{-# LANGUAGE CPP                 #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiWayIf          #-}
{-# LANGUAGE TypeApplications    #-}
{-# LANGUAGE AllowAmbiguousTypes #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


Pattern-matching literal patterns
-}

module GHC.HsToCore.Match.Literal
   ( dsLit, dsOverLit, hsLitKey
   , tidyLitPat, tidyNPat
   , matchLiterals, matchNPlusKPats, matchNPats
   , warnAboutIdentities
   , warnAboutOverflowedOverLit, warnAboutOverflowedLit
   , warnAboutEmptyEnumerations
   )
where

#include "HsVersions.h"

import GHC.Prelude
import GHC.Platform

import {-# SOURCE #-} GHC.HsToCore.Match ( match )
import {-# SOURCE #-} GHC.HsToCore.Expr  ( dsExpr, dsSyntaxExpr )

import GHC.HsToCore.Monad
import GHC.HsToCore.Utils

import GHC.Hs

import GHC.Types.Id
import GHC.Types.SourceText
import GHC.Core
import GHC.Core.Make
import GHC.Core.TyCon
import GHC.Core.DataCon
import GHC.Tc.Utils.Zonk ( shortCutLit )
import GHC.Tc.Utils.TcType
import GHC.Types.Name
import GHC.Core.Type
import GHC.Builtin.Names
import GHC.Builtin.Types
import GHC.Builtin.Types.Prim
import GHC.Types.Literal
import GHC.Types.SrcLoc
import GHC.Utils.Outputable as Outputable
import GHC.Driver.Session
import GHC.Utils.Misc
import GHC.Utils.Panic
import GHC.Data.FastString
import qualified GHC.LanguageExtensions as LangExt
import GHC.Core.FamInstEnv ( FamInstEnvs, normaliseType )

import Control.Monad
import Data.Int
import Data.List.NonEmpty (NonEmpty(..))
import qualified Data.List.NonEmpty as NEL
import Data.Word
import GHC.Real ( Ratio(..), numerator, denominator )

{-
************************************************************************
*                                                                      *
                Desugaring literals
 [used to be in GHC.HsToCore.Expr, but GHC.HsToCore.Quote needs it,
  and it's nice to avoid a loop]
*                                                                      *
************************************************************************

We give int/float literals type @Integer@ and @Rational@, respectively.
The typechecker will (presumably) have put \tr{from{Integer,Rational}s}
around them.

ToDo: put in range checks for when converting ``@i@''
(or should that be in the typechecker?)

For numeric literals, we try to detect there use at a standard type
(@Int@, @Float@, etc.) are directly put in the right constructor.
[NB: down with the @App@ conversion.]

See also below where we look for @DictApps@ for \tr{plusInt}, etc.
-}

dsLit :: HsLit GhcRn -> DsM CoreExpr
dsLit :: HsLit GhcRn -> DsM CoreExpr
dsLit HsLit GhcRn
l = do
  DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
  let platform :: Platform
platform = DynFlags -> Platform
targetPlatform DynFlags
dflags
  case HsLit GhcRn
l of
    HsStringPrim XHsStringPrim GhcRn
_ ByteString
s -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (ByteString -> Literal
LitString ByteString
s))
    HsCharPrim   XHsCharPrim GhcRn
_ Char
c -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (Char -> Literal
LitChar Char
c))
    HsIntPrim    XHsIntPrim GhcRn
_ Integer
i -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (Platform -> Integer -> Literal
mkLitIntWrap Platform
platform Integer
i))
    HsWordPrim   XHsWordPrim GhcRn
_ Integer
w -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (Platform -> Integer -> Literal
mkLitWordWrap Platform
platform Integer
w))
    HsInt64Prim  XHsInt64Prim GhcRn
_ Integer
i -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (Integer -> Literal
mkLitInt64Wrap Integer
i))
    HsWord64Prim XHsWord64Prim GhcRn
_ Integer
w -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (Integer -> Literal
mkLitWord64Wrap Integer
w))

    -- This can be slow for very large literals. See Note [FractionalLit representation]
    -- and #15646
    HsFloatPrim  XHsFloatPrim GhcRn
_ FractionalLit
fl -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (Rational -> Literal
LitFloat (FractionalLit -> Rational
rationalFromFractionalLit FractionalLit
fl)))
    HsDoublePrim XHsDoublePrim GhcRn
_ FractionalLit
fl -> forall (m :: * -> *) a. Monad m => a -> m a
return (forall b. Literal -> Expr b
Lit (Rational -> Literal
LitDouble (FractionalLit -> Rational
rationalFromFractionalLit FractionalLit
fl)))
    HsChar XHsChar GhcRn
_ Char
c       -> forall (m :: * -> *) a. Monad m => a -> m a
return (Char -> CoreExpr
mkCharExpr Char
c)
    HsString XHsString GhcRn
_ FastString
str   -> forall (m :: * -> *). MonadThings m => FastString -> m CoreExpr
mkStringExprFS FastString
str
    HsInteger XHsInteger GhcRn
_ Integer
i Type
_  -> forall (m :: * -> *) a. Monad m => a -> m a
return (Integer -> CoreExpr
mkIntegerExpr Integer
i)
    HsInt XHsInt GhcRn
_ IntegralLit
i        -> forall (m :: * -> *) a. Monad m => a -> m a
return (Platform -> Integer -> CoreExpr
mkIntExpr Platform
platform (IntegralLit -> Integer
il_value IntegralLit
i))
    HsRat XHsRat GhcRn
_ FractionalLit
fl Type
ty    -> FractionalLit -> Type -> DsM CoreExpr
dsFractionalLitToRational FractionalLit
fl Type
ty

{-
Note [FractionalLit representation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is a fun wrinkle to this, we used to simply compute the value
for these literals and store it as `Rational`. While this might seem
reasonable it meant typechecking literals of extremely large numbers
wasn't possible. This happend for example in #15646.

There a user would write in GHCi e.g. `:t 1e1234111111111111111111111`
which would trip up the compiler. The reason being we would parse it as
<Literal of value n>. Try to compute n, which would run out of memory
for truly large numbers, or take far too long for merely large ones.

To fix this we instead now store the significand and exponent of the
literal instead. Depending on the size of the exponent we then defer
the computation of the Rational value, potentially up to runtime of the
program! There are still cases left were we might compute large rationals
but it's a lot rarer then.

The current state of affairs for large literals is:
* Typechecking: Will produce a FractionalLit
* Desugaring a large overloaded literal to Float/Double *is* done
  at compile time. So can still fail. But this only matters for values too large
  to be represented as float anyway.
* Converting overloaded literals to a value of *Rational* is done at *runtime*.
  If such a value is then demanded at runtime the program might hang or run out of
  memory. But that is perhaps expected and acceptable.
* TH might also evaluate the literal even when overloaded.
  But there a user should be able to work around #15646 by
  generating a call to `mkRationalBase10/2` for large literals instead.


Note [FractionalLit representation]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For fractional literals, like 1.3 or 0.79e22, we do /not/ represent
them within the compiler as a Rational.  Doing so would force the
compiler to compute a huge Rational for 2.3e300000000000, at compile
time (#15646)!

So instead we represent fractional literals as a FractionalLit,
in which we record the significand and exponent separately.  Then
we can compute the huge Rational at /runtime/, by emitting code
for
       mkRationalBase10 2.3 300000000000

where mkRationalBase10 is defined in the library GHC.Real

The moving parts are here:

* Parsing, renaming, typechecking: use FractionalLit, in which the
  significand and exponent are represented separately.

* Desugaring.  Remember that a fractional literal like 54.4e20 has type
     Fractional a => a

  - For fractional literals whose type turns out to be Float/Double,
    we desugar to a Float/Double literal at /compile time/.
    This conversion can still fail. But this only matters for values
    too large to be represented as float anyway.  See dsLit in
    GHC.HsToCore.Match.Literal

  - For fractional literals whose type turns out to be Rational, we
    desugar the literal to a call of `mkRationalBase10` (etc for hex
    literals), so that we only compute the Rational at /run time/.  If
    this value is then demanded at runtime the program might hang or
    run out of memory. But that is perhaps expected and acceptable.
    See dsFractionalLitToRational in GHC.HsToCore.Match.Literal

  - For fractional literals whose type isn't one of the above, we just
    call the typeclass method `fromRational`.  But to do that we need
    the rational to give to it, and we compute that at runtime, as
    above.

* Template Haskell definitions are also problematic. While the TH code
  works as expected once it's spliced into a program it will compute the
  value of the large literal.
  But there a user should be able to work around #15646
  by having their TH code generating a call to `mkRationalBase[10/2]` for
  large literals  instead.

-}

-- | See Note [FractionalLit representation]
dsFractionalLitToRational :: FractionalLit -> Type -> DsM CoreExpr
dsFractionalLitToRational :: FractionalLit -> Type -> DsM CoreExpr
dsFractionalLitToRational fl :: FractionalLit
fl@FL{ fl_signi :: FractionalLit -> Rational
fl_signi = Rational
signi, fl_exp :: FractionalLit -> Integer
fl_exp = Integer
exp, fl_exp_base :: FractionalLit -> FractionalExponentBase
fl_exp_base = FractionalExponentBase
base } Type
ty
  -- We compute "small" rationals here and now
  | forall a. Num a => a -> a
abs Integer
exp forall a. Ord a => a -> a -> Bool
<= Integer
100
  = let !val :: Rational
val   = FractionalLit -> Rational
rationalFromFractionalLit FractionalLit
fl
        !num :: CoreExpr
num   = Integer -> CoreExpr
mkIntegerExpr (forall a. Ratio a -> a
numerator Rational
val)
        !denom :: CoreExpr
denom = Integer -> CoreExpr
mkIntegerExpr (forall a. Ratio a -> a
denominator Rational
val)
        (DataCon
ratio_data_con, Type
integer_ty)
            = case Type -> (TyCon, [Type])
tcSplitTyConApp Type
ty of
                    (TyCon
tycon, [Type
i_ty]) -> ASSERT(isIntegerTy i_ty && tycon `hasKey` ratioTyConKey)
                                       (forall a. [a] -> a
head (TyCon -> [DataCon]
tyConDataCons TyCon
tycon), Type
i_ty)
                    (TyCon, [Type])
x -> forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"dsLit" (forall a. Outputable a => a -> SDoc
ppr (TyCon, [Type])
x)
    in forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$! (DataCon -> [CoreExpr] -> CoreExpr
mkCoreConApps DataCon
ratio_data_con [forall b. Type -> Expr b
Type Type
integer_ty, CoreExpr
num, CoreExpr
denom])
  -- Large rationals will be computed at runtime.
  | Bool
otherwise
  = do
      let mkRationalName :: Name
mkRationalName = case FractionalExponentBase
base of
                             FractionalExponentBase
Base2 -> Name
mkRationalBase2Name
                             FractionalExponentBase
Base10 -> Name
mkRationalBase10Name
      Id
mkRational <- Name -> DsM Id
dsLookupGlobalId Name
mkRationalName
      CoreExpr
litR <- Rational -> DsM CoreExpr
dsRational Rational
signi
      let litE :: CoreExpr
litE = Integer -> CoreExpr
mkIntegerExpr Integer
exp
      forall (m :: * -> *) a. Monad m => a -> m a
return (CoreExpr -> [CoreExpr] -> CoreExpr
mkCoreApps (forall b. Id -> Expr b
Var Id
mkRational) [CoreExpr
litR, CoreExpr
litE])

dsRational :: Rational -> DsM CoreExpr
dsRational :: Rational -> DsM CoreExpr
dsRational (Integer
n :% Integer
d) = do
  DataCon
dcn <- Name -> DsM DataCon
dsLookupDataCon Name
ratioDataConName
  let cn :: CoreExpr
cn = Integer -> CoreExpr
mkIntegerExpr Integer
n
  let dn :: CoreExpr
dn = Integer -> CoreExpr
mkIntegerExpr Integer
d
  forall (m :: * -> *) a. Monad m => a -> m a
return forall a b. (a -> b) -> a -> b
$ DataCon -> [CoreExpr] -> CoreExpr
mkCoreConApps DataCon
dcn [forall b. Type -> Expr b
Type Type
integerTy, CoreExpr
cn, CoreExpr
dn]


dsOverLit :: HsOverLit GhcTc -> DsM CoreExpr
-- ^ Post-typechecker, the 'HsExpr' field of an 'OverLit' contains
-- (an expression for) the literal value itself.
dsOverLit :: HsOverLit GhcTc -> DsM CoreExpr
dsOverLit (OverLit { ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val = OverLitVal
val, ol_ext :: forall p. HsOverLit p -> XOverLit p
ol_ext = OverLitTc Bool
rebindable Type
ty
                   , ol_witness :: forall p. HsOverLit p -> HsExpr p
ol_witness = HsExpr GhcTc
witness }) = do
  DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
  let platform :: Platform
platform = DynFlags -> Platform
targetPlatform DynFlags
dflags
  case Platform -> OverLitVal -> Type -> Maybe (HsExpr GhcTc)
shortCutLit Platform
platform OverLitVal
val Type
ty of
    Just HsExpr GhcTc
expr | Bool -> Bool
not Bool
rebindable -> HsExpr GhcTc -> DsM CoreExpr
dsExpr HsExpr GhcTc
expr        -- Note [Literal short cut]
    Maybe (HsExpr GhcTc)
_                          -> HsExpr GhcTc -> DsM CoreExpr
dsExpr HsExpr GhcTc
witness

{-
Note [Literal short cut]
~~~~~~~~~~~~~~~~~~~~~~~~
The type checker tries to do this short-cutting as early as possible, but
because of unification etc, more information is available to the desugarer.
And where it's possible to generate the correct literal right away, it's
much better to do so.


************************************************************************
*                                                                      *
                 Warnings about overflowed literals
*                                                                      *
************************************************************************

Warn about functions like toInteger, fromIntegral, that convert
between one type and another when the to- and from- types are the
same.  Then it's probably (albeit not definitely) the identity
-}

warnAboutIdentities :: DynFlags -> Id -> Type -> DsM ()
warnAboutIdentities :: DynFlags -> Id -> Type -> DsM ()
warnAboutIdentities DynFlags
dflags Id
conv_fn Type
type_of_conv
  | WarningFlag -> DynFlags -> Bool
wopt WarningFlag
Opt_WarnIdentities DynFlags
dflags
  , Id -> Name
idName Id
conv_fn forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Name]
conversionNames
  , Just (Type
_, Type
arg_ty, Type
res_ty) <- Type -> Maybe (Type, Type, Type)
splitFunTy_maybe Type
type_of_conv
  , Type
arg_ty Type -> Type -> Bool
`eqType` Type
res_ty  -- So we are converting  ty -> ty
  = WarnReason -> SDoc -> DsM ()
warnDs (WarningFlag -> WarnReason
Reason WarningFlag
Opt_WarnIdentities)
           ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Call of" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Id
conv_fn SDoc -> SDoc -> SDoc
<+> SDoc
dcolon SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
type_of_conv
                 , Int -> SDoc -> SDoc
nest Int
2 forall a b. (a -> b) -> a -> b
$ String -> SDoc
text String
"can probably be omitted"
           ])
warnAboutIdentities DynFlags
_ Id
_ Type
_ = forall (m :: * -> *) a. Monad m => a -> m a
return ()

conversionNames :: [Name]
conversionNames :: [Name]
conversionNames
  = [ Name
toIntegerName, Name
toRationalName
    , Name
fromIntegralName, Name
realToFracName ]
 -- We can't easily add fromIntegerName, fromRationalName,
 -- because they are generated by literals


-- | Emit warnings on overloaded integral literals which overflow the bounds
-- implied by their type.
warnAboutOverflowedOverLit :: HsOverLit GhcTc -> DsM ()
warnAboutOverflowedOverLit :: HsOverLit GhcTc -> DsM ()
warnAboutOverflowedOverLit HsOverLit GhcTc
hsOverLit = do
  DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
  FamInstEnvs
fam_envs <- DsM FamInstEnvs
dsGetFamInstEnvs
  DynFlags -> Maybe (Integer, Name) -> DsM ()
warnAboutOverflowedLiterals DynFlags
dflags forall a b. (a -> b) -> a -> b
$
      HsOverLit GhcTc -> Maybe (Integer, Type)
getIntegralLit HsOverLit GhcTc
hsOverLit forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= FamInstEnvs -> (Integer, Type) -> Maybe (Integer, Name)
getNormalisedTyconName FamInstEnvs
fam_envs

-- | Emit warnings on integral literals which overflow the bounds implied by
-- their type.
warnAboutOverflowedLit :: HsLit GhcTc -> DsM ()
warnAboutOverflowedLit :: HsLit GhcTc -> DsM ()
warnAboutOverflowedLit HsLit GhcTc
hsLit = do
  DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
  DynFlags -> Maybe (Integer, Name) -> DsM ()
warnAboutOverflowedLiterals DynFlags
dflags forall a b. (a -> b) -> a -> b
$
      HsLit GhcTc -> Maybe (Integer, Type)
getSimpleIntegralLit HsLit GhcTc
hsLit forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= (Integer, Type) -> Maybe (Integer, Name)
getTyconName

-- | Emit warnings on integral literals which overflow the bounds implied by
-- their type.
warnAboutOverflowedLiterals
  :: DynFlags
  -> Maybe (Integer, Name)  -- ^ the literal value and name of its tycon
  -> DsM ()
warnAboutOverflowedLiterals :: DynFlags -> Maybe (Integer, Name) -> DsM ()
warnAboutOverflowedLiterals DynFlags
dflags Maybe (Integer, Name)
lit
 | WarningFlag -> DynFlags -> Bool
wopt WarningFlag
Opt_WarnOverflowedLiterals DynFlags
dflags
 , Just (Integer
i, Name
tc) <- Maybe (Integer, Name)
lit
 = if
    -- These only show up via the 'HsOverLit' route
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
intTyConName        -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc Integer
minInt         Integer
maxInt
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
wordTyConName       -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc Integer
minWord        Integer
maxWord
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int8TyConName       -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int8)   (forall a. (Integral a, Bounded a) => Integer
max' @Int8)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int16TyConName      -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int16)  (forall a. (Integral a, Bounded a) => Integer
max' @Int16)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int32TyConName      -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int32)  (forall a. (Integral a, Bounded a) => Integer
max' @Int32)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int64TyConName      -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int64)  (forall a. (Integral a, Bounded a) => Integer
max' @Int64)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word8TyConName      -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word8)  (forall a. (Integral a, Bounded a) => Integer
max' @Word8)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word16TyConName     -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word16) (forall a. (Integral a, Bounded a) => Integer
max' @Word16)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word32TyConName     -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word32) (forall a. (Integral a, Bounded a) => Integer
max' @Word32)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word64TyConName     -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word64) (forall a. (Integral a, Bounded a) => Integer
max' @Word64)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
naturalTyConName    -> Integer -> Name -> DsM ()
checkPositive Integer
i Name
tc

    -- These only show up via the 'HsLit' route
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
intPrimTyConName    -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc Integer
minInt         Integer
maxInt
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
wordPrimTyConName   -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc Integer
minWord        Integer
maxWord
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int8PrimTyConName   -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int8)   (forall a. (Integral a, Bounded a) => Integer
max' @Int8)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int16PrimTyConName  -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int16)  (forall a. (Integral a, Bounded a) => Integer
max' @Int16)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int32PrimTyConName  -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int32)  (forall a. (Integral a, Bounded a) => Integer
max' @Int32)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int64PrimTyConName  -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Int64)  (forall a. (Integral a, Bounded a) => Integer
max' @Int64)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word8PrimTyConName  -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word8)  (forall a. (Integral a, Bounded a) => Integer
max' @Word8)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word16PrimTyConName -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word16) (forall a. (Integral a, Bounded a) => Integer
max' @Word16)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word32PrimTyConName -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word32) (forall a. (Integral a, Bounded a) => Integer
max' @Word32)
    | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word64PrimTyConName -> Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc (forall a. (Integral a, Bounded a) => Integer
min' @Word64) (forall a. (Integral a, Bounded a) => Integer
max' @Word64)

    | Bool
otherwise -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

  | Bool
otherwise = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  where
    -- use target Int/Word sizes! See #17336
    platform :: Platform
platform          = DynFlags -> Platform
targetPlatform DynFlags
dflags
    (Integer
minInt,Integer
maxInt)   = (Platform -> Integer
platformMinInt Platform
platform, Platform -> Integer
platformMaxInt Platform
platform)
    (Integer
minWord,Integer
maxWord) = (Integer
0,                       Platform -> Integer
platformMaxWord Platform
platform)

    min' :: forall a. (Integral a, Bounded a) => Integer
    min' :: forall a. (Integral a, Bounded a) => Integer
min' = forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Bounded a => a
minBound :: a)

    max' :: forall a. (Integral a, Bounded a) => Integer
    max' :: forall a. (Integral a, Bounded a) => Integer
max' = forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall a. Bounded a => a
maxBound :: a)

    checkPositive :: Integer -> Name -> DsM ()
    checkPositive :: Integer -> Name -> DsM ()
checkPositive Integer
i Name
tc
      = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Integer
i forall a. Ord a => a -> a -> Bool
< Integer
0) forall a b. (a -> b) -> a -> b
$
        WarnReason -> SDoc -> DsM ()
warnDs (WarningFlag -> WarnReason
Reason WarningFlag
Opt_WarnOverflowedLiterals)
               ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Literal" SDoc -> SDoc -> SDoc
<+> Integer -> SDoc
integer Integer
i
                       SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"is negative but" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Name
tc
                       SDoc -> SDoc -> SDoc
<+> PtrString -> SDoc
ptext (String -> PtrString
sLit String
"only supports positive numbers")
                     ])

    check :: Integer -> Name -> Integer -> Integer -> DsM ()
check Integer
i Name
tc Integer
minB Integer
maxB
      = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (Integer
i forall a. Ord a => a -> a -> Bool
< Integer
minB Bool -> Bool -> Bool
|| Integer
i forall a. Ord a => a -> a -> Bool
> Integer
maxB) forall a b. (a -> b) -> a -> b
$
        WarnReason -> SDoc -> DsM ()
warnDs (WarningFlag -> WarnReason
Reason WarningFlag
Opt_WarnOverflowedLiterals)
               ([SDoc] -> SDoc
vcat [ String -> SDoc
text String
"Literal" SDoc -> SDoc -> SDoc
<+> Integer -> SDoc
integer Integer
i
                       SDoc -> SDoc -> SDoc
<+> String -> SDoc
text String
"is out of the" SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Name
tc SDoc -> SDoc -> SDoc
<+> PtrString -> SDoc
ptext (String -> PtrString
sLit String
"range")
                       SDoc -> SDoc -> SDoc
<+> Integer -> SDoc
integer Integer
minB SDoc -> SDoc -> SDoc
<> String -> SDoc
text String
".." SDoc -> SDoc -> SDoc
<> Integer -> SDoc
integer Integer
maxB
                     , SDoc
sug ])
      where
        sug :: SDoc
sug | Integer
minB forall a. Eq a => a -> a -> Bool
== -Integer
i   -- Note [Suggest NegativeLiterals]
            , Integer
i forall a. Ord a => a -> a -> Bool
> Integer
0
            , Bool -> Bool
not (Extension -> DynFlags -> Bool
xopt Extension
LangExt.NegativeLiterals DynFlags
dflags)
            = String -> SDoc
text String
"If you are trying to write a large negative literal, use NegativeLiterals"
            | Bool
otherwise = SDoc
Outputable.empty

{-
Note [Suggest NegativeLiterals]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you write
  x :: Int8
  x = -128
it'll parse as (negate 128), and overflow.  In this case, suggest NegativeLiterals.
We get an erroneous suggestion for
  x = 128
but perhaps that does not matter too much.
-}

warnAboutEmptyEnumerations :: FamInstEnvs -> DynFlags -> LHsExpr GhcTc
                           -> Maybe (LHsExpr GhcTc)
                           -> LHsExpr GhcTc -> DsM ()
-- ^ Warns about @[2,3 .. 1]@ or @['b' .. 'a']@ which return the empty list.
-- For numeric literals, only works for integral types, not floating point.
warnAboutEmptyEnumerations :: FamInstEnvs
-> DynFlags
-> LHsExpr GhcTc
-> Maybe (LHsExpr GhcTc)
-> LHsExpr GhcTc
-> DsM ()
warnAboutEmptyEnumerations FamInstEnvs
fam_envs DynFlags
dflags LHsExpr GhcTc
fromExpr Maybe (LHsExpr GhcTc)
mThnExpr LHsExpr GhcTc
toExpr
  | Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ WarningFlag -> DynFlags -> Bool
wopt WarningFlag
Opt_WarnEmptyEnumerations DynFlags
dflags
  = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  -- Numeric Literals
  | Just from_ty :: (Integer, Type)
from_ty@(Integer
from',Type
_) <- LHsExpr GhcTc -> Maybe (Integer, Type)
getLHsIntegralLit LHsExpr GhcTc
fromExpr
  , Just (Integer
_, Name
tc)           <- FamInstEnvs -> (Integer, Type) -> Maybe (Integer, Name)
getNormalisedTyconName FamInstEnvs
fam_envs (Integer, Type)
from_ty
  , Just Maybe (Integer, Type)
mThn'             <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse LHsExpr GhcTc -> Maybe (Integer, Type)
getLHsIntegralLit Maybe (LHsExpr GhcTc)
mThnExpr
  , Just (Integer
to',Type
_)           <- LHsExpr GhcTc -> Maybe (Integer, Type)
getLHsIntegralLit LHsExpr GhcTc
toExpr
  = do
      let
        check :: forall a. (Integral a, Num a) => DsM ()
        check :: forall a. (Integral a, Num a) => DsM ()
check = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Integer]
enumeration) DsM ()
raiseWarning
          where
            enumeration :: [Integer]
enumeration = case Maybe Integer
mThn of
              Maybe Integer
Nothing  -> [Integer
from      .. Integer
to]
              Just Integer
thn -> [Integer
from, Integer
thn .. Integer
to]
            wrap :: forall a. (Integral a, Num a) => Integer -> Integer
            wrap :: forall a. (Integral a, Num a) => Integer -> Integer
wrap Integer
i = forall a. Integral a => a -> Integer
toInteger (forall a b. (Integral a, Num b) => a -> b
fromIntegral Integer
i :: a)
            from :: Integer
from = forall a. (Integral a, Num a) => Integer -> Integer
wrap @a Integer
from'
            to :: Integer
to   = forall a. (Integral a, Num a) => Integer -> Integer
wrap @a Integer
to'
            mThn :: Maybe Integer
mThn = forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall a. (Integral a, Num a) => Integer -> Integer
wrap @a forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> a
fst) Maybe (Integer, Type)
mThn'

      Platform
platform <- DynFlags -> Platform
targetPlatform forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
         -- Be careful to use target Int/Word sizes! cf #17336
      if | Name
tc forall a. Eq a => a -> a -> Bool
== Name
intTyConName     -> case Platform -> PlatformWordSize
platformWordSize Platform
platform of
                                      PlatformWordSize
PW4 -> forall a. (Integral a, Num a) => DsM ()
check @Int32
                                      PlatformWordSize
PW8 -> forall a. (Integral a, Num a) => DsM ()
check @Int64
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
wordTyConName    -> case Platform -> PlatformWordSize
platformWordSize Platform
platform of
                                      PlatformWordSize
PW4 -> forall a. (Integral a, Num a) => DsM ()
check @Word32
                                      PlatformWordSize
PW8 -> forall a. (Integral a, Num a) => DsM ()
check @Word64
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int8TyConName    -> forall a. (Integral a, Num a) => DsM ()
check @Int8
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int16TyConName   -> forall a. (Integral a, Num a) => DsM ()
check @Int16
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int32TyConName   -> forall a. (Integral a, Num a) => DsM ()
check @Int32
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
int64TyConName   -> forall a. (Integral a, Num a) => DsM ()
check @Int64
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word8TyConName   -> forall a. (Integral a, Num a) => DsM ()
check @Word8
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word16TyConName  -> forall a. (Integral a, Num a) => DsM ()
check @Word16
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word32TyConName  -> forall a. (Integral a, Num a) => DsM ()
check @Word32
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
word64TyConName  -> forall a. (Integral a, Num a) => DsM ()
check @Word64
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
integerTyConName -> forall a. (Integral a, Num a) => DsM ()
check @Integer
         | Name
tc forall a. Eq a => a -> a -> Bool
== Name
naturalTyConName -> forall a. (Integral a, Num a) => DsM ()
check @Integer
            -- We use 'Integer' because otherwise a negative 'Natural' literal
            -- could cause a compile time crash (instead of a runtime one).
            -- See the T10930b test case for an example of where this matters.
         | Bool
otherwise -> forall (m :: * -> *) a. Monad m => a -> m a
return ()

  -- Char literals (#18402)
  | Just Char
fromChar <- LHsExpr GhcTc -> Maybe Char
getLHsCharLit LHsExpr GhcTc
fromExpr
  , Just Maybe Char
mThnChar <- forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse LHsExpr GhcTc -> Maybe Char
getLHsCharLit Maybe (LHsExpr GhcTc)
mThnExpr
  , Just Char
toChar   <- LHsExpr GhcTc -> Maybe Char
getLHsCharLit LHsExpr GhcTc
toExpr
  , let enumeration :: String
enumeration = case Maybe Char
mThnChar of
                        Maybe Char
Nothing      -> [Char
fromChar          .. Char
toChar]
                        Just Char
thnChar -> [Char
fromChar, Char
thnChar .. Char
toChar]
  = forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (forall (t :: * -> *) a. Foldable t => t a -> Bool
null String
enumeration) DsM ()
raiseWarning

  | Bool
otherwise = forall (m :: * -> *) a. Monad m => a -> m a
return ()
  where
    raiseWarning :: DsM ()
raiseWarning = WarnReason -> SDoc -> DsM ()
warnDs (WarningFlag -> WarnReason
Reason WarningFlag
Opt_WarnEmptyEnumerations) (String -> SDoc
text String
"Enumeration is empty")

getLHsIntegralLit :: LHsExpr GhcTc -> Maybe (Integer, Type)
-- ^ See if the expression is an 'Integral' literal.
getLHsIntegralLit :: LHsExpr GhcTc -> Maybe (Integer, Type)
getLHsIntegralLit (L SrcSpanAnnA
_ HsExpr GhcTc
e) = HsExpr GhcTc -> Maybe (Integer, Type)
go HsExpr GhcTc
e
  where
    go :: HsExpr GhcTc -> Maybe (Integer, Type)
go (HsPar XPar GhcTc
_ LHsExpr GhcTc
e)            = LHsExpr GhcTc -> Maybe (Integer, Type)
getLHsIntegralLit LHsExpr GhcTc
e
    go (HsOverLit XOverLitE GhcTc
_ HsOverLit GhcTc
over_lit) = HsOverLit GhcTc -> Maybe (Integer, Type)
getIntegralLit HsOverLit GhcTc
over_lit
    go (HsLit XLitE GhcTc
_ HsLit GhcTc
lit)          = HsLit GhcTc -> Maybe (Integer, Type)
getSimpleIntegralLit HsLit GhcTc
lit

    -- Remember to look through automatically-added tick-boxes! (#8384)
    go (HsTick XTick GhcTc
_ CoreTickish
_ LHsExpr GhcTc
e)         = LHsExpr GhcTc -> Maybe (Integer, Type)
getLHsIntegralLit LHsExpr GhcTc
e
    go (HsBinTick XBinTick GhcTc
_ Int
_ Int
_ LHsExpr GhcTc
e)    = LHsExpr GhcTc -> Maybe (Integer, Type)
getLHsIntegralLit LHsExpr GhcTc
e

    -- The literal might be wrapped in a case with -XOverloadedLists
    go (XExpr (WrapExpr (HsWrap HsWrapper
_ HsExpr GhcTc
e))) = HsExpr GhcTc -> Maybe (Integer, Type)
go HsExpr GhcTc
e
    go HsExpr GhcTc
_ = forall a. Maybe a
Nothing

-- | If 'Integral', extract the value and type of the overloaded literal.
-- See Note [Literals and the OverloadedLists extension]
getIntegralLit :: HsOverLit GhcTc -> Maybe (Integer, Type)
getIntegralLit :: HsOverLit GhcTc -> Maybe (Integer, Type)
getIntegralLit (OverLit { ol_val :: forall p. HsOverLit p -> OverLitVal
ol_val = HsIntegral IntegralLit
i, ol_ext :: forall p. HsOverLit p -> XOverLit p
ol_ext = OverLitTc Bool
_ Type
ty })
  = forall a. a -> Maybe a
Just (IntegralLit -> Integer
il_value IntegralLit
i, Type
ty)
getIntegralLit HsOverLit GhcTc
_ = forall a. Maybe a
Nothing

-- | If 'Integral', extract the value and type of the non-overloaded literal.
getSimpleIntegralLit :: HsLit GhcTc -> Maybe (Integer, Type)
getSimpleIntegralLit :: HsLit GhcTc -> Maybe (Integer, Type)
getSimpleIntegralLit (HsInt XHsInt GhcTc
_ IL{ il_value :: IntegralLit -> Integer
il_value = Integer
i }) = forall a. a -> Maybe a
Just (Integer
i, Type
intTy)
getSimpleIntegralLit (HsIntPrim XHsIntPrim GhcTc
_ Integer
i)    = forall a. a -> Maybe a
Just (Integer
i, Type
intPrimTy)
getSimpleIntegralLit (HsWordPrim XHsWordPrim GhcTc
_ Integer
i)   = forall a. a -> Maybe a
Just (Integer
i, Type
wordPrimTy)
getSimpleIntegralLit (HsInt64Prim XHsInt64Prim GhcTc
_ Integer
i)  = forall a. a -> Maybe a
Just (Integer
i, Type
int64PrimTy)
getSimpleIntegralLit (HsWord64Prim XHsWord64Prim GhcTc
_ Integer
i) = forall a. a -> Maybe a
Just (Integer
i, Type
word64PrimTy)
getSimpleIntegralLit (HsInteger XHsInteger GhcTc
_ Integer
i Type
ty) = forall a. a -> Maybe a
Just (Integer
i, Type
ty)
getSimpleIntegralLit HsLit GhcTc
_ = forall a. Maybe a
Nothing

-- | Extract the Char if the expression is a Char literal.
getLHsCharLit :: LHsExpr GhcTc -> Maybe Char
getLHsCharLit :: LHsExpr GhcTc -> Maybe Char
getLHsCharLit (L SrcSpanAnnA
_ (HsPar XPar GhcTc
_ LHsExpr GhcTc
e))            = LHsExpr GhcTc -> Maybe Char
getLHsCharLit LHsExpr GhcTc
e
getLHsCharLit (L SrcSpanAnnA
_ (HsTick XTick GhcTc
_ CoreTickish
_ LHsExpr GhcTc
e))         = LHsExpr GhcTc -> Maybe Char
getLHsCharLit LHsExpr GhcTc
e
getLHsCharLit (L SrcSpanAnnA
_ (HsBinTick XBinTick GhcTc
_ Int
_ Int
_ LHsExpr GhcTc
e))    = LHsExpr GhcTc -> Maybe Char
getLHsCharLit LHsExpr GhcTc
e
getLHsCharLit (L SrcSpanAnnA
_ (HsLit XLitE GhcTc
_ (HsChar XHsChar GhcTc
_ Char
c))) = forall a. a -> Maybe a
Just Char
c
getLHsCharLit LHsExpr GhcTc
_ = forall a. Maybe a
Nothing

-- | Convert a pair (Integer, Type) to (Integer, Name) after eventually
-- normalising the type
getNormalisedTyconName :: FamInstEnvs -> (Integer, Type) -> Maybe (Integer, Name)
getNormalisedTyconName :: FamInstEnvs -> (Integer, Type) -> Maybe (Integer, Name)
getNormalisedTyconName FamInstEnvs
fam_envs (Integer
i,Type
ty)
    | Just TyCon
tc <- Type -> Maybe TyCon
tyConAppTyCon_maybe (FamInstEnvs -> Type -> Type
normaliseNominal FamInstEnvs
fam_envs Type
ty)
    = forall a. a -> Maybe a
Just (Integer
i, TyCon -> Name
tyConName TyCon
tc)
    | Bool
otherwise = forall a. Maybe a
Nothing
  where
    normaliseNominal :: FamInstEnvs -> Type -> Type
    normaliseNominal :: FamInstEnvs -> Type -> Type
normaliseNominal FamInstEnvs
fam_envs Type
ty = forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ FamInstEnvs -> Role -> Type -> (Coercion, Type)
normaliseType FamInstEnvs
fam_envs Role
Nominal Type
ty

-- | Convert a pair (Integer, Type) to (Integer, Name) without normalising
-- the type
getTyconName :: (Integer, Type) -> Maybe (Integer, Name)
getTyconName :: (Integer, Type) -> Maybe (Integer, Name)
getTyconName (Integer
i,Type
ty)
  | Just TyCon
tc <- Type -> Maybe TyCon
tyConAppTyCon_maybe Type
ty = forall a. a -> Maybe a
Just (Integer
i, TyCon -> Name
tyConName TyCon
tc)
  | Bool
otherwise = forall a. Maybe a
Nothing

{-
Note [Literals and the OverloadedLists extension]
~~~~
Consider the Literal `[256] :: [Data.Word.Word8]`

When the `OverloadedLists` extension is not active, then the `ol_ext` field
in the `OverLitTc` record that is passed to the function `getIntegralLit`
contains the type `Word8`. This is a simple type, and we can use its
type constructor immediately for the `warnAboutOverflowedLiterals` function.

When the `OverloadedLists` extension is active, then the `ol_ext` field
contains the type family `Item [Word8]`. The function `nomaliseType` is used
to convert it to the needed type `Word8`.
-}

{-
************************************************************************
*                                                                      *
        Tidying lit pats
*                                                                      *
************************************************************************
-}

tidyLitPat :: HsLit GhcTc -> Pat GhcTc
-- Result has only the following HsLits:
--      HsIntPrim, HsWordPrim, HsCharPrim, HsFloatPrim
--      HsDoublePrim, HsStringPrim, HsString
--  * HsInteger, HsRat, HsInt can't show up in LitPats
--  * We get rid of HsChar right here
tidyLitPat :: HsLit GhcTc -> Pat GhcTc
tidyLitPat (HsChar XHsChar GhcTc
src Char
c) = forall l e. GenLocated l e -> e
unLoc (SourceText -> Char -> LPat GhcTc
mkCharLitPat XHsChar GhcTc
src Char
c)
tidyLitPat (HsString XHsString GhcTc
src FastString
s)
  | FastString -> Int
lengthFS FastString
s forall a. Ord a => a -> a -> Bool
<= Int
1     -- Short string literals only
  = forall l e. GenLocated l e -> e
unLoc forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr (\Char
c GenLocated SrcSpanAnnA (Pat GhcTc)
pat -> DataCon -> [LPat GhcTc] -> [Type] -> LPat GhcTc
mkPrefixConPat DataCon
consDataCon
                                             [SourceText -> Char -> LPat GhcTc
mkCharLitPat XHsString GhcTc
src Char
c, GenLocated SrcSpanAnnA (Pat GhcTc)
pat] [Type
charTy])
                  (Type -> LPat GhcTc
mkNilPat Type
charTy) (FastString -> String
unpackFS FastString
s)
        -- The stringTy is the type of the whole pattern, not
        -- the type to instantiate (:) or [] with!
tidyLitPat HsLit GhcTc
lit = forall p. XLitPat p -> HsLit p -> Pat p
LitPat NoExtField
noExtField HsLit GhcTc
lit

----------------
tidyNPat :: HsOverLit GhcTc -> Maybe (SyntaxExpr GhcTc) -> SyntaxExpr GhcTc
         -> Type
         -> Pat GhcTc
tidyNPat :: HsOverLit GhcTc
-> Maybe (SyntaxExpr GhcTc)
-> SyntaxExpr GhcTc
-> Type
-> Pat GhcTc
tidyNPat (OverLit (OverLitTc Bool
False Type
ty) OverLitVal
val HsExpr GhcTc
_) Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
_eq Type
outer_ty
        -- False: Take short cuts only if the literal is not using rebindable syntax
        --
        -- Once that is settled, look for cases where the type of the
        -- entire overloaded literal matches the type of the underlying literal,
        -- and in that case take the short cut
        -- NB: Watch out for weird cases like #3382
        --        f :: Int -> Int
        --        f "blah" = 4
        --     which might be ok if we have 'instance IsString Int'
        --
  | Bool -> Bool
not Bool
type_change, Type -> Bool
isIntTy Type
ty,    Just Integer
int_lit <- Maybe Integer
mb_int_lit
                 = DataCon -> HsLit GhcTc -> Pat GhcTc
mk_con_pat DataCon
intDataCon    (forall x. XHsIntPrim x -> Integer -> HsLit x
HsIntPrim    SourceText
NoSourceText Integer
int_lit)
  | Bool -> Bool
not Bool
type_change, Type -> Bool
isWordTy Type
ty,   Just Integer
int_lit <- Maybe Integer
mb_int_lit
                 = DataCon -> HsLit GhcTc -> Pat GhcTc
mk_con_pat DataCon
wordDataCon   (forall x. XHsWordPrim x -> Integer -> HsLit x
HsWordPrim   SourceText
NoSourceText Integer
int_lit)
  | Bool -> Bool
not Bool
type_change, Type -> Bool
isStringTy Type
ty, Just FastString
str_lit <- Maybe FastString
mb_str_lit
                 = HsLit GhcTc -> Pat GhcTc
tidyLitPat (forall x. XHsString x -> FastString -> HsLit x
HsString SourceText
NoSourceText FastString
str_lit)
     -- NB: do /not/ convert Float or Double literals to F# 3.8 or D# 5.3
     -- If we do convert to the constructor form, we'll generate a case
     -- expression on a Float# or Double# and that's not allowed in Core; see
     -- #9238 and Note [Rules for floating-point comparisons] in GHC.Core.Opt.ConstantFold
  where
    -- Sometimes (like in test case
    -- overloadedlists/should_run/overloadedlistsrun04), the SyntaxExprs include
    -- type-changing wrappers (for example, from Id Int to Int, for the identity
    -- type family Id). In these cases, we can't do the short-cut.
    type_change :: Bool
type_change = Bool -> Bool
not (Type
outer_ty Type -> Type -> Bool
`eqType` Type
ty)

    mk_con_pat :: DataCon -> HsLit GhcTc -> Pat GhcTc
    mk_con_pat :: DataCon -> HsLit GhcTc -> Pat GhcTc
mk_con_pat DataCon
con HsLit GhcTc
lit
      = forall l e. GenLocated l e -> e
unLoc (DataCon -> [LPat GhcTc] -> [Type] -> LPat GhcTc
mkPrefixConPat DataCon
con [forall a an. a -> LocatedAn an a
noLocA forall a b. (a -> b) -> a -> b
$ forall p. XLitPat p -> HsLit p -> Pat p
LitPat NoExtField
noExtField HsLit GhcTc
lit] [])

    mb_int_lit :: Maybe Integer
    mb_int_lit :: Maybe Integer
mb_int_lit = case (Maybe (SyntaxExpr GhcTc)
mb_neg, OverLitVal
val) of
                   (Maybe SyntaxExprTc
Nothing, HsIntegral IntegralLit
i) -> forall a. a -> Maybe a
Just (IntegralLit -> Integer
il_value IntegralLit
i)
                   (Just SyntaxExprTc
_,  HsIntegral IntegralLit
i) -> forall a. a -> Maybe a
Just (-(IntegralLit -> Integer
il_value IntegralLit
i))
                   (Maybe SyntaxExprTc, OverLitVal)
_ -> forall a. Maybe a
Nothing

    mb_str_lit :: Maybe FastString
    mb_str_lit :: Maybe FastString
mb_str_lit = case (Maybe (SyntaxExpr GhcTc)
mb_neg, OverLitVal
val) of
                   (Maybe SyntaxExprTc
Nothing, HsIsString SourceText
_ FastString
s) -> forall a. a -> Maybe a
Just FastString
s
                   (Maybe SyntaxExprTc, OverLitVal)
_ -> forall a. Maybe a
Nothing

tidyNPat HsOverLit GhcTc
over_lit Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
eq Type
outer_ty
  = forall p.
XNPat p
-> XRec p (HsOverLit p)
-> Maybe (SyntaxExpr p)
-> SyntaxExpr p
-> Pat p
NPat Type
outer_ty (forall e. e -> Located e
noLoc HsOverLit GhcTc
over_lit) Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
eq

{-
************************************************************************
*                                                                      *
                Pattern matching on LitPat
*                                                                      *
************************************************************************
-}

matchLiterals :: NonEmpty Id
              -> Type -- ^ Type of the whole case expression
              -> NonEmpty (NonEmpty EquationInfo) -- ^ All PgLits
              -> DsM (MatchResult CoreExpr)

matchLiterals :: NonEmpty Id
-> Type
-> NonEmpty (NonEmpty EquationInfo)
-> DsM (MatchResult CoreExpr)
matchLiterals (Id
var :| [Id]
vars) Type
ty NonEmpty (NonEmpty EquationInfo)
sub_groups
  = do  {       -- Deal with each group
        ; NonEmpty (Literal, MatchResult CoreExpr)
alts <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM NonEmpty EquationInfo -> DsM (Literal, MatchResult CoreExpr)
match_group NonEmpty (NonEmpty EquationInfo)
sub_groups

                -- Combine results.  For everything except String
                -- we can use a case expression; for String we need
                -- a chain of if-then-else
        ; if Type -> Bool
isStringTy (Id -> Type
idType Id
var) then
            do  { Id
eq_str <- Name -> DsM Id
dsLookupGlobalId Name
eqStringName
                ; NonEmpty (MatchResult CoreExpr)
mrs <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Id -> (Literal, MatchResult CoreExpr) -> DsM (MatchResult CoreExpr)
wrap_str_guard Id
eq_str) NonEmpty (Literal, MatchResult CoreExpr)
alts
                ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 MatchResult CoreExpr
-> MatchResult CoreExpr -> MatchResult CoreExpr
combineMatchResults NonEmpty (MatchResult CoreExpr)
mrs) }
          else
            forall (m :: * -> *) a. Monad m => a -> m a
return (Id
-> Type
-> [(Literal, MatchResult CoreExpr)]
-> MatchResult CoreExpr
mkCoPrimCaseMatchResult Id
var Type
ty forall a b. (a -> b) -> a -> b
$ forall a. NonEmpty a -> [a]
NEL.toList NonEmpty (Literal, MatchResult CoreExpr)
alts)
        }
  where
    match_group :: NonEmpty EquationInfo -> DsM (Literal, MatchResult CoreExpr)
    match_group :: NonEmpty EquationInfo -> DsM (Literal, MatchResult CoreExpr)
match_group eqns :: NonEmpty EquationInfo
eqns@(EquationInfo
firstEqn :| [EquationInfo]
_)
        = do { DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
             ; let platform :: Platform
platform = DynFlags -> Platform
targetPlatform DynFlags
dflags
             ; let LitPat XLitPat GhcTc
_ HsLit GhcTc
hs_lit = EquationInfo -> Pat GhcTc
firstPat EquationInfo
firstEqn
             ; MatchResult CoreExpr
match_result <- [Id] -> Type -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match [Id]
vars Type
ty (forall a. NonEmpty a -> [a]
NEL.toList forall a b. (a -> b) -> a -> b
$ forall (f :: * -> *). Functor f => f EquationInfo -> f EquationInfo
shiftEqns NonEmpty EquationInfo
eqns)
             ; forall (m :: * -> *) a. Monad m => a -> m a
return (Platform -> HsLit GhcTc -> Literal
hsLitKey Platform
platform HsLit GhcTc
hs_lit, MatchResult CoreExpr
match_result) }

    wrap_str_guard :: Id -> (Literal,MatchResult CoreExpr) -> DsM (MatchResult CoreExpr)
        -- Equality check for string literals
    wrap_str_guard :: Id -> (Literal, MatchResult CoreExpr) -> DsM (MatchResult CoreExpr)
wrap_str_guard Id
eq_str (LitString ByteString
s, MatchResult CoreExpr
mr)
        = do { -- We now have to convert back to FastString. Perhaps there
               -- should be separate LitBytes and LitString constructors?
               let s' :: FastString
s'  = ByteString -> FastString
mkFastStringByteString ByteString
s
             ; CoreExpr
lit    <- forall (m :: * -> *). MonadThings m => FastString -> m CoreExpr
mkStringExprFS FastString
s'
             ; let pred :: CoreExpr
pred = forall b. Expr b -> [Expr b] -> Expr b
mkApps (forall b. Id -> Expr b
Var Id
eq_str) [forall b. Id -> Expr b
Var Id
var, CoreExpr
lit]
             ; forall (m :: * -> *) a. Monad m => a -> m a
return (CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
mkGuardedMatchResult CoreExpr
pred MatchResult CoreExpr
mr) }
    wrap_str_guard Id
_ (Literal
l, MatchResult CoreExpr
_) = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"matchLiterals/wrap_str_guard" (forall a. Outputable a => a -> SDoc
ppr Literal
l)


---------------------------
hsLitKey :: Platform -> HsLit GhcTc -> Literal
-- Get the Core literal corresponding to a HsLit.
-- It only works for primitive types and strings;
-- others have been removed by tidy
-- For HsString, it produces a LitString, which really represents an _unboxed_
-- string literal; and we deal with it in matchLiterals above. Otherwise, it
-- produces a primitive Literal of type matching the original HsLit.
-- In the case of the fixed-width numeric types, we need to wrap here
-- because Literal has an invariant that the literal is in range, while
-- HsLit does not.
hsLitKey :: Platform -> HsLit GhcTc -> Literal
hsLitKey Platform
platform (HsIntPrim    XHsIntPrim GhcTc
_ Integer
i)  = Platform -> Integer -> Literal
mkLitIntWrap  Platform
platform Integer
i
hsLitKey Platform
platform (HsWordPrim   XHsWordPrim GhcTc
_ Integer
w)  = Platform -> Integer -> Literal
mkLitWordWrap Platform
platform Integer
w
hsLitKey Platform
_        (HsInt64Prim  XHsInt64Prim GhcTc
_ Integer
i)  = Integer -> Literal
mkLitInt64Wrap  Integer
i
hsLitKey Platform
_        (HsWord64Prim XHsWord64Prim GhcTc
_ Integer
w)  = Integer -> Literal
mkLitWord64Wrap Integer
w
hsLitKey Platform
_        (HsCharPrim   XHsCharPrim GhcTc
_ Char
c)  = Char -> Literal
mkLitChar            Char
c
-- This following two can be slow. See Note [FractionalLit representation]
hsLitKey Platform
_        (HsFloatPrim  XHsFloatPrim GhcTc
_ FractionalLit
fl) = Rational -> Literal
mkLitFloat (FractionalLit -> Rational
rationalFromFractionalLit FractionalLit
fl)
hsLitKey Platform
_        (HsDoublePrim XHsDoublePrim GhcTc
_ FractionalLit
fl) = Rational -> Literal
mkLitDouble (FractionalLit -> Rational
rationalFromFractionalLit FractionalLit
fl)

hsLitKey Platform
_        (HsString XHsString GhcTc
_ FastString
s)      = ByteString -> Literal
LitString (FastString -> ByteString
bytesFS FastString
s)
hsLitKey Platform
_        HsLit GhcTc
l                   = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"hsLitKey" (forall a. Outputable a => a -> SDoc
ppr HsLit GhcTc
l)

{-
************************************************************************
*                                                                      *
                Pattern matching on NPat
*                                                                      *
************************************************************************
-}

matchNPats :: NonEmpty Id -> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchNPats :: NonEmpty Id
-> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchNPats (Id
var :| [Id]
vars) Type
ty (EquationInfo
eqn1 :| [EquationInfo]
eqns)    -- All for the same literal
  = do  { let NPat XNPat GhcTc
_ (L SrcSpan
_ HsOverLit GhcTc
lit) Maybe (SyntaxExpr GhcTc)
mb_neg SyntaxExpr GhcTc
eq_chk = EquationInfo -> Pat GhcTc
firstPat EquationInfo
eqn1
        ; CoreExpr
lit_expr <- HsOverLit GhcTc -> DsM CoreExpr
dsOverLit HsOverLit GhcTc
lit
        ; CoreExpr
neg_lit <- case Maybe (SyntaxExpr GhcTc)
mb_neg of
                            Maybe (SyntaxExpr GhcTc)
Nothing  -> forall (m :: * -> *) a. Monad m => a -> m a
return CoreExpr
lit_expr
                            Just SyntaxExpr GhcTc
neg -> SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr
dsSyntaxExpr SyntaxExpr GhcTc
neg [CoreExpr
lit_expr]
        ; CoreExpr
pred_expr <- SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr
dsSyntaxExpr SyntaxExpr GhcTc
eq_chk [forall b. Id -> Expr b
Var Id
var, CoreExpr
neg_lit]
        ; MatchResult CoreExpr
match_result <- [Id] -> Type -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match [Id]
vars Type
ty (forall (f :: * -> *). Functor f => f EquationInfo -> f EquationInfo
shiftEqns (EquationInfo
eqn1forall a. a -> [a] -> [a]
:[EquationInfo]
eqns))
        ; forall (m :: * -> *) a. Monad m => a -> m a
return (CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
mkGuardedMatchResult CoreExpr
pred_expr MatchResult CoreExpr
match_result) }

{-
************************************************************************
*                                                                      *
                Pattern matching on n+k patterns
*                                                                      *
************************************************************************

For an n+k pattern, we use the various magic expressions we've been given.
We generate:
\begin{verbatim}
    if ge var lit then
        let n = sub var lit
        in  <expr-for-a-successful-match>
    else
        <try-next-pattern-or-whatever>
\end{verbatim}
-}

matchNPlusKPats :: NonEmpty Id -> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
-- All NPlusKPats, for the *same* literal k
matchNPlusKPats :: NonEmpty Id
-> Type -> NonEmpty EquationInfo -> DsM (MatchResult CoreExpr)
matchNPlusKPats (Id
var :| [Id]
vars) Type
ty (EquationInfo
eqn1 :| [EquationInfo]
eqns)
  = do  { let NPlusKPat XNPlusKPat GhcTc
_ (L SrcSpanAnnN
_ Id
n1) (L SrcSpan
_ HsOverLit GhcTc
lit1) HsOverLit GhcTc
lit2 SyntaxExpr GhcTc
ge SyntaxExpr GhcTc
minus
                = EquationInfo -> Pat GhcTc
firstPat EquationInfo
eqn1
        ; CoreExpr
lit1_expr   <- HsOverLit GhcTc -> DsM CoreExpr
dsOverLit HsOverLit GhcTc
lit1
        ; CoreExpr
lit2_expr   <- HsOverLit GhcTc -> DsM CoreExpr
dsOverLit HsOverLit GhcTc
lit2
        ; CoreExpr
pred_expr   <- SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr
dsSyntaxExpr SyntaxExpr GhcTc
ge    [forall b. Id -> Expr b
Var Id
var, CoreExpr
lit1_expr]
        ; CoreExpr
minusk_expr <- SyntaxExpr GhcTc -> [CoreExpr] -> DsM CoreExpr
dsSyntaxExpr SyntaxExpr GhcTc
minus [forall b. Id -> Expr b
Var Id
var, CoreExpr
lit2_expr]
        ; let ([CoreExpr -> CoreExpr]
wraps, [EquationInfo]
eqns') = forall a b c. (a -> (b, c)) -> [a] -> ([b], [c])
mapAndUnzip (Id -> EquationInfo -> (CoreExpr -> CoreExpr, EquationInfo)
shift Id
n1) (EquationInfo
eqn1forall a. a -> [a] -> [a]
:[EquationInfo]
eqns)
        ; MatchResult CoreExpr
match_result <- [Id] -> Type -> [EquationInfo] -> DsM (MatchResult CoreExpr)
match [Id]
vars Type
ty [EquationInfo]
eqns'
        ; forall (m :: * -> *) a. Monad m => a -> m a
return  (CoreExpr -> MatchResult CoreExpr -> MatchResult CoreExpr
mkGuardedMatchResult CoreExpr
pred_expr               forall a b. (a -> b) -> a -> b
$
                   CoreBind -> MatchResult CoreExpr -> MatchResult CoreExpr
mkCoLetMatchResult (forall b. b -> Expr b -> Bind b
NonRec Id
n1 CoreExpr
minusk_expr)   forall a b. (a -> b) -> a -> b
$
                   forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldr1 forall b c a. (b -> c) -> (a -> b) -> a -> c
(.) [CoreExpr -> CoreExpr]
wraps)                      forall a b. (a -> b) -> a -> b
$
                   MatchResult CoreExpr
match_result) }
  where
    shift :: Id -> EquationInfo -> (CoreExpr -> CoreExpr, EquationInfo)
shift Id
n1 eqn :: EquationInfo
eqn@(EqnInfo { eqn_pats :: EquationInfo -> [Pat GhcTc]
eqn_pats = NPlusKPat XNPlusKPat GhcTc
_ (L SrcSpanAnnN
_ Id
n) XRec GhcTc (HsOverLit GhcTc)
_ HsOverLit GhcTc
_ SyntaxExpr GhcTc
_ SyntaxExpr GhcTc
_ : [Pat GhcTc]
pats })
        = (Id -> Id -> CoreExpr -> CoreExpr
wrapBind Id
n Id
n1, EquationInfo
eqn { eqn_pats :: [Pat GhcTc]
eqn_pats = [Pat GhcTc]
pats })
        -- The wrapBind is a no-op for the first equation
    shift Id
_ EquationInfo
e = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"matchNPlusKPats/shift" (forall a. Outputable a => a -> SDoc
ppr EquationInfo
e)