base-4.11.0.0: Basic libraries

Copyright(c) The University of Glasgow 2002
Licensesee libraries/base/LICENSE
Maintainercvs-ghc@haskell.org
Stabilityinternal
Portabilitynon-portable (GHC Extensions)
Safe HaskellUnsafe
LanguageHaskell2010

GHC.Exts

Contents

Description

GHC Extensions: this is the Approved Way to get at GHC-specific extensions.

Note: no other base module should import this module.

Synopsis

Representations of some basic types

data Int Source #

A fixed-precision integer type with at least the range [-2^29 .. 2^29-1]. The exact range for a given implementation can be determined by using minBound and maxBound from the Bounded class.

Constructors

I# Int# 
Instances
Bounded Int Source #

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Int Source #

Since: base-2.1

Instance details

Defined in GHC.Enum

Eq Int 
Instance details

Defined in GHC.Classes

Methods

(==) :: Int -> Int -> Bool Source #

(/=) :: Int -> Int -> Bool Source #

Integral Int Source #

Since: base-2.0.1

Instance details

Defined in GHC.Real

Methods

quot :: Int -> Int -> Int Source #

rem :: Int -> Int -> Int Source #

div :: Int -> Int -> Int Source #

mod :: Int -> Int -> Int Source #

quotRem :: Int -> Int -> (Int, Int) Source #

divMod :: Int -> Int -> (Int, Int) Source #

toInteger :: Int -> Integer Source #

Data Int Source #

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Int -> c Int Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Int Source #

toConstr :: Int -> Constr Source #

dataTypeOf :: Int -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Int) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Int) Source #

gmapT :: (forall b. Data b => b -> b) -> Int -> Int Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Int -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Int -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Int -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Int -> m Int Source #

Num Int Source #

Since: base-2.1

Instance details

Defined in GHC.Num

Ord Int 
Instance details

Defined in GHC.Classes

Methods

compare :: Int -> Int -> Ordering Source #

(<) :: Int -> Int -> Bool Source #

(<=) :: Int -> Int -> Bool Source #

(>) :: Int -> Int -> Bool Source #

(>=) :: Int -> Int -> Bool Source #

max :: Int -> Int -> Int Source #

min :: Int -> Int -> Int Source #

Read Int Source #

Since: base-2.1

Instance details

Defined in GHC.Read

Real Int Source #

Since: base-2.0.1

Instance details

Defined in GHC.Real

Show Int Source #

Since: base-2.1

Instance details

Defined in GHC.Show

Ix Int Source #

Since: base-2.1

Instance details

Defined in GHC.Arr

Methods

range :: (Int, Int) -> [Int] Source #

index :: (Int, Int) -> Int -> Int Source #

unsafeIndex :: (Int, Int) -> Int -> Int

inRange :: (Int, Int) -> Int -> Bool Source #

rangeSize :: (Int, Int) -> Int Source #

unsafeRangeSize :: (Int, Int) -> Int

FiniteBits Int Source #

Since: base-4.6.0.0

Instance details

Defined in Data.Bits

Bits Int Source #

Since: base-2.1

Instance details

Defined in Data.Bits

Storable Int Source #

Since: base-2.1

Instance details

Defined in Foreign.Storable

PrintfArg Int Source #

Since: base-2.1

Instance details

Defined in Text.Printf

Generic1 (URec Int :: k -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Int) :: k -> * Source #

Methods

from1 :: URec Int a -> Rep1 (URec Int) a Source #

to1 :: Rep1 (URec Int) a -> URec Int a Source #

Functor (URec Int :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Foldable (URec Int :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Int m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Int a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Int a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Int a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Int a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Int a -> b Source #

foldr1 :: (a -> a -> a) -> URec Int a -> a Source #

foldl1 :: (a -> a -> a) -> URec Int a -> a Source #

toList :: URec Int a -> [a] Source #

null :: URec Int a -> Bool Source #

length :: URec Int a -> Int Source #

elem :: Eq a => a -> URec Int a -> Bool Source #

maximum :: Ord a => URec Int a -> a Source #

minimum :: Ord a => URec Int a -> a Source #

sum :: Num a => URec Int a -> a Source #

product :: Num a => URec Int a -> a Source #

Traversable (URec Int :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Int a -> f (URec Int b) Source #

sequenceA :: Applicative f => URec Int (f a) -> f (URec Int a) Source #

mapM :: Monad m => (a -> m b) -> URec Int a -> m (URec Int b) Source #

sequence :: Monad m => URec Int (m a) -> m (URec Int a) Source #

Eq (URec Int p) # 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec Int p -> URec Int p -> Bool Source #

(/=) :: URec Int p -> URec Int p -> Bool Source #

Ord (URec Int p) # 
Instance details

Defined in GHC.Generics

Methods

compare :: URec Int p -> URec Int p -> Ordering Source #

(<) :: URec Int p -> URec Int p -> Bool Source #

(<=) :: URec Int p -> URec Int p -> Bool Source #

(>) :: URec Int p -> URec Int p -> Bool Source #

(>=) :: URec Int p -> URec Int p -> Bool Source #

max :: URec Int p -> URec Int p -> URec Int p Source #

min :: URec Int p -> URec Int p -> URec Int p Source #

Show (URec Int p) Source # 
Instance details

Defined in GHC.Generics

Generic (URec Int p) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Int p) :: * -> * Source #

Methods

from :: URec Int p -> Rep (URec Int p) x Source #

to :: Rep (URec Int p) x -> URec Int p Source #

data URec Int (p :: k) Source #

Used for marking occurrences of Int#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Int (p :: k) = UInt {}
type Rep1 (URec Int :: k -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (URec Int :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt :: k -> *)))
type Rep (URec Int p) Source # 
Instance details

Defined in GHC.Generics

type Rep (URec Int p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UInt" PrefixI True) (S1 (MetaSel (Just "uInt#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UInt :: * -> *)))

data Word Source #

A Word is an unsigned integral type, with the same size as Int.

Constructors

W# Word# 
Instances
Bounded Word Source #

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Word Source #

Since: base-2.1

Instance details

Defined in GHC.Enum

Eq Word 
Instance details

Defined in GHC.Classes

Methods

(==) :: Word -> Word -> Bool Source #

(/=) :: Word -> Word -> Bool Source #

Integral Word Source #

Since: base-2.1

Instance details

Defined in GHC.Real

Data Word Source #

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Word -> c Word Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Word Source #

toConstr :: Word -> Constr Source #

dataTypeOf :: Word -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Word) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Word) Source #

gmapT :: (forall b. Data b => b -> b) -> Word -> Word Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Word -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Word -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Word -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Word -> m Word Source #

Num Word Source #

Since: base-2.1

Instance details

Defined in GHC.Num

Ord Word 
Instance details

Defined in GHC.Classes

Read Word Source #

Since: base-4.5.0.0

Instance details

Defined in GHC.Read

Real Word Source #

Since: base-2.1

Instance details

Defined in GHC.Real

Show Word Source #

Since: base-2.1

Instance details

Defined in GHC.Show

Ix Word Source #

Since: base-4.6.0.0

Instance details

Defined in GHC.Arr

FiniteBits Word Source #

Since: base-4.6.0.0

Instance details

Defined in Data.Bits

Bits Word Source #

Since: base-2.1

Instance details

Defined in Data.Bits

Storable Word Source #

Since: base-2.1

Instance details

Defined in Foreign.Storable

PrintfArg Word Source #

Since: base-2.1

Instance details

Defined in Text.Printf

Generic1 (URec Word :: k -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Word) :: k -> * Source #

Methods

from1 :: URec Word a -> Rep1 (URec Word) a Source #

to1 :: Rep1 (URec Word) a -> URec Word a Source #

Functor (URec Word :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

Foldable (URec Word :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Word m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Word a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Word a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Word a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Word a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Word a -> b Source #

foldr1 :: (a -> a -> a) -> URec Word a -> a Source #

foldl1 :: (a -> a -> a) -> URec Word a -> a Source #

toList :: URec Word a -> [a] Source #

null :: URec Word a -> Bool Source #

length :: URec Word a -> Int Source #

elem :: Eq a => a -> URec Word a -> Bool Source #

maximum :: Ord a => URec Word a -> a Source #

minimum :: Ord a => URec Word a -> a Source #

sum :: Num a => URec Word a -> a Source #

product :: Num a => URec Word a -> a Source #

Traversable (URec Word :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Word a -> f (URec Word b) Source #

sequenceA :: Applicative f => URec Word (f a) -> f (URec Word a) Source #

mapM :: Monad m => (a -> m b) -> URec Word a -> m (URec Word b) Source #

sequence :: Monad m => URec Word (m a) -> m (URec Word a) Source #

Eq (URec Word p) # 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec Word p -> URec Word p -> Bool Source #

(/=) :: URec Word p -> URec Word p -> Bool Source #

Ord (URec Word p) # 
Instance details

Defined in GHC.Generics

Methods

compare :: URec Word p -> URec Word p -> Ordering Source #

(<) :: URec Word p -> URec Word p -> Bool Source #

(<=) :: URec Word p -> URec Word p -> Bool Source #

(>) :: URec Word p -> URec Word p -> Bool Source #

(>=) :: URec Word p -> URec Word p -> Bool Source #

max :: URec Word p -> URec Word p -> URec Word p Source #

min :: URec Word p -> URec Word p -> URec Word p Source #

Show (URec Word p) Source # 
Instance details

Defined in GHC.Generics

Generic (URec Word p) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Word p) :: * -> * Source #

Methods

from :: URec Word p -> Rep (URec Word p) x Source #

to :: Rep (URec Word p) x -> URec Word p Source #

data URec Word (p :: k) Source #

Used for marking occurrences of Word#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Word (p :: k) = UWord {}
type Rep1 (URec Word :: k -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (URec Word :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord :: k -> *)))
type Rep (URec Word p) Source # 
Instance details

Defined in GHC.Generics

type Rep (URec Word p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UWord" PrefixI True) (S1 (MetaSel (Just "uWord#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UWord :: * -> *)))

data Float Source #

Single-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE single-precision type.

Constructors

F# Float# 
Instances
Enum Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Eq Float 
Instance details

Defined in GHC.Classes

Methods

(==) :: Float -> Float -> Bool Source #

(/=) :: Float -> Float -> Bool Source #

Floating Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Fractional Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Data Float Source #

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Float -> c Float Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Float Source #

toConstr :: Float -> Constr Source #

dataTypeOf :: Float -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Float) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Float) Source #

gmapT :: (forall b. Data b => b -> b) -> Float -> Float Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Float -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Float -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Float -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Float -> m Float Source #

Num Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Ord Float 
Instance details

Defined in GHC.Classes

Read Float Source #

Since: base-2.1

Instance details

Defined in GHC.Read

Real Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

RealFrac Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Methods

properFraction :: Integral b => Float -> (b, Float) Source #

truncate :: Integral b => Float -> b Source #

round :: Integral b => Float -> b Source #

ceiling :: Integral b => Float -> b Source #

floor :: Integral b => Float -> b Source #

Show Float Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Storable Float Source #

Since: base-2.1

Instance details

Defined in Foreign.Storable

PrintfArg Float Source #

Since: base-2.1

Instance details

Defined in Text.Printf

Generic1 (URec Float :: k -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Float) :: k -> * Source #

Methods

from1 :: URec Float a -> Rep1 (URec Float) a Source #

to1 :: Rep1 (URec Float) a -> URec Float a Source #

Functor (URec Float :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Foldable (URec Float :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Float m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Float a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Float a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Float a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Float a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Float a -> b Source #

foldr1 :: (a -> a -> a) -> URec Float a -> a Source #

foldl1 :: (a -> a -> a) -> URec Float a -> a Source #

toList :: URec Float a -> [a] Source #

null :: URec Float a -> Bool Source #

length :: URec Float a -> Int Source #

elem :: Eq a => a -> URec Float a -> Bool Source #

maximum :: Ord a => URec Float a -> a Source #

minimum :: Ord a => URec Float a -> a Source #

sum :: Num a => URec Float a -> a Source #

product :: Num a => URec Float a -> a Source #

Traversable (URec Float :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Float a -> f (URec Float b) Source #

sequenceA :: Applicative f => URec Float (f a) -> f (URec Float a) Source #

mapM :: Monad m => (a -> m b) -> URec Float a -> m (URec Float b) Source #

sequence :: Monad m => URec Float (m a) -> m (URec Float a) Source #

Eq (URec Float p) # 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec Float p -> URec Float p -> Bool Source #

(/=) :: URec Float p -> URec Float p -> Bool Source #

Ord (URec Float p) # 
Instance details

Defined in GHC.Generics

Show (URec Float p) Source # 
Instance details

Defined in GHC.Generics

Generic (URec Float p) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Float p) :: * -> * Source #

Methods

from :: URec Float p -> Rep (URec Float p) x Source #

to :: Rep (URec Float p) x -> URec Float p Source #

data URec Float (p :: k) Source #

Used for marking occurrences of Float#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Float (p :: k) = UFloat {}
type Rep1 (URec Float :: k -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (URec Float :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UFloat" PrefixI True) (S1 (MetaSel (Just "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UFloat :: k -> *)))
type Rep (URec Float p) Source # 
Instance details

Defined in GHC.Generics

type Rep (URec Float p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UFloat" PrefixI True) (S1 (MetaSel (Just "uFloat#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UFloat :: * -> *)))

data Double Source #

Double-precision floating point numbers. It is desirable that this type be at least equal in range and precision to the IEEE double-precision type.

Constructors

D# Double# 
Instances
Enum Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Eq Double 
Instance details

Defined in GHC.Classes

Floating Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Fractional Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Data Double Source #

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Double -> c Double Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Double Source #

toConstr :: Double -> Constr Source #

dataTypeOf :: Double -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Double) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Double) Source #

gmapT :: (forall b. Data b => b -> b) -> Double -> Double Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Double -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Double -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Double -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Double -> m Double Source #

Num Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Ord Double 
Instance details

Defined in GHC.Classes

Read Double Source #

Since: base-2.1

Instance details

Defined in GHC.Read

Real Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

RealFloat Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

RealFrac Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Show Double Source #

Since: base-2.1

Instance details

Defined in GHC.Float

Storable Double Source #

Since: base-2.1

Instance details

Defined in Foreign.Storable

PrintfArg Double Source #

Since: base-2.1

Instance details

Defined in Text.Printf

Generic1 (URec Double :: k -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Double) :: k -> * Source #

Functor (URec Double :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Foldable (URec Double :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Double m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Double a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Double a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Double a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Double a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Double a -> b Source #

foldr1 :: (a -> a -> a) -> URec Double a -> a Source #

foldl1 :: (a -> a -> a) -> URec Double a -> a Source #

toList :: URec Double a -> [a] Source #

null :: URec Double a -> Bool Source #

length :: URec Double a -> Int Source #

elem :: Eq a => a -> URec Double a -> Bool Source #

maximum :: Ord a => URec Double a -> a Source #

minimum :: Ord a => URec Double a -> a Source #

sum :: Num a => URec Double a -> a Source #

product :: Num a => URec Double a -> a Source #

Traversable (URec Double :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Double a -> f (URec Double b) Source #

sequenceA :: Applicative f => URec Double (f a) -> f (URec Double a) Source #

mapM :: Monad m => (a -> m b) -> URec Double a -> m (URec Double b) Source #

sequence :: Monad m => URec Double (m a) -> m (URec Double a) Source #

Eq (URec Double p) # 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec Double p -> URec Double p -> Bool Source #

(/=) :: URec Double p -> URec Double p -> Bool Source #

Ord (URec Double p) # 
Instance details

Defined in GHC.Generics

Show (URec Double p) Source # 
Instance details

Defined in GHC.Generics

Generic (URec Double p) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Double p) :: * -> * Source #

Methods

from :: URec Double p -> Rep (URec Double p) x Source #

to :: Rep (URec Double p) x -> URec Double p Source #

data URec Double (p :: k) Source #

Used for marking occurrences of Double#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Double (p :: k) = UDouble {}
type Rep1 (URec Double :: k -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (URec Double :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UDouble" PrefixI True) (S1 (MetaSel (Just "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UDouble :: k -> *)))
type Rep (URec Double p) Source # 
Instance details

Defined in GHC.Generics

type Rep (URec Double p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UDouble" PrefixI True) (S1 (MetaSel (Just "uDouble#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UDouble :: * -> *)))

data Char Source #

The character type Char is an enumeration whose values represent Unicode (or equivalently ISO/IEC 10646) code points (i.e. characters, see http://www.unicode.org/ for details). This set extends the ISO 8859-1 (Latin-1) character set (the first 256 characters), which is itself an extension of the ASCII character set (the first 128 characters). A character literal in Haskell has type Char.

To convert a Char to or from the corresponding Int value defined by Unicode, use toEnum and fromEnum from the Enum class respectively (or equivalently ord and chr).

Constructors

C# Char# 
Instances
Bounded Char Source #

Since: base-2.1

Instance details

Defined in GHC.Enum

Enum Char Source #

Since: base-2.1

Instance details

Defined in GHC.Enum

Eq Char 
Instance details

Defined in GHC.Classes

Methods

(==) :: Char -> Char -> Bool Source #

(/=) :: Char -> Char -> Bool Source #

Data Char Source #

Since: base-4.0.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Char -> c Char Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Char Source #

toConstr :: Char -> Constr Source #

dataTypeOf :: Char -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Char) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Char) Source #

gmapT :: (forall b. Data b => b -> b) -> Char -> Char Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Char -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Char -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Char -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Char -> m Char Source #

Ord Char 
Instance details

Defined in GHC.Classes

Read Char Source #

Since: base-2.1

Instance details

Defined in GHC.Read

Show Char Source #

Since: base-2.1

Instance details

Defined in GHC.Show

Ix Char Source #

Since: base-2.1

Instance details

Defined in GHC.Arr

Storable Char Source #

Since: base-2.1

Instance details

Defined in Foreign.Storable

IsChar Char Source #

Since: base-2.1

Instance details

Defined in Text.Printf

PrintfArg Char Source #

Since: base-2.1

Instance details

Defined in Text.Printf

Generic1 (URec Char :: k -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec Char) :: k -> * Source #

Methods

from1 :: URec Char a -> Rep1 (URec Char) a Source #

to1 :: Rep1 (URec Char) a -> URec Char a Source #

Functor (URec Char :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Foldable (URec Char :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Char m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Char a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Char a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Char a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Char a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Char a -> b Source #

foldr1 :: (a -> a -> a) -> URec Char a -> a Source #

foldl1 :: (a -> a -> a) -> URec Char a -> a Source #

toList :: URec Char a -> [a] Source #

null :: URec Char a -> Bool Source #

length :: URec Char a -> Int Source #

elem :: Eq a => a -> URec Char a -> Bool Source #

maximum :: Ord a => URec Char a -> a Source #

minimum :: Ord a => URec Char a -> a Source #

sum :: Num a => URec Char a -> a Source #

product :: Num a => URec Char a -> a Source #

Traversable (URec Char :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Char a -> f (URec Char b) Source #

sequenceA :: Applicative f => URec Char (f a) -> f (URec Char a) Source #

mapM :: Monad m => (a -> m b) -> URec Char a -> m (URec Char b) Source #

sequence :: Monad m => URec Char (m a) -> m (URec Char a) Source #

Eq (URec Char p) # 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec Char p -> URec Char p -> Bool Source #

(/=) :: URec Char p -> URec Char p -> Bool Source #

Ord (URec Char p) # 
Instance details

Defined in GHC.Generics

Methods

compare :: URec Char p -> URec Char p -> Ordering Source #

(<) :: URec Char p -> URec Char p -> Bool Source #

(<=) :: URec Char p -> URec Char p -> Bool Source #

(>) :: URec Char p -> URec Char p -> Bool Source #

(>=) :: URec Char p -> URec Char p -> Bool Source #

max :: URec Char p -> URec Char p -> URec Char p Source #

min :: URec Char p -> URec Char p -> URec Char p Source #

Show (URec Char p) Source # 
Instance details

Defined in GHC.Generics

Generic (URec Char p) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec Char p) :: * -> * Source #

Methods

from :: URec Char p -> Rep (URec Char p) x Source #

to :: Rep (URec Char p) x -> URec Char p Source #

data URec Char (p :: k) Source #

Used for marking occurrences of Char#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec Char (p :: k) = UChar {}
type Rep1 (URec Char :: k -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (URec Char :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UChar" PrefixI True) (S1 (MetaSel (Just "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar :: k -> *)))
type Rep (URec Char p) Source # 
Instance details

Defined in GHC.Generics

type Rep (URec Char p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UChar" PrefixI True) (S1 (MetaSel (Just "uChar#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UChar :: * -> *)))

data Ptr a Source #

A value of type Ptr a represents a pointer to an object, or an array of objects, which may be marshalled to or from Haskell values of type a.

The type a will often be an instance of class Storable which provides the marshalling operations. However this is not essential, and you can provide your own operations to access the pointer. For example you might write small foreign functions to get or set the fields of a C struct.

Constructors

Ptr Addr# 
Instances
Generic1 (URec (Ptr ()) :: k -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (URec (Ptr ())) :: k -> * Source #

Methods

from1 :: URec (Ptr ()) a -> Rep1 (URec (Ptr ())) a Source #

to1 :: Rep1 (URec (Ptr ())) a -> URec (Ptr ()) a Source #

Eq (Ptr a) Source # 
Instance details

Defined in GHC.Ptr

Methods

(==) :: Ptr a -> Ptr a -> Bool Source #

(/=) :: Ptr a -> Ptr a -> Bool Source #

Data a => Data (Ptr a) Source #

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Ptr a -> c (Ptr a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Ptr a) Source #

toConstr :: Ptr a -> Constr Source #

dataTypeOf :: Ptr a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Ptr a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Ptr a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Ptr a -> Ptr a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Ptr a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Ptr a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Ptr a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Ptr a -> m (Ptr a) Source #

Ord (Ptr a) Source # 
Instance details

Defined in GHC.Ptr

Methods

compare :: Ptr a -> Ptr a -> Ordering Source #

(<) :: Ptr a -> Ptr a -> Bool Source #

(<=) :: Ptr a -> Ptr a -> Bool Source #

(>) :: Ptr a -> Ptr a -> Bool Source #

(>=) :: Ptr a -> Ptr a -> Bool Source #

max :: Ptr a -> Ptr a -> Ptr a Source #

min :: Ptr a -> Ptr a -> Ptr a Source #

Show (Ptr a) Source #

Since: base-2.1

Instance details

Defined in GHC.Ptr

Methods

showsPrec :: Int -> Ptr a -> ShowS Source #

show :: Ptr a -> String Source #

showList :: [Ptr a] -> ShowS Source #

Storable (Ptr a) Source #

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: Ptr a -> Int Source #

alignment :: Ptr a -> Int Source #

peekElemOff :: Ptr (Ptr a) -> Int -> IO (Ptr a) Source #

pokeElemOff :: Ptr (Ptr a) -> Int -> Ptr a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (Ptr a) Source #

pokeByteOff :: Ptr b -> Int -> Ptr a -> IO () Source #

peek :: Ptr (Ptr a) -> IO (Ptr a) Source #

poke :: Ptr (Ptr a) -> Ptr a -> IO () Source #

Functor (URec (Ptr ()) :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Foldable (URec (Ptr ()) :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec (Ptr ()) m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m Source #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b Source #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b Source #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a Source #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a Source #

toList :: URec (Ptr ()) a -> [a] Source #

null :: URec (Ptr ()) a -> Bool Source #

length :: URec (Ptr ()) a -> Int Source #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool Source #

maximum :: Ord a => URec (Ptr ()) a -> a Source #

minimum :: Ord a => URec (Ptr ()) a -> a Source #

sum :: Num a => URec (Ptr ()) a -> a Source #

product :: Num a => URec (Ptr ()) a -> a Source #

Traversable (URec (Ptr ()) :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) Source #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) Source #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) Source #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) Source #

Eq (URec (Ptr ()) p) # 
Instance details

Defined in GHC.Generics

Methods

(==) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(/=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

Ord (URec (Ptr ()) p) # 
Instance details

Defined in GHC.Generics

Methods

compare :: URec (Ptr ()) p -> URec (Ptr ()) p -> Ordering Source #

(<) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(<=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(>) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

(>=) :: URec (Ptr ()) p -> URec (Ptr ()) p -> Bool Source #

max :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p Source #

min :: URec (Ptr ()) p -> URec (Ptr ()) p -> URec (Ptr ()) p Source #

Generic (URec (Ptr ()) p) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep (URec (Ptr ()) p) :: * -> * Source #

Methods

from :: URec (Ptr ()) p -> Rep (URec (Ptr ()) p) x Source #

to :: Rep (URec (Ptr ()) p) x -> URec (Ptr ()) p Source #

data URec (Ptr ()) (p :: k) Source #

Used for marking occurrences of Addr#

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

data URec (Ptr ()) (p :: k) = UAddr {}
type Rep1 (URec (Ptr ()) :: k -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (URec (Ptr ()) :: k -> *) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UAddr :: k -> *)))
type Rep (URec (Ptr ()) p) Source # 
Instance details

Defined in GHC.Generics

type Rep (URec (Ptr ()) p) = D1 (MetaData "URec" "GHC.Generics" "base" False) (C1 (MetaCons "UAddr" PrefixI True) (S1 (MetaSel (Just "uAddr#") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (UAddr :: * -> *)))

data FunPtr a Source #

A value of type FunPtr a is a pointer to a function callable from foreign code. The type a will normally be a foreign type, a function type with zero or more arguments where

A value of type FunPtr a may be a pointer to a foreign function, either returned by another foreign function or imported with a a static address import like

foreign import ccall "stdlib.h &free"
  p_free :: FunPtr (Ptr a -> IO ())

or a pointer to a Haskell function created using a wrapper stub declared to produce a FunPtr of the correct type. For example:

type Compare = Int -> Int -> Bool
foreign import ccall "wrapper"
  mkCompare :: Compare -> IO (FunPtr Compare)

Calls to wrapper stubs like mkCompare allocate storage, which should be released with freeHaskellFunPtr when no longer required.

To convert FunPtr values to corresponding Haskell functions, one can define a dynamic stub for the specific foreign type, e.g.

type IntFunction = CInt -> IO ()
foreign import ccall "dynamic"
  mkFun :: FunPtr IntFunction -> IntFunction

Constructors

FunPtr Addr# 
Instances
Eq (FunPtr a) Source # 
Instance details

Defined in GHC.Ptr

Methods

(==) :: FunPtr a -> FunPtr a -> Bool Source #

(/=) :: FunPtr a -> FunPtr a -> Bool Source #

Ord (FunPtr a) Source # 
Instance details

Defined in GHC.Ptr

Methods

compare :: FunPtr a -> FunPtr a -> Ordering Source #

(<) :: FunPtr a -> FunPtr a -> Bool Source #

(<=) :: FunPtr a -> FunPtr a -> Bool Source #

(>) :: FunPtr a -> FunPtr a -> Bool Source #

(>=) :: FunPtr a -> FunPtr a -> Bool Source #

max :: FunPtr a -> FunPtr a -> FunPtr a Source #

min :: FunPtr a -> FunPtr a -> FunPtr a Source #

Show (FunPtr a) Source #

Since: base-2.1

Instance details

Defined in GHC.Ptr

Storable (FunPtr a) Source #

Since: base-2.1

Instance details

Defined in Foreign.Storable

Methods

sizeOf :: FunPtr a -> Int Source #

alignment :: FunPtr a -> Int Source #

peekElemOff :: Ptr (FunPtr a) -> Int -> IO (FunPtr a) Source #

pokeElemOff :: Ptr (FunPtr a) -> Int -> FunPtr a -> IO () Source #

peekByteOff :: Ptr b -> Int -> IO (FunPtr a) Source #

pokeByteOff :: Ptr b -> Int -> FunPtr a -> IO () Source #

peek :: Ptr (FunPtr a) -> IO (FunPtr a) Source #

poke :: Ptr (FunPtr a) -> FunPtr a -> IO () Source #

The maximum tuple size

Primitive operations

seq :: a -> b -> b Source #

The value of seq a b is bottom if a is bottom, and otherwise equal to b. In other words, it evaluates the first argument a to weak head normal form (WHNF). seq is usually introduced to improve performance by avoiding unneeded laziness.

A note on evaluation order: the expression seq a b does not guarantee that a will be evaluated before b. The only guarantee given by seq is that the both a and b will be evaluated before seq returns a value. In particular, this means that b may be evaluated before a. If you need to guarantee a specific order of evaluation, you must use the function pseq from the "parallel" package.

unsafeCoerce# :: a -> b Source #

The function unsafeCoerce# allows you to side-step the typechecker entirely. That is, it allows you to coerce any type into any other type. If you use this function, you had better get it right, otherwise segmentation faults await. It is generally used when you want to write a program that you know is well-typed, but where Haskell's type system is not expressive enough to prove that it is well typed.

The following uses of unsafeCoerce# are supposed to work (i.e. not lead to spurious compile-time or run-time crashes):

  • Casting any lifted type to Any
  • Casting Any back to the real type
  • Casting an unboxed type to another unboxed type of the same size. (Casting between floating-point and integral types does not work. See the GHC.Float module for functions to do work.)
  • Casting between two types that have the same runtime representation. One case is when the two types differ only in "phantom" type parameters, for example Ptr Int to Ptr Float, or [Int] to [Float] when the list is known to be empty. Also, a newtype of a type T has the same representation at runtime as T.

Other uses of unsafeCoerce# are undefined. In particular, you should not use unsafeCoerce# to cast a T to an algebraic data type D, unless T is also an algebraic data type. For example, do not cast Int->Int to Bool, even if you later cast that Bool back to Int->Int before applying it. The reasons have to do with GHC's internal representation details (for the cognoscenti, data values can be entered but function closures cannot). If you want a safe type to cast things to, use Any, which is not an algebraic data type.

nullAddr# :: Addr# Source #

The null address.

proxy# :: Proxy# a Source #

Witness for an unboxed Proxy# value, which has no runtime representation.

data Addr# :: TYPE AddrRep Source #

An arbitrary machine address assumed to point outside the garbage-collected heap.

data Array# (a :: *) :: TYPE UnliftedRep Source #

data Weak# (a :: *) :: TYPE UnliftedRep Source #

data MutableArray# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

data MVar# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

A shared mutable variable (not the same as a MutVar#!). (Note: in a non-concurrent implementation, (MVar# a) can be represented by (MutVar# (Maybe a)).)

data RealWorld Source #

RealWorld is deeply magical. It is primitive, but it is not unlifted (hence ptrArg). We never manipulate values of type RealWorld; it's only used in the type system, to parameterise State#.

data StablePtr# (a :: *) :: TYPE AddrRep Source #

data State# (a :: *) :: TYPE (TupleRep ([] :: [RuntimeRep])) Source #

State# is the primitive, unlifted type of states. It has one type parameter, thus State# RealWorld, or State# s, where s is a type variable. The only purpose of the type parameter is to keep different state threads separate. It is represented by nothing at all.

data (~#) :: forall k0 k1. k0 -> k1 -> TYPE (TupleRep ([] :: [RuntimeRep])) Source #

data MutVar# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

A MutVar# behaves like a single-element mutable array.

data Void# :: TYPE (TupleRep ([] :: [RuntimeRep])) Source #

data ThreadId# :: TYPE UnliftedRep Source #

(In a non-concurrent implementation, this can be a singleton type, whose (unique) value is returned by myThreadId#. The other operations can be omitted.)

data BCO# :: TYPE UnliftedRep Source #

Primitive bytecode type.

data TVar# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

data Proxy# :: forall k0. k0 -> TYPE (TupleRep ([] :: [RuntimeRep])) Source #

The type constructor Proxy# is used to bear witness to some type variable. It's used when you want to pass around proxy values for doing things like modelling type applications. A Proxy# is not only unboxed, it also has a polymorphic kind, and has no runtime representation, being totally free.

data SmallMutableArray# (a :: *) (b :: *) :: TYPE UnliftedRep Source #

(+#) :: Int# -> Int# -> Int# infixl 6 Source #

(-#) :: Int# -> Int# -> Int# infixl 6 Source #

(*#) :: Int# -> Int# -> Int# infixl 7 Source #

Low word of signed integer multiply.

mulIntMayOflo# :: Int# -> Int# -> Int# Source #

Return non-zero if there is any possibility that the upper word of a signed integer multiply might contain useful information. Return zero only if you are completely sure that no overflow can occur. On a 32-bit platform, the recommended implementation is to do a 32 x 32 -> 64 signed multiply, and subtract result[63:32] from (result[31] >>signed 31). If this is zero, meaning that the upper word is merely a sign extension of the lower one, no overflow can occur.

On a 64-bit platform it is not always possible to acquire the top 64 bits of the result. Therefore, a recommended implementation is to take the absolute value of both operands, and return 0 iff bits[63:31] of them are zero, since that means that their magnitudes fit within 31 bits, so the magnitude of the product must fit into 62 bits.

If in doubt, return non-zero, but do make an effort to create the correct answer for small args, since otherwise the performance of (*) :: Integer -> Integer -> Integer will be poor.

quotInt# :: Int# -> Int# -> Int# Source #

Rounds towards zero. The behavior is undefined if the second argument is zero.

remInt# :: Int# -> Int# -> Int# Source #

Satisfies (quotInt# x y) *# y +# (remInt# x y) == x. The behavior is undefined if the second argument is zero.

quotRemInt# :: Int# -> Int# -> (#Int#, Int##) Source #

Rounds towards zero.

addIntC# :: Int# -> Int# -> (#Int#, Int##) Source #

Add signed integers reporting overflow. First member of result is the sum truncated to an Int#; second member is zero if the true sum fits in an Int#, nonzero if overflow occurred (the sum is either too large or too small to fit in an Int#).

subIntC# :: Int# -> Int# -> (#Int#, Int##) Source #

Subtract signed integers reporting overflow. First member of result is the difference truncated to an Int#; second member is zero if the true difference fits in an Int#, nonzero if overflow occurred (the difference is either too large or too small to fit in an Int#).

(>#) :: Int# -> Int# -> Int# infix 4 Source #

(>=#) :: Int# -> Int# -> Int# infix 4 Source #

(==#) :: Int# -> Int# -> Int# infix 4 Source #

(/=#) :: Int# -> Int# -> Int# infix 4 Source #

(<#) :: Int# -> Int# -> Int# infix 4 Source #

(<=#) :: Int# -> Int# -> Int# infix 4 Source #

uncheckedIShiftL# :: Int# -> Int# -> Int# Source #

Shift left. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedIShiftRA# :: Int# -> Int# -> Int# Source #

Shift right arithmetic. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedIShiftRL# :: Int# -> Int# -> Int# Source #

Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

subWordC# :: Word# -> Word# -> (#Word#, Int##) Source #

Subtract unsigned integers reporting overflow. The first element of the pair is the result. The second element is the carry flag, which is nonzero on overflow.

uncheckedShiftL# :: Word# -> Int# -> Word# Source #

Shift left logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

uncheckedShiftRL# :: Word# -> Int# -> Word# Source #

Shift right logical. Result undefined if shift amount is not in the range 0 to word size - 1 inclusive.

popCnt8# :: Word# -> Word# Source #

Count the number of set bits in the lower 8 bits of a word.

popCnt16# :: Word# -> Word# Source #

Count the number of set bits in the lower 16 bits of a word.

popCnt32# :: Word# -> Word# Source #

Count the number of set bits in the lower 32 bits of a word.

popCnt64# :: Word# -> Word# Source #

Count the number of set bits in a 64-bit word.

popCnt# :: Word# -> Word# Source #

Count the number of set bits in a word.

pdep8# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 8 bits of a word at locations specified by a mask.

pdep16# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 16 bits of a word at locations specified by a mask.

pdep32# :: Word# -> Word# -> Word# Source #

Deposit bits to lower 32 bits of a word at locations specified by a mask.

pdep64# :: Word# -> Word# -> Word# Source #

Deposit bits to a word at locations specified by a mask.

pdep# :: Word# -> Word# -> Word# Source #

Deposit bits to a word at locations specified by a mask.

pext8# :: Word# -> Word# -> Word# Source #

Extract bits from lower 8 bits of a word at locations specified by a mask.

pext16# :: Word# -> Word# -> Word# Source #

Extract bits from lower 16 bits of a word at locations specified by a mask.

pext32# :: Word# -> Word# -> Word# Source #

Extract bits from lower 32 bits of a word at locations specified by a mask.

pext64# :: Word# -> Word# -> Word# Source #

Extract bits from a word at locations specified by a mask.

pext# :: Word# -> Word# -> Word# Source #

Extract bits from a word at locations specified by a mask.

clz8# :: Word# -> Word# Source #

Count leading zeros in the lower 8 bits of a word.

clz16# :: Word# -> Word# Source #

Count leading zeros in the lower 16 bits of a word.

clz32# :: Word# -> Word# Source #

Count leading zeros in the lower 32 bits of a word.

clz64# :: Word# -> Word# Source #

Count leading zeros in a 64-bit word.

clz# :: Word# -> Word# Source #

Count leading zeros in a word.

ctz8# :: Word# -> Word# Source #

Count trailing zeros in the lower 8 bits of a word.

ctz16# :: Word# -> Word# Source #

Count trailing zeros in the lower 16 bits of a word.

ctz32# :: Word# -> Word# Source #

Count trailing zeros in the lower 32 bits of a word.

ctz64# :: Word# -> Word# Source #

Count trailing zeros in a 64-bit word.

ctz# :: Word# -> Word# Source #

Count trailing zeros in a word.

byteSwap16# :: Word# -> Word# Source #

Swap bytes in the lower 16 bits of a word. The higher bytes are undefined.

byteSwap32# :: Word# -> Word# Source #

Swap bytes in the lower 32 bits of a word. The higher bytes are undefined.

byteSwap64# :: Word# -> Word# Source #

Swap bytes in a 64 bits of a word.

byteSwap# :: Word# -> Word# Source #

Swap bytes in a word.

(>##) :: Double# -> Double# -> Int# infix 4 Source #

(>=##) :: Double# -> Double# -> Int# infix 4 Source #

(==##) :: Double# -> Double# -> Int# infix 4 Source #

(/=##) :: Double# -> Double# -> Int# infix 4 Source #

(<##) :: Double# -> Double# -> Int# infix 4 Source #

(<=##) :: Double# -> Double# -> Int# infix 4 Source #

(+##) :: Double# -> Double# -> Double# infixl 6 Source #

(-##) :: Double# -> Double# -> Double# infixl 6 Source #

(*##) :: Double# -> Double# -> Double# infixl 7 Source #

(/##) :: Double# -> Double# -> Double# infixl 7 Source #

double2Int# :: Double# -> Int# Source #

Truncates a Double# value to the nearest Int#. Results are undefined if the truncation if truncation yields a value outside the range of Int#.

(**##) :: Double# -> Double# -> Double# Source #

Exponentiation.

decodeDouble_2Int# :: Double# -> (#Int#, Word#, Word#, Int##) Source #

Convert to integer. First component of the result is -1 or 1, indicating the sign of the mantissa. The next two are the high and low 32 bits of the mantissa respectively, and the last is the exponent.

decodeDouble_Int64# :: Double# -> (#Int#, Int##) Source #

Decode Double# into mantissa and base-2 exponent.

float2Int# :: Float# -> Int# Source #

Truncates a Float# value to the nearest Int#. Results are undefined if the truncation if truncation yields a value outside the range of Int#.

decodeFloat_Int# :: Float# -> (#Int#, Int##) Source #

Convert to integers. First Int# in result is the mantissa; second is the exponent.

newArray# :: Int# -> a -> State# d -> (#State# d, MutableArray# d a#) Source #

Create a new mutable array with the specified number of elements, in the specified state thread, with each element containing the specified initial value.

readArray# :: MutableArray# d a -> Int# -> State# d -> (#State# d, a#) Source #

Read from specified index of mutable array. Result is not yet evaluated.

writeArray# :: MutableArray# d a -> Int# -> a -> State# d -> State# d Source #

Write to specified index of mutable array.

sizeofArray# :: Array# a -> Int# Source #

Return the number of elements in the array.

sizeofMutableArray# :: MutableArray# d a -> Int# Source #

Return the number of elements in the array.

indexArray# :: Array# a -> Int# -> (#a#) Source #

Read from specified index of immutable array. Result is packaged into an unboxed singleton; the result itself is not yet evaluated.

unsafeFreezeArray# :: MutableArray# d a -> State# d -> (#State# d, Array# a#) Source #

Make a mutable array immutable, without copying.

unsafeThawArray# :: Array# a -> State# d -> (#State# d, MutableArray# d a#) Source #

Make an immutable array mutable, without copying.

copyArray# :: Array# a -> Int# -> MutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

copyMutableArray# :: MutableArray# d a -> Int# -> MutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. In the case where the source and destination are the same array the source and destination regions may overlap.

cloneArray# :: Array# a -> Int# -> Int# -> Array# a Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

cloneMutableArray# :: MutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, MutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

freezeArray# :: MutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, Array# a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

thawArray# :: Array# a -> Int# -> Int# -> State# d -> (#State# d, MutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

casArray# :: MutableArray# d a -> Int# -> a -> a -> State# d -> (#State# d, Int#, a#) Source #

Unsafe, machine-level atomic compare and swap on an element within an Array.

newSmallArray# :: Int# -> a -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Create a new mutable array with the specified number of elements, in the specified state thread, with each element containing the specified initial value.

readSmallArray# :: SmallMutableArray# d a -> Int# -> State# d -> (#State# d, a#) Source #

Read from specified index of mutable array. Result is not yet evaluated.

writeSmallArray# :: SmallMutableArray# d a -> Int# -> a -> State# d -> State# d Source #

Write to specified index of mutable array.

sizeofSmallArray# :: SmallArray# a -> Int# Source #

Return the number of elements in the array.

sizeofSmallMutableArray# :: SmallMutableArray# d a -> Int# Source #

Return the number of elements in the array.

indexSmallArray# :: SmallArray# a -> Int# -> (#a#) Source #

Read from specified index of immutable array. Result is packaged into an unboxed singleton; the result itself is not yet evaluated.

unsafeFreezeSmallArray# :: SmallMutableArray# d a -> State# d -> (#State# d, SmallArray# a#) Source #

Make a mutable array immutable, without copying.

unsafeThawSmallArray# :: SmallArray# a -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Make an immutable array mutable, without copying.

copySmallArray# :: SmallArray# a -> Int# -> SmallMutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

copySmallMutableArray# :: SmallMutableArray# d a -> Int# -> SmallMutableArray# d a -> Int# -> Int# -> State# d -> State# d Source #

Given a source array, an offset into the source array, a destination array, an offset into the destination array, and a number of elements to copy, copy the elements from the source array to the destination array. The source and destination arrays can refer to the same array. Both arrays must fully contain the specified ranges, but this is not checked. The regions are allowed to overlap, although this is only possible when the same array is provided as both the source and the destination.

cloneSmallArray# :: SmallArray# a -> Int# -> Int# -> SmallArray# a Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

cloneSmallMutableArray# :: SmallMutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

freezeSmallArray# :: SmallMutableArray# d a -> Int# -> Int# -> State# d -> (#State# d, SmallArray# a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

thawSmallArray# :: SmallArray# a -> Int# -> Int# -> State# d -> (#State# d, SmallMutableArray# d a#) Source #

Given a source array, an offset into the source array, and a number of elements to copy, create a new array with the elements from the source array. The provided array must fully contain the specified range, but this is not checked.

casSmallArray# :: SmallMutableArray# d a -> Int# -> a -> a -> State# d -> (#State# d, Int#, a#) Source #

Unsafe, machine-level atomic compare and swap on an element within an array.

newByteArray# :: Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Create a new mutable byte array of specified size (in bytes), in the specified state thread.

newPinnedByteArray# :: Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Create a mutable byte array that the GC guarantees not to move.

newAlignedPinnedByteArray# :: Int# -> Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Create a mutable byte array, aligned by the specified amount, that the GC guarantees not to move.

isMutableByteArrayPinned# :: MutableByteArray# d -> Int# Source #

Determine whether a MutableByteArray# is guaranteed not to move during GC.

isByteArrayPinned# :: ByteArray# -> Int# Source #

Determine whether a ByteArray# is guaranteed not to move during GC.

byteArrayContents# :: ByteArray# -> Addr# Source #

Intended for use with pinned arrays; otherwise very unsafe!

shrinkMutableByteArray# :: MutableByteArray# d -> Int# -> State# d -> State# d Source #

Shrink mutable byte array to new specified size (in bytes), in the specified state thread. The new size argument must be less than or equal to the current size as reported by sizeofMutableArray#.

resizeMutableByteArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, MutableByteArray# d#) Source #

Resize (unpinned) mutable byte array to new specified size (in bytes). The returned MutableByteArray# is either the original MutableByteArray# resized in-place or, if not possible, a newly allocated (unpinned) MutableByteArray# (with the original content copied over).

To avoid undefined behaviour, the original MutableByteArray# shall not be accessed anymore after a resizeMutableByteArray# has been performed. Moreover, no reference to the old one should be kept in order to allow garbage collection of the original MutableByteArray# in case a new MutableByteArray# had to be allocated.

unsafeFreezeByteArray# :: MutableByteArray# d -> State# d -> (#State# d, ByteArray##) Source #

Make a mutable byte array immutable, without copying.

sizeofByteArray# :: ByteArray# -> Int# Source #

Return the size of the array in bytes.

sizeofMutableByteArray# :: MutableByteArray# d -> Int# Source #

Return the size of the array in bytes. Note that this is deprecated as it is unsafe in the presence of concurrent resize operations on the same byte array. See getSizeofMutableByteArray.

getSizeofMutableByteArray# :: MutableByteArray# d -> State# d -> (#State# d, Int##) Source #

Return the number of elements in the array.

indexCharArray# :: ByteArray# -> Int# -> Char# Source #

Read 8-bit character; offset in bytes.

indexWideCharArray# :: ByteArray# -> Int# -> Char# Source #

Read 31-bit character; offset in 4-byte words.

indexInt8Array# :: ByteArray# -> Int# -> Int# Source #

Read 8-bit integer; offset in bytes.

indexInt16Array# :: ByteArray# -> Int# -> Int# Source #

Read 16-bit integer; offset in 16-bit words.

indexInt32Array# :: ByteArray# -> Int# -> Int# Source #

Read 32-bit integer; offset in 32-bit words.

indexInt64Array# :: ByteArray# -> Int# -> Int# Source #

Read 64-bit integer; offset in 64-bit words.

indexWord8Array# :: ByteArray# -> Int# -> Word# Source #

Read 8-bit word; offset in bytes.

indexWord16Array# :: ByteArray# -> Int# -> Word# Source #

Read 16-bit word; offset in 16-bit words.

indexWord32Array# :: ByteArray# -> Int# -> Word# Source #

Read 32-bit word; offset in 32-bit words.

indexWord64Array# :: ByteArray# -> Int# -> Word# Source #

Read 64-bit word; offset in 64-bit words.

readCharArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Char##) Source #

Read 8-bit character; offset in bytes.

readWideCharArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Char##) Source #

Read 31-bit character; offset in 4-byte words.

readIntArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int##) Source #

Read integer; offset in words.

readWordArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word##) Source #

Read word; offset in words.

writeCharArray# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write 8-bit character; offset in bytes.

writeWideCharArray# :: MutableByteArray# d -> Int# -> Char# -> State# d -> State# d Source #

Write 31-bit character; offset in 4-byte words.

compareByteArrays# :: ByteArray# -> Int# -> ByteArray# -> Int# -> Int# -> Int# Source #

compareByteArrays# src1 src1_ofs src2 src2_ofs n compares n bytes starting at offset src1_ofs in the first ByteArray# src1 to the range of n bytes (i.e. same length) starting at offset src2_ofs of the second ByteArray# src2. Both arrays must fully contain the specified ranges, but this is not checked. Returns an Int# less than, equal to, or greater than zero if the range is found, respectively, to be byte-wise lexicographically less than, to match, or be greater than the second range.

copyByteArray# :: ByteArray# -> Int# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

copyByteArray# src src_ofs dst dst_ofs n copies the range starting at offset src_ofs of length n from the ByteArray# src to the MutableByteArray# dst starting at offset dst_ofs. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

copyMutableByteArray# :: MutableByteArray# d -> Int# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Copy a range of the first MutableByteArray. Both arrays must fully contain the specified ranges, but this is not checked. The regions are allowed to overlap, although this is only possible when the same array is provided as both the source and the destination.

copyByteArrayToAddr# :: ByteArray# -> Int# -> Addr# -> Int# -> State# d -> State# d Source #

Copy a range of the ByteArray. The ByteArray must fully contain the specified ranges, but this is not checked. The Addr# must not point into the ByteArray were pinned), but this is not checked either.

copyMutableByteArrayToAddr# :: MutableByteArray# d -> Int# -> Addr# -> Int# -> State# d -> State# d Source #

Copy a range of the MutableByteArray# to the memory range starting at the Addr and the memory region at Addr# must fully contain the specified ranges, but this is not checked. The Addr# must not point into the MutableByteArray were pinned), but this is not checked either.

copyAddrToByteArray# :: Addr# -> MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Copy a memory range starting at the Addr# to the specified range in the MutableByteArray and the ByteArray# must fully contain the specified ranges, but this is not checked. The Addr# must not point into the MutableByteArray were pinned), but this is not checked either.

setByteArray# :: MutableByteArray# d -> Int# -> Int# -> Int# -> State# d -> State# d Source #

setByteArray# ba off len c sets the byte range [off, off+len] of the MutableByteArray# to the byte c.

atomicReadIntArray# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array and an offset in Int units, read an element. The index is assumed to be in bounds. Implies a full memory barrier.

atomicWriteIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> State# d Source #

Given an array and an offset in Int units, write an element. The index is assumed to be in bounds. Implies a full memory barrier.

casIntArray# :: MutableByteArray# d -> Int# -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, an offset in Int units, the expected old value, and the new value, perform an atomic compare and swap i.e. write the new value if the current value matches the provided old value. Returns the value of the element before the operation. Implies a full memory barrier.

fetchAddIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to add, atomically add the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchSubIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to subtract, atomically substract the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchAndIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to AND, atomically AND the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchNandIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to NAND, atomically NAND the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchOrIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to OR, atomically OR the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

fetchXorIntArray# :: MutableByteArray# d -> Int# -> Int# -> State# d -> (#State# d, Int##) Source #

Given an array, and offset in Int units, and a value to XOR, atomically XOR the value to the element. Returns the value of the element before the operation. Implies a full memory barrier.

newArrayArray# :: Int# -> State# d -> (#State# d, MutableArrayArray# d#) Source #

Create a new mutable array of arrays with the specified number of elements, in the specified state thread, with each element recursively referring to the newly created array.

unsafeFreezeArrayArray# :: MutableArrayArray# d -> State# d -> (#State# d, ArrayArray##) Source #

Make a mutable array of arrays immutable, without copying.

sizeofArrayArray# :: ArrayArray# -> Int# Source #

Return the number of elements in the array.

sizeofMutableArrayArray# :: MutableArrayArray# d -> Int# Source #

Return the number of elements in the array.

copyArrayArray# :: ArrayArray# -> Int# -> MutableArrayArray# d -> Int# -> Int# -> State# d -> State# d Source #

Copy a range of the ArrayArray. Both arrays must fully contain the specified ranges, but this is not checked. The two arrays must not be the same array in different states, but this is not checked either.

copyMutableArrayArray# :: MutableArrayArray# d -> Int# -> MutableArrayArray# d -> Int# -> Int# -> State# d -> State# d Source #

Copy a range of the first MutableArrayArray# to the specified region in the second MutableArrayArray#. Both arrays must fully contain the specified ranges, but this is not checked. The regions are allowed to overlap, although this is only possible when the same array is provided as both the source and the destination.

minusAddr# :: Addr# -> Addr# -> Int# Source #

Result is meaningless if two Addr#s are so far apart that their difference doesn't fit in an Int#.

remAddr# :: Addr# -> Int# -> Int# Source #

Return the remainder when the Addr# arg, treated like an Int#, is divided by the Int# arg.

addr2Int# :: Addr# -> Int# Source #

Coerce directly from address to int. Strongly deprecated.

int2Addr# :: Int# -> Addr# Source #

Coerce directly from int to address. Strongly deprecated.

indexCharOffAddr# :: Addr# -> Int# -> Char# Source #

Reads 8-bit character; offset in bytes.

indexWideCharOffAddr# :: Addr# -> Int# -> Char# Source #

Reads 31-bit character; offset in 4-byte words.

readCharOffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Char##) Source #

Reads 8-bit character; offset in bytes.

readWideCharOffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Char##) Source #

Reads 31-bit character; offset in 4-byte words.

newMutVar# :: a -> State# d -> (#State# d, MutVar# d a#) Source #

Create MutVar# with specified initial value in specified state thread.

readMutVar# :: MutVar# d a -> State# d -> (#State# d, a#) Source #

Read contents of MutVar#. Result is not yet evaluated.

writeMutVar# :: MutVar# d a -> a -> State# d -> State# d Source #

Write contents of MutVar#.

atomicModifyMutVar# :: MutVar# d a -> (a -> b) -> State# d -> (#State# d, c#) Source #

Modify the contents of a MutVar#. Note that this isn't strictly speaking the correct type for this function, it should really be MutVar s -> ( s, b #), however we don't know about pairs here.

casMutVar# :: MutVar# d a -> a -> a -> State# d -> (#State# d, Int#, a#) Source #

raise# :: b -> a Source #

newTVar# :: a -> State# d -> (#State# d, TVar# d a#) Source #

Create a new TVar# holding a specified initial value.

readTVar# :: TVar# d a -> State# d -> (#State# d, a#) Source #

Read contents of TVar#. Result is not yet evaluated.

readTVarIO# :: TVar# d a -> State# d -> (#State# d, a#) Source #

Read contents of TVar# outside an STM transaction

writeTVar# :: TVar# d a -> a -> State# d -> State# d Source #

Write contents of TVar#.

sameTVar# :: TVar# d a -> TVar# d a -> Int# Source #

newMVar# :: State# d -> (#State# d, MVar# d a#) Source #

Create new MVar#; initially empty.

takeMVar# :: MVar# d a -> State# d -> (#State# d, a#) Source #

If MVar# is empty, block until it becomes full. Then remove and return its contents, and set it empty.

tryTakeMVar# :: MVar# d a -> State# d -> (#State# d, Int#, a#) Source #

If MVar# is empty, immediately return with integer 0 and value undefined. Otherwise, return with integer 1 and contents of MVar#, and set MVar# empty.

putMVar# :: MVar# d a -> a -> State# d -> State# d Source #

If MVar# is full, block until it becomes empty. Then store value arg as its new contents.

tryPutMVar# :: MVar# d a -> a -> State# d -> (#State# d, Int##) Source #

If MVar# is full, immediately return with integer 0. Otherwise, store value arg as MVar#'s new contents, and return with integer 1.

readMVar# :: MVar# d a -> State# d -> (#State# d, a#) Source #

If MVar# is empty, block until it becomes full. Then read its contents without modifying the MVar, without possibility of intervention from other threads.

tryReadMVar# :: MVar# d a -> State# d -> (#State# d, Int#, a#) Source #

If MVar# is empty, immediately return with integer 0 and value undefined. Otherwise, return with integer 1 and contents of MVar#.

sameMVar# :: MVar# d a -> MVar# d a -> Int# Source #

isEmptyMVar# :: MVar# d a -> State# d -> (#State# d, Int##) Source #

Return 1 if MVar# is empty; 0 otherwise.

delay# :: Int# -> State# d -> State# d Source #

Sleep specified number of microseconds.

waitRead# :: Int# -> State# d -> State# d Source #

Block until input is available on specified file descriptor.

waitWrite# :: Int# -> State# d -> State# d Source #

Block until output is possible on specified file descriptor.

mkWeak# :: a -> b -> (State# RealWorld -> (#State# RealWorld, c#)) -> State# RealWorld -> (#State# RealWorld, Weak# b#) Source #

mkWeak# k v finalizer s creates a weak reference to value k, with an associated reference to some value v. If k is still alive then v can be retrieved using deRefWeak#. Note that the type of k must be represented by a pointer (i.e. of kind TYPE 'LiftedRep or TYPE 'UnliftedRep).

addCFinalizerToWeak# :: Addr# -> Addr# -> Int# -> Addr# -> Weak# b -> State# RealWorld -> (#State# RealWorld, Int##) Source #

addCFinalizerToWeak# fptr ptr flag eptr w attaches a C function pointer fptr to a weak pointer w as a finalizer. If flag is zero, fptr will be called with one argument, ptr. Otherwise, it will be called with two arguments, eptr and ptr. addCFinalizerToWeak# returns 1 on success, or 0 if w is already dead.

finalizeWeak# :: Weak# a -> State# RealWorld -> (#State# RealWorld, Int#, State# RealWorld -> (#State# RealWorld, b#)#) Source #

Finalize a weak pointer. The return value is an unboxed tuple containing the new state of the world and an "unboxed Maybe", represented by an Int# and a (possibly invalid) finalization action. An Int# of 1 indicates that the finalizer is valid. The return value b from the finalizer should be ignored.

compactNew# :: Word# -> State# RealWorld -> (#State# RealWorld, Compact##) Source #

Create a new Compact with the given size (in bytes, not words). The size is rounded up to a multiple of the allocator block size, and capped to one mega block.

compactResize# :: Compact# -> Word# -> State# RealWorld -> State# RealWorld Source #

Set the new allocation size of the compact. This value (in bytes) determines the size of each block in the compact chain.

compactContains# :: Compact# -> a -> State# RealWorld -> (#State# RealWorld, Int##) Source #

Returns 1 otherwise.

compactContainsAny# :: a -> State# RealWorld -> (#State# RealWorld, Int##) Source #

Returns 1 otherwise.

compactGetFirstBlock# :: Compact# -> State# RealWorld -> (#State# RealWorld, Addr#, Word##) Source #

Returns the address and the size (in bytes) of the first block of a compact.

compactGetNextBlock# :: Compact# -> Addr# -> State# RealWorld -> (#State# RealWorld, Addr#, Word##) Source #

Given a compact and the address of one its blocks, returns the next block and its size, or #nullAddr if the argument was the last block in the compact.

compactAllocateBlock# :: Word# -> Addr# -> State# RealWorld -> (#State# RealWorld, Addr##) Source #

Attempt to allocate a compact block with the given size (in bytes) at the given address. The first argument is a hint to the allocator, allocation might be satisfied at a different address (which is returned). The resulting block is not known to the GC until compactFixupPointers# is called on it, and care must be taken so that the address does not escape or memory will be leaked.

compactFixupPointers# :: Addr# -> Addr# -> State# RealWorld -> (#State# RealWorld, Compact#, Addr##) Source #

Given the pointer to the first block of a compact, and the address of the root object in the old address space, fix up the internal pointers inside the compact to account for a different position in memory than when it was serialized. This method must be called exactly once after importing a serialized compact, and returns the new compact and the new adjusted root address.

compactAdd# :: Compact# -> a -> State# RealWorld -> (#State# RealWorld, a#) Source #

Recursively add a closure and its transitive closure to a {texttt Compact#}, evaluating any unevaluated components at the same time. Note: {texttt compactAdd#} is not thread-safe, so only one thread may call {texttt compactAdd#} with a particular {texttt Compact#} at any given time. The primop does not enforce any mutual exclusion; the caller is expected to arrange this.

compactAddWithSharing# :: Compact# -> a -> State# RealWorld -> (#State# RealWorld, a#) Source #

Like {texttt compactAdd#}, but retains sharing and cycles during compaction.

compactSize# :: Compact# -> State# RealWorld -> (#State# RealWorld, Word##) Source #

Return the size (in bytes) of the total amount of data in the Compact#

reallyUnsafePtrEquality# :: a -> a -> Int# Source #

Returns {texttt 1#} if the given pointers are equal and {texttt 0#} otherwise.

par# :: a -> Int# Source #

spark# :: a -> State# d -> (#State# d, a#) Source #

seq# :: a -> State# d -> (#State# d, a#) Source #

getSpark# :: State# d -> (#State# d, Int#, a#) Source #

numSparks# :: State# d -> (#State# d, Int##) Source #

Returns the number of sparks in the local spark pool.

tagToEnum# :: Int# -> a Source #

  • Note [dataToTag#] ~~~~~~~~~~~~~~~~~~~~ The dataToTag# primop should always be applied to an evaluated argument. The way to ensure this is to invoke it via the 'getTag' wrapper in GHC.Base: getTag :: a -> Int# getTag !x = dataToTag# x

But now consider z. case x of y -> let v = dataToTag# y in ...

To improve floating, the FloatOut pass (deliberately) does a binder-swap on the case, to give z. case x of y -> let v = dataToTag# x in ...

Now FloatOut might float that v-binding outside the z. But that is bad because that might mean x gest evaluated much too early! (CorePrep adds an eval to a dataToTag# call, to ensure that the argument really is evaluated; see CorePrep Note [dataToTag magic].)

Solution: make DataToTag into a can_fail primop. That will stop it floating (see Note [PrimOp can_fail and has_side_effects] in PrimOp). It's a bit of a hack but never mind. -

addrToAny# :: Addr# -> (#a#) Source #

Convert an Addr# to a followable Any type.

anyToAddr# :: a -> State# RealWorld -> (#State# RealWorld, Addr##) Source #

Retrieve the address of any Haskell value. This is essentially an {texttt unsafeCoerce#}, but if implemented as such the core lint pass complains and fails to compile. As a primop, it is opaque to core/stg, and only appears in cmm (where the copy propagation pass will get rid of it). Note that "a" must be a value, not a thunk! It's too late for strictness analysis to enforce this, so you're on your own to guarantee this. Also note that {texttt Addr#} is not a GC pointer - up to you to guarantee that it does not become a dangling pointer immediately after you get it.

mkApUpd0# :: BCO# -> (#a#) Source #

Wrap a BCO in a AP_UPD thunk which will be updated with the value of the BCO when evaluated.

newBCO# :: ByteArray# -> ByteArray# -> Array# a -> Int# -> ByteArray# -> State# d -> (#State# d, BCO##) Source #

newBCO# instrs lits ptrs arity bitmap creates a new bytecode object. The resulting object encodes a function of the given arity with the instructions encoded in instrs, and a static reference table usage bitmap given by bitmap.

unpackClosure# :: a -> (#Addr#, Array# b, ByteArray##) Source #

unpackClosure# closure copies non-pointers and pointers in the payload of the given closure into two new arrays, and returns a pointer to the first word of the closure's info table, a pointer array for the pointers in the payload, and a non-pointer array for the non-pointers in the payload.

getApStackVal# :: a -> Int# -> (#Int#, b#) Source #

getCCSOf# :: a -> State# d -> (#State# d, Addr##) Source #

getCurrentCCS# :: a -> State# d -> (#State# d, Addr##) Source #

Returns the current CostCentreStack (value is NULL if not profiling). Takes a dummy argument which can be used to avoid the call to getCurrentCCS# being floated out by the simplifier, which would result in an uninformative stack ("CAF").

clearCCS# :: (State# d -> (#State# d, a#)) -> State# d -> (#State# d, a#) Source #

Run the supplied IO action with an empty CCS. For example, this is used by the interpreter to run an interpreted computation without the call stack showing that it was invoked from GHC.

traceEvent# :: Addr# -> State# d -> State# d Source #

Emits an event via the RTS tracing framework. The contents of the event is the zero-terminated byte string passed as the first argument. The event will be emitted either to the .eventlog file, or to stderr, depending on the runtime RTS flags.

traceMarker# :: Addr# -> State# d -> State# d Source #

Emits a marker event via the RTS tracing framework. The contents of the event is the zero-terminated byte string passed as the first argument. The event will be emitted either to the .eventlog file, or to stderr, depending on the runtime RTS flags.

broadcastInt8X16# :: Int# -> Int8X16# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt16X8# :: Int# -> Int16X8# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt32X4# :: Int# -> Int32X4# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt64X2# :: Int# -> Int64X2# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt8X32# :: Int# -> Int8X32# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt16X16# :: Int# -> Int16X16# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt32X8# :: Int# -> Int32X8# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt64X4# :: Int# -> Int64X4# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt8X64# :: Int# -> Int8X64# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt16X32# :: Int# -> Int16X32# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt32X16# :: Int# -> Int32X16# Source #

Broadcast a scalar to all elements of a vector.

broadcastInt64X8# :: Int# -> Int64X8# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord8X16# :: Word# -> Word8X16# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord16X8# :: Word# -> Word16X8# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord32X4# :: Word# -> Word32X4# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord64X2# :: Word# -> Word64X2# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord8X32# :: Word# -> Word8X32# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord16X16# :: Word# -> Word16X16# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord32X8# :: Word# -> Word32X8# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord64X4# :: Word# -> Word64X4# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord8X64# :: Word# -> Word8X64# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord16X32# :: Word# -> Word16X32# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord32X16# :: Word# -> Word32X16# Source #

Broadcast a scalar to all elements of a vector.

broadcastWord64X8# :: Word# -> Word64X8# Source #

Broadcast a scalar to all elements of a vector.

broadcastFloatX4# :: Float# -> FloatX4# Source #

Broadcast a scalar to all elements of a vector.

broadcastDoubleX2# :: Double# -> DoubleX2# Source #

Broadcast a scalar to all elements of a vector.

broadcastFloatX8# :: Float# -> FloatX8# Source #

Broadcast a scalar to all elements of a vector.

broadcastDoubleX4# :: Double# -> DoubleX4# Source #

Broadcast a scalar to all elements of a vector.

broadcastFloatX16# :: Float# -> FloatX16# Source #

Broadcast a scalar to all elements of a vector.

broadcastDoubleX8# :: Double# -> DoubleX8# Source #

Broadcast a scalar to all elements of a vector.

packInt8X16# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int8X16# Source #

Pack the elements of an unboxed tuple into a vector.

packInt16X8# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int16X8# Source #

Pack the elements of an unboxed tuple into a vector.

packInt32X4# :: (#Int#, Int#, Int#, Int##) -> Int32X4# Source #

Pack the elements of an unboxed tuple into a vector.

packInt64X2# :: (#Int#, Int##) -> Int64X2# Source #

Pack the elements of an unboxed tuple into a vector.

packInt8X32# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int8X32# Source #

Pack the elements of an unboxed tuple into a vector.

packInt16X16# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int16X16# Source #

Pack the elements of an unboxed tuple into a vector.

packInt32X8# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int32X8# Source #

Pack the elements of an unboxed tuple into a vector.

packInt64X4# :: (#Int#, Int#, Int#, Int##) -> Int64X4# Source #

Pack the elements of an unboxed tuple into a vector.

packInt8X64# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int8X64# Source #

Pack the elements of an unboxed tuple into a vector.

packInt16X32# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int16X32# Source #

Pack the elements of an unboxed tuple into a vector.

packInt32X16# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int32X16# Source #

Pack the elements of an unboxed tuple into a vector.

packInt64X8# :: (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) -> Int64X8# Source #

Pack the elements of an unboxed tuple into a vector.

packWord8X16# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word8X16# Source #

Pack the elements of an unboxed tuple into a vector.

packWord16X8# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word16X8# Source #

Pack the elements of an unboxed tuple into a vector.

packWord32X4# :: (#Word#, Word#, Word#, Word##) -> Word32X4# Source #

Pack the elements of an unboxed tuple into a vector.

packWord64X2# :: (#Word#, Word##) -> Word64X2# Source #

Pack the elements of an unboxed tuple into a vector.

packWord8X32# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word8X32# Source #

Pack the elements of an unboxed tuple into a vector.

packWord16X16# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word16X16# Source #

Pack the elements of an unboxed tuple into a vector.

packWord32X8# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word32X8# Source #

Pack the elements of an unboxed tuple into a vector.

packWord64X4# :: (#Word#, Word#, Word#, Word##) -> Word64X4# Source #

Pack the elements of an unboxed tuple into a vector.

packWord16X32# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word16X32# Source #

Pack the elements of an unboxed tuple into a vector.

packWord32X16# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word32X16# Source #

Pack the elements of an unboxed tuple into a vector.

packWord64X8# :: (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) -> Word64X8# Source #

Pack the elements of an unboxed tuple into a vector.

packFloatX4# :: (#Float#, Float#, Float#, Float##) -> FloatX4# Source #

Pack the elements of an unboxed tuple into a vector.

packDoubleX2# :: (#Double#, Double##) -> DoubleX2# Source #

Pack the elements of an unboxed tuple into a vector.

packFloatX8# :: (#Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float##) -> FloatX8# Source #

Pack the elements of an unboxed tuple into a vector.

packDoubleX4# :: (#Double#, Double#, Double#, Double##) -> DoubleX4# Source #

Pack the elements of an unboxed tuple into a vector.

packFloatX16# :: (#Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float##) -> FloatX16# Source #

Pack the elements of an unboxed tuple into a vector.

packDoubleX8# :: (#Double#, Double#, Double#, Double#, Double#, Double#, Double#, Double##) -> DoubleX8# Source #

Pack the elements of an unboxed tuple into a vector.

unpackInt8X16# :: Int8X16# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt16X8# :: Int16X8# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt32X4# :: Int32X4# -> (#Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt64X2# :: Int64X2# -> (#Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt8X32# :: Int8X32# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt16X16# :: Int16X16# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt32X8# :: Int32X8# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt64X4# :: Int64X4# -> (#Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt8X64# :: Int8X64# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt16X32# :: Int16X32# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt32X16# :: Int32X16# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackInt64X8# :: Int64X8# -> (#Int#, Int#, Int#, Int#, Int#, Int#, Int#, Int##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord8X16# :: Word8X16# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord16X8# :: Word16X8# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord32X4# :: Word32X4# -> (#Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord64X2# :: Word64X2# -> (#Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord8X32# :: Word8X32# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord16X16# :: Word16X16# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord32X8# :: Word32X8# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord64X4# :: Word64X4# -> (#Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord16X32# :: Word16X32# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord32X16# :: Word32X16# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackWord64X8# :: Word64X8# -> (#Word#, Word#, Word#, Word#, Word#, Word#, Word#, Word##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackFloatX4# :: FloatX4# -> (#Float#, Float#, Float#, Float##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackDoubleX2# :: DoubleX2# -> (#Double#, Double##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackFloatX8# :: FloatX8# -> (#Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackDoubleX4# :: DoubleX4# -> (#Double#, Double#, Double#, Double##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackFloatX16# :: FloatX16# -> (#Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float#, Float##) Source #

Unpack the elements of a vector into an unboxed tuple. #

unpackDoubleX8# :: DoubleX8# -> (#Double#, Double#, Double#, Double#, Double#, Double#, Double#, Double##) Source #

Unpack the elements of a vector into an unboxed tuple. #

insertInt8X16# :: Int8X16# -> Int# -> Int# -> Int8X16# Source #

Insert a scalar at the given position in a vector.

insertInt16X8# :: Int16X8# -> Int# -> Int# -> Int16X8# Source #

Insert a scalar at the given position in a vector.

insertInt32X4# :: Int32X4# -> Int# -> Int# -> Int32X4# Source #

Insert a scalar at the given position in a vector.

insertInt64X2# :: Int64X2# -> Int# -> Int# -> Int64X2# Source #

Insert a scalar at the given position in a vector.

insertInt8X32# :: Int8X32# -> Int# -> Int# -> Int8X32# Source #

Insert a scalar at the given position in a vector.

insertInt16X16# :: Int16X16# -> Int# -> Int# -> Int16X16# Source #

Insert a scalar at the given position in a vector.

insertInt32X8# :: Int32X8# -> Int# -> Int# -> Int32X8# Source #

Insert a scalar at the given position in a vector.

insertInt64X4# :: Int64X4# -> Int# -> Int# -> Int64X4# Source #

Insert a scalar at the given position in a vector.

insertInt8X64# :: Int8X64# -> Int# -> Int# -> Int8X64# Source #

Insert a scalar at the given position in a vector.

insertInt16X32# :: Int16X32# -> Int# -> Int# -> Int16X32# Source #

Insert a scalar at the given position in a vector.

insertInt32X16# :: Int32X16# -> Int# -> Int# -> Int32X16# Source #

Insert a scalar at the given position in a vector.

insertInt64X8# :: Int64X8# -> Int# -> Int# -> Int64X8# Source #

Insert a scalar at the given position in a vector.

insertWord8X16# :: Word8X16# -> Word# -> Int# -> Word8X16# Source #

Insert a scalar at the given position in a vector.

insertWord16X8# :: Word16X8# -> Word# -> Int# -> Word16X8# Source #

Insert a scalar at the given position in a vector.

insertWord32X4# :: Word32X4# -> Word# -> Int# -> Word32X4# Source #

Insert a scalar at the given position in a vector.

insertWord64X2# :: Word64X2# -> Word# -> Int# -> Word64X2# Source #

Insert a scalar at the given position in a vector.

insertWord8X32# :: Word8X32# -> Word# -> Int# -> Word8X32# Source #

Insert a scalar at the given position in a vector.

insertWord16X16# :: Word16X16# -> Word# -> Int# -> Word16X16# Source #

Insert a scalar at the given position in a vector.

insertWord32X8# :: Word32X8# -> Word# -> Int# -> Word32X8# Source #

Insert a scalar at the given position in a vector.

insertWord64X4# :: Word64X4# -> Word# -> Int# -> Word64X4# Source #

Insert a scalar at the given position in a vector.

insertWord8X64# :: Word8X64# -> Word# -> Int# -> Word8X64# Source #

Insert a scalar at the given position in a vector.

insertWord16X32# :: Word16X32# -> Word# -> Int# -> Word16X32# Source #

Insert a scalar at the given position in a vector.

insertWord32X16# :: Word32X16# -> Word# -> Int# -> Word32X16# Source #

Insert a scalar at the given position in a vector.

insertWord64X8# :: Word64X8# -> Word# -> Int# -> Word64X8# Source #

Insert a scalar at the given position in a vector.

insertFloatX4# :: FloatX4# -> Float# -> Int# -> FloatX4# Source #

Insert a scalar at the given position in a vector.

insertDoubleX2# :: DoubleX2# -> Double# -> Int# -> DoubleX2# Source #

Insert a scalar at the given position in a vector.

insertFloatX8# :: FloatX8# -> Float# -> Int# -> FloatX8# Source #

Insert a scalar at the given position in a vector.

insertDoubleX4# :: DoubleX4# -> Double# -> Int# -> DoubleX4# Source #

Insert a scalar at the given position in a vector.

insertFloatX16# :: FloatX16# -> Float# -> Int# -> FloatX16# Source #

Insert a scalar at the given position in a vector.

insertDoubleX8# :: DoubleX8# -> Double# -> Int# -> DoubleX8# Source #

Insert a scalar at the given position in a vector.

plusInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Add two vectors element-wise.

plusInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Add two vectors element-wise.

plusInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Add two vectors element-wise.

plusInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Add two vectors element-wise.

plusInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Add two vectors element-wise.

plusInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Add two vectors element-wise.

plusInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Add two vectors element-wise.

plusInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Add two vectors element-wise.

plusInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Add two vectors element-wise.

plusInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Add two vectors element-wise.

plusInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Add two vectors element-wise.

plusInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Add two vectors element-wise.

plusWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Add two vectors element-wise.

plusWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Add two vectors element-wise.

plusWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Add two vectors element-wise.

plusWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Add two vectors element-wise.

plusWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Add two vectors element-wise.

plusWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Add two vectors element-wise.

plusWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Add two vectors element-wise.

plusWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Add two vectors element-wise.

plusWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Add two vectors element-wise.

plusWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Add two vectors element-wise.

plusWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Add two vectors element-wise.

plusWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Add two vectors element-wise.

plusFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Add two vectors element-wise.

plusDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Add two vectors element-wise.

plusFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Add two vectors element-wise.

plusDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Add two vectors element-wise.

plusFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Add two vectors element-wise.

plusDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Add two vectors element-wise.

minusInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Subtract two vectors element-wise.

minusInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Subtract two vectors element-wise.

minusInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Subtract two vectors element-wise.

minusInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Subtract two vectors element-wise.

minusInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Subtract two vectors element-wise.

minusInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Subtract two vectors element-wise.

minusInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Subtract two vectors element-wise.

minusInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Subtract two vectors element-wise.

minusInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Subtract two vectors element-wise.

minusInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Subtract two vectors element-wise.

minusInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Subtract two vectors element-wise.

minusInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Subtract two vectors element-wise.

minusWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Subtract two vectors element-wise.

minusWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Subtract two vectors element-wise.

minusWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Subtract two vectors element-wise.

minusWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Subtract two vectors element-wise.

minusWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Subtract two vectors element-wise.

minusWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Subtract two vectors element-wise.

minusWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Subtract two vectors element-wise.

minusWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Subtract two vectors element-wise.

minusWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Subtract two vectors element-wise.

minusWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Subtract two vectors element-wise.

minusWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Subtract two vectors element-wise.

minusWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Subtract two vectors element-wise.

minusFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Subtract two vectors element-wise.

minusDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Subtract two vectors element-wise.

minusFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Subtract two vectors element-wise.

minusDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Subtract two vectors element-wise.

minusFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Subtract two vectors element-wise.

minusDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Subtract two vectors element-wise.

timesInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Multiply two vectors element-wise.

timesInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Multiply two vectors element-wise.

timesInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Multiply two vectors element-wise.

timesInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Multiply two vectors element-wise.

timesInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Multiply two vectors element-wise.

timesInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Multiply two vectors element-wise.

timesInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Multiply two vectors element-wise.

timesInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Multiply two vectors element-wise.

timesInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Multiply two vectors element-wise.

timesInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Multiply two vectors element-wise.

timesInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Multiply two vectors element-wise.

timesInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Multiply two vectors element-wise.

timesWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Multiply two vectors element-wise.

timesWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Multiply two vectors element-wise.

timesWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Multiply two vectors element-wise.

timesWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Multiply two vectors element-wise.

timesWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Multiply two vectors element-wise.

timesWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Multiply two vectors element-wise.

timesWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Multiply two vectors element-wise.

timesWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Multiply two vectors element-wise.

timesWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Multiply two vectors element-wise.

timesWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Multiply two vectors element-wise.

timesWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Multiply two vectors element-wise.

timesWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Multiply two vectors element-wise.

timesFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Multiply two vectors element-wise.

timesDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Multiply two vectors element-wise.

timesFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Multiply two vectors element-wise.

timesDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Multiply two vectors element-wise.

timesFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Multiply two vectors element-wise.

timesDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Multiply two vectors element-wise.

divideFloatX4# :: FloatX4# -> FloatX4# -> FloatX4# Source #

Divide two vectors element-wise.

divideDoubleX2# :: DoubleX2# -> DoubleX2# -> DoubleX2# Source #

Divide two vectors element-wise.

divideFloatX8# :: FloatX8# -> FloatX8# -> FloatX8# Source #

Divide two vectors element-wise.

divideDoubleX4# :: DoubleX4# -> DoubleX4# -> DoubleX4# Source #

Divide two vectors element-wise.

divideFloatX16# :: FloatX16# -> FloatX16# -> FloatX16# Source #

Divide two vectors element-wise.

divideDoubleX8# :: DoubleX8# -> DoubleX8# -> DoubleX8# Source #

Divide two vectors element-wise.

quotInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Rounds towards zero element-wise.

quotInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Rounds towards zero element-wise.

quotInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Rounds towards zero element-wise.

quotInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Rounds towards zero element-wise.

quotInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Rounds towards zero element-wise.

quotInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Rounds towards zero element-wise.

quotInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Rounds towards zero element-wise.

quotInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Rounds towards zero element-wise.

quotInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Rounds towards zero element-wise.

quotInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Rounds towards zero element-wise.

quotInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Rounds towards zero element-wise.

quotInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Rounds towards zero element-wise.

quotWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Rounds towards zero element-wise.

quotWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Rounds towards zero element-wise.

quotWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Rounds towards zero element-wise.

quotWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Rounds towards zero element-wise.

quotWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Rounds towards zero element-wise.

quotWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Rounds towards zero element-wise.

quotWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Rounds towards zero element-wise.

quotWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Rounds towards zero element-wise.

quotWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Rounds towards zero element-wise.

quotWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Rounds towards zero element-wise.

quotWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Rounds towards zero element-wise.

quotWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Rounds towards zero element-wise.

remInt8X16# :: Int8X16# -> Int8X16# -> Int8X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt16X8# :: Int16X8# -> Int16X8# -> Int16X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt32X4# :: Int32X4# -> Int32X4# -> Int32X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt64X2# :: Int64X2# -> Int64X2# -> Int64X2# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt8X32# :: Int8X32# -> Int8X32# -> Int8X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt16X16# :: Int16X16# -> Int16X16# -> Int16X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt32X8# :: Int32X8# -> Int32X8# -> Int32X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt64X4# :: Int64X4# -> Int64X4# -> Int64X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt8X64# :: Int8X64# -> Int8X64# -> Int8X64# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt16X32# :: Int16X32# -> Int16X32# -> Int16X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt32X16# :: Int32X16# -> Int32X16# -> Int32X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remInt64X8# :: Int64X8# -> Int64X8# -> Int64X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord8X16# :: Word8X16# -> Word8X16# -> Word8X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord16X8# :: Word16X8# -> Word16X8# -> Word16X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord32X4# :: Word32X4# -> Word32X4# -> Word32X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord64X2# :: Word64X2# -> Word64X2# -> Word64X2# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord8X32# :: Word8X32# -> Word8X32# -> Word8X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord16X16# :: Word16X16# -> Word16X16# -> Word16X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord32X8# :: Word32X8# -> Word32X8# -> Word32X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord64X4# :: Word64X4# -> Word64X4# -> Word64X4# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord8X64# :: Word8X64# -> Word8X64# -> Word8X64# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord16X32# :: Word16X32# -> Word16X32# -> Word16X32# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord32X16# :: Word32X16# -> Word32X16# -> Word32X16# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

remWord64X8# :: Word64X8# -> Word64X8# -> Word64X8# Source #

Satisfies (quot# x y) times# y plus# (rem# x y) == x.

negateInt8X16# :: Int8X16# -> Int8X16# Source #

Negate element-wise.

negateInt16X8# :: Int16X8# -> Int16X8# Source #

Negate element-wise.

negateInt32X4# :: Int32X4# -> Int32X4# Source #

Negate element-wise.

negateInt64X2# :: Int64X2# -> Int64X2# Source #

Negate element-wise.

negateInt8X32# :: Int8X32# -> Int8X32# Source #

Negate element-wise.

negateInt16X16# :: Int16X16# -> Int16X16# Source #

Negate element-wise.

negateInt32X8# :: Int32X8# -> Int32X8# Source #

Negate element-wise.

negateInt64X4# :: Int64X4# -> Int64X4# Source #

Negate element-wise.

negateInt8X64# :: Int8X64# -> Int8X64# Source #

Negate element-wise.

negateInt16X32# :: Int16X32# -> Int16X32# Source #

Negate element-wise.

negateInt32X16# :: Int32X16# -> Int32X16# Source #

Negate element-wise.

negateInt64X8# :: Int64X8# -> Int64X8# Source #

Negate element-wise.

negateFloatX4# :: FloatX4# -> FloatX4# Source #

Negate element-wise.

negateDoubleX2# :: DoubleX2# -> DoubleX2# Source #

Negate element-wise.

negateFloatX8# :: FloatX8# -> FloatX8# Source #

Negate element-wise.

negateDoubleX4# :: DoubleX4# -> DoubleX4# Source #

Negate element-wise.

negateFloatX16# :: FloatX16# -> FloatX16# Source #

Negate element-wise.

negateDoubleX8# :: DoubleX8# -> DoubleX8# Source #

Negate element-wise.

indexInt8X16Array# :: ByteArray# -> Int# -> Int8X16# Source #

Read a vector from specified index of immutable array.

indexInt16X8Array# :: ByteArray# -> Int# -> Int16X8# Source #

Read a vector from specified index of immutable array.

indexInt32X4Array# :: ByteArray# -> Int# -> Int32X4# Source #

Read a vector from specified index of immutable array.

indexInt64X2Array# :: ByteArray# -> Int# -> Int64X2# Source #

Read a vector from specified index of immutable array.

indexInt8X32Array# :: ByteArray# -> Int# -> Int8X32# Source #

Read a vector from specified index of immutable array.

indexInt16X16Array# :: ByteArray# -> Int# -> Int16X16# Source #

Read a vector from specified index of immutable array.

indexInt32X8Array# :: ByteArray# -> Int# -> Int32X8# Source #

Read a vector from specified index of immutable array.

indexInt64X4Array# :: ByteArray# -> Int# -> Int64X4# Source #

Read a vector from specified index of immutable array.

indexInt8X64Array# :: ByteArray# -> Int# -> Int8X64# Source #

Read a vector from specified index of immutable array.

indexInt16X32Array# :: ByteArray# -> Int# -> Int16X32# Source #

Read a vector from specified index of immutable array.

indexInt32X16Array# :: ByteArray# -> Int# -> Int32X16# Source #

Read a vector from specified index of immutable array.

indexInt64X8Array# :: ByteArray# -> Int# -> Int64X8# Source #

Read a vector from specified index of immutable array.

indexWord8X16Array# :: ByteArray# -> Int# -> Word8X16# Source #

Read a vector from specified index of immutable array.

indexWord16X8Array# :: ByteArray# -> Int# -> Word16X8# Source #

Read a vector from specified index of immutable array.

indexWord32X4Array# :: ByteArray# -> Int# -> Word32X4# Source #

Read a vector from specified index of immutable array.

indexWord64X2Array# :: ByteArray# -> Int# -> Word64X2# Source #

Read a vector from specified index of immutable array.

indexWord8X32Array# :: ByteArray# -> Int# -> Word8X32# Source #

Read a vector from specified index of immutable array.

indexWord16X16Array# :: ByteArray# -> Int# -> Word16X16# Source #

Read a vector from specified index of immutable array.

indexWord32X8Array# :: ByteArray# -> Int# -> Word32X8# Source #

Read a vector from specified index of immutable array.

indexWord64X4Array# :: ByteArray# -> Int# -> Word64X4# Source #

Read a vector from specified index of immutable array.

indexWord8X64Array# :: ByteArray# -> Int# -> Word8X64# Source #

Read a vector from specified index of immutable array.

indexWord16X32Array# :: ByteArray# -> Int# -> Word16X32# Source #

Read a vector from specified index of immutable array.

indexWord32X16Array# :: ByteArray# -> Int# -> Word32X16# Source #

Read a vector from specified index of immutable array.

indexWord64X8Array# :: ByteArray# -> Int# -> Word64X8# Source #

Read a vector from specified index of immutable array.

indexFloatX4Array# :: ByteArray# -> Int# -> FloatX4# Source #

Read a vector from specified index of immutable array.

indexDoubleX2Array# :: ByteArray# -> Int# -> DoubleX2# Source #

Read a vector from specified index of immutable array.

indexFloatX8Array# :: ByteArray# -> Int# -> FloatX8# Source #

Read a vector from specified index of immutable array.

indexDoubleX4Array# :: ByteArray# -> Int# -> DoubleX4# Source #

Read a vector from specified index of immutable array.

indexFloatX16Array# :: ByteArray# -> Int# -> FloatX16# Source #

Read a vector from specified index of immutable array.

indexDoubleX8Array# :: ByteArray# -> Int# -> DoubleX8# Source #

Read a vector from specified index of immutable array.

readInt8X16Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int8X16##) Source #

Read a vector from specified index of mutable array.

readInt16X8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int16X8##) Source #

Read a vector from specified index of mutable array.

readInt32X4Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int32X4##) Source #

Read a vector from specified index of mutable array.

readInt64X2Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int64X2##) Source #

Read a vector from specified index of mutable array.

readInt8X32Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int8X32##) Source #

Read a vector from specified index of mutable array.

readInt16X16Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int16X16##) Source #

Read a vector from specified index of mutable array.

readInt32X8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int32X8##) Source #

Read a vector from specified index of mutable array.

readInt64X4Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int64X4##) Source #

Read a vector from specified index of mutable array.

readInt8X64Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int8X64##) Source #

Read a vector from specified index of mutable array.

readInt16X32Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int16X32##) Source #

Read a vector from specified index of mutable array.

readInt32X16Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int32X16##) Source #

Read a vector from specified index of mutable array.

readInt64X8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int64X8##) Source #

Read a vector from specified index of mutable array.

readWord8X16Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word8X16##) Source #

Read a vector from specified index of mutable array.

readWord16X8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word16X8##) Source #

Read a vector from specified index of mutable array.

readWord32X4Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word32X4##) Source #

Read a vector from specified index of mutable array.

readWord64X2Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word64X2##) Source #

Read a vector from specified index of mutable array.

readWord8X32Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word8X32##) Source #

Read a vector from specified index of mutable array.

readWord16X16Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word16X16##) Source #

Read a vector from specified index of mutable array.

readWord32X8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word32X8##) Source #

Read a vector from specified index of mutable array.

readWord64X4Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word64X4##) Source #

Read a vector from specified index of mutable array.

readWord8X64Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word8X64##) Source #

Read a vector from specified index of mutable array.

readWord16X32Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word16X32##) Source #

Read a vector from specified index of mutable array.

readWord32X16Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word32X16##) Source #

Read a vector from specified index of mutable array.

readWord64X8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word64X8##) Source #

Read a vector from specified index of mutable array.

readFloatX4Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, FloatX4##) Source #

Read a vector from specified index of mutable array.

readDoubleX2Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, DoubleX2##) Source #

Read a vector from specified index of mutable array.

readFloatX8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, FloatX8##) Source #

Read a vector from specified index of mutable array.

readDoubleX4Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, DoubleX4##) Source #

Read a vector from specified index of mutable array.

readFloatX16Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, FloatX16##) Source #

Read a vector from specified index of mutable array.

readDoubleX8Array# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, DoubleX8##) Source #

Read a vector from specified index of mutable array.

writeInt8X16Array# :: MutableByteArray# d -> Int# -> Int8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt16X8Array# :: MutableByteArray# d -> Int# -> Int16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt32X4Array# :: MutableByteArray# d -> Int# -> Int32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt64X2Array# :: MutableByteArray# d -> Int# -> Int64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt8X32Array# :: MutableByteArray# d -> Int# -> Int8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt16X16Array# :: MutableByteArray# d -> Int# -> Int16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt32X8Array# :: MutableByteArray# d -> Int# -> Int32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt64X4Array# :: MutableByteArray# d -> Int# -> Int64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt8X64Array# :: MutableByteArray# d -> Int# -> Int8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt16X32Array# :: MutableByteArray# d -> Int# -> Int16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt32X16Array# :: MutableByteArray# d -> Int# -> Int32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeInt64X8Array# :: MutableByteArray# d -> Int# -> Int64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord8X16Array# :: MutableByteArray# d -> Int# -> Word8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord16X8Array# :: MutableByteArray# d -> Int# -> Word16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord32X4Array# :: MutableByteArray# d -> Int# -> Word32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord64X2Array# :: MutableByteArray# d -> Int# -> Word64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord8X32Array# :: MutableByteArray# d -> Int# -> Word8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord16X16Array# :: MutableByteArray# d -> Int# -> Word16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord32X8Array# :: MutableByteArray# d -> Int# -> Word32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord64X4Array# :: MutableByteArray# d -> Int# -> Word64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord8X64Array# :: MutableByteArray# d -> Int# -> Word8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord16X32Array# :: MutableByteArray# d -> Int# -> Word16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord32X16Array# :: MutableByteArray# d -> Int# -> Word32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeWord64X8Array# :: MutableByteArray# d -> Int# -> Word64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeFloatX4Array# :: MutableByteArray# d -> Int# -> FloatX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeDoubleX2Array# :: MutableByteArray# d -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeFloatX8Array# :: MutableByteArray# d -> Int# -> FloatX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeDoubleX4Array# :: MutableByteArray# d -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeFloatX16Array# :: MutableByteArray# d -> Int# -> FloatX16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

writeDoubleX8Array# :: MutableByteArray# d -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array.

indexInt8X16OffAddr# :: Addr# -> Int# -> Int8X16# Source #

Reads vector; offset in bytes.

indexInt16X8OffAddr# :: Addr# -> Int# -> Int16X8# Source #

Reads vector; offset in bytes.

indexInt32X4OffAddr# :: Addr# -> Int# -> Int32X4# Source #

Reads vector; offset in bytes.

indexInt64X2OffAddr# :: Addr# -> Int# -> Int64X2# Source #

Reads vector; offset in bytes.

indexInt8X32OffAddr# :: Addr# -> Int# -> Int8X32# Source #

Reads vector; offset in bytes.

indexInt16X16OffAddr# :: Addr# -> Int# -> Int16X16# Source #

Reads vector; offset in bytes.

indexInt32X8OffAddr# :: Addr# -> Int# -> Int32X8# Source #

Reads vector; offset in bytes.

indexInt64X4OffAddr# :: Addr# -> Int# -> Int64X4# Source #

Reads vector; offset in bytes.

indexInt8X64OffAddr# :: Addr# -> Int# -> Int8X64# Source #

Reads vector; offset in bytes.

indexInt16X32OffAddr# :: Addr# -> Int# -> Int16X32# Source #

Reads vector; offset in bytes.

indexInt32X16OffAddr# :: Addr# -> Int# -> Int32X16# Source #

Reads vector; offset in bytes.

indexInt64X8OffAddr# :: Addr# -> Int# -> Int64X8# Source #

Reads vector; offset in bytes.

indexWord8X16OffAddr# :: Addr# -> Int# -> Word8X16# Source #

Reads vector; offset in bytes.

indexWord16X8OffAddr# :: Addr# -> Int# -> Word16X8# Source #

Reads vector; offset in bytes.

indexWord32X4OffAddr# :: Addr# -> Int# -> Word32X4# Source #

Reads vector; offset in bytes.

indexWord64X2OffAddr# :: Addr# -> Int# -> Word64X2# Source #

Reads vector; offset in bytes.

indexWord8X32OffAddr# :: Addr# -> Int# -> Word8X32# Source #

Reads vector; offset in bytes.

indexWord16X16OffAddr# :: Addr# -> Int# -> Word16X16# Source #

Reads vector; offset in bytes.

indexWord32X8OffAddr# :: Addr# -> Int# -> Word32X8# Source #

Reads vector; offset in bytes.

indexWord64X4OffAddr# :: Addr# -> Int# -> Word64X4# Source #

Reads vector; offset in bytes.

indexWord8X64OffAddr# :: Addr# -> Int# -> Word8X64# Source #

Reads vector; offset in bytes.

indexWord16X32OffAddr# :: Addr# -> Int# -> Word16X32# Source #

Reads vector; offset in bytes.

indexWord32X16OffAddr# :: Addr# -> Int# -> Word32X16# Source #

Reads vector; offset in bytes.

indexWord64X8OffAddr# :: Addr# -> Int# -> Word64X8# Source #

Reads vector; offset in bytes.

indexFloatX4OffAddr# :: Addr# -> Int# -> FloatX4# Source #

Reads vector; offset in bytes.

indexDoubleX2OffAddr# :: Addr# -> Int# -> DoubleX2# Source #

Reads vector; offset in bytes.

indexFloatX8OffAddr# :: Addr# -> Int# -> FloatX8# Source #

Reads vector; offset in bytes.

indexDoubleX4OffAddr# :: Addr# -> Int# -> DoubleX4# Source #

Reads vector; offset in bytes.

indexFloatX16OffAddr# :: Addr# -> Int# -> FloatX16# Source #

Reads vector; offset in bytes.

indexDoubleX8OffAddr# :: Addr# -> Int# -> DoubleX8# Source #

Reads vector; offset in bytes.

readInt8X16OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int8X16##) Source #

Reads vector; offset in bytes.

readInt16X8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int16X8##) Source #

Reads vector; offset in bytes.

readInt32X4OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int32X4##) Source #

Reads vector; offset in bytes.

readInt64X2OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int64X2##) Source #

Reads vector; offset in bytes.

readInt8X32OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int8X32##) Source #

Reads vector; offset in bytes.

readInt16X16OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int16X16##) Source #

Reads vector; offset in bytes.

readInt32X8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int32X8##) Source #

Reads vector; offset in bytes.

readInt64X4OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int64X4##) Source #

Reads vector; offset in bytes.

readInt8X64OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int8X64##) Source #

Reads vector; offset in bytes.

readInt16X32OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int16X32##) Source #

Reads vector; offset in bytes.

readInt32X16OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int32X16##) Source #

Reads vector; offset in bytes.

readInt64X8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Int64X8##) Source #

Reads vector; offset in bytes.

readWord8X16OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word8X16##) Source #

Reads vector; offset in bytes.

readWord16X8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word16X8##) Source #

Reads vector; offset in bytes.

readWord32X4OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word32X4##) Source #

Reads vector; offset in bytes.

readWord64X2OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word64X2##) Source #

Reads vector; offset in bytes.

readWord8X32OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word8X32##) Source #

Reads vector; offset in bytes.

readWord16X16OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word16X16##) Source #

Reads vector; offset in bytes.

readWord32X8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word32X8##) Source #

Reads vector; offset in bytes.

readWord64X4OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word64X4##) Source #

Reads vector; offset in bytes.

readWord8X64OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word8X64##) Source #

Reads vector; offset in bytes.

readWord16X32OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word16X32##) Source #

Reads vector; offset in bytes.

readWord32X16OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word32X16##) Source #

Reads vector; offset in bytes.

readWord64X8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, Word64X8##) Source #

Reads vector; offset in bytes.

readFloatX4OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, FloatX4##) Source #

Reads vector; offset in bytes.

readDoubleX2OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, DoubleX2##) Source #

Reads vector; offset in bytes.

readFloatX8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, FloatX8##) Source #

Reads vector; offset in bytes.

readDoubleX4OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, DoubleX4##) Source #

Reads vector; offset in bytes.

readFloatX16OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, FloatX16##) Source #

Reads vector; offset in bytes.

readDoubleX8OffAddr# :: Addr# -> Int# -> State# d -> (#State# d, DoubleX8##) Source #

Reads vector; offset in bytes.

writeInt8X16OffAddr# :: Addr# -> Int# -> Int8X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt16X8OffAddr# :: Addr# -> Int# -> Int16X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt32X4OffAddr# :: Addr# -> Int# -> Int32X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt64X2OffAddr# :: Addr# -> Int# -> Int64X2# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt8X32OffAddr# :: Addr# -> Int# -> Int8X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt16X16OffAddr# :: Addr# -> Int# -> Int16X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt32X8OffAddr# :: Addr# -> Int# -> Int32X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt64X4OffAddr# :: Addr# -> Int# -> Int64X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt8X64OffAddr# :: Addr# -> Int# -> Int8X64# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt16X32OffAddr# :: Addr# -> Int# -> Int16X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt32X16OffAddr# :: Addr# -> Int# -> Int32X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeInt64X8OffAddr# :: Addr# -> Int# -> Int64X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord8X16OffAddr# :: Addr# -> Int# -> Word8X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord16X8OffAddr# :: Addr# -> Int# -> Word16X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord32X4OffAddr# :: Addr# -> Int# -> Word32X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord64X2OffAddr# :: Addr# -> Int# -> Word64X2# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord8X32OffAddr# :: Addr# -> Int# -> Word8X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord16X16OffAddr# :: Addr# -> Int# -> Word16X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord32X8OffAddr# :: Addr# -> Int# -> Word32X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord64X4OffAddr# :: Addr# -> Int# -> Word64X4# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord8X64OffAddr# :: Addr# -> Int# -> Word8X64# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord16X32OffAddr# :: Addr# -> Int# -> Word16X32# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord32X16OffAddr# :: Addr# -> Int# -> Word32X16# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeWord64X8OffAddr# :: Addr# -> Int# -> Word64X8# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeFloatX4OffAddr# :: Addr# -> Int# -> FloatX4# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeDoubleX2OffAddr# :: Addr# -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeFloatX8OffAddr# :: Addr# -> Int# -> FloatX8# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeDoubleX4OffAddr# :: Addr# -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeFloatX16OffAddr# :: Addr# -> Int# -> FloatX16# -> State# d -> State# d Source #

Write vector; offset in bytes.

writeDoubleX8OffAddr# :: Addr# -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write vector; offset in bytes.

indexInt8ArrayAsInt8X16# :: ByteArray# -> Int# -> Int8X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt16ArrayAsInt16X8# :: ByteArray# -> Int# -> Int16X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt32ArrayAsInt32X4# :: ByteArray# -> Int# -> Int32X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt64ArrayAsInt64X2# :: ByteArray# -> Int# -> Int64X2# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt8ArrayAsInt8X32# :: ByteArray# -> Int# -> Int8X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt16ArrayAsInt16X16# :: ByteArray# -> Int# -> Int16X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt32ArrayAsInt32X8# :: ByteArray# -> Int# -> Int32X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt64ArrayAsInt64X4# :: ByteArray# -> Int# -> Int64X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt8ArrayAsInt8X64# :: ByteArray# -> Int# -> Int8X64# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt16ArrayAsInt16X32# :: ByteArray# -> Int# -> Int16X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt32ArrayAsInt32X16# :: ByteArray# -> Int# -> Int32X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexInt64ArrayAsInt64X8# :: ByteArray# -> Int# -> Int64X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord8ArrayAsWord8X16# :: ByteArray# -> Int# -> Word8X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord16ArrayAsWord16X8# :: ByteArray# -> Int# -> Word16X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord32ArrayAsWord32X4# :: ByteArray# -> Int# -> Word32X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord64ArrayAsWord64X2# :: ByteArray# -> Int# -> Word64X2# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord8ArrayAsWord8X32# :: ByteArray# -> Int# -> Word8X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord16ArrayAsWord16X16# :: ByteArray# -> Int# -> Word16X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord32ArrayAsWord32X8# :: ByteArray# -> Int# -> Word32X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord64ArrayAsWord64X4# :: ByteArray# -> Int# -> Word64X4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord8ArrayAsWord8X64# :: ByteArray# -> Int# -> Word8X64# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord16ArrayAsWord16X32# :: ByteArray# -> Int# -> Word16X32# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord32ArrayAsWord32X16# :: ByteArray# -> Int# -> Word32X16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexWord64ArrayAsWord64X8# :: ByteArray# -> Int# -> Word64X8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexFloatArrayAsFloatX4# :: ByteArray# -> Int# -> FloatX4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexDoubleArrayAsDoubleX2# :: ByteArray# -> Int# -> DoubleX2# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexFloatArrayAsFloatX8# :: ByteArray# -> Int# -> FloatX8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexDoubleArrayAsDoubleX4# :: ByteArray# -> Int# -> DoubleX4# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexFloatArrayAsFloatX16# :: ByteArray# -> Int# -> FloatX16# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

indexDoubleArrayAsDoubleX8# :: ByteArray# -> Int# -> DoubleX8# Source #

Read a vector from specified index of immutable array of scalars; offset is in scalar elements.

readInt8ArrayAsInt8X16# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int8X16##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt16ArrayAsInt16X8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int16X8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt32ArrayAsInt32X4# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int32X4##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt64ArrayAsInt64X2# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int64X2##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt8ArrayAsInt8X32# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int8X32##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt16ArrayAsInt16X16# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int16X16##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt32ArrayAsInt32X8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int32X8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt64ArrayAsInt64X4# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int64X4##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt8ArrayAsInt8X64# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int8X64##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt16ArrayAsInt16X32# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int16X32##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt32ArrayAsInt32X16# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int32X16##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readInt64ArrayAsInt64X8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Int64X8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord8ArrayAsWord8X16# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word8X16##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord16ArrayAsWord16X8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word16X8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord32ArrayAsWord32X4# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word32X4##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord64ArrayAsWord64X2# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word64X2##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord8ArrayAsWord8X32# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word8X32##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord16ArrayAsWord16X16# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word16X16##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord32ArrayAsWord32X8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word32X8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord64ArrayAsWord64X4# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word64X4##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord8ArrayAsWord8X64# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word8X64##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord16ArrayAsWord16X32# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word16X32##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord32ArrayAsWord32X16# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word32X16##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readWord64ArrayAsWord64X8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, Word64X8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readFloatArrayAsFloatX4# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, FloatX4##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readDoubleArrayAsDoubleX2# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, DoubleX2##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readFloatArrayAsFloatX8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, FloatX8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readDoubleArrayAsDoubleX4# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, DoubleX4##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readFloatArrayAsFloatX16# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, FloatX16##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

readDoubleArrayAsDoubleX8# :: MutableByteArray# d -> Int# -> State# d -> (#State# d, DoubleX8##) Source #

Read a vector from specified index of mutable array of scalars; offset is in scalar elements.

writeInt8ArrayAsInt8X16# :: MutableByteArray# d -> Int# -> Int8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt16ArrayAsInt16X8# :: MutableByteArray# d -> Int# -> Int16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt32ArrayAsInt32X4# :: MutableByteArray# d -> Int# -> Int32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt64ArrayAsInt64X2# :: MutableByteArray# d -> Int# -> Int64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt8ArrayAsInt8X32# :: MutableByteArray# d -> Int# -> Int8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt16ArrayAsInt16X16# :: MutableByteArray# d -> Int# -> Int16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt32ArrayAsInt32X8# :: MutableByteArray# d -> Int# -> Int32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt64ArrayAsInt64X4# :: MutableByteArray# d -> Int# -> Int64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt8ArrayAsInt8X64# :: MutableByteArray# d -> Int# -> Int8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt16ArrayAsInt16X32# :: MutableByteArray# d -> Int# -> Int16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt32ArrayAsInt32X16# :: MutableByteArray# d -> Int# -> Int32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeInt64ArrayAsInt64X8# :: MutableByteArray# d -> Int# -> Int64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord8ArrayAsWord8X16# :: MutableByteArray# d -> Int# -> Word8X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord16ArrayAsWord16X8# :: MutableByteArray# d -> Int# -> Word16X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord32ArrayAsWord32X4# :: MutableByteArray# d -> Int# -> Word32X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord64ArrayAsWord64X2# :: MutableByteArray# d -> Int# -> Word64X2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord8ArrayAsWord8X32# :: MutableByteArray# d -> Int# -> Word8X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord16ArrayAsWord16X16# :: MutableByteArray# d -> Int# -> Word16X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord32ArrayAsWord32X8# :: MutableByteArray# d -> Int# -> Word32X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord64ArrayAsWord64X4# :: MutableByteArray# d -> Int# -> Word64X4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord8ArrayAsWord8X64# :: MutableByteArray# d -> Int# -> Word8X64# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord16ArrayAsWord16X32# :: MutableByteArray# d -> Int# -> Word16X32# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord32ArrayAsWord32X16# :: MutableByteArray# d -> Int# -> Word32X16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeWord64ArrayAsWord64X8# :: MutableByteArray# d -> Int# -> Word64X8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeFloatArrayAsFloatX4# :: MutableByteArray# d -> Int# -> FloatX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeDoubleArrayAsDoubleX2# :: MutableByteArray# d -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeFloatArrayAsFloatX8# :: MutableByteArray# d -> Int# -> FloatX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeDoubleArrayAsDoubleX4# :: MutableByteArray# d -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeFloatArrayAsFloatX16# :: MutableByteArray# d -> Int# -> FloatX16# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

writeDoubleArrayAsDoubleX8# :: MutableByteArray# d -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write a vector to specified index of mutable array of scalars; offset is in scalar elements.

indexInt8OffAddrAsInt8X16# :: Addr# -> Int# -> Int8X16# Source #

Reads vector; offset in scalar elements.

indexInt16OffAddrAsInt16X8# :: Addr# -> Int# -> Int16X8# Source #

Reads vector; offset in scalar elements.

indexInt32OffAddrAsInt32X4# :: Addr# -> Int# -> Int32X4# Source #

Reads vector; offset in scalar elements.

indexInt64OffAddrAsInt64X2# :: Addr# -> Int# -> Int64X2# Source #

Reads vector; offset in scalar elements.

indexInt8OffAddrAsInt8X32# :: Addr# -> Int# -> Int8X32# Source #

Reads vector; offset in scalar elements.

indexInt16OffAddrAsInt16X16# :: Addr# -> Int# -> Int16X16# Source #

Reads vector; offset in scalar elements.

indexInt32OffAddrAsInt32X8# :: Addr# -> Int# -> Int32X8# Source #

Reads vector; offset in scalar elements.

indexInt64OffAddrAsInt64X4# :: Addr# -> Int# -> Int64X4# Source #

Reads vector; offset in scalar elements.

indexInt8OffAddrAsInt8X64# :: Addr# -> Int# -> Int8X64# Source #

Reads vector; offset in scalar elements.

indexInt16OffAddrAsInt16X32# :: Addr# -> Int# -> Int16X32# Source #

Reads vector; offset in scalar elements.

indexInt32OffAddrAsInt32X16# :: Addr# -> Int# -> Int32X16# Source #

Reads vector; offset in scalar elements.

indexInt64OffAddrAsInt64X8# :: Addr# -> Int# -> Int64X8# Source #

Reads vector; offset in scalar elements.

indexWord8OffAddrAsWord8X16# :: Addr# -> Int# -> Word8X16# Source #

Reads vector; offset in scalar elements.

indexWord16OffAddrAsWord16X8# :: Addr# -> Int# -> Word16X8# Source #

Reads vector; offset in scalar elements.

indexWord32OffAddrAsWord32X4# :: Addr# -> Int# -> Word32X4# Source #

Reads vector; offset in scalar elements.

indexWord64OffAddrAsWord64X2# :: Addr# -> Int# -> Word64X2# Source #

Reads vector; offset in scalar elements.

indexWord8OffAddrAsWord8X32# :: Addr# -> Int# -> Word8X32# Source #

Reads vector; offset in scalar elements.

indexWord16OffAddrAsWord16X16# :: Addr# -> Int# -> Word16X16# Source #

Reads vector; offset in scalar elements.

indexWord32OffAddrAsWord32X8# :: Addr# -> Int# -> Word32X8# Source #

Reads vector; offset in scalar elements.

indexWord64OffAddrAsWord64X4# :: Addr# -> Int# -> Word64X4# Source #

Reads vector; offset in scalar elements.

indexWord8OffAddrAsWord8X64# :: Addr# -> Int# -> Word8X64# Source #

Reads vector; offset in scalar elements.

indexWord16OffAddrAsWord16X32# :: Addr# -> Int# -> Word16X32# Source #

Reads vector; offset in scalar elements.

indexWord32OffAddrAsWord32X16# :: Addr# -> Int# -> Word32X16# Source #

Reads vector; offset in scalar elements.

indexWord64OffAddrAsWord64X8# :: Addr# -> Int# -> Word64X8# Source #

Reads vector; offset in scalar elements.

indexFloatOffAddrAsFloatX4# :: Addr# -> Int# -> FloatX4# Source #

Reads vector; offset in scalar elements.

indexDoubleOffAddrAsDoubleX2# :: Addr# -> Int# -> DoubleX2# Source #

Reads vector; offset in scalar elements.

indexFloatOffAddrAsFloatX8# :: Addr# -> Int# -> FloatX8# Source #

Reads vector; offset in scalar elements.

indexDoubleOffAddrAsDoubleX4# :: Addr# -> Int# -> DoubleX4# Source #

Reads vector; offset in scalar elements.

indexFloatOffAddrAsFloatX16# :: Addr# -> Int# -> FloatX16# Source #

Reads vector; offset in scalar elements.

indexDoubleOffAddrAsDoubleX8# :: Addr# -> Int# -> DoubleX8# Source #

Reads vector; offset in scalar elements.

readInt8OffAddrAsInt8X16# :: Addr# -> Int# -> State# d -> (#State# d, Int8X16##) Source #

Reads vector; offset in scalar elements.

readInt16OffAddrAsInt16X8# :: Addr# -> Int# -> State# d -> (#State# d, Int16X8##) Source #

Reads vector; offset in scalar elements.

readInt32OffAddrAsInt32X4# :: Addr# -> Int# -> State# d -> (#State# d, Int32X4##) Source #

Reads vector; offset in scalar elements.

readInt64OffAddrAsInt64X2# :: Addr# -> Int# -> State# d -> (#State# d, Int64X2##) Source #

Reads vector; offset in scalar elements.

readInt8OffAddrAsInt8X32# :: Addr# -> Int# -> State# d -> (#State# d, Int8X32##) Source #

Reads vector; offset in scalar elements.

readInt16OffAddrAsInt16X16# :: Addr# -> Int# -> State# d -> (#State# d, Int16X16##) Source #

Reads vector; offset in scalar elements.

readInt32OffAddrAsInt32X8# :: Addr# -> Int# -> State# d -> (#State# d, Int32X8##) Source #

Reads vector; offset in scalar elements.

readInt64OffAddrAsInt64X4# :: Addr# -> Int# -> State# d -> (#State# d, Int64X4##) Source #

Reads vector; offset in scalar elements.

readInt8OffAddrAsInt8X64# :: Addr# -> Int# -> State# d -> (#State# d, Int8X64##) Source #

Reads vector; offset in scalar elements.

readInt16OffAddrAsInt16X32# :: Addr# -> Int# -> State# d -> (#State# d, Int16X32##) Source #

Reads vector; offset in scalar elements.

readInt32OffAddrAsInt32X16# :: Addr# -> Int# -> State# d -> (#State# d, Int32X16##) Source #

Reads vector; offset in scalar elements.

readInt64OffAddrAsInt64X8# :: Addr# -> Int# -> State# d -> (#State# d, Int64X8##) Source #

Reads vector; offset in scalar elements.

readWord8OffAddrAsWord8X16# :: Addr# -> Int# -> State# d -> (#State# d, Word8X16##) Source #

Reads vector; offset in scalar elements.

readWord16OffAddrAsWord16X8# :: Addr# -> Int# -> State# d -> (#State# d, Word16X8##) Source #

Reads vector; offset in scalar elements.

readWord32OffAddrAsWord32X4# :: Addr# -> Int# -> State# d -> (#State# d, Word32X4##) Source #

Reads vector; offset in scalar elements.

readWord64OffAddrAsWord64X2# :: Addr# -> Int# -> State# d -> (#State# d, Word64X2##) Source #

Reads vector; offset in scalar elements.

readWord8OffAddrAsWord8X32# :: Addr# -> Int# -> State# d -> (#State# d, Word8X32##) Source #

Reads vector; offset in scalar elements.

readWord16OffAddrAsWord16X16# :: Addr# -> Int# -> State# d -> (#State# d, Word16X16##) Source #

Reads vector; offset in scalar elements.

readWord32OffAddrAsWord32X8# :: Addr# -> Int# -> State# d -> (#State# d, Word32X8##) Source #

Reads vector; offset in scalar elements.

readWord64OffAddrAsWord64X4# :: Addr# -> Int# -> State# d -> (#State# d, Word64X4##) Source #

Reads vector; offset in scalar elements.

readWord8OffAddrAsWord8X64# :: Addr# -> Int# -> State# d -> (#State# d, Word8X64##) Source #

Reads vector; offset in scalar elements.

readWord16OffAddrAsWord16X32# :: Addr# -> Int# -> State# d -> (#State# d, Word16X32##) Source #

Reads vector; offset in scalar elements.

readWord32OffAddrAsWord32X16# :: Addr# -> Int# -> State# d -> (#State# d, Word32X16##) Source #

Reads vector; offset in scalar elements.

readWord64OffAddrAsWord64X8# :: Addr# -> Int# -> State# d -> (#State# d, Word64X8##) Source #

Reads vector; offset in scalar elements.

readFloatOffAddrAsFloatX4# :: Addr# -> Int# -> State# d -> (#State# d, FloatX4##) Source #

Reads vector; offset in scalar elements.

readDoubleOffAddrAsDoubleX2# :: Addr# -> Int# -> State# d -> (#State# d, DoubleX2##) Source #

Reads vector; offset in scalar elements.

readFloatOffAddrAsFloatX8# :: Addr# -> Int# -> State# d -> (#State# d, FloatX8##) Source #

Reads vector; offset in scalar elements.

readDoubleOffAddrAsDoubleX4# :: Addr# -> Int# -> State# d -> (#State# d, DoubleX4##) Source #

Reads vector; offset in scalar elements.

readFloatOffAddrAsFloatX16# :: Addr# -> Int# -> State# d -> (#State# d, FloatX16##) Source #

Reads vector; offset in scalar elements.

readDoubleOffAddrAsDoubleX8# :: Addr# -> Int# -> State# d -> (#State# d, DoubleX8##) Source #

Reads vector; offset in scalar elements.

writeInt8OffAddrAsInt8X16# :: Addr# -> Int# -> Int8X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt16OffAddrAsInt16X8# :: Addr# -> Int# -> Int16X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt32OffAddrAsInt32X4# :: Addr# -> Int# -> Int32X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt64OffAddrAsInt64X2# :: Addr# -> Int# -> Int64X2# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt8OffAddrAsInt8X32# :: Addr# -> Int# -> Int8X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt16OffAddrAsInt16X16# :: Addr# -> Int# -> Int16X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt32OffAddrAsInt32X8# :: Addr# -> Int# -> Int32X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt64OffAddrAsInt64X4# :: Addr# -> Int# -> Int64X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt8OffAddrAsInt8X64# :: Addr# -> Int# -> Int8X64# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt16OffAddrAsInt16X32# :: Addr# -> Int# -> Int16X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt32OffAddrAsInt32X16# :: Addr# -> Int# -> Int32X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeInt64OffAddrAsInt64X8# :: Addr# -> Int# -> Int64X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord8OffAddrAsWord8X16# :: Addr# -> Int# -> Word8X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord16OffAddrAsWord16X8# :: Addr# -> Int# -> Word16X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord32OffAddrAsWord32X4# :: Addr# -> Int# -> Word32X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord64OffAddrAsWord64X2# :: Addr# -> Int# -> Word64X2# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord8OffAddrAsWord8X32# :: Addr# -> Int# -> Word8X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord16OffAddrAsWord16X16# :: Addr# -> Int# -> Word16X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord32OffAddrAsWord32X8# :: Addr# -> Int# -> Word32X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord64OffAddrAsWord64X4# :: Addr# -> Int# -> Word64X4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord8OffAddrAsWord8X64# :: Addr# -> Int# -> Word8X64# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord16OffAddrAsWord16X32# :: Addr# -> Int# -> Word16X32# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord32OffAddrAsWord32X16# :: Addr# -> Int# -> Word32X16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeWord64OffAddrAsWord64X8# :: Addr# -> Int# -> Word64X8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeFloatOffAddrAsFloatX4# :: Addr# -> Int# -> FloatX4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeDoubleOffAddrAsDoubleX2# :: Addr# -> Int# -> DoubleX2# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeFloatOffAddrAsFloatX8# :: Addr# -> Int# -> FloatX8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeDoubleOffAddrAsDoubleX4# :: Addr# -> Int# -> DoubleX4# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeFloatOffAddrAsFloatX16# :: Addr# -> Int# -> FloatX16# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

writeDoubleOffAddrAsDoubleX8# :: Addr# -> Int# -> DoubleX8# -> State# d -> State# d Source #

Write vector; offset in scalar elements.

shiftL# :: Word# -> Int# -> Word# Source #

Shift the argument left by the specified number of bits (which must be non-negative).

shiftRL# :: Word# -> Int# -> Word# Source #

Shift the argument right by the specified number of bits (which must be non-negative). The RL means "right, logical" (as opposed to RA for arithmetic) (although an arithmetic right shift wouldn't make sense for Word#)

iShiftL# :: Int# -> Int# -> Int# Source #

Shift the argument left by the specified number of bits (which must be non-negative).

iShiftRA# :: Int# -> Int# -> Int# Source #

Shift the argument right (signed) by the specified number of bits (which must be non-negative). The RA means "right, arithmetic" (as opposed to RL for logical)

iShiftRL# :: Int# -> Int# -> Int# Source #

Shift the argument right (unsigned) by the specified number of bits (which must be non-negative). The RL means "right, logical" (as opposed to RA for arithmetic)

isTrue# :: Int# -> Bool Source #

Alias for tagToEnum#. Returns True if its parameter is 1# and False if it is 0#.

Fusion

build :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a] Source #

A list producer that can be fused with foldr. This function is merely

   build g = g (:) []

but GHC's simplifier will transform an expression of the form foldr k z (build g), which may arise after inlining, to g k z, which avoids producing an intermediate list.

augment :: forall a. (forall b. (a -> b -> b) -> b -> b) -> [a] -> [a] Source #

A list producer that can be fused with foldr. This function is merely

   augment g xs = g (:) xs

but GHC's simplifier will transform an expression of the form foldr k z (augment g xs), which may arise after inlining, to g k (foldr k z xs), which avoids producing an intermediate list.

Overloaded string literals

class IsString a where Source #

Class for string-like datastructures; used by the overloaded string extension (-XOverloadedStrings in GHC).

Minimal complete definition

fromString

Methods

fromString :: String -> a Source #

Instances
a ~ Char => IsString [a] Source #

(a ~ Char) context was introduced in 4.9.0.0

Since: base-2.1

Instance details

Defined in Data.String

Methods

fromString :: String -> [a] Source #

IsString a => IsString (Identity a) Source # 
Instance details

Defined in Data.String

IsString a => IsString (Const a b) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b Source #

Debugging

breakpoint :: a -> a Source #

Ids with special behaviour

lazy :: a -> a Source #

The lazy function restrains strictness analysis a little. The call lazy e means the same as e, but lazy has a magical property so far as strictness analysis is concerned: it is lazy in its first argument, even though its semantics is strict. After strictness analysis has run, calls to lazy are inlined to be the identity function.

This behaviour is occasionally useful when controlling evaluation order. Notably, lazy is used in the library definition of par:

par :: a -> b -> b
par x y = case (par# x) of _ -> lazy y

If lazy were not lazy, par would look strict in y which would defeat the whole purpose of par.

Like seq, the argument of lazy can have an unboxed type.

inline :: a -> a Source #

The call inline f arranges that f is inlined, regardless of its size. More precisely, the call inline f rewrites to the right-hand side of f's definition. This allows the programmer to control inlining from a particular call site rather than the definition site of the function (c.f. INLINE pragmas).

This inlining occurs regardless of the argument to the call or the size of f's definition; it is unconditional. The main caveat is that f's definition must be visible to the compiler; it is therefore recommended to mark the function with an INLINABLE pragma at its definition so that GHC guarantees to record its unfolding regardless of size.

If no inlining takes place, the inline function expands to the identity function in Phase zero, so its use imposes no overhead.

oneShot :: (a -> b) -> a -> b Source #

The oneShot function can be used to give a hint to the compiler that its argument will be called at most once, which may (or may not) enable certain optimizations. It can be useful to improve the performance of code in continuation passing style.

If oneShot is used wrongly, then it may be that computations whose result that would otherwise be shared are re-evaluated every time they are used. Otherwise, the use of oneShot is safe.

oneShot is representation polymorphic: the type variables may refer to lifted or unlifted types.

Running RealWorld state transformers

runRW# :: (State# RealWorld -> a) -> a Source #

Apply a function to a 'State# RealWorld' token. When manually applying a function to realWorld#, it is necessary to use NOINLINE to prevent semantically undesirable floating. runRW# is inlined, but only very late in compilation after all floating is complete.

Safe coercions

These are available from the Trustworthy module Data.Coerce as well

Since: base-4.7.0.0

coerce :: Coercible a b => a -> b Source #

The function coerce allows you to safely convert between values of types that have the same representation with no run-time overhead. In the simplest case you can use it instead of a newtype constructor, to go from the newtype's concrete type to the abstract type. But it also works in more complicated settings, e.g. converting a list of newtypes to a list of concrete types.

class a ~R# b => Coercible (a :: k0) (b :: k0) Source #

Coercible is a two-parameter class that has instances for types a and b if the compiler can infer that they have the same representation. This class does not have regular instances; instead they are created on-the-fly during type-checking. Trying to manually declare an instance of Coercible is an error.

Nevertheless one can pretend that the following three kinds of instances exist. First, as a trivial base-case:

instance Coercible a a

Furthermore, for every type constructor there is an instance that allows to coerce under the type constructor. For example, let D be a prototypical type constructor (data or newtype) with three type arguments, which have roles nominal, representational resp. phantom. Then there is an instance of the form

instance Coercible b b' => Coercible (D a b c) (D a b' c')

Note that the nominal type arguments are equal, the representational type arguments can differ, but need to have a Coercible instance themself, and the phantom type arguments can be changed arbitrarily.

The third kind of instance exists for every newtype NT = MkNT T and comes in two variants, namely

instance Coercible a T => Coercible a NT
instance Coercible T b => Coercible NT b

This instance is only usable if the constructor MkNT is in scope.

If, as a library author of a type constructor like Set a, you want to prevent a user of your module to write coerce :: Set T -> Set NT, you need to set the role of Set's type parameter to nominal, by writing

type role Set nominal

For more details about this feature, please refer to Safe Coercions by Joachim Breitner, Richard A. Eisenberg, Simon Peyton Jones and Stephanie Weirich.

Since: ghc-prim-4.7.0.0

Equality

class a ~# b => (a :: k0) ~~ (b :: k1) Source #

Lifted, heterogeneous equality. By lifted, we mean that it can be bogus (deferred type error). By heterogeneous, the two types a and b might have different kinds. Because ~~ can appear unexpectedly in error messages to users who do not care about the difference between heterogeneous equality ~~ and homogeneous equality ~, this is printed as ~ unless -fprint-equality-relations is set.

Representation polymorphism

data TYPE (a :: RuntimeRep) Source #

Instances
Functor f => Generic1 (f :.: g :: k -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (f :.: g) :: k -> * Source #

Methods

from1 :: (f :.: g) a -> Rep1 (f :.: g) a Source #

to1 :: Rep1 (f :.: g) a -> (f :.: g) a Source #

Functor f => Generic1 (Compose f g :: k -> *) Source # 
Instance details

Defined in Data.Functor.Compose

Associated Types

type Rep1 (Compose f g) :: k -> * Source #

Methods

from1 :: Compose f g a -> Rep1 (Compose f g) a Source #

to1 :: Rep1 (Compose f g) a -> Compose f g a Source #

Monad (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: U1 a -> (a -> U1 b) -> U1 b Source #

(>>) :: U1 a -> U1 b -> U1 b Source #

return :: a -> U1 a Source #

fail :: String -> U1 a Source #

Monad (Proxy :: * -> *) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

(>>=) :: Proxy a -> (a -> Proxy b) -> Proxy b Source #

(>>) :: Proxy a -> Proxy b -> Proxy b Source #

return :: a -> Proxy a Source #

fail :: String -> Proxy a Source #

Functor (V1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> V1 a -> V1 b Source #

(<$) :: a -> V1 b -> V1 a Source #

Functor (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> U1 a -> U1 b Source #

(<$) :: a -> U1 b -> U1 a Source #

Functor (Proxy :: * -> *) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

fmap :: (a -> b) -> Proxy a -> Proxy b Source #

(<$) :: a -> Proxy b -> Proxy a Source #

Applicative (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> U1 a Source #

(<*>) :: U1 (a -> b) -> U1 a -> U1 b Source #

liftA2 :: (a -> b -> c) -> U1 a -> U1 b -> U1 c Source #

(*>) :: U1 a -> U1 b -> U1 b Source #

(<*) :: U1 a -> U1 b -> U1 a Source #

Applicative (Proxy :: * -> *) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Proxy

Methods

pure :: a -> Proxy a Source #

(<*>) :: Proxy (a -> b) -> Proxy a -> Proxy b Source #

liftA2 :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c Source #

(*>) :: Proxy a -> Proxy b -> Proxy b Source #

(<*) :: Proxy a -> Proxy b -> Proxy a Source #

Foldable (V1 :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => V1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> V1 a -> m Source #

foldr :: (a -> b -> b) -> b -> V1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> V1 a -> b Source #

foldl :: (b -> a -> b) -> b -> V1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> V1 a -> b Source #

foldr1 :: (a -> a -> a) -> V1 a -> a Source #

foldl1 :: (a -> a -> a) -> V1 a -> a Source #

toList :: V1 a -> [a] Source #

null :: V1 a -> Bool Source #

length :: V1 a -> Int Source #

elem :: Eq a => a -> V1 a -> Bool Source #

maximum :: Ord a => V1 a -> a Source #

minimum :: Ord a => V1 a -> a Source #

sum :: Num a => V1 a -> a Source #

product :: Num a => V1 a -> a Source #

Foldable (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => U1 m -> m Source #

foldMap :: Monoid m => (a -> m) -> U1 a -> m Source #

foldr :: (a -> b -> b) -> b -> U1 a -> b Source #

foldr' :: (a -> b -> b) -> b -> U1 a -> b Source #

foldl :: (b -> a -> b) -> b -> U1 a -> b Source #

foldl' :: (b -> a -> b) -> b -> U1 a -> b Source #

foldr1 :: (a -> a -> a) -> U1 a -> a Source #

foldl1 :: (a -> a -> a) -> U1 a -> a Source #

toList :: U1 a -> [a] Source #

null :: U1 a -> Bool Source #

length :: U1 a -> Int Source #

elem :: Eq a => a -> U1 a -> Bool Source #

maximum :: Ord a => U1 a -> a Source #

minimum :: Ord a => U1 a -> a Source #

sum :: Num a => U1 a -> a Source #

product :: Num a => U1 a -> a Source #

Foldable (Proxy :: * -> *) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Proxy m -> m Source #

foldMap :: Monoid m => (a -> m) -> Proxy a -> m Source #

foldr :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldr' :: (a -> b -> b) -> b -> Proxy a -> b Source #

foldl :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldl' :: (b -> a -> b) -> b -> Proxy a -> b Source #

foldr1 :: (a -> a -> a) -> Proxy a -> a Source #

foldl1 :: (a -> a -> a) -> Proxy a -> a Source #

toList :: Proxy a -> [a] Source #

null :: Proxy a -> Bool Source #

length :: Proxy a -> Int Source #

elem :: Eq a => a -> Proxy a -> Bool Source #

maximum :: Ord a => Proxy a -> a Source #

minimum :: Ord a => Proxy a -> a Source #

sum :: Num a => Proxy a -> a Source #

product :: Num a => Proxy a -> a Source #

Traversable (V1 :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> V1 a -> f (V1 b) Source #

sequenceA :: Applicative f => V1 (f a) -> f (V1 a) Source #

mapM :: Monad m => (a -> m b) -> V1 a -> m (V1 b) Source #

sequence :: Monad m => V1 (m a) -> m (V1 a) Source #

Traversable (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> U1 a -> f (U1 b) Source #

sequenceA :: Applicative f => U1 (f a) -> f (U1 a) Source #

mapM :: Monad m => (a -> m b) -> U1 a -> m (U1 b) Source #

sequence :: Monad m => U1 (m a) -> m (U1 a) Source #

Traversable (Proxy :: * -> *) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Proxy a -> f (Proxy b) Source #

sequenceA :: Applicative f => Proxy (f a) -> f (Proxy a) Source #

mapM :: Monad m => (a -> m b) -> Proxy a -> m (Proxy b) Source #

sequence :: Monad m => Proxy (m a) -> m (Proxy a) Source #

MonadPlus (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: U1 a Source #

mplus :: U1 a -> U1 a -> U1 a Source #

MonadPlus (Proxy :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

mzero :: Proxy a Source #

mplus :: Proxy a -> Proxy a -> Proxy a Source #

Alternative (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: U1 a Source #

(<|>) :: U1 a -> U1 a -> U1 a Source #

some :: U1 a -> U1 [a] Source #

many :: U1 a -> U1 [a] Source #

Alternative (Proxy :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Proxy

Methods

empty :: Proxy a Source #

(<|>) :: Proxy a -> Proxy a -> Proxy a Source #

some :: Proxy a -> Proxy [a] Source #

many :: Proxy a -> Proxy [a] Source #

MonadZip (U1 :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: U1 a -> U1 b -> U1 (a, b) Source #

mzipWith :: (a -> b -> c) -> U1 a -> U1 b -> U1 c Source #

munzip :: U1 (a, b) -> (U1 a, U1 b) Source #

MonadZip (Proxy :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Proxy a -> Proxy b -> Proxy (a, b) Source #

mzipWith :: (a -> b -> c) -> Proxy a -> Proxy b -> Proxy c Source #

munzip :: Proxy (a, b) -> (Proxy a, Proxy b) Source #

Show2 (Const :: * -> * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> Int -> Const a b -> ShowS Source #

liftShowList2 :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> (Int -> b -> ShowS) -> ([b] -> ShowS) -> [Const a b] -> ShowS Source #

Read2 (Const :: * -> * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> Int -> ReadS (Const a b) Source #

liftReadList2 :: (Int -> ReadS a) -> ReadS [a] -> (Int -> ReadS b) -> ReadS [b] -> ReadS [Const a b] Source #

liftReadPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec (Const a b) Source #

liftReadListPrec2 :: ReadPrec a -> ReadPrec [a] -> ReadPrec b -> ReadPrec [b] -> ReadPrec [Const a b] Source #

Ord2 (Const :: * -> * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare2 :: (a -> b -> Ordering) -> (c -> d -> Ordering) -> Const a c -> Const b d -> Ordering Source #

Eq2 (Const :: * -> * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq2 :: (a -> b -> Bool) -> (c -> d -> Bool) -> Const a c -> Const b d -> Bool Source #

Show1 (Proxy :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Proxy a -> ShowS Source #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Proxy a] -> ShowS Source #

Read1 (Proxy :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Ord1 (Proxy :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a -> b -> Ordering) -> Proxy a -> Proxy b -> Ordering Source #

Eq1 (Proxy :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a -> b -> Bool) -> Proxy a -> Proxy b -> Bool Source #

Bifunctor (Const :: * -> * -> *) Source #

Since: base-4.8.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> Const a c -> Const b d Source #

first :: (a -> b) -> Const a c -> Const b c Source #

second :: (b -> c) -> Const a b -> Const a c Source #

Bifoldable (Const :: * -> * -> *) Source #

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => Const m m -> m Source #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Const a b -> m Source #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Const a b -> c Source #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Const a b -> c Source #

Bitraversable (Const :: * -> * -> *) Source #

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Const a b -> f (Const c d) Source #

Generic1 [] Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 [] :: k -> * Source #

Methods

from1 :: [a] -> Rep1 [] a Source #

to1 :: Rep1 [] a -> [a] Source #

Generic1 Maybe Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Maybe :: k -> * Source #

Methods

from1 :: Maybe a -> Rep1 Maybe a Source #

to1 :: Rep1 Maybe a -> Maybe a Source #

Generic1 Par1 Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 Par1 :: k -> * Source #

Methods

from1 :: Par1 a -> Rep1 Par1 a Source #

to1 :: Rep1 Par1 a -> Par1 a Source #

Generic1 NonEmpty Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 NonEmpty :: k -> * Source #

Generic1 Product Source # 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Product :: k -> * Source #

Generic1 Sum Source # 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Sum :: k -> * Source #

Methods

from1 :: Sum a -> Rep1 Sum a Source #

to1 :: Rep1 Sum a -> Sum a Source #

Generic1 Dual Source # 
Instance details

Defined in Data.Semigroup.Internal

Associated Types

type Rep1 Dual :: k -> * Source #

Methods

from1 :: Dual a -> Rep1 Dual a Source #

to1 :: Rep1 Dual a -> Dual a Source #

Generic1 Last Source # 
Instance details

Defined in Data.Monoid

Associated Types

type Rep1 Last :: k -> * Source #

Methods

from1 :: Last a -> Rep1 Last a Source #

to1 :: Rep1 Last a -> Last a Source #

Generic1 First Source # 
Instance details

Defined in Data.Monoid

Associated Types

type Rep1 First :: k -> * Source #

Methods

from1 :: First a -> Rep1 First a Source #

to1 :: Rep1 First a -> First a Source #

Generic1 Identity Source # 
Instance details

Defined in Data.Functor.Identity

Associated Types

type Rep1 Identity :: k -> * Source #

Generic1 ZipList Source # 
Instance details

Defined in Control.Applicative

Associated Types

type Rep1 ZipList :: k -> * Source #

Generic1 Option Source # 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Option :: k -> * Source #

Methods

from1 :: Option a -> Rep1 Option a Source #

to1 :: Rep1 Option a -> Option a Source #

Generic1 WrappedMonoid Source # 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 WrappedMonoid :: k -> * Source #

Generic1 Last Source # 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Last :: k -> * Source #

Methods

from1 :: Last a -> Rep1 Last a Source #

to1 :: Rep1 Last a -> Last a Source #

Generic1 First Source # 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 First :: k -> * Source #

Methods

from1 :: First a -> Rep1 First a Source #

to1 :: Rep1 First a -> First a Source #

Generic1 Max Source # 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Max :: k -> * Source #

Methods

from1 :: Max a -> Rep1 Max a Source #

to1 :: Rep1 Max a -> Max a Source #

Generic1 Min Source # 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 Min :: k -> * Source #

Methods

from1 :: Min a -> Rep1 Min a Source #

to1 :: Rep1 Min a -> Min a Source #

Generic1 Complex Source # 
Instance details

Defined in Data.Complex

Associated Types

type Rep1 Complex :: k -> * Source #

Generic1 (Either a :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 (Either a) :: k -> * Source #

Methods

from1 :: Either a a0 -> Rep1 (Either a) a0 Source #

to1 :: Rep1 (Either a) a0 -> Either a a0 Source #

Generic1 ((,) a :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,) a) :: k -> * Source #

Methods

from1 :: (a, a0) -> Rep1 ((,) a) a0 Source #

to1 :: Rep1 ((,) a) a0 -> (a, a0) Source #

Generic1 (WrappedMonad m :: * -> *) Source # 
Instance details

Defined in Control.Applicative

Associated Types

type Rep1 (WrappedMonad m) :: k -> * Source #

Generic1 (Arg a :: * -> *) Source # 
Instance details

Defined in Data.Semigroup

Associated Types

type Rep1 (Arg a) :: k -> * Source #

Methods

from1 :: Arg a a0 -> Rep1 (Arg a) a0 Source #

to1 :: Rep1 (Arg a) a0 -> Arg a a0 Source #

Monad m => Category (Kleisli m :: * -> * -> *) Source #

Since: base-3.0

Instance details

Defined in Control.Arrow

Methods

id :: Kleisli m a a Source #

(.) :: Kleisli m b c -> Kleisli m a b -> Kleisli m a c Source #

Generic1 ((,,) a b :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,) a b) :: k -> * Source #

Methods

from1 :: (a, b, a0) -> Rep1 ((,,) a b) a0 Source #

to1 :: Rep1 ((,,) a b) a0 -> (a, b, a0) Source #

Generic1 (WrappedArrow a b :: * -> *) Source # 
Instance details

Defined in Control.Applicative

Associated Types

type Rep1 (WrappedArrow a b) :: k -> * Source #

Methods

from1 :: WrappedArrow a b a0 -> Rep1 (WrappedArrow a b) a0 Source #

to1 :: Rep1 (WrappedArrow a b) a0 -> WrappedArrow a b a0 Source #

Category ((->) :: * -> * -> *) Source #

Since: base-3.0

Instance details

Defined in Control.Category

Methods

id :: a -> a Source #

(.) :: (b -> c) -> (a -> b) -> a -> c Source #

Generic1 ((,,,) a b c :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,) a b c) :: k -> * Source #

Methods

from1 :: (a, b, c, a0) -> Rep1 ((,,,) a b c) a0 Source #

to1 :: Rep1 ((,,,) a b c) a0 -> (a, b, c, a0) Source #

Generic1 ((,,,,) a b c d :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,,) a b c d) :: k -> * Source #

Methods

from1 :: (a, b, c, d, a0) -> Rep1 ((,,,,) a b c d) a0 Source #

to1 :: Rep1 ((,,,,) a b c d) a0 -> (a, b, c, d, a0) Source #

Generic1 ((,,,,,) a b c d e :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,,,) a b c d e) :: k -> * Source #

Methods

from1 :: (a, b, c, d, e, a0) -> Rep1 ((,,,,,) a b c d e) a0 Source #

to1 :: Rep1 ((,,,,,) a b c d e) a0 -> (a, b, c, d, e, a0) Source #

Generic1 ((,,,,,,) a b c d e f :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Associated Types

type Rep1 ((,,,,,,) a b c d e f) :: k -> * Source #

Methods

from1 :: (a, b, c, d, e, f, a0) -> Rep1 ((,,,,,,) a b c d e f) a0 Source #

to1 :: Rep1 ((,,,,,,) a b c d e f) a0 -> (a, b, c, d, e, f, a0) Source #

Monad f => Monad (Rec1 f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: Rec1 f a -> (a -> Rec1 f b) -> Rec1 f b Source #

(>>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

return :: a -> Rec1 f a Source #

fail :: String -> Rec1 f a Source #

Monad f => Monad (Alt f) Source # 
Instance details

Defined in Data.Semigroup.Internal

Methods

(>>=) :: Alt f a -> (a -> Alt f b) -> Alt f b Source #

(>>) :: Alt f a -> Alt f b -> Alt f b Source #

return :: a -> Alt f a Source #

fail :: String -> Alt f a Source #

Data p => Data (V1 p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> V1 p -> c (V1 p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (V1 p) Source #

toConstr :: V1 p -> Constr Source #

dataTypeOf :: V1 p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (V1 p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (V1 p)) Source #

gmapT :: (forall b. Data b => b -> b) -> V1 p -> V1 p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> V1 p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> V1 p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> V1 p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> V1 p -> m (V1 p) Source #

Data p => Data (U1 p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> U1 p -> c (U1 p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (U1 p) Source #

toConstr :: U1 p -> Constr Source #

dataTypeOf :: U1 p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (U1 p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (U1 p)) Source #

gmapT :: (forall b. Data b => b -> b) -> U1 p -> U1 p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> U1 p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> U1 p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> U1 p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> U1 p -> m (U1 p) Source #

Data t => Data (Proxy t) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Proxy t -> c (Proxy t) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Proxy t) Source #

toConstr :: Proxy t -> Constr Source #

dataTypeOf :: Proxy t -> DataType Source #

dataCast1 :: Typeable t0 => (forall d. Data d => c (t0 d)) -> Maybe (c (Proxy t)) Source #

dataCast2 :: Typeable t0 => (forall d e. (Data d, Data e) => c (t0 d e)) -> Maybe (c (Proxy t)) Source #

gmapT :: (forall b. Data b => b -> b) -> Proxy t -> Proxy t Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Proxy t -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Proxy t -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Proxy t -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Proxy t -> m (Proxy t) Source #

Functor f => Functor (Rec1 f) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> Rec1 f a -> Rec1 f b Source #

(<$) :: a -> Rec1 f b -> Rec1 f a Source #

Functor (URec Char :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Char a -> URec Char b Source #

(<$) :: a -> URec Char b -> URec Char a Source #

Functor (URec Double :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Double a -> URec Double b Source #

(<$) :: a -> URec Double b -> URec Double a Source #

Functor (URec Float :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Float a -> URec Float b Source #

(<$) :: a -> URec Float b -> URec Float a Source #

Functor (URec Int :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Int a -> URec Int b Source #

(<$) :: a -> URec Int b -> URec Int a Source #

Functor (URec Word :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec Word a -> URec Word b Source #

(<$) :: a -> URec Word b -> URec Word a Source #

Functor (URec (Ptr ()) :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> URec (Ptr ()) a -> URec (Ptr ()) b Source #

(<$) :: a -> URec (Ptr ()) b -> URec (Ptr ()) a Source #

Functor f => Functor (Alt f) Source # 
Instance details

Defined in Data.Semigroup.Internal

Methods

fmap :: (a -> b) -> Alt f a -> Alt f b Source #

(<$) :: a -> Alt f b -> Alt f a Source #

Functor (Const m :: * -> *) Source #

Since: base-2.1

Instance details

Defined in Data.Functor.Const

Methods

fmap :: (a -> b) -> Const m a -> Const m b Source #

(<$) :: a -> Const m b -> Const m a Source #

MonadFix f => MonadFix (Rec1 f) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> Rec1 f a) -> Rec1 f a Source #

MonadFix f => MonadFix (Alt f) Source #

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> Alt f a) -> Alt f a Source #

Applicative f => Applicative (Rec1 f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> Rec1 f a Source #

(<*>) :: Rec1 f (a -> b) -> Rec1 f a -> Rec1 f b Source #

liftA2 :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c Source #

(*>) :: Rec1 f a -> Rec1 f b -> Rec1 f b Source #

(<*) :: Rec1 f a -> Rec1 f b -> Rec1 f a Source #

Applicative f => Applicative (Alt f) Source # 
Instance details

Defined in Data.Semigroup.Internal

Methods

pure :: a -> Alt f a Source #

(<*>) :: Alt f (a -> b) -> Alt f a -> Alt f b Source #

liftA2 :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c Source #

(*>) :: Alt f a -> Alt f b -> Alt f b Source #

(<*) :: Alt f a -> Alt f b -> Alt f a Source #

Monoid m => Applicative (Const m :: * -> *) Source #

Since: base-2.0.1

Instance details

Defined in Data.Functor.Const

Methods

pure :: a -> Const m a Source #

(<*>) :: Const m (a -> b) -> Const m a -> Const m b Source #

liftA2 :: (a -> b -> c) -> Const m a -> Const m b -> Const m c Source #

(*>) :: Const m a -> Const m b -> Const m b Source #

(<*) :: Const m a -> Const m b -> Const m a Source #

Foldable f => Foldable (Rec1 f) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => Rec1 f m -> m Source #

foldMap :: Monoid m => (a -> m) -> Rec1 f a -> m Source #

foldr :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldr' :: (a -> b -> b) -> b -> Rec1 f a -> b Source #

foldl :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldl' :: (b -> a -> b) -> b -> Rec1 f a -> b Source #

foldr1 :: (a -> a -> a) -> Rec1 f a -> a Source #

foldl1 :: (a -> a -> a) -> Rec1 f a -> a Source #

toList :: Rec1 f a -> [a] Source #

null :: Rec1 f a -> Bool Source #

length :: Rec1 f a -> Int Source #

elem :: Eq a => a -> Rec1 f a -> Bool Source #

maximum :: Ord a => Rec1 f a -> a Source #

minimum :: Ord a => Rec1 f a -> a Source #

sum :: Num a => Rec1 f a -> a Source #

product :: Num a => Rec1 f a -> a Source #

Foldable (URec Char :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Char m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Char a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Char a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Char a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Char a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Char a -> b Source #

foldr1 :: (a -> a -> a) -> URec Char a -> a Source #

foldl1 :: (a -> a -> a) -> URec Char a -> a Source #

toList :: URec Char a -> [a] Source #

null :: URec Char a -> Bool Source #

length :: URec Char a -> Int Source #

elem :: Eq a => a -> URec Char a -> Bool Source #

maximum :: Ord a => URec Char a -> a Source #

minimum :: Ord a => URec Char a -> a Source #

sum :: Num a => URec Char a -> a Source #

product :: Num a => URec Char a -> a Source #

Foldable (URec Double :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Double m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Double a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Double a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Double a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Double a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Double a -> b Source #

foldr1 :: (a -> a -> a) -> URec Double a -> a Source #

foldl1 :: (a -> a -> a) -> URec Double a -> a Source #

toList :: URec Double a -> [a] Source #

null :: URec Double a -> Bool Source #

length :: URec Double a -> Int Source #

elem :: Eq a => a -> URec Double a -> Bool Source #

maximum :: Ord a => URec Double a -> a Source #

minimum :: Ord a => URec Double a -> a Source #

sum :: Num a => URec Double a -> a Source #

product :: Num a => URec Double a -> a Source #

Foldable (URec Float :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Float m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Float a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Float a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Float a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Float a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Float a -> b Source #

foldr1 :: (a -> a -> a) -> URec Float a -> a Source #

foldl1 :: (a -> a -> a) -> URec Float a -> a Source #

toList :: URec Float a -> [a] Source #

null :: URec Float a -> Bool Source #

length :: URec Float a -> Int Source #

elem :: Eq a => a -> URec Float a -> Bool Source #

maximum :: Ord a => URec Float a -> a Source #

minimum :: Ord a => URec Float a -> a Source #

sum :: Num a => URec Float a -> a Source #

product :: Num a => URec Float a -> a Source #

Foldable (URec Int :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Int m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Int a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Int a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Int a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Int a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Int a -> b Source #

foldr1 :: (a -> a -> a) -> URec Int a -> a Source #

foldl1 :: (a -> a -> a) -> URec Int a -> a Source #

toList :: URec Int a -> [a] Source #

null :: URec Int a -> Bool Source #

length :: URec Int a -> Int Source #

elem :: Eq a => a -> URec Int a -> Bool Source #

maximum :: Ord a => URec Int a -> a Source #

minimum :: Ord a => URec Int a -> a Source #

sum :: Num a => URec Int a -> a Source #

product :: Num a => URec Int a -> a Source #

Foldable (URec Word :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec Word m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec Word a -> m Source #

foldr :: (a -> b -> b) -> b -> URec Word a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec Word a -> b Source #

foldl :: (b -> a -> b) -> b -> URec Word a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec Word a -> b Source #

foldr1 :: (a -> a -> a) -> URec Word a -> a Source #

foldl1 :: (a -> a -> a) -> URec Word a -> a Source #

toList :: URec Word a -> [a] Source #

null :: URec Word a -> Bool Source #

length :: URec Word a -> Int Source #

elem :: Eq a => a -> URec Word a -> Bool Source #

maximum :: Ord a => URec Word a -> a Source #

minimum :: Ord a => URec Word a -> a Source #

sum :: Num a => URec Word a -> a Source #

product :: Num a => URec Word a -> a Source #

Foldable (URec (Ptr ()) :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => URec (Ptr ()) m -> m Source #

foldMap :: Monoid m => (a -> m) -> URec (Ptr ()) a -> m Source #

foldr :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b Source #

foldr' :: (a -> b -> b) -> b -> URec (Ptr ()) a -> b Source #

foldl :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b Source #

foldl' :: (b -> a -> b) -> b -> URec (Ptr ()) a -> b Source #

foldr1 :: (a -> a -> a) -> URec (Ptr ()) a -> a Source #

foldl1 :: (a -> a -> a) -> URec (Ptr ()) a -> a Source #

toList :: URec (Ptr ()) a -> [a] Source #

null :: URec (Ptr ()) a -> Bool Source #

length :: URec (Ptr ()) a -> Int Source #

elem :: Eq a => a -> URec (Ptr ()) a -> Bool Source #

maximum :: Ord a => URec (Ptr ()) a -> a Source #

minimum :: Ord a => URec (Ptr ()) a -> a Source #

sum :: Num a => URec (Ptr ()) a -> a Source #

product :: Num a => URec (Ptr ()) a -> a Source #

Foldable (Const m :: * -> *) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Functor.Const

Methods

fold :: Monoid m0 => Const m m0 -> m0 Source #

foldMap :: Monoid m0 => (a -> m0) -> Const m a -> m0 Source #

foldr :: (a -> b -> b) -> b -> Const m a -> b Source #

foldr' :: (a -> b -> b) -> b -> Const m a -> b Source #

foldl :: (b -> a -> b) -> b -> Const m a -> b Source #

foldl' :: (b -> a -> b) -> b -> Const m a -> b Source #

foldr1 :: (a -> a -> a) -> Const m a -> a Source #

foldl1 :: (a -> a -> a) -> Const m a -> a Source #

toList :: Const m a -> [a] Source #

null :: Const m a -> Bool Source #

length :: Const m a -> Int Source #

elem :: Eq a => a -> Const m a -> Bool Source #

maximum :: Ord a => Const m a -> a Source #

minimum :: Ord a => Const m a -> a Source #

sum :: Num a => Const m a -> a Source #

product :: Num a => Const m a -> a Source #

Traversable f => Traversable (Rec1 f) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Rec1 f a -> f0 (Rec1 f b) Source #

sequenceA :: Applicative f0 => Rec1 f (f0 a) -> f0 (Rec1 f a) Source #

mapM :: Monad m => (a -> m b) -> Rec1 f a -> m (Rec1 f b) Source #

sequence :: Monad m => Rec1 f (m a) -> m (Rec1 f a) Source #

Traversable (URec Char :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Char a -> f (URec Char b) Source #

sequenceA :: Applicative f => URec Char (f a) -> f (URec Char a) Source #

mapM :: Monad m => (a -> m b) -> URec Char a -> m (URec Char b) Source #

sequence :: Monad m => URec Char (m a) -> m (URec Char a) Source #

Traversable (URec Double :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Double a -> f (URec Double b) Source #

sequenceA :: Applicative f => URec Double (f a) -> f (URec Double a) Source #

mapM :: Monad m => (a -> m b) -> URec Double a -> m (URec Double b) Source #

sequence :: Monad m => URec Double (m a) -> m (URec Double a) Source #

Traversable (URec Float :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Float a -> f (URec Float b) Source #

sequenceA :: Applicative f => URec Float (f a) -> f (URec Float a) Source #

mapM :: Monad m => (a -> m b) -> URec Float a -> m (URec Float b) Source #

sequence :: Monad m => URec Float (m a) -> m (URec Float a) Source #

Traversable (URec Int :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Int a -> f (URec Int b) Source #

sequenceA :: Applicative f => URec Int (f a) -> f (URec Int a) Source #

mapM :: Monad m => (a -> m b) -> URec Int a -> m (URec Int b) Source #

sequence :: Monad m => URec Int (m a) -> m (URec Int a) Source #

Traversable (URec Word :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec Word a -> f (URec Word b) Source #

sequenceA :: Applicative f => URec Word (f a) -> f (URec Word a) Source #

mapM :: Monad m => (a -> m b) -> URec Word a -> m (URec Word b) Source #

sequence :: Monad m => URec Word (m a) -> m (URec Word a) Source #

Traversable (URec (Ptr ()) :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> URec (Ptr ()) a -> f (URec (Ptr ()) b) Source #

sequenceA :: Applicative f => URec (Ptr ()) (f a) -> f (URec (Ptr ()) a) Source #

mapM :: Monad m => (a -> m b) -> URec (Ptr ()) a -> m (URec (Ptr ()) b) Source #

sequence :: Monad m => URec (Ptr ()) (m a) -> m (URec (Ptr ()) a) Source #

Traversable (Const m :: * -> *) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> Const m a -> f (Const m b) Source #

sequenceA :: Applicative f => Const m (f a) -> f (Const m a) Source #

mapM :: Monad m0 => (a -> m0 b) -> Const m a -> m0 (Const m b) Source #

sequence :: Monad m0 => Const m (m0 a) -> m0 (Const m a) Source #

MonadPlus f => MonadPlus (Rec1 f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: Rec1 f a Source #

mplus :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

MonadPlus f => MonadPlus (Alt f) Source # 
Instance details

Defined in Data.Semigroup.Internal

Methods

mzero :: Alt f a Source #

mplus :: Alt f a -> Alt f a -> Alt f a Source #

Alternative f => Alternative (Rec1 f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: Rec1 f a Source #

(<|>) :: Rec1 f a -> Rec1 f a -> Rec1 f a Source #

some :: Rec1 f a -> Rec1 f [a] Source #

many :: Rec1 f a -> Rec1 f [a] Source #

Alternative f => Alternative (Alt f) Source # 
Instance details

Defined in Data.Semigroup.Internal

Methods

empty :: Alt f a Source #

(<|>) :: Alt f a -> Alt f a -> Alt f a Source #

some :: Alt f a -> Alt f [a] Source #

many :: Alt f a -> Alt f [a] Source #

MonadZip f => MonadZip (Rec1 f) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Rec1 f a -> Rec1 f b -> Rec1 f (a, b) Source #

mzipWith :: (a -> b -> c) -> Rec1 f a -> Rec1 f b -> Rec1 f c Source #

munzip :: Rec1 f (a, b) -> (Rec1 f a, Rec1 f b) Source #

MonadZip f => MonadZip (Alt f) Source #

Since: base-4.8.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: Alt f a -> Alt f b -> Alt f (a, b) Source #

mzipWith :: (a -> b -> c) -> Alt f a -> Alt f b -> Alt f c Source #

munzip :: Alt f (a, b) -> (Alt f a, Alt f b) Source #

Show a => Show1 (Const a :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftShowsPrec :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> Int -> Const a a0 -> ShowS Source #

liftShowList :: (Int -> a0 -> ShowS) -> ([a0] -> ShowS) -> [Const a a0] -> ShowS Source #

Read a => Read1 (Const a :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftReadsPrec :: (Int -> ReadS a0) -> ReadS [a0] -> Int -> ReadS (Const a a0) Source #

liftReadList :: (Int -> ReadS a0) -> ReadS [a0] -> ReadS [Const a a0] Source #

liftReadPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec (Const a a0) Source #

liftReadListPrec :: ReadPrec a0 -> ReadPrec [a0] -> ReadPrec [Const a a0] Source #

Ord a => Ord1 (Const a :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftCompare :: (a0 -> b -> Ordering) -> Const a a0 -> Const a b -> Ordering Source #

Eq a => Eq1 (Const a :: * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Classes

Methods

liftEq :: (a0 -> b -> Bool) -> Const a a0 -> Const a b -> Bool Source #

Bifunctor (K1 i :: * -> * -> *) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Bifunctor

Methods

bimap :: (a -> b) -> (c -> d) -> K1 i a c -> K1 i b d Source #

first :: (a -> b) -> K1 i a c -> K1 i b c Source #

second :: (b -> c) -> K1 i a b -> K1 i a c Source #

Bifoldable (K1 i :: * -> * -> *) Source #

Since: base-4.10.0.0

Instance details

Defined in Data.Bifoldable

Methods

bifold :: Monoid m => K1 i m m -> m Source #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> K1 i a b -> m Source #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> K1 i a b -> c Source #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> K1 i a b -> c Source #

Bitraversable (K1 i :: * -> * -> *) Source #

Since: base-4.10.0.0

Instance details

Defined in Data.Bitraversable

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> K1 i a b -> f (K1 i c d) Source #

(Monad f, Monad g) => Monad (f :*: g) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: (f :*: g) a -> (a -> (f :*: g) b) -> (f :*: g) b Source #

(>>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

return :: a -> (f :*: g) a Source #

fail :: String -> (f :*: g) a Source #

(Monad f, Monad g) => Monad (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

(>>=) :: Product f g a -> (a -> Product f g b) -> Product f g b Source #

(>>) :: Product f g a -> Product f g b -> Product f g b Source #

return :: a -> Product f g a Source #

fail :: String -> Product f g a Source #

(Data (f p), Typeable f, Data p) => Data (Rec1 f p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Rec1 f p -> c (Rec1 f p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Rec1 f p) Source #

toConstr :: Rec1 f p -> Constr Source #

dataTypeOf :: Rec1 f p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Rec1 f p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Rec1 f p)) Source #

gmapT :: (forall b. Data b => b -> b) -> Rec1 f p -> Rec1 f p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Rec1 f p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Rec1 f p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Rec1 f p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Rec1 f p -> m (Rec1 f p) Source #

(a ~ b, Data a) => Data (a :~: b) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> (a :~: b) -> c (a :~: b) Source #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (a :~: b) Source #

toConstr :: (a :~: b) -> Constr Source #

dataTypeOf :: (a :~: b) -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (a :~: b)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (a :~: b)) Source #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> (a :~: b) -> a :~: b Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (a :~: b) -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (a :~: b) -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (a :~: b) -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (a :~: b) -> m (a :~: b) Source #

(Coercible a b, Data a, Data b) => Data (Coercion a b) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b0. Data d => c (d -> b0) -> d -> c b0) -> (forall g. g -> c g) -> Coercion a b -> c (Coercion a b) Source #

gunfold :: (forall b0 r. Data b0 => c (b0 -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Coercion a b) Source #

toConstr :: Coercion a b -> Constr Source #

dataTypeOf :: Coercion a b -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Coercion a b)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Coercion a b)) Source #

gmapT :: (forall b0. Data b0 => b0 -> b0) -> Coercion a b -> Coercion a b Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Coercion a b -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Coercion a b -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Coercion a b -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Coercion a b -> m (Coercion a b) Source #

(Data (f a), Data a, Typeable f) => Data (Alt f a) Source #

Since: base-4.8.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Alt f a -> c (Alt f a) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Alt f a) Source #

toConstr :: Alt f a -> Constr Source #

dataTypeOf :: Alt f a -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Alt f a)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Alt f a)) Source #

gmapT :: (forall b. Data b => b -> b) -> Alt f a -> Alt f a Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Alt f a -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> Alt f a -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Alt f a -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Alt f a -> m (Alt f a) Source #

Functor (K1 i c :: * -> *) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> K1 i c a -> K1 i c b Source #

(<$) :: a -> K1 i c b -> K1 i c a Source #

(Functor f, Functor g) => Functor (f :+: g) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :+: g) a -> (f :+: g) b Source #

(<$) :: a -> (f :+: g) b -> (f :+: g) a Source #

(Functor f, Functor g) => Functor (f :*: g) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

(<$) :: a -> (f :*: g) b -> (f :*: g) a Source #

(Functor f, Functor g) => Functor (Sum f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

fmap :: (a -> b) -> Sum f g a -> Sum f g b Source #

(<$) :: a -> Sum f g b -> Sum f g a Source #

(Functor f, Functor g) => Functor (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

fmap :: (a -> b) -> Product f g a -> Product f g b Source #

(<$) :: a -> Product f g b -> Product f g a Source #

(MonadFix f, MonadFix g) => MonadFix (f :*: g) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> (f :*: g) a) -> (f :*: g) a Source #

(MonadFix f, MonadFix g) => MonadFix (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

mfix :: (a -> Product f g a) -> Product f g a Source #

IsString a => IsString (Const a b) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.String

Methods

fromString :: String -> Const a b Source #

(Applicative f, Applicative g) => Applicative (f :*: g) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :*: g) a Source #

(<*>) :: (f :*: g) (a -> b) -> (f :*: g) a -> (f :*: g) b Source #

liftA2 :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c Source #

(*>) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) b Source #

(<*) :: (f :*: g) a -> (f :*: g) b -> (f :*: g) a Source #

(Applicative f, Applicative g) => Applicative (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

pure :: a -> Product f g a Source #

(<*>) :: Product f g (a -> b) -> Product f g a -> Product f g b Source #

liftA2 :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c Source #

(*>) :: Product f g a -> Product f g b -> Product f g b Source #

(<*) :: Product f g a -> Product f g b -> Product f g a Source #

Foldable (K1 i c :: * -> *) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => K1 i c m -> m Source #

foldMap :: Monoid m => (a -> m) -> K1 i c a -> m Source #

foldr :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldr' :: (a -> b -> b) -> b -> K1 i c a -> b Source #

foldl :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldl' :: (b -> a -> b) -> b -> K1 i c a -> b Source #

foldr1 :: (a -> a -> a) -> K1 i c a -> a Source #

foldl1 :: (a -> a -> a) -> K1 i c a -> a Source #

toList :: K1 i c a -> [a] Source #

null :: K1 i c a -> Bool Source #

length :: K1 i c a -> Int Source #

elem :: Eq a => a -> K1 i c a -> Bool Source #

maximum :: Ord a => K1 i c a -> a Source #

minimum :: Ord a => K1 i c a -> a Source #

sum :: Num a => K1 i c a -> a Source #

product :: Num a => K1 i c a -> a Source #

(Foldable f, Foldable g) => Foldable (f :+: g) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :+: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :+: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :+: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :+: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :+: g) a -> a Source #

toList :: (f :+: g) a -> [a] Source #

null :: (f :+: g) a -> Bool Source #

length :: (f :+: g) a -> Int Source #

elem :: Eq a => a -> (f :+: g) a -> Bool Source #

maximum :: Ord a => (f :+: g) a -> a Source #

minimum :: Ord a => (f :+: g) a -> a Source #

sum :: Num a => (f :+: g) a -> a Source #

product :: Num a => (f :+: g) a -> a Source #

(Foldable f, Foldable g) => Foldable (f :*: g) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :*: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :*: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :*: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :*: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :*: g) a -> a Source #

toList :: (f :*: g) a -> [a] Source #

null :: (f :*: g) a -> Bool Source #

length :: (f :*: g) a -> Int Source #

elem :: Eq a => a -> (f :*: g) a -> Bool Source #

maximum :: Ord a => (f :*: g) a -> a Source #

minimum :: Ord a => (f :*: g) a -> a Source #

sum :: Num a => (f :*: g) a -> a Source #

product :: Num a => (f :*: g) a -> a Source #

(Foldable f, Foldable g) => Foldable (Sum f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

fold :: Monoid m => Sum f g m -> m Source #

foldMap :: Monoid m => (a -> m) -> Sum f g a -> m Source #

foldr :: (a -> b -> b) -> b -> Sum f g a -> b Source #

foldr' :: (a -> b -> b) -> b -> Sum f g a -> b Source #

foldl :: (b -> a -> b) -> b -> Sum f g a -> b Source #

foldl' :: (b -> a -> b) -> b -> Sum f g a -> b Source #

foldr1 :: (a -> a -> a) -> Sum f g a -> a Source #

foldl1 :: (a -> a -> a) -> Sum f g a -> a Source #

toList :: Sum f g a -> [a] Source #

null :: Sum f g a -> Bool Source #

length :: Sum f g a -> Int Source #

elem :: Eq a => a -> Sum f g a -> Bool Source #

maximum :: Ord a => Sum f g a -> a Source #

minimum :: Ord a => Sum f g a -> a Source #

sum :: Num a => Sum f g a -> a Source #

product :: Num a => Sum f g a -> a Source #

(Foldable f, Foldable g) => Foldable (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

fold :: Monoid m => Product f g m -> m Source #

foldMap :: Monoid m => (a -> m) -> Product f g a -> m Source #

foldr :: (a -> b -> b) -> b -> Product f g a -> b Source #

foldr' :: (a -> b -> b) -> b -> Product f g a -> b Source #

foldl :: (b -> a -> b) -> b -> Product f g a -> b Source #

foldl' :: (b -> a -> b) -> b -> Product f g a -> b Source #

foldr1 :: (a -> a -> a) -> Product f g a -> a Source #

foldl1 :: (a -> a -> a) -> Product f g a -> a Source #

toList :: Product f g a -> [a] Source #

null :: Product f g a -> Bool Source #

length :: Product f g a -> Int Source #

elem :: Eq a => a -> Product f g a -> Bool Source #

maximum :: Ord a => Product f g a -> a Source #

minimum :: Ord a => Product f g a -> a Source #

sum :: Num a => Product f g a -> a Source #

product :: Num a => Product f g a -> a Source #

Traversable (K1 i c :: * -> *) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f => (a -> f b) -> K1 i c a -> f (K1 i c b) Source #

sequenceA :: Applicative f => K1 i c (f a) -> f (K1 i c a) Source #

mapM :: Monad m => (a -> m b) -> K1 i c a -> m (K1 i c b) Source #

sequence :: Monad m => K1 i c (m a) -> m (K1 i c a) Source #

(Traversable f, Traversable g) => Traversable (f :+: g) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :+: g) a -> f0 ((f :+: g) b) Source #

sequenceA :: Applicative f0 => (f :+: g) (f0 a) -> f0 ((f :+: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :+: g) a -> m ((f :+: g) b) Source #

sequence :: Monad m => (f :+: g) (m a) -> m ((f :+: g) a) Source #

(Traversable f, Traversable g) => Traversable (f :*: g) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :*: g) a -> f0 ((f :*: g) b) Source #

sequenceA :: Applicative f0 => (f :*: g) (f0 a) -> f0 ((f :*: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :*: g) a -> m ((f :*: g) b) Source #

sequence :: Monad m => (f :*: g) (m a) -> m ((f :*: g) a) Source #

(Traversable f, Traversable g) => Traversable (Sum f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Sum f g a -> f0 (Sum f g b) Source #

sequenceA :: Applicative f0 => Sum f g (f0 a) -> f0 (Sum f g a) Source #

mapM :: Monad m => (a -> m b) -> Sum f g a -> m (Sum f g b) Source #

sequence :: Monad m => Sum f g (m a) -> m (Sum f g a) Source #

(Traversable f, Traversable g) => Traversable (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Product f g a -> f0 (Product f g b) Source #

sequenceA :: Applicative f0 => Product f g (f0 a) -> f0 (Product f g a) Source #

mapM :: Monad m => (a -> m b) -> Product f g a -> m (Product f g b) Source #

sequence :: Monad m => Product f g (m a) -> m (Product f g a) Source #

Alternative f => Semigroup (Alt f a) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

(<>) :: Alt f a -> Alt f a -> Alt f a Source #

sconcat :: NonEmpty (Alt f a) -> Alt f a Source #

stimes :: Integral b => b -> Alt f a -> Alt f a Source #

Alternative f => Monoid (Alt f a) Source #

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

mempty :: Alt f a Source #

mappend :: Alt f a -> Alt f a -> Alt f a Source #

mconcat :: [Alt f a] -> Alt f a Source #

(MonadPlus f, MonadPlus g) => MonadPlus (f :*: g) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: (f :*: g) a Source #

mplus :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

(MonadPlus f, MonadPlus g) => MonadPlus (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

mzero :: Product f g a Source #

mplus :: Product f g a -> Product f g a -> Product f g a Source #

(Alternative f, Alternative g) => Alternative (f :*: g) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :*: g) a Source #

(<|>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a Source #

some :: (f :*: g) a -> (f :*: g) [a] Source #

many :: (f :*: g) a -> (f :*: g) [a] Source #

(Alternative f, Alternative g) => Alternative (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

empty :: Product f g a Source #

(<|>) :: Product f g a -> Product f g a -> Product f g a Source #

some :: Product f g a -> Product f g [a] Source #

many :: Product f g a -> Product f g [a] Source #

(MonadZip f, MonadZip g) => MonadZip (f :*: g) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: (f :*: g) a -> (f :*: g) b -> (f :*: g) (a, b) Source #

mzipWith :: (a -> b -> c) -> (f :*: g) a -> (f :*: g) b -> (f :*: g) c Source #

munzip :: (f :*: g) (a, b) -> ((f :*: g) a, (f :*: g) b) Source #

(MonadZip f, MonadZip g) => MonadZip (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

mzip :: Product f g a -> Product f g b -> Product f g (a, b) Source #

mzipWith :: (a -> b -> c) -> Product f g a -> Product f g b -> Product f g c Source #

munzip :: Product f g (a, b) -> (Product f g a, Product f g b) Source #

(Show1 f, Show1 g) => Show1 (Sum f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Sum f g a -> ShowS Source #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Sum f g a] -> ShowS Source #

(Show1 f, Show1 g) => Show1 (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Product f g a -> ShowS Source #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Product f g a] -> ShowS Source #

(Read1 f, Read1 g) => Read1 (Sum f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Sum f g a) Source #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Sum f g a] Source #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Sum f g a) Source #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Sum f g a] Source #

(Read1 f, Read1 g) => Read1 (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Product f g a) Source #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Product f g a] Source #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Product f g a) Source #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Product f g a] Source #

(Ord1 f, Ord1 g) => Ord1 (Sum f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

liftCompare :: (a -> b -> Ordering) -> Sum f g a -> Sum f g b -> Ordering Source #

(Ord1 f, Ord1 g) => Ord1 (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

liftCompare :: (a -> b -> Ordering) -> Product f g a -> Product f g b -> Ordering Source #

(Eq1 f, Eq1 g) => Eq1 (Sum f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

liftEq :: (a -> b -> Bool) -> Sum f g a -> Sum f g b -> Bool Source #

(Eq1 f, Eq1 g) => Eq1 (Product f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

liftEq :: (a -> b -> Bool) -> Product f g a -> Product f g b -> Bool Source #

(Eq1 f, Eq1 g, Eq a) => Eq (Sum f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

(==) :: Sum f g a -> Sum f g a -> Bool Source #

(/=) :: Sum f g a -> Sum f g a -> Bool Source #

(Eq1 f, Eq1 g, Eq a) => Eq (Product f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

(==) :: Product f g a -> Product f g a -> Bool Source #

(/=) :: Product f g a -> Product f g a -> Bool Source #

Monad f => Monad (M1 i c f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

(>>=) :: M1 i c f a -> (a -> M1 i c f b) -> M1 i c f b Source #

(>>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

return :: a -> M1 i c f a Source #

fail :: String -> M1 i c f a Source #

(Typeable i, Data p, Data c) => Data (K1 i c p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> K1 i c p -> c0 (K1 i c p) Source #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (K1 i c p) Source #

toConstr :: K1 i c p -> Constr Source #

dataTypeOf :: K1 i c p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (K1 i c p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (K1 i c p)) Source #

gmapT :: (forall b. Data b => b -> b) -> K1 i c p -> K1 i c p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> K1 i c p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> K1 i c p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> K1 i c p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> K1 i c p -> m (K1 i c p) Source #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :+: g) p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :+: g) p -> c ((f :+: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :+: g) p) Source #

toConstr :: (f :+: g) p -> Constr Source #

dataTypeOf :: (f :+: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :+: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :+: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :+: g) p -> (f :+: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :+: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :+: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :+: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :+: g) p -> m ((f :+: g) p) Source #

(Typeable f, Typeable g, Data p, Data (f p), Data (g p)) => Data ((f :*: g) p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :*: g) p -> c ((f :*: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :*: g) p) Source #

toConstr :: (f :*: g) p -> Constr Source #

dataTypeOf :: (f :*: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :*: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :*: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :*: g) p -> (f :*: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :*: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :*: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :*: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :*: g) p -> m ((f :*: g) p) Source #

Functor f => Functor (M1 i c f) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> M1 i c f a -> M1 i c f b Source #

(<$) :: a -> M1 i c f b -> M1 i c f a Source #

(Functor f, Functor g) => Functor (f :.: g) Source # 
Instance details

Defined in GHC.Generics

Methods

fmap :: (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

(<$) :: a -> (f :.: g) b -> (f :.: g) a Source #

(Functor f, Functor g) => Functor (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fmap :: (a -> b) -> Compose f g a -> Compose f g b Source #

(<$) :: a -> Compose f g b -> Compose f g a Source #

(Ord1 f, Ord1 g, Ord a) => Ord (Sum f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

compare :: Sum f g a -> Sum f g a -> Ordering Source #

(<) :: Sum f g a -> Sum f g a -> Bool Source #

(<=) :: Sum f g a -> Sum f g a -> Bool Source #

(>) :: Sum f g a -> Sum f g a -> Bool Source #

(>=) :: Sum f g a -> Sum f g a -> Bool Source #

max :: Sum f g a -> Sum f g a -> Sum f g a Source #

min :: Sum f g a -> Sum f g a -> Sum f g a Source #

(Ord1 f, Ord1 g, Ord a) => Ord (Product f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

compare :: Product f g a -> Product f g a -> Ordering Source #

(<) :: Product f g a -> Product f g a -> Bool Source #

(<=) :: Product f g a -> Product f g a -> Bool Source #

(>) :: Product f g a -> Product f g a -> Bool Source #

(>=) :: Product f g a -> Product f g a -> Bool Source #

max :: Product f g a -> Product f g a -> Product f g a Source #

min :: Product f g a -> Product f g a -> Product f g a Source #

(Read1 f, Read1 g, Read a) => Read (Sum f g a) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

readsPrec :: Int -> ReadS (Sum f g a) Source #

readList :: ReadS [Sum f g a] Source #

readPrec :: ReadPrec (Sum f g a) Source #

readListPrec :: ReadPrec [Sum f g a] Source #

(Read1 f, Read1 g, Read a) => Read (Product f g a) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

(Show1 f, Show1 g, Show a) => Show (Sum f g a) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Sum

Methods

showsPrec :: Int -> Sum f g a -> ShowS Source #

show :: Sum f g a -> String Source #

showList :: [Sum f g a] -> ShowS Source #

(Show1 f, Show1 g, Show a) => Show (Product f g a) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

showsPrec :: Int -> Product f g a -> ShowS Source #

show :: Product f g a -> String Source #

showList :: [Product f g a] -> ShowS Source #

MonadFix f => MonadFix (M1 i c f) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Fix

Methods

mfix :: (a -> M1 i c f a) -> M1 i c f a Source #

Applicative f => Applicative (M1 i c f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> M1 i c f a Source #

(<*>) :: M1 i c f (a -> b) -> M1 i c f a -> M1 i c f b Source #

liftA2 :: (a -> b -> c0) -> M1 i c f a -> M1 i c f b -> M1 i c f c0 Source #

(*>) :: M1 i c f a -> M1 i c f b -> M1 i c f b Source #

(<*) :: M1 i c f a -> M1 i c f b -> M1 i c f a Source #

(Applicative f, Applicative g) => Applicative (f :.: g) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

pure :: a -> (f :.: g) a Source #

(<*>) :: (f :.: g) (a -> b) -> (f :.: g) a -> (f :.: g) b Source #

liftA2 :: (a -> b -> c) -> (f :.: g) a -> (f :.: g) b -> (f :.: g) c Source #

(*>) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) b Source #

(<*) :: (f :.: g) a -> (f :.: g) b -> (f :.: g) a Source #

(Applicative f, Applicative g) => Applicative (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

pure :: a -> Compose f g a Source #

(<*>) :: Compose f g (a -> b) -> Compose f g a -> Compose f g b Source #

liftA2 :: (a -> b -> c) -> Compose f g a -> Compose f g b -> Compose f g c Source #

(*>) :: Compose f g a -> Compose f g b -> Compose f g b Source #

(<*) :: Compose f g a -> Compose f g b -> Compose f g a Source #

Foldable f => Foldable (M1 i c f) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => M1 i c f m -> m Source #

foldMap :: Monoid m => (a -> m) -> M1 i c f a -> m Source #

foldr :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldr' :: (a -> b -> b) -> b -> M1 i c f a -> b Source #

foldl :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldl' :: (b -> a -> b) -> b -> M1 i c f a -> b Source #

foldr1 :: (a -> a -> a) -> M1 i c f a -> a Source #

foldl1 :: (a -> a -> a) -> M1 i c f a -> a Source #

toList :: M1 i c f a -> [a] Source #

null :: M1 i c f a -> Bool Source #

length :: M1 i c f a -> Int Source #

elem :: Eq a => a -> M1 i c f a -> Bool Source #

maximum :: Ord a => M1 i c f a -> a Source #

minimum :: Ord a => M1 i c f a -> a Source #

sum :: Num a => M1 i c f a -> a Source #

product :: Num a => M1 i c f a -> a Source #

(Foldable f, Foldable g) => Foldable (f :.: g) Source # 
Instance details

Defined in Data.Foldable

Methods

fold :: Monoid m => (f :.: g) m -> m Source #

foldMap :: Monoid m => (a -> m) -> (f :.: g) a -> m Source #

foldr :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldr' :: (a -> b -> b) -> b -> (f :.: g) a -> b Source #

foldl :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldl' :: (b -> a -> b) -> b -> (f :.: g) a -> b Source #

foldr1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

foldl1 :: (a -> a -> a) -> (f :.: g) a -> a Source #

toList :: (f :.: g) a -> [a] Source #

null :: (f :.: g) a -> Bool Source #

length :: (f :.: g) a -> Int Source #

elem :: Eq a => a -> (f :.: g) a -> Bool Source #

maximum :: Ord a => (f :.: g) a -> a Source #

minimum :: Ord a => (f :.: g) a -> a Source #

sum :: Num a => (f :.: g) a -> a Source #

product :: Num a => (f :.: g) a -> a Source #

(Foldable f, Foldable g) => Foldable (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

fold :: Monoid m => Compose f g m -> m Source #

foldMap :: Monoid m => (a -> m) -> Compose f g a -> m Source #

foldr :: (a -> b -> b) -> b -> Compose f g a -> b Source #

foldr' :: (a -> b -> b) -> b -> Compose f g a -> b Source #

foldl :: (b -> a -> b) -> b -> Compose f g a -> b Source #

foldl' :: (b -> a -> b) -> b -> Compose f g a -> b Source #

foldr1 :: (a -> a -> a) -> Compose f g a -> a Source #

foldl1 :: (a -> a -> a) -> Compose f g a -> a Source #

toList :: Compose f g a -> [a] Source #

null :: Compose f g a -> Bool Source #

length :: Compose f g a -> Int Source #

elem :: Eq a => a -> Compose f g a -> Bool Source #

maximum :: Ord a => Compose f g a -> a Source #

minimum :: Ord a => Compose f g a -> a Source #

sum :: Num a => Compose f g a -> a Source #

product :: Num a => Compose f g a -> a Source #

Traversable f => Traversable (M1 i c f) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> M1 i c f a -> f0 (M1 i c f b) Source #

sequenceA :: Applicative f0 => M1 i c f (f0 a) -> f0 (M1 i c f a) Source #

mapM :: Monad m => (a -> m b) -> M1 i c f a -> m (M1 i c f b) Source #

sequence :: Monad m => M1 i c f (m a) -> m (M1 i c f a) Source #

(Traversable f, Traversable g) => Traversable (f :.: g) Source # 
Instance details

Defined in Data.Traversable

Methods

traverse :: Applicative f0 => (a -> f0 b) -> (f :.: g) a -> f0 ((f :.: g) b) Source #

sequenceA :: Applicative f0 => (f :.: g) (f0 a) -> f0 ((f :.: g) a) Source #

mapM :: Monad m => (a -> m b) -> (f :.: g) a -> m ((f :.: g) b) Source #

sequence :: Monad m => (f :.: g) (m a) -> m ((f :.: g) a) Source #

(Traversable f, Traversable g) => Traversable (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

traverse :: Applicative f0 => (a -> f0 b) -> Compose f g a -> f0 (Compose f g b) Source #

sequenceA :: Applicative f0 => Compose f g (f0 a) -> f0 (Compose f g a) Source #

mapM :: Monad m => (a -> m b) -> Compose f g a -> m (Compose f g b) Source #

sequence :: Monad m => Compose f g (m a) -> m (Compose f g a) Source #

MonadPlus f => MonadPlus (M1 i c f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

mzero :: M1 i c f a Source #

mplus :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

Alternative f => Alternative (M1 i c f) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: M1 i c f a Source #

(<|>) :: M1 i c f a -> M1 i c f a -> M1 i c f a Source #

some :: M1 i c f a -> M1 i c f [a] Source #

many :: M1 i c f a -> M1 i c f [a] Source #

(Alternative f, Applicative g) => Alternative (f :.: g) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :.: g) a Source #

(<|>) :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a Source #

some :: (f :.: g) a -> (f :.: g) [a] Source #

many :: (f :.: g) a -> (f :.: g) [a] Source #

(Alternative f, Applicative g) => Alternative (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

empty :: Compose f g a Source #

(<|>) :: Compose f g a -> Compose f g a -> Compose f g a Source #

some :: Compose f g a -> Compose f g [a] Source #

many :: Compose f g a -> Compose f g [a] Source #

MonadZip f => MonadZip (M1 i c f) Source #

Since: base-4.9.0.0

Instance details

Defined in Control.Monad.Zip

Methods

mzip :: M1 i c f a -> M1 i c f b -> M1 i c f (a, b) Source #

mzipWith :: (a -> b -> c0) -> M1 i c f a -> M1 i c f b -> M1 i c f c0 Source #

munzip :: M1 i c f (a, b) -> (M1 i c f a, M1 i c f b) Source #

(Show1 f, Show1 g) => Show1 (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftShowsPrec :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> Int -> Compose f g a -> ShowS Source #

liftShowList :: (Int -> a -> ShowS) -> ([a] -> ShowS) -> [Compose f g a] -> ShowS Source #

(Read1 f, Read1 g) => Read1 (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftReadsPrec :: (Int -> ReadS a) -> ReadS [a] -> Int -> ReadS (Compose f g a) Source #

liftReadList :: (Int -> ReadS a) -> ReadS [a] -> ReadS [Compose f g a] Source #

liftReadPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec (Compose f g a) Source #

liftReadListPrec :: ReadPrec a -> ReadPrec [a] -> ReadPrec [Compose f g a] Source #

(Ord1 f, Ord1 g) => Ord1 (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftCompare :: (a -> b -> Ordering) -> Compose f g a -> Compose f g b -> Ordering Source #

(Eq1 f, Eq1 g) => Eq1 (Compose f g) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

liftEq :: (a -> b -> Bool) -> Compose f g a -> Compose f g b -> Bool Source #

(Eq1 f, Eq1 g, Eq a) => Eq (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

(==) :: Compose f g a -> Compose f g a -> Bool Source #

(/=) :: Compose f g a -> Compose f g a -> Bool Source #

(Data p, Data (f p), Typeable c, Typeable i, Typeable f) => Data (M1 i c f p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c0 (d -> b) -> d -> c0 b) -> (forall g. g -> c0 g) -> M1 i c f p -> c0 (M1 i c f p) Source #

gunfold :: (forall b r. Data b => c0 (b -> r) -> c0 r) -> (forall r. r -> c0 r) -> Constr -> c0 (M1 i c f p) Source #

toConstr :: M1 i c f p -> Constr Source #

dataTypeOf :: M1 i c f p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c0 (t d)) -> Maybe (c0 (M1 i c f p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c0 (t d e)) -> Maybe (c0 (M1 i c f p)) Source #

gmapT :: (forall b. Data b => b -> b) -> M1 i c f p -> M1 i c f p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> M1 i c f p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> M1 i c f p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> M1 i c f p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> M1 i c f p -> m (M1 i c f p) Source #

(Typeable f, Typeable g, Data p, Data (f (g p))) => Data ((f :.: g) p) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Data

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g0. g0 -> c g0) -> (f :.: g) p -> c ((f :.: g) p) Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c ((f :.: g) p) Source #

toConstr :: (f :.: g) p -> Constr Source #

dataTypeOf :: (f :.: g) p -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c ((f :.: g) p)) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c ((f :.: g) p)) Source #

gmapT :: (forall b. Data b => b -> b) -> (f :.: g) p -> (f :.: g) p Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> (f :.: g) p -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> (f :.: g) p -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> (f :.: g) p -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> (f :.: g) p -> m ((f :.: g) p) Source #

(Ord1 f, Ord1 g, Ord a) => Ord (Compose f g a) #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

compare :: Compose f g a -> Compose f g a -> Ordering Source #

(<) :: Compose f g a -> Compose f g a -> Bool Source #

(<=) :: Compose f g a -> Compose f g a -> Bool Source #

(>) :: Compose f g a -> Compose f g a -> Bool Source #

(>=) :: Compose f g a -> Compose f g a -> Bool Source #

max :: Compose f g a -> Compose f g a -> Compose f g a Source #

min :: Compose f g a -> Compose f g a -> Compose f g a Source #

(Read1 f, Read1 g, Read a) => Read (Compose f g a) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

(Show1 f, Show1 g, Show a) => Show (Compose f g a) Source #

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

showsPrec :: Int -> Compose f g a -> ShowS Source #

show :: Compose f g a -> String Source #

showList :: [Compose f g a] -> ShowS Source #

type Rep1 (f :.: g :: k -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (f :.: g :: k -> *) = D1 (MetaData ":.:" "GHC.Generics" "base" True) (C1 (MetaCons "Comp1" PrefixI True) (S1 (MetaSel (Just "unComp1") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (f :.: Rec1 g)))
type Rep1 (Compose f g :: k -> *) Source # 
Instance details

Defined in Data.Functor.Compose

type Rep1 (Compose f g :: k -> *) = D1 (MetaData "Compose" "Data.Functor.Compose" "base" True) (C1 (MetaCons "Compose" PrefixI True) (S1 (MetaSel (Just "getCompose") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (f :.: Rec1 g)))
type Rep1 [] Source # 
Instance details

Defined in GHC.Generics

type Rep1 Maybe Source # 
Instance details

Defined in GHC.Generics

type Rep1 Par1 Source # 
Instance details

Defined in GHC.Generics

type Rep1 Par1 = D1 (MetaData "Par1" "GHC.Generics" "base" True) (C1 (MetaCons "Par1" PrefixI True) (S1 (MetaSel (Just "unPar1") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 NonEmpty Source # 
Instance details

Defined in GHC.Generics

type Rep1 Product Source # 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Product = D1 (MetaData "Product" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Product" PrefixI True) (S1 (MetaSel (Just "getProduct") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 Sum Source # 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Sum = D1 (MetaData "Sum" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Sum" PrefixI True) (S1 (MetaSel (Just "getSum") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 Dual Source # 
Instance details

Defined in Data.Semigroup.Internal

type Rep1 Dual = D1 (MetaData "Dual" "Data.Semigroup.Internal" "base" True) (C1 (MetaCons "Dual" PrefixI True) (S1 (MetaSel (Just "getDual") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 Last Source # 
Instance details

Defined in Data.Monoid

type Rep1 Last = D1 (MetaData "Last" "Data.Monoid" "base" True) (C1 (MetaCons "Last" PrefixI True) (S1 (MetaSel (Just "getLast") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 Maybe)))
type Rep1 First Source # 
Instance details

Defined in Data.Monoid

type Rep1 First = D1 (MetaData "First" "Data.Monoid" "base" True) (C1 (MetaCons "First" PrefixI True) (S1 (MetaSel (Just "getFirst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 Maybe)))
type Rep1 Identity Source # 
Instance details

Defined in Data.Functor.Identity

type Rep1 Identity = D1 (MetaData "Identity" "Data.Functor.Identity" "base" True) (C1 (MetaCons "Identity" PrefixI True) (S1 (MetaSel (Just "runIdentity") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 ZipList Source # 
Instance details

Defined in Control.Applicative

type Rep1 ZipList = D1 (MetaData "ZipList" "Control.Applicative" "base" True) (C1 (MetaCons "ZipList" PrefixI True) (S1 (MetaSel (Just "getZipList") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 [])))
type Rep1 Option Source # 
Instance details

Defined in Data.Semigroup

type Rep1 Option = D1 (MetaData "Option" "Data.Semigroup" "base" True) (C1 (MetaCons "Option" PrefixI True) (S1 (MetaSel (Just "getOption") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 Maybe)))
type Rep1 WrappedMonoid Source # 
Instance details

Defined in Data.Semigroup

type Rep1 WrappedMonoid = D1 (MetaData "WrappedMonoid" "Data.Semigroup" "base" True) (C1 (MetaCons "WrapMonoid" PrefixI True) (S1 (MetaSel (Just "unwrapMonoid") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 Last Source # 
Instance details

Defined in Data.Semigroup

type Rep1 Last = D1 (MetaData "Last" "Data.Semigroup" "base" True) (C1 (MetaCons "Last" PrefixI True) (S1 (MetaSel (Just "getLast") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 First Source # 
Instance details

Defined in Data.Semigroup

type Rep1 First = D1 (MetaData "First" "Data.Semigroup" "base" True) (C1 (MetaCons "First" PrefixI True) (S1 (MetaSel (Just "getFirst") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 Max Source # 
Instance details

Defined in Data.Semigroup

type Rep1 Max = D1 (MetaData "Max" "Data.Semigroup" "base" True) (C1 (MetaCons "Max" PrefixI True) (S1 (MetaSel (Just "getMax") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 Min Source # 
Instance details

Defined in Data.Semigroup

type Rep1 Min = D1 (MetaData "Min" "Data.Semigroup" "base" True) (C1 (MetaCons "Min" PrefixI True) (S1 (MetaSel (Just "getMin") NoSourceUnpackedness NoSourceStrictness DecidedLazy) Par1))
type Rep1 Complex Source # 
Instance details

Defined in Data.Complex

type Rep1 (Either a :: * -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 ((,) a :: * -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (WrappedMonad m :: * -> *) Source # 
Instance details

Defined in Control.Applicative

type Rep1 (WrappedMonad m :: * -> *) = D1 (MetaData "WrappedMonad" "Control.Applicative" "base" True) (C1 (MetaCons "WrapMonad" PrefixI True) (S1 (MetaSel (Just "unwrapMonad") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 m)))
type Rep1 (Arg a :: * -> *) Source # 
Instance details

Defined in Data.Semigroup

type Rep1 ((,,) a b :: * -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 (WrappedArrow a b :: * -> *) Source # 
Instance details

Defined in Control.Applicative

type Rep1 (WrappedArrow a b :: * -> *) = D1 (MetaData "WrappedArrow" "Control.Applicative" "base" True) (C1 (MetaCons "WrapArrow" PrefixI True) (S1 (MetaSel (Just "unwrapArrow") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec1 (a b))))
type Rep1 ((,,,) a b c :: * -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 ((,,,,) a b c d :: * -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 ((,,,,,) a b c d e :: * -> *) Source # 
Instance details

Defined in GHC.Generics

type Rep1 ((,,,,,,) a b c d e f :: * -> *) Source # 
Instance details

Defined in GHC.Generics

data RuntimeRep Source #

GHC maintains a property that the kind of all inhabited types (as distinct from type constructors or type-level data) tells us the runtime representation of values of that type. This datatype encodes the choice of runtime value. Note that TYPE is parameterised by RuntimeRep; this is precisely what we mean by the fact that a type's kind encodes the runtime representation.

For boxed values (that is, values that are represented by a pointer), a further distinction is made, between lifted types (that contain ⊥), and unlifted ones (that don't).

Constructors

VecRep VecCount VecElem

a SIMD vector type

TupleRep [RuntimeRep]

An unboxed tuple of the given reps

SumRep [RuntimeRep]

An unboxed sum of the given reps

LiftedRep

lifted; represented by a pointer

UnliftedRep

unlifted; represented by a pointer

IntRep

signed, word-sized value

WordRep

unsigned, word-sized value

Int64Rep

signed, 64-bit value (on 32-bit only)

Word64Rep

unsigned, 64-bit value (on 32-bit only)

AddrRep

A pointer, but not to a Haskell value

FloatRep

a 32-bit floating point number

DoubleRep

a 64-bit floating point number

Instances
Show RuntimeRep Source # 
Instance details

Defined in GHC.Show

data VecCount Source #

Length of a SIMD vector type

Constructors

Vec2 
Vec4 
Vec8 
Vec16 
Vec32 
Vec64 

Transform comprehensions

newtype Down a Source #

The Down type allows you to reverse sort order conveniently. A value of type Down a contains a value of type a (represented as Down a). If a has an Ord instance associated with it then comparing two values thus wrapped will give you the opposite of their normal sort order. This is particularly useful when sorting in generalised list comprehensions, as in: then sortWith by Down x

Since: base-4.6.0.0

Constructors

Down a 
Instances
Monad Down Source #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(>>=) :: Down a -> (a -> Down b) -> Down b Source #

(>>) :: Down a -> Down b -> Down b Source #

return :: a -> Down a Source #

fail :: String -> Down a Source #

Functor Down Source #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

fmap :: (a -> b) -> Down a -> Down b Source #

(<$) :: a -> Down b -> Down a Source #

Applicative Down Source #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

pure :: a -> Down a Source #

(<*>) :: Down (a -> b) -> Down a -> Down b Source #

liftA2 :: (a -> b -> c) -> Down a -> Down b -> Down c Source #

(*>) :: Down a -> Down b -> Down b Source #

(<*) :: Down a -> Down b -> Down a Source #

Eq a => Eq (Down a) Source # 
Instance details

Defined in Data.Ord

Methods

(==) :: Down a -> Down a -> Bool Source #

(/=) :: Down a -> Down a -> Bool Source #

Num a => Num (Down a) Source #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(+) :: Down a -> Down a -> Down a Source #

(-) :: Down a -> Down a -> Down a Source #

(*) :: Down a -> Down a -> Down a Source #

negate :: Down a -> Down a Source #

abs :: Down a -> Down a Source #

signum :: Down a -> Down a Source #

fromInteger :: Integer -> Down a Source #

Ord a => Ord (Down a) Source #

Since: base-4.6.0.0

Instance details

Defined in Data.Ord

Methods

compare :: Down a -> Down a -> Ordering Source #

(<) :: Down a -> Down a -> Bool Source #

(<=) :: Down a -> Down a -> Bool Source #

(>) :: Down a -> Down a -> Bool Source #

(>=) :: Down a -> Down a -> Bool Source #

max :: Down a -> Down a -> Down a Source #

min :: Down a -> Down a -> Down a Source #

Read a => Read (Down a) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Ord

Show a => Show (Down a) Source #

Since: base-4.7.0.0

Instance details

Defined in Data.Ord

Methods

showsPrec :: Int -> Down a -> ShowS Source #

show :: Down a -> String Source #

showList :: [Down a] -> ShowS Source #

Semigroup a => Semigroup (Down a) Source #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

(<>) :: Down a -> Down a -> Down a Source #

sconcat :: NonEmpty (Down a) -> Down a Source #

stimes :: Integral b => b -> Down a -> Down a Source #

Monoid a => Monoid (Down a) Source #

Since: base-4.11.0.0

Instance details

Defined in Data.Ord

Methods

mempty :: Down a Source #

mappend :: Down a -> Down a -> Down a Source #

mconcat :: [Down a] -> Down a Source #

groupWith :: Ord b => (a -> b) -> [a] -> [[a]] Source #

The groupWith function uses the user supplied function which projects an element out of every list element in order to first sort the input list and then to form groups by equality on these projected elements

sortWith :: Ord b => (a -> b) -> [a] -> [a] Source #

The sortWith function sorts a list of elements using the user supplied function to project something out of each element

the :: Eq a => [a] -> a Source #

the ensures that all the elements of the list are identical and then returns that unique element

Event logging

traceEvent :: String -> IO () Source #

Deprecated: Use traceEvent or traceEventIO

SpecConstr annotations

data SpecConstrAnnotation Source #

Instances
Eq SpecConstrAnnotation Source # 
Instance details

Defined in GHC.Exts

Data SpecConstrAnnotation Source # 
Instance details

Defined in GHC.Exts

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> SpecConstrAnnotation -> c SpecConstrAnnotation Source #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c SpecConstrAnnotation Source #

toConstr :: SpecConstrAnnotation -> Constr Source #

dataTypeOf :: SpecConstrAnnotation -> DataType Source #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c SpecConstrAnnotation) Source #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c SpecConstrAnnotation) Source #

gmapT :: (forall b. Data b => b -> b) -> SpecConstrAnnotation -> SpecConstrAnnotation Source #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r Source #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> SpecConstrAnnotation -> r Source #

gmapQ :: (forall d. Data d => d -> u) -> SpecConstrAnnotation -> [u] Source #

gmapQi :: Int -> (forall d. Data d => d -> u) -> SpecConstrAnnotation -> u Source #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> SpecConstrAnnotation -> m SpecConstrAnnotation Source #

The call stack

currentCallStack :: IO [String] Source #

Returns a [String] representing the current call stack. This can be useful for debugging.

The implementation uses the call-stack simulation maintained by the profiler, so it only works if the program was compiled with -prof and contains suitable SCC annotations (e.g. by using -fprof-auto). Otherwise, the list returned is likely to be empty or uninformative.

Since: base-4.5.0.0

The Constraint kind

data Constraint Source #

The kind of constraints, like Show a

The Any type

type family Any :: k0 where ... Source #

The type constructor Any is type to which you can unsafely coerce any lifted type, and back. More concretely, for a lifted type t and value x :: t, -- unsafeCoerce (unsafeCoerce x :: Any) :: t is equivalent to x.

Overloaded lists

class IsList l where Source #

The IsList class and its methods are intended to be used in conjunction with the OverloadedLists extension.

Since: base-4.7.0.0

Minimal complete definition

fromList, toList

Associated Types

type Item l Source #

The Item type function returns the type of items of the structure l.

Methods

fromList :: [Item l] -> l Source #

The fromList function constructs the structure l from the given list of Item l

fromListN :: Int -> [Item l] -> l Source #

The fromListN function takes the input list's length as a hint. Its behaviour should be equivalent to fromList. The hint can be used to construct the structure l more efficiently compared to fromList. If the given hint does not equal to the input list's length the behaviour of fromListN is not specified.

toList :: l -> [Item l] Source #

The toList function extracts a list of Item l from the structure l. It should satisfy fromList . toList = id.

Instances
IsList CallStack Source #

Be aware that 'fromList . toList = id' only for unfrozen CallStacks, since toList removes frozenness information.

Since: base-4.9.0.0

Instance details

Defined in GHC.Exts

Associated Types

type Item CallStack :: * Source #

IsList Version Source #

Since: base-4.8.0.0

Instance details

Defined in GHC.Exts

Associated Types

type Item Version :: * Source #

IsList [a] Source #

Since: base-4.7.0.0

Instance details

Defined in GHC.Exts

Associated Types

type Item [a] :: * Source #

Methods

fromList :: [Item [a]] -> [a] Source #

fromListN :: Int -> [Item [a]] -> [a] Source #

toList :: [a] -> [Item [a]] Source #

IsList (NonEmpty a) Source #

Since: base-4.9.0.0

Instance details

Defined in GHC.Exts

Associated Types

type Item (NonEmpty a) :: * Source #