                 { hfbAnn = noAnn
                 , hfbLHS = L loc (FieldOcc sel (L ll arg_rdr))
                 , hfbRHS = arg'
                 , hfbPun = pun } }

    rn_dotdot :: Maybe (LocatedE RecFieldsDotDot)     -- See Note [DotDot fields] in GHC.Hs.Pat
              -> Maybe Name -- The constructor (Nothing for an
                                --    out of scope constructor)
              -> [LHsRecField GhcRn (LocatedA arg)] -- Explicit fields
              -> RnM ([LHsRecField GhcRn (LocatedA arg)])   -- Field Labels we need to fill in
    rn_dotdot :: Maybe (GenLocated EpaLocation RecFieldsDotDot)
-> Maybe Name
-> [XRec
      (GhcPass 'Renamed)
      (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
-> RnM
     [XRec
        (GhcPass 'Renamed)
        (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
rn_dotdot (Just (L EpaLocation
loc_e (RecFieldsDotDot Int
n))) (Just Name
con) [XRec
   (GhcPass 'Renamed)
   (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
flds -- ".." on record construction / pat match
      | Bool -> Bool
not (Name -> Bool
isUnboundName Name
con) -- This test is because if the constructor
                                -- isn't in scope the constructor lookup will add
                                -- an error but still return an unbound name. We
                                -- don't want that to screw up the dot-dot fill-in stuff.
      = Bool
-> RnM
     [XRec
        (GhcPass 'Renamed)
        (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
-> RnM
     [XRec
        (GhcPass 'Renamed)
        (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
forall a. HasCallStack => Bool -> a -> a
assert ([XRec
   (GhcPass 'Renamed)
   (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
[GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
flds [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
-> Int -> Bool
forall a. [a] -> Int -> Bool
`lengthIs` Int
n) (RnM
   [XRec
      (GhcPass 'Renamed)
      (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
 -> RnM
      [XRec
         (GhcPass 'Renamed)
         (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))])
-> RnM
     [XRec
        (GhcPass 'Renamed)
        (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
-> RnM
     [XRec
        (GhcPass 'Renamed)
        (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
forall a b. (a -> b) -> a -> b
$
        do { dd_flag <- Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.RecordWildCards
           ; checkErr dd_flag (needFlagDotDot ctxt)
           ; (rdr_env, lcl_env) <- getRdrEnvs
           ; conInfo <- lookupConstructorInfo con
           ; when (conFieldInfo conInfo == ConHasPositionalArgs) (addErr (TcRnIllegalWildcardsInConstructor con))
           ; let present_flds = [OccName] -> OccSet
mkOccSet ([OccName] -> OccSet) -> [OccName] -> OccSet
forall a b. (a -> b) -> a -> b
$ (RdrName -> OccName) -> [RdrName] -> [OccName]
forall a b. (a -> b) -> [a] -> [b]
map RdrName -> OccName
rdrNameOcc ([XRec
   (GhcPass 'Renamed)
   (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
-> [RdrName]
forall p arg. UnXRec p => [LHsRecField p arg] -> [RdrName]
getFieldLbls [XRec
   (GhcPass 'Renamed)
   (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
flds)

                   -- For constructor uses (but not patterns)
                   -- the arg should be in scope locally;
                   -- i.e. not top level or imported
                   -- Eg.  data R = R { x,y :: Int }
                   --      f x = R { .. }   -- Should expand to R {x=x}, not R{x=x,y=y}
                 arg_in_scope OccName
lbl = OccName -> RdrName
mkRdrUnqual OccName
lbl RdrName -> LocalRdrEnv -> Bool
`elemLocalRdrEnv` LocalRdrEnv
lcl_env

                 (dot_dot_fields, dot_dot_gres) =
                   unzip [ (fl, gre)
                         | fl <- conInfoFields conInfo
                         , let lbl = HasDebugCallStack => OccName -> OccName
OccName -> OccName
recFieldToVarOcc (OccName -> OccName) -> OccName -> OccName
forall a b. (a -> b) -> a -> b
$ Name -> OccName
forall name. HasOccName name => name -> OccName
occName (Name -> OccName) -> Name -> OccName
forall a b. (a -> b) -> a -> b
$ FieldLabel -> Name
flSelector FieldLabel
fl
                         , not (lbl `elemOccSet` present_flds)
                         , Just gre <- [lookupGRE_FieldLabel rdr_env fl]
                                       -- Check selector is in scope
                         , case ctxt of
                             HsRecFieldCon {} -> OccName -> Bool
arg_in_scope OccName
lbl
                             HsRecFieldContext
_other           -> Bool
True ]

           ; addUsedGREs NoDeprecationWarnings dot_dot_gres
           ; let loc = EpaLocation -> SrcSpan
forall a. HasLoc a => a -> SrcSpan
locA EpaLocation
loc_e
           ; let locn = SrcSpan -> EpAnn AnnListItem
forall e. HasAnnotation e => SrcSpan -> e
noAnnSrcSpan SrcSpan
loc
           ; return [ L (noAnnSrcSpan loc) (HsFieldBind
                        { hfbAnn = noAnn
                        , hfbLHS
                           = L (noAnnSrcSpan loc) (FieldOcc sel (L (noAnnSrcSpan loc) arg_rdr))
                        , hfbRHS = L locn (mk_arg loc arg_rdr)
                        , hfbPun = False })
                    | fl <- dot_dot_fields
                    , let sel     = FieldLabel -> Name
flSelector FieldLabel
fl
                          arg_rdr = OccName -> RdrName
mkRdrUnqual
                                  (OccName -> RdrName) -> OccName -> RdrName
forall a b. (a -> b) -> a -> b
$ HasDebugCallStack => OccName -> OccName
OccName -> OccName
recFieldToVarOcc
                                  (OccName -> OccName) -> OccName -> OccName
forall a b. (a -> b) -> a -> b
$ Name -> OccName
nameOccName Name
sel ] }

    rn_dotdot Maybe (GenLocated EpaLocation RecFieldsDotDot)
_dotdot Maybe Name
_mb_con [XRec
   (GhcPass 'Renamed)
   (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) (LocatedA arg))]
_flds
      = [GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
      (LocatedA arg))]
-> IOEnv
     (Env TcGblEnv TcLclEnv)
     [GenLocated
        (EpAnn AnnListItem)
        (HsFieldBind
           (GenLocated (EpAnn AnnListItem) (FieldOcc (GhcPass 'Renamed)))
           (LocatedA arg))]
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return []
      -- _dotdot = Nothing => No ".." at all
      -- _mb_con = Nothing => Record update
      -- _mb_con = Just unbound => Out of scope data constructor

    dup_flds :: [NE.NonEmpty RdrName]
        -- Each list represents a RdrName that occurred more than once
        -- (the list contains all occurrences)
        -- Each list in dup_fields is non-empty
    ([RdrName]
_, [NonEmpty RdrName]
dup_flds) = (RdrName -> RdrName -> Ordering)
-> [RdrName] -> ([RdrName], [NonEmpty RdrName])
forall a. (a -> a -> Ordering) -> [a] -> ([a], [NonEmpty a])
removeDups (FastString -> FastString -> Ordering
uniqCompareFS (FastString -> FastString -> Ordering)
-> (RdrName -> FastString) -> RdrName -> RdrName -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (OccName -> FastString
occNameFS (OccName -> FastString)
-> (RdrName -> OccName) -> RdrName -> FastString
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RdrName -> OccName
rdrNameOcc)) ([LHsRecField GhcPs (LocatedA arg)] -> [RdrName]
forall p arg. UnXRec p => [LHsRecField p arg] -> [RdrName]
getFieldLbls [LHsRecField GhcPs (LocatedA arg)]
flds)
      -- See the same duplicate handling logic in rnHsRecUpdFields below for further context.

-- | Rename a regular (non-overloaded) record field update,
-- disambiguating the fields if necessary.
rnHsRecUpdFields
    :: [LHsRecUpdField GhcPs GhcPs]
    -> RnM (XLHsRecUpdLabels GhcRn, [LHsRecUpdField GhcRn GhcRn], FreeVars)
rnHsRecUpdFields :: [LHsRecUpdField GhcPs GhcPs]
-> RnM
     (XLHsRecUpdLabels (GhcPass 'Renamed),
      [LHsRecUpdField (GhcPass 'Renamed) (GhcPass 'Renamed)], FreeVars)
rnHsRecUpdFields [LHsRecUpdField GhcPs GhcPs]
flds
  = do { pun_ok <- Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.NamedFieldPuns

       -- Check for an empty record update:  e {}
       -- NB: don't complain about e { .. }, because rn_dotdot has done that already
       ; case flds of
          { [] -> TcRnMessage
-> IOEnv
     (Env TcGblEnv TcLclEnv)
     (NonEmpty (HsRecUpdParent (GhcPass 'Renamed)),
      [GenLocated
         (EpAnn AnnListItem)
         (HsFieldBind
            (GenLocated
               (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed)))
            (LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))))],
      FreeVars)
forall a. TcRnMessage -> TcM a
failWithTc TcRnMessage
TcRnEmptyRecordUpdate
          ; LHsRecUpdField GhcPs GhcPs
fld:[LHsRecUpdField GhcPs GhcPs]
other_flds ->
    do { let dup_lbls :: [NE.NonEmpty RdrName]
             ([RdrName]
_, [NonEmpty RdrName]
dup_lbls) = (RdrName -> RdrName -> Ordering)
-> [RdrName] -> ([RdrName], [NonEmpty RdrName])
forall a. (a -> a -> Ordering) -> [a] -> ([a], [NonEmpty a])
removeDups (FastString -> FastString -> Ordering
uniqCompareFS (FastString -> FastString -> Ordering)
-> (RdrName -> FastString) -> RdrName -> RdrName -> Ordering
forall b c a. (b -> b -> c) -> (a -> b) -> a -> a -> c
`on` (OccName -> FastString
occNameFS (OccName -> FastString)
-> (RdrName -> OccName) -> RdrName -> FastString
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RdrName -> OccName
rdrNameOcc))
                              ((GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
      (LHsExpr GhcPs))
 -> RdrName)
-> [GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind
         (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
         (LHsExpr GhcPs))]
-> [RdrName]
forall a b. (a -> b) -> [a] -> [b]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (LocatedN RdrName -> RdrName
forall l e. GenLocated l e -> e
unLoc (LocatedN RdrName -> RdrName)
-> (GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind
         (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
         (LHsExpr GhcPs))
    -> LocatedN RdrName)
-> GenLocated
     (EpAnn AnnListItem)
     (HsFieldBind
        (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
        (LHsExpr GhcPs))
-> RdrName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LHsRecUpdField GhcPs GhcPs -> LocatedN RdrName
GenLocated
  (EpAnn AnnListItem)
  (HsFieldBind
     (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
     (LHsExpr GhcPs))
-> LocatedN RdrName
forall (p :: Pass) q.
LHsRecUpdField (GhcPass p) q -> LocatedN RdrName
getFieldUpdLbl) [LHsRecUpdField GhcPs GhcPs]
[GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
      (LHsExpr GhcPs))]
flds)
               -- NB: we compare using the underlying field label FastString,
               -- in order to catch duplicates involving qualified names,
               -- as in the record update `r { fld = x, Mod.fld = y }`.
               -- See #21959.
               -- Note that this test doesn't correctly handle exact Names, but those
               -- aren't handled properly by the rest of the compiler anyway. See #22122.
       ; (NonEmpty RdrName -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> [NonEmpty RdrName] -> IOEnv (Env TcGblEnv TcLclEnv) ()
forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (TcRnMessage -> IOEnv (Env TcGblEnv TcLclEnv) ()
addErr (TcRnMessage -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> (NonEmpty RdrName -> TcRnMessage)
-> NonEmpty RdrName
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HsRecFieldContext -> NonEmpty RdrName -> TcRnMessage
dupFieldErr HsRecFieldContext
HsRecFieldUpd) [NonEmpty RdrName]
dup_lbls

         -- See Note [Disambiguating record updates]
       ; possible_parents <- NonEmpty (LHsRecUpdField GhcPs GhcPs)
-> RnM (NonEmpty (HsRecUpdParent (GhcPass 'Renamed)))
lookupRecUpdFields (LHsRecUpdField GhcPs GhcPs
GenLocated
  (EpAnn AnnListItem)
  (HsFieldBind
     (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
     (GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)))
fld GenLocated
  (EpAnn AnnListItem)
  (HsFieldBind
     (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
     (GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)))
-> [GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind
         (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
         (GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)))]
-> NonEmpty
     (GenLocated
        (EpAnn AnnListItem)
        (HsFieldBind
           (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
           (GenLocated (EpAnn AnnListItem) (HsExpr GhcPs))))
forall a. a -> [a] -> NonEmpty a
NE.:| [LHsRecUpdField GhcPs GhcPs]
[GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind
      (GenLocated (EpAnn AnnListItem) (AmbiguousFieldOcc GhcPs))
      (GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)))]
other_flds)
       ; let  mb_unambig_lbls :: Maybe [FieldLabel]
              fvs :: FreeVars
              (mb_unambig_lbls, fvs) =
               case possible_parents of
                  RnRecUpdParent { rnRecUpdLabels :: HsRecUpdParent (GhcPass 'Renamed) -> NonEmpty FieldGlobalRdrElt
rnRecUpdLabels = NonEmpty FieldGlobalRdrElt
gres } NE.:| []
                    | let lbls :: [FieldLabel]
lbls = (FieldGlobalRdrElt -> FieldLabel)
-> [FieldGlobalRdrElt] -> [FieldLabel]
forall a b. (a -> b) -> [a] -> [b]
map HasDebugCallStack => FieldGlobalRdrElt -> FieldLabel
FieldGlobalRdrElt -> FieldLabel
fieldGRELabel ([FieldGlobalRdrElt] -> [FieldLabel])
-> [FieldGlobalRdrElt] -> [FieldLabel]
forall a b. (a -> b) -> a -> b
$ NonEmpty FieldGlobalRdrElt -> [FieldGlobalRdrElt]
forall a. NonEmpty a -> [a]
NE.toList NonEmpty FieldGlobalRdrElt
gres
                    -> ( [FieldLabel] -> Maybe [FieldLabel]
forall a. a -> Maybe a
Just [FieldLabel]
lbls, [Name] -> FreeVars
mkFVs ([Name] -> FreeVars) -> [Name] -> FreeVars
forall a b. (a -> b) -> a -> b
$ (FieldLabel -> Name) -> [FieldLabel] -> [Name]
forall a b. (a -> b) -> [a] -> [b]
map FieldLabel -> Name
flSelector [FieldLabel]
lbls)
                  NonEmpty (HsRecUpdParent (GhcPass 'Renamed))
_ -> ( Maybe [FieldLabel]
forall a. Maybe a
Nothing
                       , [FreeVars] -> FreeVars
plusFVs ([FreeVars] -> FreeVars) -> [FreeVars] -> FreeVars
forall a b. (a -> b) -> a -> b
$ (HsRecUpdParent (GhcPass 'Renamed) -> FreeVars)
-> [HsRecUpdParent (GhcPass 'Renamed)] -> [FreeVars]
forall a b. (a -> b) -> [a] -> [b]
map ([FreeVars] -> FreeVars
plusFVs ([FreeVars] -> FreeVars)
-> (HsRecUpdParent (GhcPass 'Renamed) -> [FreeVars])
-> HsRecUpdParent (GhcPass 'Renamed)
-> FreeVars
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (FieldGlobalRdrElt -> FreeVars)
-> [FieldGlobalRdrElt] -> [FreeVars]
forall a b. (a -> b) -> [a] -> [b]
map FieldGlobalRdrElt -> FreeVars
pat_syn_free_vars ([FieldGlobalRdrElt] -> [FreeVars])
-> (HsRecUpdParent (GhcPass 'Renamed) -> [FieldGlobalRdrElt])
-> HsRecUpdParent (GhcPass 'Renamed)
-> [FreeVars]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. NonEmpty FieldGlobalRdrElt -> [FieldGlobalRdrElt]
forall a. NonEmpty a -> [a]
NE.toList (NonEmpty FieldGlobalRdrElt -> [FieldGlobalRdrElt])
-> (HsRecUpdParent (GhcPass 'Renamed)
    -> NonEmpty FieldGlobalRdrElt)
-> HsRecUpdParent (GhcPass 'Renamed)
-> [FieldGlobalRdrElt]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HsRecUpdParent (GhcPass 'Renamed) -> NonEmpty FieldGlobalRdrElt
rnRecUpdLabels)
                                 ([HsRecUpdParent (GhcPass 'Renamed)] -> [FreeVars])
-> [HsRecUpdParent (GhcPass 'Renamed)] -> [FreeVars]
forall a b. (a -> b) -> a -> b
$ NonEmpty (HsRecUpdParent (GhcPass 'Renamed))
-> [HsRecUpdParent (GhcPass 'Renamed)]
forall a. NonEmpty a -> [a]
NE.toList NonEmpty (HsRecUpdParent (GhcPass 'Renamed))
possible_parents
                         -- See Note [Using PatSyn FreeVars]
                       )

        -- Rename each field.
        ; (upd_flds, fvs') <- rn_flds pun_ok mb_unambig_lbls flds
        ; let all_fvs = FreeVars
fvs FreeVars -> FreeVars -> FreeVars
`plusFV` FreeVars
fvs'
        ; return (possible_parents, upd_flds, all_fvs) } } }

    where

      -- For an ambiguous record update involving pattern synonym record fields,
      -- we must add all the possibly-relevant field selector names to ensure that
      -- we typecheck the record update **after** we typecheck the pattern synonym
      -- definition. See Note [Using PatSyn FreeVars].
      pat_syn_free_vars :: FieldGlobalRdrElt -> FreeVars
      pat_syn_free_vars :: FieldGlobalRdrElt -> FreeVars
pat_syn_free_vars (GRE { gre_info :: forall info. GlobalRdrEltX info -> info
gre_info = GREInfo
info })
        | IAmRecField RecFieldInfo
fld_info <- GREInfo
info
        , RecFieldInfo { recFieldLabel :: RecFieldInfo -> FieldLabel
recFieldLabel = FieldLabel
fl, recFieldCons :: RecFieldInfo -> UniqSet ConLikeName
recFieldCons = UniqSet ConLikeName
cons } <- RecFieldInfo
fld_info
        , (ConLikeName -> Bool) -> UniqSet ConLikeName -> Bool
forall a. (a -> Bool) -> UniqSet a -> Bool
uniqSetAny ConLikeName -> Bool
is_PS UniqSet ConLikeName
cons
        = Name -> FreeVars
unitFV (FieldLabel -> Name
flSelector FieldLabel
fl)
      pat_syn_free_vars FieldGlobalRdrElt
_
        = FreeVars
emptyFVs

      is_PS :: ConLikeName -> Bool
      is_PS :: ConLikeName -> Bool
is_PS (PatSynName  {}) = Bool
True
      is_PS (DataConName {}) = Bool
False

      rn_flds :: Bool -> Maybe [FieldLabel]
              -> [LHsRecUpdField GhcPs GhcPs]
              -> RnM ([LHsRecUpdField GhcRn GhcRn], FreeVars)
      rn_flds :: Bool
-> Maybe [FieldLabel]
-> [LHsRecUpdField GhcPs GhcPs]
-> RnM
     ([LHsRecUpdField (GhcPass 'Renamed) (GhcPass 'Renamed)], FreeVars)
rn_flds Bool
_ Maybe [FieldLabel]
_ [] = ([GenLocated
    (EpAnn AnnListItem)
    (HsFieldBind
       (GenLocated
          (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed)))
       (LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))))],
 FreeVars)
-> IOEnv
     (Env TcGblEnv TcLclEnv)
     ([GenLocated
         (EpAnn AnnListItem)
         (HsFieldBind
            (GenLocated
               (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed)))
            (LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))))],
      FreeVars)
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ([], FreeVars
emptyFVs)
      rn_flds Bool
pun_ok Maybe [FieldLabel]
mb_unambig_lbls
              ((L EpAnn AnnListItem
l (HsFieldBind { hfbLHS :: forall lhs rhs. HsFieldBind lhs rhs -> lhs
hfbLHS = L EpAnn AnnListItem
loc AmbiguousFieldOcc GhcPs
f
                                 , hfbRHS :: forall lhs rhs. HsFieldBind lhs rhs -> rhs
hfbRHS = GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)
arg
                                 , hfbPun :: forall lhs rhs. HsFieldBind lhs rhs -> Bool
hfbPun = Bool
pun })):[LHsRecUpdField GhcPs GhcPs]
flds)
        = do { let lbl :: RdrName
lbl = AmbiguousFieldOcc GhcPs -> RdrName
forall (p :: Pass). AmbiguousFieldOcc (GhcPass p) -> RdrName
ambiguousFieldOccRdrName AmbiguousFieldOcc GhcPs
f
             ; (arg' :: LHsExpr GhcPs) <- if Bool
pun
                       then do { EpAnn AnnListItem
-> IOEnv (Env TcGblEnv TcLclEnv) ()
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall ann a. EpAnn ann -> TcRn a -> TcRn a
setSrcSpanA EpAnn AnnListItem
loc (IOEnv (Env TcGblEnv TcLclEnv) ()
 -> IOEnv (Env TcGblEnv TcLclEnv) ())
-> IOEnv (Env TcGblEnv TcLclEnv) ()
-> IOEnv (Env TcGblEnv TcLclEnv) ()
forall a b. (a -> b) -> a -> b
$
                                 Bool -> TcRnMessage -> IOEnv (Env TcGblEnv TcLclEnv) ()
checkErr Bool
pun_ok (Located RdrName -> TcRnMessage
TcRnIllegalFieldPunning (SrcSpan -> RdrName -> Located RdrName
forall l e. l -> e -> GenLocated l e
L (EpAnn AnnListItem -> SrcSpan
forall a. HasLoc a => a -> SrcSpan
locA EpAnn AnnListItem
loc) RdrName
lbl))
                                 -- Discard any module qualifier (#11662)
                               ; let arg_rdr :: RdrName
arg_rdr = OccName -> RdrName
mkRdrUnqual (RdrName -> OccName
rdrNameOcc RdrName
lbl)
                               ; GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)
-> IOEnv
     (Env TcGblEnv TcLclEnv)
     (GenLocated (EpAnn AnnListItem) (HsExpr GhcPs))
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return (EpAnn AnnListItem
-> HsExpr GhcPs -> GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)
forall l e. l -> e -> GenLocated l e
L (EpAnn AnnListItem -> EpAnn AnnListItem
forall a b. (HasLoc a, HasAnnotation b) => a -> b
l2l EpAnn AnnListItem
loc) (XVar GhcPs -> XRec GhcPs (IdP GhcPs) -> HsExpr GhcPs
forall p. XVar p -> LIdP p -> HsExpr p
HsVar XVar GhcPs
NoExtField
noExtField (SrcSpanAnnN -> RdrName -> LocatedN RdrName
forall l e. l -> e -> GenLocated l e
L (EpAnn AnnListItem -> SrcSpanAnnN
forall a b. (HasLoc a, HasAnnotation b) => a -> b
l2l EpAnn AnnListItem
loc) RdrName
arg_rdr))) }
                       else GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)
-> IOEnv
     (Env TcGblEnv TcLclEnv)
     (GenLocated (EpAnn AnnListItem) (HsExpr GhcPs))
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return GenLocated (EpAnn AnnListItem) (HsExpr GhcPs)
arg
             ; (arg'', fvs) <- rnLExpr arg'
             ; let lbl' :: AmbiguousFieldOcc GhcRn
                   lbl' = case Maybe [FieldLabel]
mb_unambig_lbls of
                            { Just (FieldLabel
fl:[FieldLabel]
_) ->
                                let sel_name :: Name
sel_name = FieldLabel -> Name
flSelector FieldLabel
fl
                                in XUnambiguous (GhcPass 'Renamed)
-> XRec (GhcPass 'Renamed) RdrName
-> AmbiguousFieldOcc (GhcPass 'Renamed)
forall pass.
XUnambiguous pass -> XRec pass RdrName -> AmbiguousFieldOcc pass
Unambiguous XUnambiguous (GhcPass 'Renamed)
Name
sel_name   (SrcSpanAnnN -> RdrName -> LocatedN RdrName
forall l e. l -> e -> GenLocated l e
L (EpAnn AnnListItem -> SrcSpanAnnN
forall a b. (HasLoc a, HasAnnotation b) => a -> b
l2l EpAnn AnnListItem
loc) RdrName
lbl)
                            ; Maybe [FieldLabel]
_ ->   XAmbiguous (GhcPass 'Renamed)
-> XRec (GhcPass 'Renamed) RdrName
-> AmbiguousFieldOcc (GhcPass 'Renamed)
forall pass.
XAmbiguous pass -> XRec pass RdrName -> AmbiguousFieldOcc pass
Ambiguous XAmbiguous (GhcPass 'Renamed)
NoExtField
noExtField (SrcSpanAnnN -> RdrName -> LocatedN RdrName
forall l e. l -> e -> GenLocated l e
L (EpAnn AnnListItem -> SrcSpanAnnN
forall a b. (HasLoc a, HasAnnotation b) => a -> b
l2l EpAnn AnnListItem
loc) RdrName
lbl) }
                   fld' :: LHsRecUpdField GhcRn GhcRn
                   fld' = EpAnn AnnListItem
-> HsFieldBind
     (GenLocated
        (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed)))
     (LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed)))
-> GenLocated
     (EpAnn AnnListItem)
     (HsFieldBind
        (GenLocated
           (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed)))
        (LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))))
forall l e. l -> e -> GenLocated l e
L EpAnn AnnListItem
l (HsFieldBind { hfbAnn :: XHsFieldBind
  (GenLocated
     (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed)))
hfbAnn = [AddEpAnn]
XHsFieldBind
  (GenLocated
     (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed)))
forall a. NoAnn a => a
noAnn
                                           , hfbLHS :: GenLocated
  (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed))
hfbLHS = EpAnn AnnListItem
-> AmbiguousFieldOcc (GhcPass 'Renamed)
-> GenLocated
     (EpAnn AnnListItem) (AmbiguousFieldOcc (GhcPass 'Renamed))
forall l e. l -> e -> GenLocated l e
L EpAnn AnnListItem
loc AmbiguousFieldOcc (GhcPass 'Renamed)
lbl'
                                           , hfbRHS :: LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))
hfbRHS = LocatedAn AnnListItem (HsExpr (GhcPass 'Renamed))
arg''
                                           , hfbPun :: Bool
hfbPun = Bool
pun })
             ; (flds', fvs') <- rn_flds pun_ok (tail <$> mb_unambig_lbls) flds
             ; return (fld' : flds', fvs `plusFV` fvs') }

getFieldIds :: [LHsRecField GhcRn arg] -> [Name]
getFieldIds :: forall arg. [LHsRecField (GhcPass 'Renamed) arg] -> [Name]
getFieldIds [LHsRecField (GhcPass 'Renamed) arg]
flds = (GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg)
 -> Name)
-> [GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg)]
-> [Name]
forall a b. (a -> b) -> [a] -> [b]
map (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg
-> XCFieldOcc (GhcPass 'Renamed)
HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg -> Name
forall p arg. UnXRec p => HsRecField p arg -> XCFieldOcc p
hsRecFieldSel (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg -> Name)
-> (GenLocated
      (EpAnn AnnListItem)
      (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg)
    -> HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg)
-> GenLocated
     (EpAnn AnnListItem)
     (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg)
-> Name
forall b c a. (b -> c) -> (a -> b) -> a -> c
. GenLocated
  (EpAnn AnnListItem)
  (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg)
-> HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg
forall l e. GenLocated l e -> e
unLoc) [LHsRecField (GhcPass 'Renamed) arg]
[GenLocated
   (EpAnn AnnListItem)
   (HsFieldBind (LFieldOcc (GhcPass 'Renamed)) arg)]
flds

getFieldLbls :: forall p arg . UnXRec p => [LHsRecField p arg] -> [RdrName]
getFieldLbls :: forall p arg. UnXRec p => [LHsRecField p arg] -> [RdrName]
getFieldLbls [LHsRecField p arg]
flds
  = (LHsRecField p arg -> RdrName) -> [LHsRecField p arg] -> [RdrName]
forall a b. (a -> b) -> [a] -> [b]
map (forall p a. UnXRec p => XRec p a -> a
unXRec @p (XRec p RdrName -> RdrName)
-> (LHsRecField p arg -> XRec p RdrName)
-> LHsRecField p arg
-> RdrName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. FieldOcc p -> XRec p RdrName
forall pass. FieldOcc pass -> XRec pass RdrName
foLabel (FieldOcc p -> XRec p RdrName)
-> (LHsRecField p arg -> FieldOcc p)
-> LHsRecField p arg
-> XRec p RdrName
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall p a. UnXRec p => XRec p a -> a
unXRec @p (XRec p (FieldOcc p) -> FieldOcc p)
-> (LHsRecField p arg -> XRec p (FieldOcc p))
-> LHsRecField p arg
-> FieldOcc p
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HsFieldBind (XRec p (FieldOcc p)) arg -> XRec p (FieldOcc p)
forall lhs rhs. HsFieldBind lhs rhs -> lhs
hfbLHS (HsFieldBind (XRec p (FieldOcc p)) arg -> XRec p (FieldOcc p))
-> (LHsRecField p arg -> HsFieldBind (XRec p (FieldOcc p)) arg)
-> LHsRecField p arg
-> XRec p (FieldOcc p)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall p a. UnXRec p => XRec p a -> a
unXRec @p) [LHsRecField p arg]
flds

needFlagDotDot :: HsRecFieldContext -> TcRnMessage
needFlagDotDot :: HsRecFieldContext -> TcRnMessage
needFlagDotDot = RecordFieldPart -> TcRnMessage
TcRnIllegalWildcardsInRecord (RecordFieldPart -> TcRnMessage)
-> (HsRecFieldContext -> RecordFieldPart)
-> HsRecFieldContext
-> TcRnMessage
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HsRecFieldContext -> RecordFieldPart
toRecordFieldPart

dupFieldErr :: HsRecFieldContext -> NE.NonEmpty RdrName -> TcRnMessage
dupFieldErr :: HsRecFieldContext -> NonEmpty RdrName -> TcRnMessage
dupFieldErr HsRecFieldContext
ctxt = RecordFieldPart -> NonEmpty RdrName -> TcRnMessage
TcRnDuplicateFieldName (HsRecFieldContext -> RecordFieldPart
toRecordFieldPart HsRecFieldContext
ctxt)

toRecordFieldPart :: HsRecFieldContext -> RecordFieldPart
toRecordFieldPart :: HsRecFieldContext -> RecordFieldPart
toRecordFieldPart (HsRecFieldCon Name
n)  = Name -> RecordFieldPart
RecordFieldConstructor Name
n
toRecordFieldPart (HsRecFieldPat Name
n)  = Name -> RecordFieldPart
RecordFieldPattern     Name
n
toRecordFieldPart (HsRecFieldUpd {}) = RecordFieldPart
RecordFieldUpdate

{- Note [Disambiguating record updates]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When the -XDuplicateRecordFields extension is used, to rename and typecheck
a non-overloaded record update, we might need to disambiguate the field labels.

Consider the following definitions:

   {-# LANGUAGE DuplicateRecordFields #-}

    data R = MkR1 { fld1 :: Int, fld2 :: Char }
           | MKR2 { fld1 :: Int, fld2 :: Char, fld3 :: Bool }
    data S = MkS1 { fld1 :: Int } | MkS2 { fld2 :: Char }

In a record update, the `lookupRecUpdFields` function tries to determine
the parent datatype by computing the parents (TyCon/PatSyn) which have
at least one constructor (DataCon/PatSyn) with all of the fields.

For example, in the (non-overloaded) record update

    r { fld1 = 3, fld2 = 'x' }

only the TyCon R contains at least one DataCon which has both of the fields
being updated: in this case, MkR1 and MkR2 have both of the updated fields.
The TyCon S also has both fields fld1 and fld2, but no single constructor
has both of those fields, so S is not a valid parent for this record update.

Note that this check is namespace-aware, so that a record update such as

    import qualified M ( R (fld1, fld2) )
    f r = r { M.fld1 = 3 }

is unambiguous, as only R contains the field fld1 in the M namespace.
(See however #22122 for issues relating to the usage of exact Names in
record fields.)

See also Note [Type-directed record disambiguation] in GHC.Tc.Gen.Expr.

Note [Using PatSyn FreeVars]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When we are disambiguating a non-overloaded record update, as per
Note [Disambiguating record updates], and have determined that this
record update might involve pattern synonym record fields, it is important
to declare usage of all these pattern synonyms record fields in the returned
FreeVars of rnHsRecUpdFields. This ensures that the typechecker sees
that the typechecking of the record update depends on the typechecking
of the pattern synonym, and typechecks the pattern synonyms first.
Not doing so caused #21898.

Note that this can be removed once GHC proposal #366 is implemented,
as we will be able to fully disambiguate the record update in the renamer,
and can immediately declare the correct used FreeVars instead of having
to over-estimate in case of ambiguity.

************************************************************************
*                                                                      *
\subsubsection{Literals}
*                                                                      *
************************************************************************

When literals occur we have to make sure
that the types and classes they involve
are made available.
-}

rnLit :: HsLit p -> RnM ()
rnLit :: forall p. HsLit p -> IOEnv (Env TcGblEnv TcLclEnv) ()
rnLit (HsChar XHsChar p
_ Char
c) = Bool -> TcRnMessage -> IOEnv (Env TcGblEnv TcLclEnv) ()
checkErr (Char -> Bool
inCharRange Char
c) (Char -> TcRnMessage
TcRnCharLiteralOutOfRange Char
c)
rnLit HsLit p
_ = () -> IOEnv (Env TcGblEnv TcLclEnv) ()
forall a. a -> IOEnv (Env TcGblEnv TcLclEnv) a
forall (m :: * -> *) a. Monad m => a -> m a
return ()

-- | Turn a Fractional-looking literal which happens to be an integer into an
-- Integer-looking literal.
-- We only convert numbers where the exponent is between 0 and 100 to avoid
-- converting huge numbers and incurring long compilation times. See #15646.
generalizeOverLitVal :: OverLitVal -> OverLitVal
generalizeOverLitVal :: OverLitVal -> OverLitVal
generalizeOverLitVal (HsFractional fl :: FractionalLit
fl@(FL {fl_text :: FractionalLit -> SourceText
fl_text=SourceText
src,fl_neg :: FractionalLit -> Bool
fl_neg=Bool
neg,fl_exp :: FractionalLit -> Integer
fl_exp=Integer
e}))
    | Integer
e Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= -Integer
100 Bool -> Bool -> Bool
&& Integer
e Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= Integer
100
    , let val :: Rational
val = FractionalLit -> Rational
rationalFromFractionalLit FractionalLit
fl
    , Rational -> Integer
forall a. Ratio a -> a
denominator Rational
val Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
1 = IntegralLit -> OverLitVal
HsIntegral (IL {il_text :: SourceText
il_text=SourceText
src,il_neg :: Bool
il_neg=Bool
neg,il_value :: Integer
il_value=Rational -> Integer
forall a. Ratio a -> a
numerator Rational
val})
generalizeOverLitVal OverLitVal
lit = OverLitVal
lit

isNegativeZeroOverLit :: (XXOverLit t ~ DataConCantHappen) => HsOverLit t -> Bool
isNegativeZeroOverLit :: forall t. (XXOverLit t ~ DataConCantHappen) => HsOverLit t -> Bool
isNegativeZeroOverLit HsOverLit t
lit
 = case HsOverLit t -> OverLitVal
forall p. HsOverLit p -> OverLitVal
ol_val HsOverLit t
lit of
        HsIntegral IntegralLit
i    -> Integer
0 Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== IntegralLit -> Integer
il_value IntegralLit
i Bool -> Bool -> Bool
&& IntegralLit -> Bool
il_neg IntegralLit
i
        -- For HsFractional, the value of fl is n * (b ^^ e) so it is sufficient
        -- to check if n = 0. b is equal to either 2 or 10. We don't call
        -- rationalFromFractionalLit here as it is expensive when e is big.
        HsFractional FractionalLit
fl -> Rational
0 Rational -> Rational -> Bool
forall a. Eq a => a -> a -> Bool
== FractionalLit -> Rational
fl_signi FractionalLit
fl Bool -> Bool -> Bool
&& FractionalLit -> Bool
fl_neg FractionalLit
fl
        OverLitVal
_               -> Bool
False

{-
Note [Negative zero]
~~~~~~~~~~~~~~~~~~~~~~~~~
There were problems with negative zero in conjunction with Negative Literals
extension. Numeric literal value is contained in Integer and Rational types
inside IntegralLit and FractionalLit. These types cannot represent negative
zero value. So we had to add explicit field 'neg' which would hold information
about literal sign. Here in rnOverLit we use it to detect negative zeroes and
in this case return not only literal itself but also negateName so that users
can apply it explicitly. In this case it stays negative zero.  #13211
-}

rnOverLit :: (XXOverLit t ~ DataConCantHappen) => HsOverLit t ->
             RnM ((HsOverLit GhcRn, Maybe (HsExpr GhcRn)), FreeVars)
rnOverLit :: forall t.
(XXOverLit t ~ DataConCantHappen) =>
HsOverLit t
-> RnM
     ((HsOverLit (GhcPass 'Renamed), Maybe (HsExpr (GhcPass 'Renamed))),
      FreeVars)
rnOverLit HsOverLit t
origLit
  = do  { opt_NumDecimals <- Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.NumDecimals
        ; let { lit@(OverLit {ol_val=val})
            | opt_NumDecimals = origLit {ol_val = generalizeOverLitVal (ol_val origLit)}
            | otherwise       = origLit
          }
        ; let std_name = OverLitVal -> Name
hsOverLitName OverLitVal
val
        ; (from_thing_name, fvs1) <- lookupSyntaxName std_name
        ; loc <- getSrcSpanM -- See Note [Source locations for implicit function calls] in GHC.Iface.Ext.Ast
        ; let rebindable = Name
from_thing_name Name -> Name -> Bool
forall a. Eq a => a -> a -> Bool
/= Name
std_name
              lit' = HsOverLit t
lit { ol_ext = OverLitRn { ol_rebindable = rebindable
                                              , ol_from_fun = L (noAnnSrcSpan loc) from_thing_name } }
        ; if isNegativeZeroOverLit lit'
          then do { (negate_name, fvs2) <- lookupSyntaxExpr negateName
                  ; return ((lit' { ol_val = negateOverLitVal val }, Just negate_name)
                                  , fvs1 `plusFV` fvs2) }
          else return ((lit', Nothing), fvs1) }


rnHsTyPat :: HsDocContext
          -> HsTyPat GhcPs
          -> CpsRn (HsTyPat GhcRn)
rnHsTyPat :: HsDocContext -> HsTyPat GhcPs -> CpsRn (HsTyPat (GhcPass 'Renamed))
rnHsTyPat HsDocContext
ctxt HsTyPat GhcPs
sigType = case HsTyPat GhcPs
sigType of
  (HsTP { hstp_body :: forall pass. HsTyPat pass -> LHsType pass
hstp_body = LHsType GhcPs
hs_ty }) -> do
    (hs_ty', tpb) <- TPRnM (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
-> HsDocContext
-> CpsRn
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)),
      HsTyPatRnBuilder)
forall a. TPRnM a -> HsDocContext -> CpsRn (a, HsTyPatRnBuilder)
runTPRnM (LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
hs_ty) HsDocContext
ctxt
    pure HsTP
          { hstp_body = hs_ty'
          , hstp_ext = buildHsTyPatRn tpb
          }

-- | Type pattern renaming monad
-- For the OccSet in the ReaderT, see Note [Locally bound names in type patterns]
-- For the HsTyPatRnBuilderRn in the WriterT, see Note [Implicit and explicit type variable binders]
-- For the CpsRn base monad, see Note [CpsRn monad]
-- For why we need CpsRn in TPRnM see Note [Left-to-right scoping of type patterns]
newtype TPRnM a =
  MkTPRnM (ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a)
  deriving newtype ((forall a b. (a -> b) -> TPRnM a -> TPRnM b)
-> (forall a b. a -> TPRnM b -> TPRnM a) -> Functor TPRnM
forall a b. a -> TPRnM b -> TPRnM a
forall a b. (a -> b) -> TPRnM a -> TPRnM b
forall (f :: * -> *).
(forall a b. (a -> b) -> f a -> f b)
-> (forall a b. a -> f b -> f a) -> Functor f
$cfmap :: forall a b. (a -> b) -> TPRnM a -> TPRnM b
fmap :: forall a b. (a -> b) -> TPRnM a -> TPRnM b
$c<$ :: forall a b. a -> TPRnM b -> TPRnM a
<$ :: forall a b. a -> TPRnM b -> TPRnM a
Functor, Functor TPRnM
Functor TPRnM =>
(forall a. a -> TPRnM a)
-> (forall a b. TPRnM (a -> b) -> TPRnM a -> TPRnM b)
-> (forall a b c. (a -> b -> c) -> TPRnM a -> TPRnM b -> TPRnM c)
-> (forall a b. TPRnM a -> TPRnM b -> TPRnM b)
-> (forall a b. TPRnM a -> TPRnM b -> TPRnM a)
-> Applicative TPRnM
forall a. a -> TPRnM a
forall a b. TPRnM a -> TPRnM b -> TPRnM a
forall a b. TPRnM a -> TPRnM b -> TPRnM b
forall a b. TPRnM (a -> b) -> TPRnM a -> TPRnM b
forall a b c. (a -> b -> c) -> TPRnM a -> TPRnM b -> TPRnM c
forall (f :: * -> *).
Functor f =>
(forall a. a -> f a)
-> (forall a b. f (a -> b) -> f a -> f b)
-> (forall a b c. (a -> b -> c) -> f a -> f b -> f c)
-> (forall a b. f a -> f b -> f b)
-> (forall a b. f a -> f b -> f a)
-> Applicative f
$cpure :: forall a. a -> TPRnM a
pure :: forall a. a -> TPRnM a
$c<*> :: forall a b. TPRnM (a -> b) -> TPRnM a -> TPRnM b
<*> :: forall a b. TPRnM (a -> b) -> TPRnM a -> TPRnM b
$cliftA2 :: forall a b c. (a -> b -> c) -> TPRnM a -> TPRnM b -> TPRnM c
liftA2 :: forall a b c. (a -> b -> c) -> TPRnM a -> TPRnM b -> TPRnM c
$c*> :: forall a b. TPRnM a -> TPRnM b -> TPRnM b
*> :: forall a b. TPRnM a -> TPRnM b -> TPRnM b
$c<* :: forall a b. TPRnM a -> TPRnM b -> TPRnM a
<* :: forall a b. TPRnM a -> TPRnM b -> TPRnM a
Applicative, Applicative TPRnM
Applicative TPRnM =>
(forall a b. TPRnM a -> (a -> TPRnM b) -> TPRnM b)
-> (forall a b. TPRnM a -> TPRnM b -> TPRnM b)
-> (forall a. a -> TPRnM a)
-> Monad TPRnM
forall a. a -> TPRnM a
forall a b. TPRnM a -> TPRnM b -> TPRnM b
forall a b. TPRnM a -> (a -> TPRnM b) -> TPRnM b
forall (m :: * -> *).
Applicative m =>
(forall a b. m a -> (a -> m b) -> m b)
-> (forall a b. m a -> m b -> m b)
-> (forall a. a -> m a)
-> Monad m
$c>>= :: forall a b. TPRnM a -> (a -> TPRnM b) -> TPRnM b
>>= :: forall a b. TPRnM a -> (a -> TPRnM b) -> TPRnM b
$c>> :: forall a b. TPRnM a -> TPRnM b -> TPRnM b
>> :: forall a b. TPRnM a -> TPRnM b -> TPRnM b
$creturn :: forall a. a -> TPRnM a
return :: forall a. a -> TPRnM a
Monad)

runTPRnM :: TPRnM a -> HsDocContext -> CpsRn (a, HsTyPatRnBuilder)
runTPRnM :: forall a. TPRnM a -> HsDocContext -> CpsRn (a, HsTyPatRnBuilder)
runTPRnM (MkTPRnM ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
thing_inside) HsDocContext
doc_ctxt = WriterT HsTyPatRnBuilder CpsRn a -> CpsRn (a, HsTyPatRnBuilder)
forall w (m :: * -> *) a. Monoid w => WriterT w m a -> m (a, w)
runWriterT (WriterT HsTyPatRnBuilder CpsRn a -> CpsRn (a, HsTyPatRnBuilder))
-> WriterT HsTyPatRnBuilder CpsRn a -> CpsRn (a, HsTyPatRnBuilder)
forall a b. (a -> b) -> a -> b
$ ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> (HsDocContext, OccSet) -> WriterT HsTyPatRnBuilder CpsRn a
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
thing_inside (HsDocContext
doc_ctxt, OccSet
emptyOccSet)

askLocals :: TPRnM OccSet
askLocals :: TPRnM OccSet
askLocals = ReaderT
  (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) OccSet
-> TPRnM OccSet
forall a.
ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
MkTPRnM (((HsDocContext, OccSet) -> OccSet)
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) OccSet
forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks (HsDocContext, OccSet) -> OccSet
forall a b. (a, b) -> b
snd)

askDocContext :: TPRnM HsDocContext
askDocContext :: TPRnM HsDocContext
askDocContext = ReaderT
  (HsDocContext, OccSet)
  (WriterT HsTyPatRnBuilder CpsRn)
  HsDocContext
-> TPRnM HsDocContext
forall a.
ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
MkTPRnM (((HsDocContext, OccSet) -> HsDocContext)
-> ReaderT
     (HsDocContext, OccSet)
     (WriterT HsTyPatRnBuilder CpsRn)
     HsDocContext
forall (m :: * -> *) r a. Monad m => (r -> a) -> ReaderT r m a
asks (HsDocContext, OccSet) -> HsDocContext
forall a b. (a, b) -> a
fst)

tellTPB :: HsTyPatRnBuilder -> TPRnM ()
tellTPB :: HsTyPatRnBuilder -> TPRnM ()
tellTPB = ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) ()
-> TPRnM ()
forall a.
ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
MkTPRnM (ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) ()
 -> TPRnM ())
-> (HsTyPatRnBuilder
    -> ReaderT
         (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) ())
-> HsTyPatRnBuilder
-> TPRnM ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WriterT HsTyPatRnBuilder CpsRn ()
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) ()
forall (m :: * -> *) a.
Monad m =>
m a -> ReaderT (HsDocContext, OccSet) m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (WriterT HsTyPatRnBuilder CpsRn ()
 -> ReaderT
      (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) ())
-> (HsTyPatRnBuilder -> WriterT HsTyPatRnBuilder CpsRn ())
-> HsTyPatRnBuilder
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) ()
forall b c a. (b -> c) -> (a -> b) -> a -> c
. HsTyPatRnBuilder -> WriterT HsTyPatRnBuilder CpsRn ()
forall w (m :: * -> *). (Monoid w, Monad m) => w -> WriterT w m ()
tell

liftRnFV :: RnM (a, FreeVars) -> TPRnM a
liftRnFV :: forall a. RnM (a, FreeVars) -> TPRnM a
liftRnFV = CpsRn a -> TPRnM a
forall a. CpsRn a -> TPRnM a
liftTPRnCps (CpsRn a -> TPRnM a)
-> (RnM (a, FreeVars) -> CpsRn a) -> RnM (a, FreeVars) -> TPRnM a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RnM (a, FreeVars) -> CpsRn a
forall a. RnM (a, FreeVars) -> CpsRn a
liftCpsFV

liftRn :: RnM a -> TPRnM a
liftRn :: forall a. RnM a -> TPRnM a
liftRn = CpsRn a -> TPRnM a
forall a. CpsRn a -> TPRnM a
liftTPRnCps (CpsRn a -> TPRnM a) -> (RnM a -> CpsRn a) -> RnM a -> TPRnM a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RnM a -> CpsRn a
forall a. RnM a -> CpsRn a
liftCps

liftRnWithCont :: (forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)) -> TPRnM b
liftRnWithCont :: forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> TPRnM b
liftRnWithCont forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
cont = CpsRn b -> TPRnM b
forall a. CpsRn a -> TPRnM a
liftTPRnCps ((forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
liftCpsWithCont (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
cont)

liftTPRnCps :: CpsRn a -> TPRnM a
liftTPRnCps :: forall a. CpsRn a -> TPRnM a
liftTPRnCps = ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
forall a.
ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
MkTPRnM (ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
 -> TPRnM a)
-> (CpsRn a
    -> ReaderT
         (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a)
-> CpsRn a
-> TPRnM a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. WriterT HsTyPatRnBuilder CpsRn a
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
forall (m :: * -> *) a.
Monad m =>
m a -> ReaderT (HsDocContext, OccSet) m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (WriterT HsTyPatRnBuilder CpsRn a
 -> ReaderT
      (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a)
-> (CpsRn a -> WriterT HsTyPatRnBuilder CpsRn a)
-> CpsRn a
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. CpsRn a -> WriterT HsTyPatRnBuilder CpsRn a
forall (m :: * -> *) a.
Monad m =>
m a -> WriterT HsTyPatRnBuilder m a
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift

liftTPRnRaw ::
  ( forall r .
    HsDocContext ->
    OccSet ->
    ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars)) ->
    RnM (r, FreeVars)
  ) -> TPRnM a
liftTPRnRaw :: forall a.
(forall r.
 HsDocContext
 -> OccSet
 -> ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars))
 -> RnM (r, FreeVars))
-> TPRnM a
liftTPRnRaw forall r.
HsDocContext
-> OccSet
-> ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
cont = ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
forall a.
ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
MkTPRnM (ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
 -> TPRnM a)
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> TPRnM a
forall a b. (a -> b) -> a -> b
$ ((HsDocContext, OccSet) -> WriterT HsTyPatRnBuilder CpsRn a)
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
forall r (m :: * -> *) a. (r -> m a) -> ReaderT r m a
ReaderT (((HsDocContext, OccSet) -> WriterT HsTyPatRnBuilder CpsRn a)
 -> ReaderT
      (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a)
-> ((HsDocContext, OccSet) -> WriterT HsTyPatRnBuilder CpsRn a)
-> ReaderT
     (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
forall a b. (a -> b) -> a -> b
$ \(HsDocContext
doc_ctxt, OccSet
locals) -> CpsRn (a, HsTyPatRnBuilder) -> WriterT HsTyPatRnBuilder CpsRn a
forall (m :: * -> *) w a.
(Functor m, Monoid w) =>
m (a, w) -> WriterT w m a
writerT (CpsRn (a, HsTyPatRnBuilder) -> WriterT HsTyPatRnBuilder CpsRn a)
-> CpsRn (a, HsTyPatRnBuilder) -> WriterT HsTyPatRnBuilder CpsRn a
forall a b. (a -> b) -> a -> b
$ (forall r.
 ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn (a, HsTyPatRnBuilder)
forall b.
(forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn b
liftCpsWithCont (HsDocContext
-> OccSet
-> ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
forall r.
HsDocContext
-> OccSet
-> ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
cont HsDocContext
doc_ctxt OccSet
locals)

unTPRnRaw ::
  TPRnM a ->
  HsDocContext ->
  OccSet ->
  ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars)) ->
  RnM (r, FreeVars)
unTPRnRaw :: forall a r.
TPRnM a
-> HsDocContext
-> OccSet
-> ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
unTPRnRaw (MkTPRnM ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
m) HsDocContext
doc_ctxt OccSet
locals = CpsRn (a, HsTyPatRnBuilder)
-> forall r.
   ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall b.
CpsRn b -> forall r. (b -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
unCpsRn (CpsRn (a, HsTyPatRnBuilder)
 -> forall r.
    ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars)) -> RnM (r, FreeVars))
-> CpsRn (a, HsTyPatRnBuilder)
-> forall r.
   ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars)) -> RnM (r, FreeVars)
forall a b. (a -> b) -> a -> b
$ WriterT HsTyPatRnBuilder CpsRn a -> CpsRn (a, HsTyPatRnBuilder)
forall w (m :: * -> *) a. Monoid w => WriterT w m a -> m (a, w)
runWriterT (WriterT HsTyPatRnBuilder CpsRn a -> CpsRn (a, HsTyPatRnBuilder))
-> WriterT HsTyPatRnBuilder CpsRn a -> CpsRn (a, HsTyPatRnBuilder)
forall a b. (a -> b) -> a -> b
$ ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
-> (HsDocContext, OccSet) -> WriterT HsTyPatRnBuilder CpsRn a
forall r (m :: * -> *) a. ReaderT r m a -> r -> m a
runReaderT ReaderT (HsDocContext, OccSet) (WriterT HsTyPatRnBuilder CpsRn) a
m (HsDocContext
doc_ctxt, OccSet
locals)

wrapSrcSpanTPRnM :: (a -> TPRnM b) -> LocatedAn ann a -> TPRnM (LocatedAn ann b)
wrapSrcSpanTPRnM :: forall a b ann.
(a -> TPRnM b) -> LocatedAn ann a -> TPRnM (LocatedAn ann b)
wrapSrcSpanTPRnM a -> TPRnM b
fn (L EpAnn ann
loc a
a) = do
  a' <- a -> TPRnM b
fn a
a
  pure (L loc a')

lookupTypeOccTPRnM :: RdrName -> TPRnM Name
lookupTypeOccTPRnM :: RdrName -> TPRnM Name
lookupTypeOccTPRnM RdrName
rdr_name = RnM (Name, FreeVars) -> TPRnM Name
forall a. RnM (a, FreeVars) -> TPRnM a
liftRnFV (RnM (Name, FreeVars) -> TPRnM Name)
-> RnM (Name, FreeVars) -> TPRnM Name
forall a b. (a -> b) -> a -> b
$ do
  name <- RdrName -> RnM Name
lookupTypeOccRn RdrName
rdr_name
  pure (name, unitFV name)

rn_lty_pat :: LHsType GhcPs -> TPRnM (LHsType GhcRn)
rn_lty_pat :: LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat (L EpAnn AnnListItem
l HsType GhcPs
hs_ty) = do
  hs_ty' <- HsType GhcPs -> TPRnM (HsType (GhcPass 'Renamed))
rn_ty_pat HsType GhcPs
hs_ty
  pure (L l hs_ty')

rn_ty_pat_var :: LocatedN RdrName -> TPRnM (LocatedN Name)
rn_ty_pat_var :: LocatedN RdrName -> TPRnM (LocatedN Name)
rn_ty_pat_var lrdr :: LocatedN RdrName
lrdr@(L SrcSpanAnnN
l RdrName
rdr) = do
  locals <- TPRnM OccSet
askLocals
  if isRdrTyVar rdr
    && not (elemOccSet (occName rdr) locals) -- See Note [Locally bound names in type patterns]

    then do -- binder
      name <- liftTPRnCps $ newPatName (LamMk True) lrdr
      tellTPB (tpBuilderExplicitTV name)
      pure (L l name)

    else do -- usage
      name <- lookupTypeOccTPRnM rdr
      pure (L l name)

-- | Rename type patterns
--
-- For the difference between `rn_ty_pat` and `rnHsTyKi` see Note [CpsRn monad]
-- and Note [Implicit and explicit type variable binders]
rn_ty_pat :: HsType GhcPs -> TPRnM (HsType GhcRn)
rn_ty_pat :: HsType GhcPs -> TPRnM (HsType (GhcPass 'Renamed))
rn_ty_pat tv :: HsType GhcPs
tv@(HsTyVar XTyVar GhcPs
an PromotionFlag
prom XRec GhcPs (IdP GhcPs)
lrdr) = do
  lname@(L _ name) <- LocatedN RdrName -> TPRnM (LocatedN Name)
rn_ty_pat_var XRec GhcPs (IdP GhcPs)
LocatedN RdrName
lrdr
  when (isDataConName name && not (isKindName name)) $
    -- Any use of a promoted data constructor name (that is not specifically
    -- exempted by isKindName) is illegal without the use of DataKinds.
    -- See Note [Checking for DataKinds] in GHC.Tc.Validity.
    check_data_kinds tv
  pure (HsTyVar an prom lname)

rn_ty_pat (HsForAllTy XForAllTy GhcPs
an HsForAllTelescope GhcPs
tele LHsType GhcPs
body) = (forall r.
 HsDocContext
 -> OccSet
 -> ((HsType (GhcPass 'Renamed), HsTyPatRnBuilder)
     -> RnM (r, FreeVars))
 -> RnM (r, FreeVars))
-> TPRnM (HsType (GhcPass 'Renamed))
forall a.
(forall r.
 HsDocContext
 -> OccSet
 -> ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars))
 -> RnM (r, FreeVars))
-> TPRnM a
liftTPRnRaw ((forall r.
  HsDocContext
  -> OccSet
  -> ((HsType (GhcPass 'Renamed), HsTyPatRnBuilder)
      -> RnM (r, FreeVars))
  -> RnM (r, FreeVars))
 -> TPRnM (HsType (GhcPass 'Renamed)))
-> (forall r.
    HsDocContext
    -> OccSet
    -> ((HsType (GhcPass 'Renamed), HsTyPatRnBuilder)
        -> RnM (r, FreeVars))
    -> RnM (r, FreeVars))
-> TPRnM (HsType (GhcPass 'Renamed))
forall a b. (a -> b) -> a -> b
$ \HsDocContext
ctxt OccSet
locals (HsType (GhcPass 'Renamed), HsTyPatRnBuilder) -> RnM (r, FreeVars)
thing_inside ->
  HsDocContext
-> HsForAllTelescope GhcPs
-> (HsForAllTelescope (GhcPass 'Renamed) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
forall a.
HsDocContext
-> HsForAllTelescope GhcPs
-> (HsForAllTelescope (GhcPass 'Renamed) -> RnM (a, FreeVars))
-> RnM (a, FreeVars)
bindHsForAllTelescope HsDocContext
ctxt HsForAllTelescope GhcPs
tele ((HsForAllTelescope (GhcPass 'Renamed) -> RnM (r, FreeVars))
 -> RnM (r, FreeVars))
-> (HsForAllTelescope (GhcPass 'Renamed) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
forall a b. (a -> b) -> a -> b
$ \HsForAllTelescope (GhcPass 'Renamed)
tele' -> do
    let
      tele_names :: [IdP (GhcPass 'Renamed)]
tele_names = HsForAllTelescope (GhcPass 'Renamed) -> [IdP (GhcPass 'Renamed)]
forall (p :: Pass).
HsForAllTelescope (GhcPass p) -> [IdP (GhcPass p)]
hsForAllTelescopeNames HsForAllTelescope (GhcPass 'Renamed)
tele'
      locals' :: OccSet
locals' = OccSet
locals OccSet -> [OccName] -> OccSet
`extendOccSetList` (Name -> OccName) -> [Name] -> [OccName]
forall a b. (a -> b) -> [a] -> [b]
map Name -> OccName
forall name. HasOccName name => name -> OccName
occName [IdP (GhcPass 'Renamed)]
[Name]
tele_names

    TPRnM (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
-> HsDocContext
-> OccSet
-> ((GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)),
     HsTyPatRnBuilder)
    -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
forall a r.
TPRnM a
-> HsDocContext
-> OccSet
-> ((a, HsTyPatRnBuilder) -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
unTPRnRaw (LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
body) HsDocContext
ctxt OccSet
locals' (((GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)),
   HsTyPatRnBuilder)
  -> RnM (r, FreeVars))
 -> RnM (r, FreeVars))
-> ((GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)),
     HsTyPatRnBuilder)
    -> RnM (r, FreeVars))
-> RnM (r, FreeVars)
forall a b. (a -> b) -> a -> b
$ \(GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))
body', HsTyPatRnBuilder
tpb) ->
      [Name] -> RnM (r, FreeVars) -> RnM (r, FreeVars)
forall a. [Name] -> RnM a -> RnM a
delLocalNames [IdP (GhcPass 'Renamed)]
[Name]
tele_names (RnM (r, FreeVars) -> RnM (r, FreeVars))
-> RnM (r, FreeVars) -> RnM (r, FreeVars)
forall a b. (a -> b) -> a -> b
$ -- locally bound names do not scope over the continuation
        (HsType (GhcPass 'Renamed), HsTyPatRnBuilder) -> RnM (r, FreeVars)
thing_inside ((XForAllTy (GhcPass 'Renamed)
-> HsForAllTelescope (GhcPass 'Renamed)
-> LHsType (GhcPass 'Renamed)
-> HsType (GhcPass 'Renamed)
forall pass.
XForAllTy pass
-> HsForAllTelescope pass -> LHsType pass -> HsType pass
HsForAllTy XForAllTy GhcPs
XForAllTy (GhcPass 'Renamed)
an HsForAllTelescope (GhcPass 'Renamed)
tele' LHsType (GhcPass 'Renamed)
GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))
body'), HsTyPatRnBuilder
tpb)

rn_ty_pat (HsQualTy XQualTy GhcPs
an LHsContext GhcPs
lctx LHsType GhcPs
body) = do
  lctx' <- ([GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
 -> TPRnM
      [GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))])
-> LocatedAn
     AnnContext [GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
-> TPRnM
     (LocatedAn
        AnnContext
        [GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))])
forall a b ann.
(a -> TPRnM b) -> LocatedAn ann a -> TPRnM (LocatedAn ann b)
wrapSrcSpanTPRnM ((GenLocated (EpAnn AnnListItem) (HsType GhcPs)
 -> TPRnM
      (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))))
-> [GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
-> TPRnM
     [GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
GenLocated (EpAnn AnnListItem) (HsType GhcPs)
-> TPRnM
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
rn_lty_pat) LHsContext GhcPs
LocatedAn
  AnnContext [GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
lctx
  body' <- rn_lty_pat body
  pure (HsQualTy an lctx' body')

rn_ty_pat (HsAppTy XAppTy GhcPs
_ LHsType GhcPs
fun_ty LHsType GhcPs
arg_ty) = do
  fun_ty' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
fun_ty
  arg_ty' <- rn_lty_pat arg_ty
  pure (HsAppTy noExtField fun_ty' arg_ty')

rn_ty_pat (HsAppKindTy XAppKindTy GhcPs
_ LHsType GhcPs
ty LHsType GhcPs
ki) = do
  kind_app <- RnM Bool -> TPRnM Bool
forall a. RnM a -> TPRnM a
liftRn (RnM Bool -> TPRnM Bool) -> RnM Bool -> TPRnM Bool
forall a b. (a -> b) -> a -> b
$ Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.TypeApplications
  unless kind_app (liftRn $ addErr (typeAppErr KindLevel ki))
  ty' <- rn_lty_pat ty
  ki' <- rn_lty_pat ki
  pure (HsAppKindTy noExtField ty' ki')

rn_ty_pat (HsFunTy XFunTy GhcPs
an HsArrow GhcPs
mult LHsType GhcPs
lhs LHsType GhcPs
rhs) = do
  lhs' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
lhs
  mult' <- rn_ty_pat_arrow mult
  rhs' <- rn_lty_pat rhs
  pure (HsFunTy an mult' lhs' rhs')

rn_ty_pat (HsListTy XListTy GhcPs
an LHsType GhcPs
ty) = do
  ty' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
ty
  pure (HsListTy an ty')

rn_ty_pat (HsTupleTy XTupleTy GhcPs
an HsTupleSort
con [LHsType GhcPs]
tys) = do
  tys' <- (GenLocated (EpAnn AnnListItem) (HsType GhcPs)
 -> TPRnM
      (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))))
-> [GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
-> TPRnM
     [GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
GenLocated (EpAnn AnnListItem) (HsType GhcPs)
-> TPRnM
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
rn_lty_pat [LHsType GhcPs]
[GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
tys
  pure (HsTupleTy an con tys')

rn_ty_pat (HsSumTy XSumTy GhcPs
an [LHsType GhcPs]
tys) = do
  tys' <- (GenLocated (EpAnn AnnListItem) (HsType GhcPs)
 -> TPRnM
      (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))))
-> [GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
-> TPRnM
     [GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
GenLocated (EpAnn AnnListItem) (HsType GhcPs)
-> TPRnM
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
rn_lty_pat [LHsType GhcPs]
[GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
tys
  pure (HsSumTy an tys')

rn_ty_pat (HsOpTy XOpTy GhcPs
_ PromotionFlag
prom LHsType GhcPs
ty1 XRec GhcPs (IdP GhcPs)
l_op LHsType GhcPs
ty2) = do
  ty1' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
ty1
  l_op' <- rn_ty_pat_var l_op
  ty2' <- rn_lty_pat ty2
  fix  <- liftRn $ lookupTyFixityRn l_op'
  let op_name = LocatedN Name -> Name
forall l e. GenLocated l e -> e
unLoc LocatedN Name
l_op'
  when (isDataConName op_name && not (isPromoted prom)) $
    liftRn $ addDiagnostic (TcRnUntickedPromotedThing $ UntickedConstructor Infix op_name)
  liftRn $ mkHsOpTyRn prom l_op' fix ty1' ty2'

rn_ty_pat (HsParTy XParTy GhcPs
an LHsType GhcPs
ty) = do
  ty' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
ty
  pure (HsParTy an ty')

rn_ty_pat (HsIParamTy XIParamTy GhcPs
an XRec GhcPs HsIPName
n LHsType GhcPs
ty) = do
  ty' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
ty
  pure (HsIParamTy an n ty')

rn_ty_pat (HsStarTy XStarTy GhcPs
an Bool
unicode) =
  HsType (GhcPass 'Renamed) -> TPRnM (HsType (GhcPass 'Renamed))
forall a. a -> TPRnM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (XStarTy (GhcPass 'Renamed) -> Bool -> HsType (GhcPass 'Renamed)
forall pass. XStarTy pass -> Bool -> HsType pass
HsStarTy XStarTy GhcPs
XStarTy (GhcPass 'Renamed)
an Bool
unicode)

rn_ty_pat (HsDocTy XDocTy GhcPs
an LHsType GhcPs
ty LHsDoc GhcPs
haddock_doc) = do
  ty' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
ty
  haddock_doc' <- liftRn $ rnLHsDoc haddock_doc
  pure (HsDocTy an ty' haddock_doc')

rn_ty_pat ty :: HsType GhcPs
ty@(HsExplicitListTy XExplicitListTy GhcPs
_ PromotionFlag
prom [LHsType GhcPs]
tys) = do
  HsType GhcPs -> TPRnM ()
check_data_kinds HsType GhcPs
ty

  Bool -> TPRnM () -> TPRnM ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
unless (PromotionFlag -> Bool
isPromoted PromotionFlag
prom) (TPRnM () -> TPRnM ()) -> TPRnM () -> TPRnM ()
forall a b. (a -> b) -> a -> b
$
    IOEnv (Env TcGblEnv TcLclEnv) () -> TPRnM ()
forall a. RnM a -> TPRnM a
liftRn (IOEnv (Env TcGblEnv TcLclEnv) () -> TPRnM ())
-> IOEnv (Env TcGblEnv TcLclEnv) () -> TPRnM ()
forall a b. (a -> b) -> a -> b
$ TcRnMessage -> IOEnv (Env TcGblEnv TcLclEnv) ()
addDiagnostic (UntickedPromotedThing -> TcRnMessage
TcRnUntickedPromotedThing (UntickedPromotedThing -> TcRnMessage)
-> UntickedPromotedThing -> TcRnMessage
forall a b. (a -> b) -> a -> b
$ UntickedPromotedThing
UntickedExplicitList)

  tys' <- (GenLocated (EpAnn AnnListItem) (HsType GhcPs)
 -> TPRnM
      (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))))
-> [GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
-> TPRnM
     [GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
GenLocated (EpAnn AnnListItem) (HsType GhcPs)
-> TPRnM
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
rn_lty_pat [LHsType GhcPs]
[GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
tys
  pure (HsExplicitListTy noExtField prom tys')

rn_ty_pat ty :: HsType GhcPs
ty@(HsExplicitTupleTy XExplicitTupleTy GhcPs
_ [LHsType GhcPs]
tys) = do
  HsType GhcPs -> TPRnM ()
check_data_kinds HsType GhcPs
ty
  tys' <- (GenLocated (EpAnn AnnListItem) (HsType GhcPs)
 -> TPRnM
      (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))))
-> [GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
-> TPRnM
     [GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
forall (m :: * -> *) a b. Monad m => (a -> m b) -> [a] -> m [b]
mapM LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
GenLocated (EpAnn AnnListItem) (HsType GhcPs)
-> TPRnM
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
rn_lty_pat [LHsType GhcPs]
[GenLocated (EpAnn AnnListItem) (HsType GhcPs)]
tys
  pure (HsExplicitTupleTy noExtField tys')

rn_ty_pat tyLit :: HsType GhcPs
tyLit@(HsTyLit XTyLit GhcPs
src HsTyLit GhcPs
t) = do
  HsType GhcPs -> TPRnM ()
check_data_kinds HsType GhcPs
tyLit
  t' <- RnM (HsTyLit (GhcPass 'Renamed))
-> TPRnM (HsTyLit (GhcPass 'Renamed))
forall a. RnM a -> TPRnM a
liftRn (RnM (HsTyLit (GhcPass 'Renamed))
 -> TPRnM (HsTyLit (GhcPass 'Renamed)))
-> RnM (HsTyLit (GhcPass 'Renamed))
-> TPRnM (HsTyLit (GhcPass 'Renamed))
forall a b. (a -> b) -> a -> b
$ HsTyLit GhcPs -> RnM (HsTyLit (GhcPass 'Renamed))
rnHsTyLit HsTyLit GhcPs
t
  pure (HsTyLit src t')

rn_ty_pat (HsWildCardTy XWildCardTy GhcPs
_) =
  HsType (GhcPass 'Renamed) -> TPRnM (HsType (GhcPass 'Renamed))
forall a. a -> TPRnM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (XWildCardTy (GhcPass 'Renamed) -> HsType (GhcPass 'Renamed)
forall pass. XWildCardTy pass -> HsType pass
HsWildCardTy XWildCardTy (GhcPass 'Renamed)
NoExtField
noExtField)

rn_ty_pat (HsKindSig XKindSig GhcPs
an LHsType GhcPs
ty LHsType GhcPs
ki) = do
  ctxt <- TPRnM HsDocContext
askDocContext
  kind_sigs_ok <- liftRn $ xoptM LangExt.KindSignatures
  unless kind_sigs_ok (liftRn $ badKindSigErr ctxt ki)
  ~(HsPS hsps ki') <- liftRnWithCont $
                      rnHsPatSigKind AlwaysBind ctxt (HsPS noAnn ki)
  ty' <- rn_lty_pat ty
  tellTPB (tpBuilderPatSig hsps)
  pure (HsKindSig an ty' ki')

rn_ty_pat (HsSpliceTy XSpliceTy GhcPs
_ HsUntypedSplice GhcPs
splice) = do
  res <- RnM
  ((HsUntypedSplice (GhcPass 'Renamed),
    HsUntypedSpliceResult (LHsType GhcPs)),
   FreeVars)
-> TPRnM
     (HsUntypedSplice (GhcPass 'Renamed),
      HsUntypedSpliceResult (LHsType GhcPs))
forall a. RnM (a, FreeVars) -> TPRnM a
liftRnFV (RnM
   ((HsUntypedSplice (GhcPass 'Renamed),
     HsUntypedSpliceResult (LHsType GhcPs)),
    FreeVars)
 -> TPRnM
      (HsUntypedSplice (GhcPass 'Renamed),
       HsUntypedSpliceResult (LHsType GhcPs)))
-> RnM
     ((HsUntypedSplice (GhcPass 'Renamed),
       HsUntypedSpliceResult (LHsType GhcPs)),
      FreeVars)
-> TPRnM
     (HsUntypedSplice (GhcPass 'Renamed),
      HsUntypedSpliceResult (LHsType GhcPs))
forall a b. (a -> b) -> a -> b
$ HsUntypedSplice GhcPs
-> RnM
     ((HsUntypedSplice (GhcPass 'Renamed),
       HsUntypedSpliceResult (LHsType GhcPs)),
      FreeVars)
rnSpliceTyPat HsUntypedSplice GhcPs
splice
  case res of
    (HsUntypedSplice (GhcPass 'Renamed)
rn_splice, HsUntypedSpliceTop ThModFinalizers
mfs LHsType GhcPs
pat) -> do -- Splice was top-level and thus run, creating LHsType GhcPs
        pat' <- LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
pat
        pure (HsSpliceTy (HsUntypedSpliceTop mfs (mb_paren pat')) rn_splice)
    (HsUntypedSplice (GhcPass 'Renamed)
rn_splice, HsUntypedSpliceNested Name
splice_name) ->
        HsType (GhcPass 'Renamed) -> TPRnM (HsType (GhcPass 'Renamed))
forall a. a -> TPRnM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (XSpliceTy (GhcPass 'Renamed)
-> HsUntypedSplice (GhcPass 'Renamed) -> HsType (GhcPass 'Renamed)
forall pass. XSpliceTy pass -> HsUntypedSplice pass -> HsType pass
HsSpliceTy (Name
-> HsUntypedSpliceResult
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
forall thing. Name -> HsUntypedSpliceResult thing
HsUntypedSpliceNested Name
splice_name) HsUntypedSplice (GhcPass 'Renamed)
rn_splice) -- Splice was nested and thus already renamed
  where
    mb_paren :: LHsType GhcRn -> LHsType GhcRn
    mb_paren :: LHsType (GhcPass 'Renamed) -> LHsType (GhcPass 'Renamed)
mb_paren lhs_ty :: LHsType (GhcPass 'Renamed)
lhs_ty@(L EpAnn AnnListItem
loc HsType (GhcPass 'Renamed)
hs_ty)
      | PprPrec -> HsType (GhcPass 'Renamed) -> Bool
forall (p :: Pass). PprPrec -> HsType (GhcPass p) -> Bool
hsTypeNeedsParens PprPrec
maxPrec HsType (GhcPass 'Renamed)
hs_ty = EpAnn AnnListItem
-> HsType (GhcPass 'Renamed)
-> GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))
forall l e. l -> e -> GenLocated l e
L EpAnn AnnListItem
loc (XParTy (GhcPass 'Renamed)
-> LHsType (GhcPass 'Renamed) -> HsType (GhcPass 'Renamed)
forall pass. XParTy pass -> LHsType pass -> HsType pass
HsParTy XParTy (GhcPass 'Renamed)
AnnParen
forall a. NoAnn a => a
noAnn LHsType (GhcPass 'Renamed)
lhs_ty)
      | Bool
otherwise                       = LHsType (GhcPass 'Renamed)
lhs_ty

rn_ty_pat (HsBangTy XBangTy GhcPs
an HsBang
bang_src LHsType GhcPs
lty) = do
  ctxt <- TPRnM HsDocContext
askDocContext
  lty'@(L _ ty') <- rn_lty_pat lty
  liftRn $ addErr $
    TcRnWithHsDocContext ctxt $
    TcRnUnexpectedAnnotation ty' bang_src
  pure (HsBangTy an bang_src lty')

rn_ty_pat ty :: HsType GhcPs
ty@HsRecTy{} = do
  ctxt <- TPRnM HsDocContext
askDocContext
  liftRn $ addErr $
    TcRnWithHsDocContext ctxt $
    TcRnIllegalRecordSyntax (Left ty)
  pure (HsWildCardTy noExtField) -- trick to avoid `failWithTc`

rn_ty_pat ty :: HsType GhcPs
ty@(XHsType{}) = do
  ctxt <- TPRnM HsDocContext
askDocContext
  liftRnFV $ rnHsType ctxt ty

rn_ty_pat_arrow :: HsArrow GhcPs -> TPRnM (HsArrow GhcRn)
rn_ty_pat_arrow :: HsArrow GhcPs -> TPRnM (HsArrow (GhcPass 'Renamed))
rn_ty_pat_arrow (HsUnrestrictedArrow XUnrestrictedArrow (LHsType GhcPs) GhcPs
_) = HsArrowOf
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
-> TPRnM
     (HsArrowOf
        (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
        (GhcPass 'Renamed))
forall a. a -> TPRnM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (XUnrestrictedArrow
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
-> HsArrowOf
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
     (GhcPass 'Renamed)
forall mult pass.
XUnrestrictedArrow mult pass -> HsArrowOf mult pass
HsUnrestrictedArrow NoExtField
XUnrestrictedArrow
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
noExtField)
rn_ty_pat_arrow (HsLinearArrow XLinearArrow (LHsType GhcPs) GhcPs
_) = HsArrowOf
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
-> TPRnM
     (HsArrowOf
        (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
        (GhcPass 'Renamed))
forall a. a -> TPRnM a
forall (f :: * -> *) a. Applicative f => a -> f a
pure (XLinearArrow
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
-> HsArrowOf
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
     (GhcPass 'Renamed)
forall mult pass. XLinearArrow mult pass -> HsArrowOf mult pass
HsLinearArrow NoExtField
XLinearArrow
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
noExtField)
rn_ty_pat_arrow (HsExplicitMult XExplicitMult (LHsType GhcPs) GhcPs
_ LHsType GhcPs
p)
  = LHsType GhcPs -> TPRnM (LHsType (GhcPass 'Renamed))
rn_lty_pat LHsType GhcPs
p TPRnM (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
-> (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))
    -> HsArrowOf
         (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
         (GhcPass 'Renamed))
-> TPRnM
     (HsArrowOf
        (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
        (GhcPass 'Renamed))
forall (f :: * -> *) a b. Functor f => f a -> (a -> b) -> f b
<&> (\GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))
mult -> XExplicitMult
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
-> GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))
-> HsArrowOf
     (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
     (GhcPass 'Renamed)
forall mult pass.
XExplicitMult mult pass -> mult -> HsArrowOf mult pass
HsExplicitMult NoExtField
XExplicitMult
  (GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed)))
  (GhcPass 'Renamed)
noExtField GenLocated (EpAnn AnnListItem) (HsType (GhcPass 'Renamed))
mult)

check_data_kinds :: HsType GhcPs -> TPRnM ()
check_data_kinds :: HsType GhcPs -> TPRnM ()
check_data_kinds HsType GhcPs
thing = IOEnv (Env TcGblEnv TcLclEnv) () -> TPRnM ()
forall a. RnM a -> TPRnM a
liftRn (IOEnv (Env TcGblEnv TcLclEnv) () -> TPRnM ())
-> IOEnv (Env TcGblEnv TcLclEnv) () -> TPRnM ()
forall a b. (a -> b) -> a -> b
$ do
  data_kinds <- Extension -> RnM Bool
forall gbl lcl. Extension -> TcRnIf gbl lcl Bool
xoptM Extension
LangExt.DataKinds
  unless data_kinds $
    addErr $ TcRnDataKindsError TypeLevel $ Left thing

{- Note [Locally bound names in type patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type patterns can bind local names using forall. Compare the following examples:
  f (Proxy @(Either a b)) = ...
  g (Proxy @(forall a . Either a b)) = ...

In `f` both `a` and `b` are bound by the pattern and scope over the RHS of f.
In `g` only `b` is bound by the pattern, whereas `a` is locally bound in the pattern
and does not scope over the RHS of `g`.

We track locally bound names in the `OccSet` in `TPRnM` monad, and use it to
decide whether occurrences of type variables are usages or bindings.

The check is done in `rn_ty_pat_var`

Note [Implicit and explicit type variable binders]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Type patterns are renamed differently from ordinary types.
  * Types are renamed by `rnHsType` where all type variable occurrences are considered usages
  * Type patterns are renamed by `rnHsTyPat` where some type variable occurrences are usages
    and other are bindings

Here is an example:
  {-# LANGUAGE ScopedTypeVariables #-}
  f :: forall b. Proxy _ -> ...
  f (Proxy @(x :: (a, b))) = ...

In the (x :: (a,b)) type pattern
  * `x` is a type variable explicitly bound by type pattern
  * `a` is a type variable implicitly bound in a pattern signature
  * `b` is a usage of type variable bound by the outer forall

This classification is clear to us in `rnHsTyPat`, but it is also useful in later passes, such
as `collectPatBinders` and `tcHsTyPat`, so we store it in the extension field of `HsTyPat`, namely
`HsTyPatRn`.

To collect lists of those variables efficiently we use `HsTyPatRnBuilder` which is exactly like
`HsTyPatRn`, but uses Bags.

Note [Left-to-right scoping of type patterns]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In term-level patterns, we use continuation passing to implement left-to-right
scoping, see Note [CpsRn monad]. Left-to-right scoping manifests itself when
e.g. view patterns are involved:

  f (x, g x -> Just y) = ...

Here the first occurrence of `x` is a binder, and the second occurrence is a
use of `x` in a view pattern. This example does not work if we swap the
components of the tuple:

  f (g x -> Just y, x) = ...
  --  ^^^
  -- Variable not in scope: x

In type patterns there are no view patterns, but there is a different feature
that is served well by left-to-right scoping: kind annotations. Compare:

  f (Proxy @(T k (a :: k))) = ...
  g (Proxy @(T (a :: k) k)) = ...

In `f`, the first occurrence of `k` is an explicit binder,
  and the second occurrence is a usage. Simple.
In `g`, the first occurrence of `k` is an implicit binder,
  and then the second occurrence is an explicit binder that shadows it.

So we get two different results after renaming:

  f (Proxy @(T k1 (a :: k1))) = ...
  g (Proxy @(T (a :: k1) k2)) = ...

This makes GHC accept the first example but rejects the second example with an
error about duplicate binders.

One could argue that we don't want order-sensitivity here. Historically, we
used a different principle when renaming types: collect all free variables,
bind them on the outside, and then rename all occurrences as usages.
This approach does not scale to multiple patterns. Consider:

  f' (MkP @k @(a :: k)) = ...
  g' (MkP @(a :: k) @k) = ...

Here a difference in behavior is inevitable, as we rename type patterns
one at a time. Could we perhaps concatenate the free variables from all
type patterns in a ConPat? But then we still get the same problem one level up,
when we have multiple patterns in a function LHS

  f'' (Proxy @k) (Proxy @(a :: k)) = ...
  g'' (Proxy @(a :: k)) (Proxy @k) = ...

And if we tried to avoid order sensitivity at this level, then we'd still be left
with lambdas:

  f''' (Proxy @k)        = \(Proxy @(a :: k)) -> ...
  g''' (Proxy @(a :: k)) = \(Proxy @k)        -> ...


So we have at least three options where we could do free variable extraction:
HsConPatTyArg, ConPat, or a Match (used to represent a function LHS). And none
of those would be general enough. Rather than make an arbitrary choice, we
embrace left-to-right scoping in types and implement it with CPS, just like
it's done for view patterns in terms.
-}