Table of Contents
Glasgow Haskell comes with a time and space profiling system. Its purpose is to help you improve your understanding of your program's execution behaviour, so you can improve it.
Any comments, suggestions and/or improvements you have are welcome. Recommended “profiling tricks” would be especially cool!
Profiling a program is a three-step process:
Re-compile your program for profiling with the
-prof
option, and probably one of the
-auto
or -auto-all
options. These options are described in more detail in Section 6.2, “Compiler options for profiling”
Run your program with one of the profiling options, eg.
+RTS -p -RTS
. This generates a file of
profiling information. Note that multi-processor execution
(e.g. +RTS -N2
) is not supported while
profiling.
Examine the generated profiling information, using one of GHC's profiling tools. The tool to use will depend on the kind of profiling information generated.
GHC's profiling system assigns costs to cost centres. A cost is simply the time or space required to evaluate an expression. Cost centres are program annotations around expressions; all costs incurred by the annotated expression are assigned to the enclosing cost centre. Furthermore, GHC will remember the stack of enclosing cost centres for any given expression at run-time and generate a call-graph of cost attributions.
Let's take a look at an example:
main = print (nfib 25) nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)
Compile and run this program as follows:
$ ghc -prof -auto-all -o Main Main.hs $ ./Main +RTS -p 121393 $
When a GHC-compiled program is run with the
-p
RTS option, it generates a file called
<prog>.prof
. In this case, the file
will contain something like this:
Fri May 12 14:06 2000 Time and Allocation Profiling Report (Final) Main +RTS -p -RTS total time = 0.14 secs (7 ticks @ 20 ms) total alloc = 8,741,204 bytes (excludes profiling overheads) COST CENTRE MODULE %time %alloc nfib Main 100.0 100.0 individual inherited COST CENTRE MODULE entries %time %alloc %time %alloc MAIN MAIN 0 0.0 0.0 100.0 100.0 main Main 0 0.0 0.0 0.0 0.0 CAF PrelHandle 3 0.0 0.0 0.0 0.0 CAF PrelAddr 1 0.0 0.0 0.0 0.0 CAF Main 6 0.0 0.0 100.0 100.0 main Main 1 0.0 0.0 100.0 100.0 nfib Main 242785 100.0 100.0 100.0 100.0
The first part of the file gives the program name and options, and the total time and total memory allocation measured during the run of the program (note that the total memory allocation figure isn't the same as the amount of live memory needed by the program at any one time; the latter can be determined using heap profiling, which we will describe shortly).
The second part of the file is a break-down by cost centre
of the most costly functions in the program. In this case, there
was only one significant function in the program, namely
nfib
, and it was responsible for 100%
of both the time and allocation costs of the program.
The third and final section of the file gives a profile
break-down by cost-centre stack. This is roughly a call-graph
profile of the program. In the example above, it is clear that
the costly call to nfib
came from
main
.
The time and allocation incurred by a given part of the program is displayed in two ways: “individual”, which are the costs incurred by the code covered by this cost centre stack alone, and “inherited”, which includes the costs incurred by all the children of this node.
The usefulness of cost-centre stacks is better demonstrated by modifying the example slightly:
main = print (f 25 + g 25) f n = nfib n g n = nfib (n `div` 2) nfib n = if n < 2 then 1 else nfib (n-1) + nfib (n-2)
Compile and run this program as before, and take a look at the new profiling results:
COST CENTRE MODULE scc %time %alloc %time %alloc MAIN MAIN 0 0.0 0.0 100.0 100.0 main Main 0 0.0 0.0 0.0 0.0 CAF PrelHandle 3 0.0 0.0 0.0 0.0 CAF PrelAddr 1 0.0 0.0 0.0 0.0 CAF Main 9 0.0 0.0 100.0 100.0 main Main 1 0.0 0.0 100.0 100.0 g Main 1 0.0 0.0 0.0 0.2 nfib Main 465 0.0 0.2 0.0 0.2 f Main 1 0.0 0.0 100.0 99.8 nfib Main 242785 100.0 99.8 100.0 99.8
Now although we had two calls to nfib
in the program, it is immediately clear that it was the call from
f
which took all the time.
The actual meaning of the various columns in the output is:
The number of times this particular point in the call graph was entered.
The percentage of the total run time of the program spent at this point in the call graph.
The percentage of the total memory allocations (excluding profiling overheads) of the program made by this call.
The percentage of the total run time of the program spent below this point in the call graph.
The percentage of the total memory allocations (excluding profiling overheads) of the program made by this call and all of its sub-calls.
In addition you can use the -P
RTS option
to
get the following additional information:
ticks
The raw number of time “ticks” which were
attributed to this cost-centre; from this, we get the
%time
figure mentioned
above.
bytes
Number of bytes allocated in the heap while in this
cost-centre; again, this is the raw number from which we get
the %alloc
figure mentioned
above.
What about recursive functions, and mutually recursive groups of functions? Where are the costs attributed? Well, although GHC does keep information about which groups of functions called each other recursively, this information isn't displayed in the basic time and allocation profile, instead the call-graph is flattened into a tree.
Cost centres are just program annotations. When you say
-auto-all
to the compiler, it automatically
inserts a cost centre annotation around every top-level function
in your program, but you are entirely free to add the cost
centre annotations yourself.
The syntax of a cost centre annotation is
{-# SCC "name" #-} <expression>
where "name"
is an arbitrary string,
that will become the name of your cost centre as it appears
in the profiling output, and
<expression>
is any Haskell
expression. An SCC
annotation extends as
far to the right as possible when parsing. (SCC stands for "Set
Cost Centre").
Here is an example of a program with a couple of SCCs:
main :: IO () main = do let xs = {-# SCC "X" #-} [1..1000000] let ys = {-# SCC "Y" #-} [1..2000000] print $ last xs print $ last $ init xs print $ last ys print $ last $ init ys
which gives this heap profile when run:
The cost of evaluating any expression in your program is attributed to a cost-centre stack using the following rules:
If the expression is part of the
one-off costs of evaluating the
enclosing top-level definition, then costs are attributed to
the stack of lexically enclosing SCC
annotations on top of the special CAF
cost-centre.
Otherwise, costs are attributed to the stack of
lexically-enclosing SCC
annotations,
appended to the cost-centre stack in effect at the
call site of the current top-level
definition[10]. Notice that this is a recursive
definition.
Time spent in foreign code (see Chapter 9, Foreign function interface (FFI) ) is always attributed to the cost centre in force at the Haskell call-site of the foreign function.
What do we mean by one-off costs? Well, Haskell is a lazy language, and certain expressions are only ever evaluated once. For example, if we write:
x = nfib 25
then x
will only be evaluated once (if
at all), and subsequent demands for x
will
immediately get to see the cached result. The definition
x
is called a CAF (Constant Applicative
Form), because it has no arguments.
For the purposes of profiling, we say that the expression
nfib 25
belongs to the one-off costs of
evaluating x
.
Since one-off costs aren't strictly speaking part of the
call-graph of the program, they are attributed to a special
top-level cost centre, CAF
. There may be one
CAF
cost centre for each module (the
default), or one for each top-level definition with any one-off
costs (this behaviour can be selected by giving GHC the
-caf-all
flag).
If you think you have a weird profile, or the call-graph
doesn't look like you expect it to, feel free to send it (and
your program) to us at
<glasgow-haskell-bugs@haskell.org>
.
[10] The call-site is just the place in the source code which mentions the particular function or variable.