{-# LANGUAGE CPP          #-}
{-# LANGUAGE TypeFamilies #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

{-
(c) The University of Glasgow 2006
(c) The GRASP/AQUA Project, Glasgow University, 1992-1998


The Desugarer: turning HsSyn into Core.
-}

module GHC.HsToCore (
    -- * Desugaring operations
    deSugar, deSugarExpr
    ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Driver.Session
import GHC.Driver.Config
import GHC.Driver.Env
import GHC.Driver.Backend

import GHC.Hs

import GHC.HsToCore.Usage
import GHC.HsToCore.Monad
import GHC.HsToCore.Expr
import GHC.HsToCore.Binds
import GHC.HsToCore.Foreign.Decl
import GHC.HsToCore.Coverage
import GHC.HsToCore.Docs

import GHC.Tc.Types
import GHC.Tc.Utils.Monad  ( finalSafeMode, fixSafeInstances )
import GHC.Tc.Module ( runTcInteractive )

import GHC.Core.Type
import GHC.Core.TyCon     ( tyConDataCons )
import GHC.Core
import GHC.Core.FVs       ( exprsSomeFreeVarsList )
import GHC.Core.SimpleOpt ( simpleOptPgm, simpleOptExpr )
import GHC.Core.Utils
import GHC.Core.Unfold.Make
import GHC.Core.Ppr
import GHC.Core.Coercion
import GHC.Core.DataCon ( dataConWrapId )
import GHC.Core.Make
import GHC.Core.Rules
import GHC.Core.Opt.Monad ( CoreToDo(..) )
import GHC.Core.Lint     ( endPassIO )

import GHC.Builtin.Names
import GHC.Builtin.Types.Prim
import GHC.Builtin.Types

import GHC.Data.FastString
import GHC.Data.OrdList

import GHC.Utils.Error
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Utils.Misc
import GHC.Utils.Monad
import GHC.Utils.Logger

import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.ForeignStubs
import GHC.Types.Avail
import GHC.Types.Basic
import GHC.Types.Var.Set
import GHC.Types.SrcLoc
import GHC.Types.SourceFile
import GHC.Types.TypeEnv
import GHC.Types.Name
import GHC.Types.Name.Set
import GHC.Types.Name.Env
import GHC.Types.Name.Ppr
import GHC.Types.HpcInfo

import GHC.Unit
import GHC.Unit.Module.ModGuts
import GHC.Unit.Module.ModIface

import Data.List (partition)
import Data.IORef
import Control.Monad( when )
import GHC.Driver.Plugins ( LoadedPlugin(..) )

{-
************************************************************************
*                                                                      *
*              The main function: deSugar
*                                                                      *
************************************************************************
-}

-- | Main entry point to the desugarer.
deSugar :: HscEnv -> ModLocation -> TcGblEnv -> IO (Messages DecoratedSDoc, Maybe ModGuts)
-- Can modify PCS by faulting in more declarations

deSugar :: HscEnv
-> ModLocation
-> TcGblEnv
-> IO (Messages DecoratedSDoc, Maybe ModGuts)
deSugar HscEnv
hsc_env
        ModLocation
mod_loc
        tcg_env :: TcGblEnv
tcg_env@(TcGblEnv { tcg_mod :: TcGblEnv -> Module
tcg_mod          = Module
id_mod,
                            tcg_semantic_mod :: TcGblEnv -> Module
tcg_semantic_mod = Module
mod,
                            tcg_src :: TcGblEnv -> HscSource
tcg_src          = HscSource
hsc_src,
                            tcg_type_env :: TcGblEnv -> TypeEnv
tcg_type_env     = TypeEnv
type_env,
                            tcg_imports :: TcGblEnv -> ImportAvails
tcg_imports      = ImportAvails
imports,
                            tcg_exports :: TcGblEnv -> [AvailInfo]
tcg_exports      = [AvailInfo]
exports,
                            tcg_keep :: TcGblEnv -> TcRef NameSet
tcg_keep         = TcRef NameSet
keep_var,
                            tcg_th_splice_used :: TcGblEnv -> TcRef Bool
tcg_th_splice_used = TcRef Bool
tc_splice_used,
                            tcg_rdr_env :: TcGblEnv -> GlobalRdrEnv
tcg_rdr_env      = GlobalRdrEnv
rdr_env,
                            tcg_fix_env :: TcGblEnv -> FixityEnv
tcg_fix_env      = FixityEnv
fix_env,
                            tcg_inst_env :: TcGblEnv -> InstEnv
tcg_inst_env     = InstEnv
inst_env,
                            tcg_fam_inst_env :: TcGblEnv -> FamInstEnv
tcg_fam_inst_env = FamInstEnv
fam_inst_env,
                            tcg_merged :: TcGblEnv -> [(Module, Fingerprint)]
tcg_merged       = [(Module, Fingerprint)]
merged,
                            tcg_warns :: TcGblEnv -> Warnings
tcg_warns        = Warnings
warns,
                            tcg_anns :: TcGblEnv -> [Annotation]
tcg_anns         = [Annotation]
anns,
                            tcg_binds :: TcGblEnv -> LHsBinds GhcTc
tcg_binds        = LHsBinds GhcTc
binds,
                            tcg_imp_specs :: TcGblEnv -> [LTcSpecPrag]
tcg_imp_specs    = [LTcSpecPrag]
imp_specs,
                            tcg_dependent_files :: TcGblEnv -> TcRef [FilePath]
tcg_dependent_files = TcRef [FilePath]
dependent_files,
                            tcg_ev_binds :: TcGblEnv -> Bag EvBind
tcg_ev_binds     = Bag EvBind
ev_binds,
                            tcg_th_foreign_files :: TcGblEnv -> TcRef [(ForeignSrcLang, FilePath)]
tcg_th_foreign_files = TcRef [(ForeignSrcLang, FilePath)]
th_foreign_files_var,
                            tcg_fords :: TcGblEnv -> [LForeignDecl GhcTc]
tcg_fords        = [LForeignDecl GhcTc]
fords,
                            tcg_rules :: TcGblEnv -> [LRuleDecl GhcTc]
tcg_rules        = [LRuleDecl GhcTc]
rules,
                            tcg_patsyns :: TcGblEnv -> [PatSyn]
tcg_patsyns      = [PatSyn]
patsyns,
                            tcg_tcs :: TcGblEnv -> [TyCon]
tcg_tcs          = [TyCon]
tcs,
                            tcg_insts :: TcGblEnv -> [ClsInst]
tcg_insts        = [ClsInst]
insts,
                            tcg_fam_insts :: TcGblEnv -> [FamInst]
tcg_fam_insts    = [FamInst]
fam_insts,
                            tcg_hpc :: TcGblEnv -> Bool
tcg_hpc          = Bool
other_hpc_info,
                            tcg_complete_matches :: TcGblEnv -> CompleteMatches
tcg_complete_matches = CompleteMatches
complete_matches
                            })

  = do { let dflags :: DynFlags
dflags = HscEnv -> DynFlags
hsc_dflags HscEnv
hsc_env
             logger :: Logger
logger = HscEnv -> Logger
hsc_logger HscEnv
hsc_env
             print_unqual :: PrintUnqualified
print_unqual = UnitEnv -> GlobalRdrEnv -> PrintUnqualified
mkPrintUnqualified (HscEnv -> UnitEnv
hsc_unit_env HscEnv
hsc_env) GlobalRdrEnv
rdr_env
        ; forall (m :: * -> *) a.
MonadIO m =>
Logger -> DynFlags -> SDoc -> (a -> ()) -> m a -> m a
withTiming Logger
logger DynFlags
dflags
                     (FilePath -> SDoc
text FilePath
"Desugar"SDoc -> SDoc -> SDoc
<+>SDoc -> SDoc
brackets (forall a. Outputable a => a -> SDoc
ppr Module
mod))
                     (forall a b. a -> b -> a
const ()) forall a b. (a -> b) -> a -> b
$
     do { -- Desugar the program
        ; let export_set :: NameSet
export_set = [AvailInfo] -> NameSet
availsToNameSet [AvailInfo]
exports
              bcknd :: Backend
bcknd      = DynFlags -> Backend
backend DynFlags
dflags
              hpcInfo :: HpcInfo
hpcInfo    = Bool -> HpcInfo
emptyHpcInfo Bool
other_hpc_info

        ; (Bag (GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc))
binds_cvr, HpcInfo
ds_hpc_info, Maybe ModBreaks
modBreaks)
                         <- if Bool -> Bool
not (HscSource -> Bool
isHsBootOrSig HscSource
hsc_src)
                              then HscEnv
-> Module
-> ModLocation
-> NameSet
-> [TyCon]
-> LHsBinds GhcTc
-> IO (LHsBinds GhcTc, HpcInfo, Maybe ModBreaks)
addTicksToBinds HscEnv
hsc_env Module
mod ModLocation
mod_loc
                                       NameSet
export_set (TypeEnv -> [TyCon]
typeEnvTyCons TypeEnv
type_env) LHsBinds GhcTc
binds
                              else forall (m :: * -> *) a. Monad m => a -> m a
return (LHsBinds GhcTc
binds, HpcInfo
hpcInfo, forall a. Maybe a
Nothing)
        ; (Messages DecoratedSDoc
msgs, Maybe ([CoreBind], OrdList Binding, [CoreRule], ForeignStubs)
mb_res) <- forall a.
HscEnv -> TcGblEnv -> DsM a -> IO (Messages DecoratedSDoc, Maybe a)
initDs HscEnv
hsc_env TcGblEnv
tcg_env forall a b. (a -> b) -> a -> b
$
                       do { [CoreBind]
ds_ev_binds <- Bag EvBind -> DsM [CoreBind]
dsEvBinds Bag EvBind
ev_binds
                          ; OrdList Binding
core_prs <- LHsBinds GhcTc -> DsM (OrdList Binding)
dsTopLHsBinds Bag (GenLocated SrcSpanAnnA (HsBindLR GhcTc GhcTc))
binds_cvr
                          ; OrdList Binding
core_prs <- OrdList Binding -> DsM (OrdList Binding)
patchMagicDefns OrdList Binding
core_prs
                          ; (OrdList Binding
spec_prs, [CoreRule]
spec_rules) <- [LTcSpecPrag] -> DsM (OrdList Binding, [CoreRule])
dsImpSpecs [LTcSpecPrag]
imp_specs
                          ; (ForeignStubs
ds_fords, OrdList Binding
foreign_prs) <- [LForeignDecl GhcTc] -> DsM (ForeignStubs, OrdList Binding)
dsForeigns [LForeignDecl GhcTc]
fords
                          ; [CoreRule]
ds_rules <- forall (m :: * -> *) a b.
Applicative m =>
(a -> m (Maybe b)) -> [a] -> m [b]
mapMaybeM LRuleDecl GhcTc -> DsM (Maybe CoreRule)
dsRule [LRuleDecl GhcTc]
rules
                          ; let hpc_init :: CStub
hpc_init
                                  | GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_Hpc DynFlags
dflags = DynFlags -> Module -> HpcInfo -> CStub
hpcInitCode (HscEnv -> DynFlags
hsc_dflags HscEnv
hsc_env) Module
mod HpcInfo
ds_hpc_info
                                  | Bool
otherwise = forall a. Monoid a => a
mempty
                          ; forall (m :: * -> *) a. Monad m => a -> m a
return ( [CoreBind]
ds_ev_binds
                                   , OrdList Binding
foreign_prs forall a. OrdList a -> OrdList a -> OrdList a
`appOL` OrdList Binding
core_prs forall a. OrdList a -> OrdList a -> OrdList a
`appOL` OrdList Binding
spec_prs
                                   , [CoreRule]
spec_rules forall a. [a] -> [a] -> [a]
++ [CoreRule]
ds_rules
                                   , ForeignStubs
ds_fords ForeignStubs -> CStub -> ForeignStubs
`appendStubC` CStub
hpc_init) }

        ; case Maybe ([CoreBind], OrdList Binding, [CoreRule], ForeignStubs)
mb_res of {
           Maybe ([CoreBind], OrdList Binding, [CoreRule], ForeignStubs)
Nothing -> forall (m :: * -> *) a. Monad m => a -> m a
return (Messages DecoratedSDoc
msgs, forall a. Maybe a
Nothing) ;
           Just ([CoreBind]
ds_ev_binds, OrdList Binding
all_prs, [CoreRule]
all_rules, ForeignStubs
ds_fords) ->

     do {       -- Add export flags to bindings
          NameSet
keep_alive <- forall a. IORef a -> IO a
readIORef TcRef NameSet
keep_var
        ; let ([CoreRule]
rules_for_locals, [CoreRule]
rules_for_imps) = forall a. (a -> Bool) -> [a] -> ([a], [a])
partition CoreRule -> Bool
isLocalRule [CoreRule]
all_rules
              final_prs :: [Binding]
final_prs = forall t.
Backend
-> NameSet -> NameSet -> [CoreRule] -> [(Id, t)] -> [(Id, t)]
addExportFlagsAndRules Backend
bcknd NameSet
export_set NameSet
keep_alive
                                                 [CoreRule]
rules_for_locals (forall a. OrdList a -> [a]
fromOL OrdList Binding
all_prs)

              final_pgm :: [CoreBind]
final_pgm = [CoreBind] -> [Binding] -> [CoreBind]
combineEvBinds [CoreBind]
ds_ev_binds [Binding]
final_prs
        -- Notice that we put the whole lot in a big Rec, even the foreign binds
        -- When compiling PrelFloat, which defines data Float = F# Float#
        -- we want F# to be in scope in the foreign marshalling code!
        -- You might think it doesn't matter, but the simplifier brings all top-level
        -- things into the in-scope set before simplifying; so we get no unfolding for F#!

        ; HscEnv
-> PrintUnqualified
-> CoreToDo
-> [CoreBind]
-> [CoreRule]
-> IO ()
endPassIO HscEnv
hsc_env PrintUnqualified
print_unqual CoreToDo
CoreDesugar [CoreBind]
final_pgm [CoreRule]
rules_for_imps
        ; let simpl_opts :: SimpleOpts
simpl_opts = DynFlags -> SimpleOpts
initSimpleOpts DynFlags
dflags
        ; let ([CoreBind]
ds_binds, [CoreRule]
ds_rules_for_imps, [CoreBind]
occ_anald_binds)
                = SimpleOpts
-> Module
-> [CoreBind]
-> [CoreRule]
-> ([CoreBind], [CoreRule], [CoreBind])
simpleOptPgm SimpleOpts
simpl_opts Module
mod [CoreBind]
final_pgm [CoreRule]
rules_for_imps
                         -- The simpleOptPgm gets rid of type
                         -- bindings plus any stupid dead code
        ; Logger
-> DynFlags -> DumpFlag -> FilePath -> DumpFormat -> SDoc -> IO ()
dumpIfSet_dyn Logger
logger DynFlags
dflags DumpFlag
Opt_D_dump_occur_anal FilePath
"Occurrence analysis"
            DumpFormat
FormatCore (forall b. OutputableBndr b => [Bind b] -> SDoc
pprCoreBindings [CoreBind]
occ_anald_binds SDoc -> SDoc -> SDoc
$$ [CoreRule] -> SDoc
pprRules [CoreRule]
ds_rules_for_imps )

        ; HscEnv
-> PrintUnqualified
-> CoreToDo
-> [CoreBind]
-> [CoreRule]
-> IO ()
endPassIO HscEnv
hsc_env PrintUnqualified
print_unqual CoreToDo
CoreDesugarOpt [CoreBind]
ds_binds [CoreRule]
ds_rules_for_imps

        ; let used_names :: NameSet
used_names = TcGblEnv -> NameSet
mkUsedNames TcGblEnv
tcg_env
              pluginModules :: [ModIface]
pluginModules = forall a b. (a -> b) -> [a] -> [b]
map LoadedPlugin -> ModIface
lpModule (HscEnv -> [LoadedPlugin]
hsc_plugins HscEnv
hsc_env)
              home_unit :: HomeUnit
home_unit = HscEnv -> HomeUnit
hsc_home_unit HscEnv
hsc_env
        ; Dependencies
deps <- UnitId -> [Module] -> TcGblEnv -> IO Dependencies
mkDependencies (forall u. GenHomeUnit u -> UnitId
homeUnitId HomeUnit
home_unit)
                                 (forall a b. (a -> b) -> [a] -> [b]
map forall (phase :: ModIfacePhase). ModIface_ phase -> Module
mi_module [ModIface]
pluginModules) TcGblEnv
tcg_env

        ; Bool
used_th <- forall a. IORef a -> IO a
readIORef TcRef Bool
tc_splice_used
        ; [FilePath]
dep_files <- forall a. IORef a -> IO a
readIORef TcRef [FilePath]
dependent_files
        ; SafeHaskellMode
safe_mode <- DynFlags -> TcGblEnv -> IO SafeHaskellMode
finalSafeMode DynFlags
dflags TcGblEnv
tcg_env
        ; [Usage]
usages <- HscEnv
-> Module
-> ImportedMods
-> NameSet
-> [FilePath]
-> [(Module, Fingerprint)]
-> [ModIface]
-> IO [Usage]
mkUsageInfo HscEnv
hsc_env Module
mod (ImportAvails -> ImportedMods
imp_mods ImportAvails
imports) NameSet
used_names
                      [FilePath]
dep_files [(Module, Fingerprint)]
merged [ModIface]
pluginModules
        -- id_mod /= mod when we are processing an hsig, but hsigs
        -- never desugared and compiled (there's no code!)
        -- Consequently, this should hold for any ModGuts that make
        -- past desugaring. See Note [Identity versus semantic module].
        ; MASSERT( id_mod == mod )

        ; [(ForeignSrcLang, FilePath)]
foreign_files <- forall a. IORef a -> IO a
readIORef TcRef [(ForeignSrcLang, FilePath)]
th_foreign_files_var

        ; (Maybe HsDocString
doc_hdr, DeclDocMap
decl_docs, ArgDocMap
arg_docs) <- forall (m :: * -> *).
MonadIO m =>
TcGblEnv -> m (Maybe HsDocString, DeclDocMap, ArgDocMap)
extractDocs TcGblEnv
tcg_env

        ; let mod_guts :: ModGuts
mod_guts = ModGuts {
                mg_module :: Module
mg_module       = Module
mod,
                mg_hsc_src :: HscSource
mg_hsc_src      = HscSource
hsc_src,
                mg_loc :: SrcSpan
mg_loc          = ModLocation -> SrcSpan
mkFileSrcSpan ModLocation
mod_loc,
                mg_exports :: [AvailInfo]
mg_exports      = [AvailInfo]
exports,
                mg_usages :: [Usage]
mg_usages       = [Usage]
usages,
                mg_deps :: Dependencies
mg_deps         = Dependencies
deps,
                mg_used_th :: Bool
mg_used_th      = Bool
used_th,
                mg_rdr_env :: GlobalRdrEnv
mg_rdr_env      = GlobalRdrEnv
rdr_env,
                mg_fix_env :: FixityEnv
mg_fix_env      = FixityEnv
fix_env,
                mg_warns :: Warnings
mg_warns        = Warnings
warns,
                mg_anns :: [Annotation]
mg_anns         = [Annotation]
anns,
                mg_tcs :: [TyCon]
mg_tcs          = [TyCon]
tcs,
                mg_insts :: [ClsInst]
mg_insts        = SafeHaskellMode -> [ClsInst] -> [ClsInst]
fixSafeInstances SafeHaskellMode
safe_mode [ClsInst]
insts,
                mg_fam_insts :: [FamInst]
mg_fam_insts    = [FamInst]
fam_insts,
                mg_inst_env :: InstEnv
mg_inst_env     = InstEnv
inst_env,
                mg_fam_inst_env :: FamInstEnv
mg_fam_inst_env = FamInstEnv
fam_inst_env,
                mg_patsyns :: [PatSyn]
mg_patsyns      = [PatSyn]
patsyns,
                mg_rules :: [CoreRule]
mg_rules        = [CoreRule]
ds_rules_for_imps,
                mg_binds :: [CoreBind]
mg_binds        = [CoreBind]
ds_binds,
                mg_foreign :: ForeignStubs
mg_foreign      = ForeignStubs
ds_fords,
                mg_foreign_files :: [(ForeignSrcLang, FilePath)]
mg_foreign_files = [(ForeignSrcLang, FilePath)]
foreign_files,
                mg_hpc_info :: HpcInfo
mg_hpc_info     = HpcInfo
ds_hpc_info,
                mg_modBreaks :: Maybe ModBreaks
mg_modBreaks    = Maybe ModBreaks
modBreaks,
                mg_safe_haskell :: SafeHaskellMode
mg_safe_haskell = SafeHaskellMode
safe_mode,
                mg_trust_pkg :: Bool
mg_trust_pkg    = ImportAvails -> Bool
imp_trust_own_pkg ImportAvails
imports,
                mg_complete_matches :: CompleteMatches
mg_complete_matches = CompleteMatches
complete_matches,
                mg_doc_hdr :: Maybe HsDocString
mg_doc_hdr      = Maybe HsDocString
doc_hdr,
                mg_decl_docs :: DeclDocMap
mg_decl_docs    = DeclDocMap
decl_docs,
                mg_arg_docs :: ArgDocMap
mg_arg_docs     = ArgDocMap
arg_docs
              }
        ; forall (m :: * -> *) a. Monad m => a -> m a
return (Messages DecoratedSDoc
msgs, forall a. a -> Maybe a
Just ModGuts
mod_guts)
        }}}}

mkFileSrcSpan :: ModLocation -> SrcSpan
mkFileSrcSpan :: ModLocation -> SrcSpan
mkFileSrcSpan ModLocation
mod_loc
  = case ModLocation -> Maybe FilePath
ml_hs_file ModLocation
mod_loc of
      Just FilePath
file_path -> FastString -> SrcSpan
mkGeneralSrcSpan (FilePath -> FastString
mkFastString FilePath
file_path)
      Maybe FilePath
Nothing        -> SrcSpan
interactiveSrcSpan   -- Presumably

dsImpSpecs :: [LTcSpecPrag] -> DsM (OrdList (Id,CoreExpr), [CoreRule])
dsImpSpecs :: [LTcSpecPrag] -> DsM (OrdList Binding, [CoreRule])
dsImpSpecs [LTcSpecPrag]
imp_specs
 = do { [(OrdList Binding, CoreRule)]
spec_prs <- forall (m :: * -> *) a b.
Applicative m =>
(a -> m (Maybe b)) -> [a] -> m [b]
mapMaybeM (Maybe CoreExpr
-> LTcSpecPrag -> DsM (Maybe (OrdList Binding, CoreRule))
dsSpec forall a. Maybe a
Nothing) [LTcSpecPrag]
imp_specs
      ; let ([OrdList Binding]
spec_binds, [CoreRule]
spec_rules) = forall a b. [(a, b)] -> ([a], [b])
unzip [(OrdList Binding, CoreRule)]
spec_prs
      ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. [OrdList a] -> OrdList a
concatOL [OrdList Binding]
spec_binds, [CoreRule]
spec_rules) }

combineEvBinds :: [CoreBind] -> [(Id,CoreExpr)] -> [CoreBind]
-- Top-level bindings can include coercion bindings, but not via superclasses
-- See Note [Top-level evidence]
combineEvBinds :: [CoreBind] -> [Binding] -> [CoreBind]
combineEvBinds [] [Binding]
val_prs
  = [forall b. [(b, Expr b)] -> Bind b
Rec [Binding]
val_prs]
combineEvBinds (NonRec Id
b CoreExpr
r : [CoreBind]
bs) [Binding]
val_prs
  | Id -> Bool
isId Id
b    = [CoreBind] -> [Binding] -> [CoreBind]
combineEvBinds [CoreBind]
bs ((Id
b,CoreExpr
r)forall a. a -> [a] -> [a]
:[Binding]
val_prs)
  | Bool
otherwise = forall b. b -> Expr b -> Bind b
NonRec Id
b CoreExpr
r forall a. a -> [a] -> [a]
: [CoreBind] -> [Binding] -> [CoreBind]
combineEvBinds [CoreBind]
bs [Binding]
val_prs
combineEvBinds (Rec [Binding]
prs : [CoreBind]
bs) [Binding]
val_prs
  = [CoreBind] -> [Binding] -> [CoreBind]
combineEvBinds [CoreBind]
bs ([Binding]
prs forall a. [a] -> [a] -> [a]
++ [Binding]
val_prs)

{-
Note [Top-level evidence]
~~~~~~~~~~~~~~~~~~~~~~~~~
Top-level evidence bindings may be mutually recursive with the top-level value
bindings, so we must put those in a Rec.  But we can't put them *all* in a Rec
because the occurrence analyser doesn't take account of type/coercion variables
when computing dependencies.

So we pull out the type/coercion variables (which are in dependency order),
and Rec the rest.
-}

deSugarExpr :: HscEnv -> LHsExpr GhcTc -> IO (Messages DecoratedSDoc, Maybe CoreExpr)
deSugarExpr :: HscEnv
-> LHsExpr GhcTc -> IO (Messages DecoratedSDoc, Maybe CoreExpr)
deSugarExpr HscEnv
hsc_env LHsExpr GhcTc
tc_expr = do
    let dflags :: DynFlags
dflags = HscEnv -> DynFlags
hsc_dflags HscEnv
hsc_env
    let logger :: Logger
logger = HscEnv -> Logger
hsc_logger HscEnv
hsc_env

    Logger -> DynFlags -> FilePath -> IO ()
showPass Logger
logger DynFlags
dflags FilePath
"Desugar"

    -- Do desugaring
    (Messages DecoratedSDoc
msgs, Maybe CoreExpr
mb_core_expr) <- forall a. HscEnv -> TcRn a -> IO (Messages DecoratedSDoc, Maybe a)
runTcInteractive HscEnv
hsc_env forall a b. (a -> b) -> a -> b
$ forall a. DsM a -> TcM a
initDsTc forall a b. (a -> b) -> a -> b
$
                                 LHsExpr GhcTc -> DsM CoreExpr
dsLExpr LHsExpr GhcTc
tc_expr

    case Maybe CoreExpr
mb_core_expr of
       Maybe CoreExpr
Nothing   -> forall (m :: * -> *) a. Monad m => a -> m a
return ()
       Just CoreExpr
expr -> Logger
-> DynFlags -> DumpFlag -> FilePath -> DumpFormat -> SDoc -> IO ()
dumpIfSet_dyn Logger
logger DynFlags
dflags DumpFlag
Opt_D_dump_ds FilePath
"Desugared"
                    DumpFormat
FormatCore (forall b. OutputableBndr b => Expr b -> SDoc
pprCoreExpr CoreExpr
expr)

    forall (m :: * -> *) a. Monad m => a -> m a
return (Messages DecoratedSDoc
msgs, Maybe CoreExpr
mb_core_expr)

{-
************************************************************************
*                                                                      *
*              Add rules and export flags to binders
*                                                                      *
************************************************************************
-}

addExportFlagsAndRules
    :: Backend -> NameSet -> NameSet -> [CoreRule]
    -> [(Id, t)] -> [(Id, t)]
addExportFlagsAndRules :: forall t.
Backend
-> NameSet -> NameSet -> [CoreRule] -> [(Id, t)] -> [(Id, t)]
addExportFlagsAndRules Backend
bcknd NameSet
exports NameSet
keep_alive [CoreRule]
rules [(Id, t)]
prs
  = forall a c b. (a -> c) -> [(a, b)] -> [(c, b)]
mapFst Id -> Id
add_one [(Id, t)]
prs
  where
    add_one :: Id -> Id
add_one Id
bndr = Name -> Id -> Id
add_rules Name
name (Name -> Id -> Id
add_export Name
name Id
bndr)
       where
         name :: Name
name = Id -> Name
idName Id
bndr

    ---------- Rules --------
        -- See Note [Attach rules to local ids]
        -- NB: the binder might have some existing rules,
        -- arising from specialisation pragmas
    add_rules :: Name -> Id -> Id
add_rules Name
name Id
bndr
        | Just [CoreRule]
rules <- forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv RuleBase
rule_base Name
name
        = Id
bndr Id -> [CoreRule] -> Id
`addIdSpecialisations` [CoreRule]
rules
        | Bool
otherwise
        = Id
bndr
    rule_base :: RuleBase
rule_base = RuleBase -> [CoreRule] -> RuleBase
extendRuleBaseList RuleBase
emptyRuleBase [CoreRule]
rules

    ---------- Export flag --------
    -- See Note [Adding export flags]
    add_export :: Name -> Id -> Id
add_export Name
name Id
bndr
        | Name -> Bool
dont_discard Name
name = Id -> Id
setIdExported Id
bndr
        | Bool
otherwise         = Id
bndr

    dont_discard :: Name -> Bool
    dont_discard :: Name -> Bool
dont_discard Name
name = Name -> Bool
is_exported Name
name
                     Bool -> Bool -> Bool
|| Name
name Name -> NameSet -> Bool
`elemNameSet` NameSet
keep_alive

        -- In interactive mode, we don't want to discard any top-level
        -- entities at all (eg. do not inline them away during
        -- simplification), and retain them all in the TypeEnv so they are
        -- available from the command line.
        --
        -- isExternalName separates the user-defined top-level names from those
        -- introduced by the type checker.
    is_exported :: Name -> Bool
    is_exported :: Name -> Bool
is_exported | Backend -> Bool
backendRetainsAllBindings Backend
bcknd = Name -> Bool
isExternalName
                | Bool
otherwise                       = (Name -> NameSet -> Bool
`elemNameSet` NameSet
exports)

{-
Note [Adding export flags]
~~~~~~~~~~~~~~~~~~~~~~~~~~
Set the no-discard flag if either
        a) the Id is exported
        b) it's mentioned in the RHS of an orphan rule
        c) it's in the keep-alive set

It means that the binding won't be discarded EVEN if the binding
ends up being trivial (v = w) -- the simplifier would usually just
substitute w for v throughout, but we don't apply the substitution to
the rules (maybe we should?), so this substitution would make the rule
bogus.

You might wonder why exported Ids aren't already marked as such;
it's just because the type checker is rather busy already and
I didn't want to pass in yet another mapping.

Note [Attach rules to local ids]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Find the rules for locally-defined Ids; then we can attach them
to the binders in the top-level bindings

Reason
  - It makes the rules easier to look up
  - It means that rewrite rules and specialisations for
    locally defined Ids are handled uniformly
  - It keeps alive things that are referred to only from a rule
    (the occurrence analyser knows about rules attached to Ids)
  - It makes sure that, when we apply a rule, the free vars
    of the RHS are more likely to be in scope
  - The imported rules are carried in the in-scope set
    which is extended on each iteration by the new wave of
    local binders; any rules which aren't on the binding will
    thereby get dropped


************************************************************************
*                                                                      *
*              Desugaring rewrite rules
*                                                                      *
************************************************************************
-}

dsRule :: LRuleDecl GhcTc -> DsM (Maybe CoreRule)
dsRule :: LRuleDecl GhcTc -> DsM (Maybe CoreRule)
dsRule (L SrcSpanAnnA
loc (HsRule { rd_name :: forall pass. RuleDecl pass -> XRec pass (SourceText, FastString)
rd_name = XRec GhcTc (SourceText, FastString)
name
                      , rd_act :: forall pass. RuleDecl pass -> Activation
rd_act  = Activation
rule_act
                      , rd_tmvs :: forall pass. RuleDecl pass -> [LRuleBndr pass]
rd_tmvs = [LRuleBndr GhcTc]
vars
                      , rd_lhs :: forall pass. RuleDecl pass -> XRec pass (HsExpr pass)
rd_lhs  = LHsExpr GhcTc
lhs
                      , rd_rhs :: forall pass. RuleDecl pass -> XRec pass (HsExpr pass)
rd_rhs  = LHsExpr GhcTc
rhs }))
  = forall a. SrcSpan -> DsM a -> DsM a
putSrcSpanDs (forall a. SrcSpanAnn' a -> SrcSpan
locA SrcSpanAnnA
loc) forall a b. (a -> b) -> a -> b
$
    do  { let bndrs' :: [Id]
bndrs' = [Id
var | L SrcSpan
_ (RuleBndr XCRuleBndr GhcTc
_ (L SrcSpanAnnN
_ Id
var)) <- [LRuleBndr GhcTc]
vars]

        ; CoreExpr
lhs' <- forall gbl lcl a.
GeneralFlag -> TcRnIf gbl lcl a -> TcRnIf gbl lcl a
unsetGOptM GeneralFlag
Opt_EnableRewriteRules forall a b. (a -> b) -> a -> b
$
                  forall gbl lcl a.
WarningFlag -> TcRnIf gbl lcl a -> TcRnIf gbl lcl a
unsetWOptM WarningFlag
Opt_WarnIdentities forall a b. (a -> b) -> a -> b
$
                  LHsExpr GhcTc -> DsM CoreExpr
dsLExpr LHsExpr GhcTc
lhs   -- Note [Desugaring RULE left hand sides]

        ; CoreExpr
rhs' <- LHsExpr GhcTc -> DsM CoreExpr
dsLExpr LHsExpr GhcTc
rhs
        ; Module
this_mod <- forall (m :: * -> *). HasModule m => m Module
getModule

        ; ([Id]
bndrs'', CoreExpr
lhs'', CoreExpr
rhs'') <- [Id] -> CoreExpr -> CoreExpr -> DsM ([Id], CoreExpr, CoreExpr)
unfold_coerce [Id]
bndrs' CoreExpr
lhs' CoreExpr
rhs'

        -- Substitute the dict bindings eagerly,
        -- and take the body apart into a (f args) form
        ; DynFlags
dflags <- forall (m :: * -> *). HasDynFlags m => m DynFlags
getDynFlags
        ; case DynFlags -> [Id] -> CoreExpr -> Either SDoc ([Id], Id, [CoreExpr])
decomposeRuleLhs DynFlags
dflags [Id]
bndrs'' CoreExpr
lhs'' of {
                Left SDoc
msg -> do { WarnReason -> SDoc -> DsM ()
warnDs WarnReason
NoReason SDoc
msg; forall (m :: * -> *) a. Monad m => a -> m a
return forall a. Maybe a
Nothing } ;
                Right ([Id]
final_bndrs, Id
fn_id, [CoreExpr]
args) -> do

        { let is_local :: Bool
is_local = Id -> Bool
isLocalId Id
fn_id
                -- NB: isLocalId is False of implicit Ids.  This is good because
                -- we don't want to attach rules to the bindings of implicit Ids,
                -- because they don't show up in the bindings until just before code gen
              fn_name :: Name
fn_name   = Id -> Name
idName Id
fn_id
              simpl_opts :: SimpleOpts
simpl_opts = DynFlags -> SimpleOpts
initSimpleOpts DynFlags
dflags
              final_rhs :: CoreExpr
final_rhs = HasDebugCallStack => SimpleOpts -> CoreExpr -> CoreExpr
simpleOptExpr SimpleOpts
simpl_opts CoreExpr
rhs''    -- De-crap it
              rule_name :: FastString
rule_name = forall a b. (a, b) -> b
snd (forall l e. GenLocated l e -> e
unLoc XRec GhcTc (SourceText, FastString)
name)
              final_bndrs_set :: VarSet
final_bndrs_set = [Id] -> VarSet
mkVarSet [Id]
final_bndrs
              arg_ids :: [Id]
arg_ids = forall a. (a -> Bool) -> [a] -> [a]
filterOut (Id -> VarSet -> Bool
`elemVarSet` VarSet
final_bndrs_set) forall a b. (a -> b) -> a -> b
$
                        (Id -> Bool) -> [CoreExpr] -> [Id]
exprsSomeFreeVarsList Id -> Bool
isId [CoreExpr]
args

        ; CoreRule
rule <- Module
-> Bool
-> FastString
-> Activation
-> Name
-> [Id]
-> [CoreExpr]
-> CoreExpr
-> DsM CoreRule
dsMkUserRule Module
this_mod Bool
is_local
                         FastString
rule_name Activation
rule_act Name
fn_name [Id]
final_bndrs [CoreExpr]
args
                         CoreExpr
final_rhs
        ; forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
when (WarningFlag -> DynFlags -> Bool
wopt WarningFlag
Opt_WarnInlineRuleShadowing DynFlags
dflags) forall a b. (a -> b) -> a -> b
$
          FastString -> Activation -> Id -> [Id] -> DsM ()
warnRuleShadowing FastString
rule_name Activation
rule_act Id
fn_id [Id]
arg_ids

        ; forall (m :: * -> *) a. Monad m => a -> m a
return (forall a. a -> Maybe a
Just CoreRule
rule)
        } } }

warnRuleShadowing :: RuleName -> Activation -> Id -> [Id] -> DsM ()
-- See Note [Rules and inlining/other rules]
warnRuleShadowing :: FastString -> Activation -> Id -> [Id] -> DsM ()
warnRuleShadowing FastString
rule_name Activation
rule_act Id
fn_id [Id]
arg_ids
  = do { Bool -> Id -> DsM ()
check Bool
False Id
fn_id    -- We often have multiple rules for the same Id in a
                              -- module. Maybe we should check that they don't overlap
                              -- but currently we don't
       ; forall (t :: * -> *) (m :: * -> *) a b.
(Foldable t, Monad m) =>
(a -> m b) -> t a -> m ()
mapM_ (Bool -> Id -> DsM ()
check Bool
True) [Id]
arg_ids }
  where
    check :: Bool -> Id -> DsM ()
check Bool
check_rules_too Id
lhs_id
      | Id -> Bool
isLocalId Id
lhs_id Bool -> Bool -> Bool
|| Unfolding -> Bool
canUnfold (Id -> Unfolding
idUnfolding Id
lhs_id)
                       -- If imported with no unfolding, no worries
      , Id -> Activation
idInlineActivation Id
lhs_id Activation -> Activation -> Bool
`competesWith` Activation
rule_act
      = WarnReason -> SDoc -> DsM ()
warnDs (WarningFlag -> WarnReason
Reason WarningFlag
Opt_WarnInlineRuleShadowing)
               ([SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (FilePath -> SDoc
text FilePath
"Rule" SDoc -> SDoc -> SDoc
<+> FastString -> SDoc
pprRuleName FastString
rule_name
                               SDoc -> SDoc -> SDoc
<+> FilePath -> SDoc
text FilePath
"may never fire")
                            Int
2 (FilePath -> SDoc
text FilePath
"because" SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Id
lhs_id)
                               SDoc -> SDoc -> SDoc
<+> FilePath -> SDoc
text FilePath
"might inline first")
                     , FilePath -> SDoc
text FilePath
"Probable fix: add an INLINE[n] or NOINLINE[n] pragma for"
                       SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Id
lhs_id)
                     , SDoc -> SDoc
whenPprDebug (forall a. Outputable a => a -> SDoc
ppr (Id -> Activation
idInlineActivation Id
lhs_id) SDoc -> SDoc -> SDoc
$$ forall a. Outputable a => a -> SDoc
ppr Activation
rule_act) ])

      | Bool
check_rules_too
      , CoreRule
bad_rule : [CoreRule]
_ <- Id -> [CoreRule]
get_bad_rules Id
lhs_id
      = WarnReason -> SDoc -> DsM ()
warnDs (WarningFlag -> WarnReason
Reason WarningFlag
Opt_WarnInlineRuleShadowing)
               ([SDoc] -> SDoc
vcat [ SDoc -> Int -> SDoc -> SDoc
hang (FilePath -> SDoc
text FilePath
"Rule" SDoc -> SDoc -> SDoc
<+> FastString -> SDoc
pprRuleName FastString
rule_name
                               SDoc -> SDoc -> SDoc
<+> FilePath -> SDoc
text FilePath
"may never fire")
                            Int
2 (FilePath -> SDoc
text FilePath
"because rule" SDoc -> SDoc -> SDoc
<+> FastString -> SDoc
pprRuleName (CoreRule -> FastString
ruleName CoreRule
bad_rule)
                               SDoc -> SDoc -> SDoc
<+> FilePath -> SDoc
text FilePath
"for"SDoc -> SDoc -> SDoc
<+> SDoc -> SDoc
quotes (forall a. Outputable a => a -> SDoc
ppr Id
lhs_id)
                               SDoc -> SDoc -> SDoc
<+> FilePath -> SDoc
text FilePath
"might fire first")
                      , FilePath -> SDoc
text FilePath
"Probable fix: add phase [n] or [~n] to the competing rule"
                      , SDoc -> SDoc
whenPprDebug (forall a. Outputable a => a -> SDoc
ppr CoreRule
bad_rule) ])

      | Bool
otherwise
      = forall (m :: * -> *) a. Monad m => a -> m a
return ()

    get_bad_rules :: Id -> [CoreRule]
get_bad_rules Id
lhs_id
      = [ CoreRule
rule | CoreRule
rule <- Id -> [CoreRule]
idCoreRules Id
lhs_id
               , CoreRule -> Activation
ruleActivation CoreRule
rule Activation -> Activation -> Bool
`competesWith` Activation
rule_act ]

-- See Note [Desugaring coerce as cast]
unfold_coerce :: [Id] -> CoreExpr -> CoreExpr -> DsM ([Var], CoreExpr, CoreExpr)
unfold_coerce :: [Id] -> CoreExpr -> CoreExpr -> DsM ([Id], CoreExpr, CoreExpr)
unfold_coerce [Id]
bndrs CoreExpr
lhs CoreExpr
rhs = do
    ([Id]
bndrs', CoreExpr -> CoreExpr
wrap) <- [Id] -> DsM ([Id], CoreExpr -> CoreExpr)
go [Id]
bndrs
    forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
bndrs', CoreExpr -> CoreExpr
wrap CoreExpr
lhs, CoreExpr -> CoreExpr
wrap CoreExpr
rhs)
  where
    go :: [Id] -> DsM ([Id], CoreExpr -> CoreExpr)
    go :: [Id] -> DsM ([Id], CoreExpr -> CoreExpr)
go []     = forall (m :: * -> *) a. Monad m => a -> m a
return ([], forall a. a -> a
id)
    go (Id
v:[Id]
vs)
        | Just (TyCon
tc, [Type
k, Type
t1, Type
t2]) <- HasDebugCallStack => Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe (Id -> Type
idType Id
v)
        , TyCon
tc forall a. Uniquable a => a -> Unique -> Bool
`hasKey` Unique
coercibleTyConKey = do
            Unique
u <- forall gbl lcl. TcRnIf gbl lcl Unique
newUnique

            let ty' :: Type
ty' = TyCon -> [Type] -> Type
mkTyConApp TyCon
eqReprPrimTyCon [Type
k, Type
k, Type
t1, Type
t2]
                v' :: Id
v'  = Name -> Type -> Id
mkLocalCoVar
                        ((OccName -> OccName) -> Unique -> Name -> Name
mkDerivedInternalName OccName -> OccName
mkRepEqOcc Unique
u (forall a. NamedThing a => a -> Name
getName Id
v)) Type
ty'
                box :: CoreExpr
box = forall b. Id -> Expr b
Var (DataCon -> Id
dataConWrapId DataCon
coercibleDataCon) forall b. Expr b -> [Type] -> Expr b
`mkTyApps`
                      [Type
k, Type
t1, Type
t2] forall b. Expr b -> Expr b -> Expr b
`App`
                      forall b. Coercion -> Expr b
Coercion (Id -> Coercion
mkCoVarCo Id
v')

            ([Id]
bndrs, CoreExpr -> CoreExpr
wrap) <- [Id] -> DsM ([Id], CoreExpr -> CoreExpr)
go [Id]
vs
            forall (m :: * -> *) a. Monad m => a -> m a
return (Id
v'forall a. a -> [a] -> [a]
:[Id]
bndrs, CoreBind -> CoreExpr -> CoreExpr
mkCoreLet (forall b. b -> Expr b -> Bind b
NonRec Id
v CoreExpr
box) forall b c a. (b -> c) -> (a -> b) -> a -> c
. CoreExpr -> CoreExpr
wrap)
        | Bool
otherwise = do
            ([Id]
bndrs,CoreExpr -> CoreExpr
wrap) <- [Id] -> DsM ([Id], CoreExpr -> CoreExpr)
go [Id]
vs
            forall (m :: * -> *) a. Monad m => a -> m a
return (Id
vforall a. a -> [a] -> [a]
:[Id]
bndrs, CoreExpr -> CoreExpr
wrap)

{- Note [Desugaring RULE left hand sides]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For the LHS of a RULE we do *not* want to desugar
    [x]   to    build (\cn. x `c` n)
We want to leave explicit lists simply as chains
of cons's. We can achieve that slightly indirectly by
switching off EnableRewriteRules.  See GHC.HsToCore.Expr.dsExplicitList.

That keeps the desugaring of list comprehensions simple too.

Nor do we want to warn of conversion identities on the LHS;
the rule is precisely to optimise them:
  {-# RULES "fromRational/id" fromRational = id :: Rational -> Rational #-}

Note [Desugaring coerce as cast]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want the user to express a rule saying roughly “mapping a coercion over a
list can be replaced by a coercion”. But the cast operator of Core (▷) cannot
be written in Haskell. So we use `coerce` for that (#2110). The user writes
    map coerce = coerce
as a RULE, and this optimizes any kind of mapped' casts away, including `map
MkNewtype`.

For that we replace any forall'ed `c :: Coercible a b` value in a RULE by
corresponding `co :: a ~#R b` and wrap the LHS and the RHS in
`let c = MkCoercible co in ...`. This is later simplified to the desired form
by simpleOptExpr (for the LHS) resp. the simplifiers (for the RHS).
See also Note [Getting the map/coerce RULE to work] in GHC.Core.SimpleOpt.

Note [Rules and inlining/other rules]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
If you have
  f x = ...
  g x = ...
  {-# RULES "rule-for-f" forall x. f (g x) = ... #-}
then there's a good chance that in a potential rule redex
    ...f (g e)...
then 'f' or 'g' will inline before the rule can fire.  Solution: add an
INLINE [n] or NOINLINE [n] pragma to 'f' and 'g'.

Note that this applies to all the free variables on the LHS, both the
main function and things in its arguments.

We also check if there are Ids on the LHS that have competing RULES.
In the above example, suppose we had
  {-# RULES "rule-for-g" forally. g [y] = ... #-}
Then "rule-for-f" and "rule-for-g" would compete.  Better to add phase
control, so "rule-for-f" has a chance to fire before "rule-for-g" becomes
active; or perhaps after "rule-for-g" has become inactive. This is checked
by 'competesWith'

Class methods have a built-in RULE to select the method from the dictionary,
so you can't change the phase on this.  That makes id very dubious to
match on class methods in RULE lhs's.   See #10595.   I'm not happy
about this. For example in Control.Arrow we have

{-# RULES "compose/arr"   forall f g .
                          (arr f) . (arr g) = arr (f . g) #-}

and similar, which will elicit exactly these warnings, and risk never
firing.  But it's not clear what to do instead.  We could make the
class method rules inactive in phase 2, but that would delay when
subsequent transformations could fire.
-}

{-
************************************************************************
*                                                                      *
*              Magic definitions
*                                                                      *
************************************************************************

Note [Patching magic definitions]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We sometimes need to have access to defined Ids in pure contexts. Usually, we
simply "wire in" these entities, as we do for types in GHC.Builtin.Types and for Ids
in GHC.Types.Id.Make. See Note [Wired-in Ids] in GHC.Types.Id.Make.

However, it is sometimes *much* easier to define entities in Haskell,
even if we need pure access; note that wiring-in an Id requires all
entities used in its definition *also* to be wired in, transitively
and recursively.  This can be a huge pain.  The little trick
documented here allows us to have the best of both worlds.

Motivating example: unsafeCoerce#. See [Wiring in unsafeCoerce#] for the
details.

The trick is to

* Define the known-key Id in a library module, with a stub definition,
     unsafeCoerce# :: ..a suitable type signature..
     unsafeCoerce# = error "urk"

* Magically over-write its RHS here in the desugarer, in
  patchMagicDefns.  This update can be done with full access to the
  DsM monad, and hence, dsLookupGlobal. We thus do not have to wire in
  all the entities used internally, a potentially big win.

  This step should not change the Name or type of the Id.

Because an Id stores its unfolding directly (as opposed to in the second
component of a (Id, CoreExpr) pair), the patchMagicDefns function returns
a new Id to use.

Here are the moving parts:

- patchMagicDefns checks whether we're in a module with magic definitions;
  if so, patch the magic definitions. If not, skip.

- patchMagicDefn just looks up in an environment to find a magic defn and
  patches it in.

- magicDefns holds the magic definitions.

- magicDefnsEnv allows for quick access to magicDefns.

- magicDefnModules, built also from magicDefns, contains the modules that
  need careful attention.

Note [Wiring in unsafeCoerce#]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We want (Haskell)

  unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
                          (a :: TYPE r1) (b :: TYPE r2).
                   a -> b
  unsafeCoerce# x = case unsafeEqualityProof @r1 @r2 of
    UnsafeRefl -> case unsafeEqualityProof @a @b of
      UnsafeRefl -> x

or (Core)

  unsafeCoerce# :: forall (r1 :: RuntimeRep) (r2 :: RuntimeRep)
                          (a :: TYPE r1) (b :: TYPE r2).
                   a -> b
  unsafeCoerce# = \ @r1 @r2 @a @b (x :: a).
    case unsafeEqualityProof @RuntimeRep @r1 @r2 of
      UnsafeRefl (co1 :: r1 ~# r2) ->
        case unsafeEqualityProof @(TYPE r2) @(a |> TYPE co1) @b of
          UnsafeRefl (co2 :: (a |> TYPE co1) ~# b) ->
            (x |> (GRefl :: a ~# (a |> TYPE co1)) ; co2)

It looks like we can write this in Haskell directly, but we can't:
the levity polymorphism checks defeat us. Note that `x` is a levity-
polymorphic variable. So we must wire it in with a compulsory
unfolding, like other levity-polymorphic primops.

The challenge is that UnsafeEquality is a GADT, and wiring in a GADT
is *hard*: it has a worker separate from its wrapper, with all manner
of complications. (Simon and Richard tried to do this. We nearly wept.)

The solution is documented in Note [Patching magic definitions]. We now
simply look up the UnsafeEquality GADT in the environment, leaving us
only to wire in unsafeCoerce# directly.

Wrinkle: see Note [Always expose compulsory unfoldings] in GHC.Iface.Tidy
-}


-- Postcondition: the returned Ids are in one-to-one correspondence as the
-- input Ids; each returned Id has the same type as the passed-in Id.
-- See Note [Patching magic definitions]
patchMagicDefns :: OrdList (Id,CoreExpr)
                -> DsM (OrdList (Id,CoreExpr))
patchMagicDefns :: OrdList Binding -> DsM (OrdList Binding)
patchMagicDefns OrdList Binding
pairs
  -- optimization: check whether we're in a magic module before looking
  -- at all the ids
  = do { Module
this_mod <- forall (m :: * -> *). HasModule m => m Module
getModule
       ; if Module
this_mod Module -> ModuleSet -> Bool
`elemModuleSet` ModuleSet
magicDefnModules
         then forall (t :: * -> *) (f :: * -> *) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Binding -> DsM Binding
patchMagicDefn OrdList Binding
pairs
         else forall (m :: * -> *) a. Monad m => a -> m a
return OrdList Binding
pairs }

patchMagicDefn :: (Id, CoreExpr) -> DsM (Id, CoreExpr)
patchMagicDefn :: Binding -> DsM Binding
patchMagicDefn orig_pair :: Binding
orig_pair@(Id
orig_id, CoreExpr
orig_rhs)
  | Just Id -> CoreExpr -> DsM Binding
mk_magic_pair <- forall a. NameEnv a -> Name -> Maybe a
lookupNameEnv NameEnv (Id -> CoreExpr -> DsM Binding)
magicDefnsEnv (forall a. NamedThing a => a -> Name
getName Id
orig_id)
  = do { magic_pair :: Binding
magic_pair@(Id
magic_id, CoreExpr
_) <- Id -> CoreExpr -> DsM Binding
mk_magic_pair Id
orig_id CoreExpr
orig_rhs

       -- Patching should not change the Name or the type of the Id
       ; MASSERT( getUnique magic_id == getUnique orig_id )
       ; MASSERT( varType magic_id `eqType` varType orig_id )

       ; forall (m :: * -> *) a. Monad m => a -> m a
return Binding
magic_pair }
  | Bool
otherwise
  = forall (m :: * -> *) a. Monad m => a -> m a
return Binding
orig_pair

magicDefns :: [(Name,    Id -> CoreExpr     -- old Id and RHS
                      -> DsM (Id, CoreExpr) -- new Id and RHS
               )]
magicDefns :: [(Name, Id -> CoreExpr -> DsM Binding)]
magicDefns = [ (Name
unsafeCoercePrimName, Id -> CoreExpr -> DsM Binding
mkUnsafeCoercePrimPair) ]

magicDefnsEnv :: NameEnv (Id -> CoreExpr -> DsM (Id, CoreExpr))
magicDefnsEnv :: NameEnv (Id -> CoreExpr -> DsM Binding)
magicDefnsEnv = forall a. [(Name, a)] -> NameEnv a
mkNameEnv [(Name, Id -> CoreExpr -> DsM Binding)]
magicDefns

magicDefnModules :: ModuleSet
magicDefnModules :: ModuleSet
magicDefnModules = [Module] -> ModuleSet
mkModuleSet forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map (HasDebugCallStack => Name -> Module
nameModule forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a. NamedThing a => a -> Name
getName forall b c a. (b -> c) -> (a -> b) -> a -> c
. forall a b. (a, b) -> a
fst) [(Name, Id -> CoreExpr -> DsM Binding)]
magicDefns

mkUnsafeCoercePrimPair :: Id -> CoreExpr -> DsM (Id, CoreExpr)
-- See Note [Wiring in unsafeCoerce#] for the defn we are creating here
mkUnsafeCoercePrimPair :: Id -> CoreExpr -> DsM Binding
mkUnsafeCoercePrimPair Id
_old_id CoreExpr
old_expr
  = do { Id
unsafe_equality_proof_id <- Name -> DsM Id
dsLookupGlobalId Name
unsafeEqualityProofName
       ; TyCon
unsafe_equality_tc       <- Name -> DsM TyCon
dsLookupTyCon Name
unsafeEqualityTyConName

       ; let [DataCon
unsafe_refl_data_con] = TyCon -> [DataCon]
tyConDataCons TyCon
unsafe_equality_tc

             rhs :: CoreExpr
rhs = forall b. [b] -> Expr b -> Expr b
mkLams [ Id
runtimeRep1TyVar, Id
runtimeRep2TyVar
                          , Id
openAlphaTyVar, Id
openBetaTyVar
                          , Id
x ] forall a b. (a -> b) -> a -> b
$
                   CoreExpr -> Id -> AltCon -> [Id] -> CoreExpr -> CoreExpr
mkSingleAltCase CoreExpr
scrut1
                                   (Type -> Type -> Id
mkWildValBinder Type
Many Type
scrut1_ty)
                                   (DataCon -> AltCon
DataAlt DataCon
unsafe_refl_data_con)
                                   [Id
rr_cv] forall a b. (a -> b) -> a -> b
$
                   CoreExpr -> Id -> AltCon -> [Id] -> CoreExpr -> CoreExpr
mkSingleAltCase CoreExpr
scrut2
                                   (Type -> Type -> Id
mkWildValBinder Type
Many Type
scrut2_ty)
                                   (DataCon -> AltCon
DataAlt DataCon
unsafe_refl_data_con)
                                   [Id
ab_cv] forall a b. (a -> b) -> a -> b
$
                   forall b. Id -> Expr b
Var Id
x CoreExpr -> Coercion -> CoreExpr
`mkCast` Coercion
x_co

             [Id
x, Id
rr_cv, Id
ab_cv] = [Type] -> [Id]
mkTemplateLocals
               [ Type
openAlphaTy -- x :: a
               , Type
rr_cv_ty    -- rr_cv :: r1 ~# r2
               , Type
ab_cv_ty    -- ab_cv :: (alpha |> alpha_co ~# beta)
               ]

             -- Returns (scrutinee, scrutinee type, type of covar in AltCon)
             unsafe_equality :: Type -> Type -> Type -> (CoreExpr, Type, Type)
unsafe_equality Type
k Type
a Type
b
               = ( forall b. Expr b -> [Type] -> Expr b
mkTyApps (forall b. Id -> Expr b
Var Id
unsafe_equality_proof_id) [Type
k,Type
b,Type
a]
                 , TyCon -> [Type] -> Type
mkTyConApp TyCon
unsafe_equality_tc [Type
k,Type
b,Type
a]
                 , Type -> Type -> Type -> Type -> Type
mkHeteroPrimEqPred Type
k Type
k Type
a Type
b
                 )
             -- NB: UnsafeRefl :: (b ~# a) -> UnsafeEquality a b, so we have to
             -- carefully swap the arguments above

             (CoreExpr
scrut1, Type
scrut1_ty, Type
rr_cv_ty) = Type -> Type -> Type -> (CoreExpr, Type, Type)
unsafe_equality Type
runtimeRepTy
                                                             Type
runtimeRep1Ty
                                                             Type
runtimeRep2Ty
             (CoreExpr
scrut2, Type
scrut2_ty, Type
ab_cv_ty) = Type -> Type -> Type -> (CoreExpr, Type, Type)
unsafe_equality (Type -> Type
tYPE Type
runtimeRep2Ty)
                                                             (Type
openAlphaTy Type -> Coercion -> Type
`mkCastTy` Coercion
alpha_co)
                                                             Type
openBetaTy

             -- alpha_co :: TYPE r1 ~# TYPE r2
             -- alpha_co = TYPE rr_cv
             alpha_co :: Coercion
alpha_co = HasDebugCallStack => Role -> TyCon -> [Coercion] -> Coercion
mkTyConAppCo Role
Nominal TyCon
tYPETyCon [Id -> Coercion
mkCoVarCo Id
rr_cv]

             -- x_co :: alpha ~R# beta
             x_co :: Coercion
x_co = Role -> Type -> MCoercionN -> Coercion
mkGReflCo Role
Representational Type
openAlphaTy (Coercion -> MCoercionN
MCo Coercion
alpha_co) Coercion -> Coercion -> Coercion
`mkTransCo`
                    HasDebugCallStack => Coercion -> Coercion
mkSubCo (Id -> Coercion
mkCoVarCo Id
ab_cv)


             info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
alwaysInlinePragma
                                IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo` CoreExpr -> Unfolding
mkCompulsoryUnfolding' CoreExpr
rhs

             ty :: Type
ty = [Id] -> Type -> Type
mkSpecForAllTys [ Id
runtimeRep1TyVar, Id
runtimeRep2TyVar
                                  , Id
openAlphaTyVar, Id
openBetaTyVar ] forall a b. (a -> b) -> a -> b
$
                  Type -> Type -> Type
mkVisFunTyMany Type
openAlphaTy Type
openBetaTy

             id :: Id
id   = Name -> Type -> Id
mkExportedVanillaId Name
unsafeCoercePrimName Type
ty Id -> IdInfo -> Id
`setIdInfo` IdInfo
info
       ; forall (m :: * -> *) a. Monad m => a -> m a
return (Id
id, CoreExpr
old_expr) }