{-
(c) The University of Glasgow 2006
(c) The AQUA Project, Glasgow University, 1998


This module contains definitions for the IdInfo for things that
have a standard form, namely:

- data constructors
- record selectors
- method and superclass selectors
- primitive operations
-}

{-# LANGUAGE CPP #-}

{-# OPTIONS_GHC -Wno-incomplete-uni-patterns #-}

module GHC.Types.Id.Make (
        mkDictFunId, mkDictFunTy, mkDictSelId, mkDictSelRhs,

        mkPrimOpId, mkFCallId,

        unwrapNewTypeBody, wrapFamInstBody,
        DataConBoxer(..), vanillaDataConBoxer,
        mkDataConRep, mkDataConWorkId,

        -- And some particular Ids; see below for why they are wired in
        wiredInIds, ghcPrimIds,
        realWorldPrimId,
        voidPrimId, voidArgId,
        nullAddrId, seqId, lazyId, lazyIdKey,
        coercionTokenId, magicDictId, coerceId,
        proxyHashId, noinlineId, noinlineIdName,
        coerceName, leftSectionName, rightSectionName,

        -- Re-export error Ids
        module GHC.Core.Opt.ConstantFold
    ) where

#include "HsVersions.h"

import GHC.Prelude

import GHC.Builtin.Types.Prim
import GHC.Builtin.Types
import GHC.Core.Opt.ConstantFold
import GHC.Core.Type
import GHC.Core.Multiplicity
import GHC.Core.TyCo.Rep
import GHC.Core.FamInstEnv
import GHC.Core.Coercion
import GHC.Tc.Utils.TcType as TcType
import GHC.Core.Make
import GHC.Core.FVs     ( mkRuleInfo )
import GHC.Core.Utils   ( exprType, mkCast, mkDefaultCase )
import GHC.Core.Unfold.Make
import GHC.Core.SimpleOpt
import GHC.Types.Literal
import GHC.Types.SourceText
import GHC.Core.TyCon
import GHC.Core.Class
import GHC.Types.Name.Set
import GHC.Types.Name
import GHC.Builtin.PrimOps
import GHC.Types.ForeignCall
import GHC.Core.DataCon
import GHC.Types.Id
import GHC.Types.Id.Info
import GHC.Types.Demand
import GHC.Types.Cpr
import GHC.Types.TyThing
import GHC.Core
import GHC.Types.Unique
import GHC.Builtin.Uniques
import GHC.Types.Unique.Supply
import GHC.Builtin.Names
import GHC.Types.Basic       hiding ( SuccessFlag(..) )
import GHC.Utils.Misc
import GHC.Driver.Session
import GHC.Driver.Ppr
import GHC.Utils.Outputable
import GHC.Utils.Panic
import GHC.Data.FastString
import GHC.Data.List.SetOps
import GHC.Types.Var (VarBndr(Bndr))
import qualified GHC.LanguageExtensions as LangExt

import Data.Maybe       ( maybeToList )

{-
************************************************************************
*                                                                      *
\subsection{Wired in Ids}
*                                                                      *
************************************************************************

Note [Wired-in Ids]
~~~~~~~~~~~~~~~~~~~
A "wired-in" Id can be referred to directly in GHC (e.g. 'voidPrimId')
rather than by looking it up its name in some environment or fetching
it from an interface file.

There are several reasons why an Id might appear in the wiredInIds:

* ghcPrimIds: see Note [ghcPrimIds (aka pseudoops)]

* magicIds: see Note [magicIds]

* errorIds, defined in GHC.Core.Make.
  These error functions (e.g. rUNTIME_ERROR_ID) are wired in
  because the desugarer generates code that mentions them directly

In all cases except ghcPrimIds, there is a definition site in a
library module, which may be called (e.g. in higher order situations);
but the wired-in version means that the details are never read from
that module's interface file; instead, the full definition is right
here.

Note [ghcPrimIds (aka pseudoops)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The ghcPrimIds

  * Are exported from GHC.Prim (see ghcPrimExports, used in ghcPrimInterface)
    See Note [GHC.Prim] in primops.txt.pp for the remaining items in GHC.Prim.

  * Can't be defined in Haskell, and hence no Haskell binding site,
    but have perfectly reasonable unfoldings in Core

  * Either have a CompulsoryUnfolding (hence always inlined), or
        of an EvaldUnfolding and void representation (e.g. realWorldPrimId)

  * Are (or should be) defined in primops.txt.pp as 'pseudoop'
    Reason: that's how we generate documentation for them

Note [magicIds]
~~~~~~~~~~~~~~~
The magicIds

  * Are exported from GHC.Magic

  * Can be defined in Haskell (and are, in ghc-prim:GHC/Magic.hs).
    This definition at least generates Haddock documentation for them.

  * May or may not have a CompulsoryUnfolding.

  * But have some special behaviour that can't be done via an
    unfolding from an interface file.

  * May have IdInfo that differs from what would be imported from GHC.Magic.hi.
    For example, 'lazy' gets a lazy strictness signature, per Note [lazyId magic].

  The two remaining identifiers in GHC.Magic, runRW# and inline, are not listed
  in magicIds: they have special behavior but they can be known-key and
  not wired-in.
  runRW#: see Note [Simplification of runRW#] in Prep, runRW# code in
  Simplifier, Note [Linting of runRW#].
  inline: see Note [inlineId magic]
-}

wiredInIds :: [Id]
wiredInIds :: [Id]
wiredInIds
  =  [Id]
magicIds
  forall a. [a] -> [a] -> [a]
++ [Id]
ghcPrimIds
  forall a. [a] -> [a] -> [a]
++ [Id]
errorIds           -- Defined in GHC.Core.Make

magicIds :: [Id]    -- See Note [magicIds]
magicIds :: [Id]
magicIds = [Id
lazyId, Id
oneShotId, Id
noinlineId]

ghcPrimIds :: [Id]  -- See Note [ghcPrimIds (aka pseudoops)]
ghcPrimIds :: [Id]
ghcPrimIds
  = [ Id
realWorldPrimId
    , Id
voidPrimId
    , Id
nullAddrId
    , Id
seqId
    , Id
magicDictId
    , Id
coerceId
    , Id
proxyHashId
    , Id
leftSectionId
    , Id
rightSectionId
    ]

{-
************************************************************************
*                                                                      *
\subsection{Data constructors}
*                                                                      *
************************************************************************

The wrapper for a constructor is an ordinary top-level binding that evaluates
any strict args, unboxes any args that are going to be flattened, and calls
the worker.

We're going to build a constructor that looks like:

        data (Data a, C b) =>  T a b = T1 !a !Int b

        T1 = /\ a b ->
             \d1::Data a, d2::C b ->
             \p q r -> case p of { p ->
                       case q of { q ->
                       Con T1 [a,b] [p,q,r]}}

Notice that

* d2 is thrown away --- a context in a data decl is used to make sure
  one *could* construct dictionaries at the site the constructor
  is used, but the dictionary isn't actually used.

* We have to check that we can construct Data dictionaries for
  the types a and Int.  Once we've done that we can throw d1 away too.

* We use (case p of q -> ...) to evaluate p, rather than "seq" because
  all that matters is that the arguments are evaluated.  "seq" is
  very careful to preserve evaluation order, which we don't need
  to be here.

  You might think that we could simply give constructors some strictness
  info, like PrimOps, and let CoreToStg do the let-to-case transformation.
  But we don't do that because in the case of primops and functions strictness
  is a *property* not a *requirement*.  In the case of constructors we need to
  do something active to evaluate the argument.

  Making an explicit case expression allows the simplifier to eliminate
  it in the (common) case where the constructor arg is already evaluated.

Note [Wrappers for data instance tycons]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the case of data instances, the wrapper also applies the coercion turning
the representation type into the family instance type to cast the result of
the wrapper.  For example, consider the declarations

  data family Map k :: * -> *
  data instance Map (a, b) v = MapPair (Map a (Pair b v))

The tycon to which the datacon MapPair belongs gets a unique internal
name of the form :R123Map, and we call it the representation tycon.
In contrast, Map is the family tycon (accessible via
tyConFamInst_maybe). A coercion allows you to move between
representation and family type.  It is accessible from :R123Map via
tyConFamilyCoercion_maybe and has kind

  Co123Map a b v :: {Map (a, b) v ~ :R123Map a b v}

The wrapper and worker of MapPair get the types

        -- Wrapper
  $WMapPair :: forall a b v. Map a (Map a b v) -> Map (a, b) v
  $WMapPair a b v = MapPair a b v `cast` sym (Co123Map a b v)

        -- Worker
  MapPair :: forall a b v. Map a (Map a b v) -> :R123Map a b v

This coercion is conditionally applied by wrapFamInstBody.

It's a bit more complicated if the data instance is a GADT as well!

   data instance T [a] where
        T1 :: forall b. b -> T [Maybe b]

Hence we translate to

        -- Wrapper
  $WT1 :: forall b. b -> T [Maybe b]
  $WT1 b v = T1 (Maybe b) b (Maybe b) v
                        `cast` sym (Co7T (Maybe b))

        -- Worker
  T1 :: forall c b. (c ~ Maybe b) => b -> :R7T c

        -- Coercion from family type to representation type
  Co7T a :: T [a] ~ :R7T a

Newtype instances through an additional wrinkle into the mix. Consider the
following example (adapted from #15318, comment:2):

  data family T a
  newtype instance T [a] = MkT [a]

Within the newtype instance, there are three distinct types at play:

1. The newtype's underlying type, [a].
2. The instance's representation type, TList a (where TList is the
   representation tycon).
3. The family type, T [a].

We need two coercions in order to cast from (1) to (3):

(a) A newtype coercion axiom:

      axiom coTList a :: TList a ~ [a]

    (Where TList is the representation tycon of the newtype instance.)

(b) A data family instance coercion axiom:

      axiom coT a :: T [a] ~ TList a

When we translate the newtype instance to Core, we obtain:

    -- Wrapper
  $WMkT :: forall a. [a] -> T [a]
  $WMkT a x = MkT a x |> Sym (coT a)

    -- Worker
  MkT :: forall a. [a] -> TList [a]
  MkT a x = x |> Sym (coTList a)

Unlike for data instances, the worker for a newtype instance is actually an
executable function which expands to a cast, but otherwise, the general
strategy is essentially the same as for data instances. Also note that we have
a wrapper, which is unusual for a newtype, but we make GHC produce one anyway
for symmetry with the way data instances are handled.

Note [Newtype datacons]
~~~~~~~~~~~~~~~~~~~~~~~
The "data constructor" for a newtype should always be vanilla.  At one
point this wasn't true, because the newtype arising from
     class C a => D a
looked like
       newtype T:D a = D:D (C a)
so the data constructor for T:C had a single argument, namely the
predicate (C a).  But now we treat that as an ordinary argument, not
part of the theta-type, so all is well.

Note [Newtype workers]
~~~~~~~~~~~~~~~~~~~~~~
A newtype does not really have a worker. Instead, newtype constructors
just unfold into a cast. But we need *something* for, say, MkAge to refer
to. So, we do this:

* The Id used as the newtype worker will have a compulsory unfolding to
  a cast. See Note [Compulsory newtype unfolding]

* This Id is labeled as a DataConWrapId. We don't want to use a DataConWorkId,
  as those have special treatment in the back end.

* There is no top-level binding, because the compulsory unfolding
  means that it will be inlined (to a cast) at every call site.

We probably should have a NewtypeWorkId, but these Ids disappear as soon as
we desugar anyway, so it seems a step too far.

Note [Compulsory newtype unfolding]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Newtype wrappers, just like workers, have compulsory unfoldings.
This is needed so that two optimizations involving newtypes have the same
effect whether a wrapper is present or not:

(1) Case-of-known constructor.
    See Note [beta-reduction in exprIsConApp_maybe].

(2) Matching against the map/coerce RULE. Suppose we have the RULE

    {-# RULE "map/coerce" map coerce = ... #-}

    As described in Note [Getting the map/coerce RULE to work],
    the occurrence of 'coerce' is transformed into:

    {-# RULE "map/coerce" forall (c :: T1 ~R# T2).
                          map ((\v -> v) `cast` c) = ... #-}

    We'd like 'map Age' to match the LHS. For this to happen, Age
    must be unfolded, otherwise we'll be stuck. This is tested in T16208.

It also allows for the posssibility of levity polymorphic newtypes
with wrappers (with -XUnliftedNewtypes):

  newtype N (a :: TYPE r) = MkN a

With -XUnliftedNewtypes, this is allowed -- even though MkN is levity-
polymorphic. It's OK because MkN evaporates in the compiled code, becoming
just a cast. That is, it has a compulsory unfolding. As long as its
argument is not levity-polymorphic (which it can't be, according to
Note [Levity polymorphism invariants] in GHC.Core), and it's saturated,
no levity-polymorphic code ends up in the code generator. The saturation
condition is effectively checked by Note [Detecting forced eta expansion]
in GHC.HsToCore.Expr.

However, if we make a *wrapper* for a newtype, we get into trouble.
The saturation condition is no longer checked (because hasNoBinding
returns False) and indeed we generate a forbidden levity-polymorphic
binding.

The solution is simple, though: just make the newtype wrappers
as ephemeral as the newtype workers. In other words, give the wrappers
compulsory unfoldings and no bindings. The compulsory unfolding is given
in wrap_unf in mkDataConRep, and the lack of a binding happens in
GHC.Iface.Tidy.getTyConImplicitBinds, where we say that a newtype has no
implicit bindings.

Note [Records and linear types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
All the fields, in a record constructor, are linear, because there is no syntax
to specify the type of record field. There will be (see the proposal
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0111-linear-types.rst#records-and-projections
), but it isn't implemented yet.

Projections of records can't be linear:

  data Foo = MkFoo { a :: A, b :: B }

If we had

  a :: Foo %1 -> A

We could write

  bad :: A %1 -> B %1 -> A
  bad x y = a (MkFoo { a=x, b=y })

There is an exception: if `b` (more generally all the fields besides `a`) is
unrestricted, then is perfectly possible to have a linear projection. Such a
linear projection has as simple definition.

  data Bar = MkBar { c :: C, d # Many :: D }

  c :: Bar %1 -> C
  c MkBar{ c=x, d=_} = x

The `# Many` syntax, for records, does not exist yet. But there is one important
special case which already happens: when there is a single field (usually a
newtype).

  newtype Baz = MkBaz { unbaz :: E }

unbaz could be linear. And, in fact, it is linear in the proposal design.

However, this hasn't been implemented yet.

************************************************************************
*                                                                      *
\subsection{Dictionary selectors}
*                                                                      *
************************************************************************

Selecting a field for a dictionary.  If there is just one field, then
there's nothing to do.

Dictionary selectors may get nested forall-types.  Thus:

        class Foo a where
          op :: forall b. Ord b => a -> b -> b

Then the top-level type for op is

        op :: forall a. Foo a =>
              forall b. Ord b =>
              a -> b -> b

Note [Type classes and linear types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Constraints, in particular type classes, don't have attached linearity
information. Implicitly, they are all unrestricted. See the linear types proposal,
https://github.com/ghc-proposals/ghc-proposals/blob/master/proposals/0111-linear-types.rst .

When translating to core `C => ...` is always translated to an unrestricted
arrow `C # Many -> ...`.

Therefore there is no loss of generality if we make all selectors unrestricted.

-}

mkDictSelId :: Name          -- Name of one of the *value* selectors
                             -- (dictionary superclass or method)
            -> Class -> Id
mkDictSelId :: Name -> Class -> Id
mkDictSelId Name
name Class
clas
  = IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId (Class -> IdDetails
ClassOpId Class
clas) Name
name Type
sel_ty IdInfo
info
  where
    tycon :: TyCon
tycon          = Class -> TyCon
classTyCon Class
clas
    sel_names :: [Name]
sel_names      = forall a b. (a -> b) -> [a] -> [b]
map Id -> Name
idName (Class -> [Id]
classAllSelIds Class
clas)
    new_tycon :: Bool
new_tycon      = TyCon -> Bool
isNewTyCon TyCon
tycon
    [DataCon
data_con]     = TyCon -> [DataCon]
tyConDataCons TyCon
tycon
    tyvars :: [InvisTVBinder]
tyvars         = DataCon -> [InvisTVBinder]
dataConUserTyVarBinders DataCon
data_con
    n_ty_args :: Arity
n_ty_args      = forall (t :: * -> *) a. Foldable t => t a -> Arity
length [InvisTVBinder]
tyvars
    arg_tys :: [Scaled Type]
arg_tys        = DataCon -> [Scaled Type]
dataConRepArgTys DataCon
data_con  -- Includes the dictionary superclasses
    val_index :: Arity
val_index      = forall a b. Eq a => String -> Assoc a b -> a -> b
assoc String
"MkId.mkDictSelId" ([Name]
sel_names forall a b. [a] -> [b] -> [(a, b)]
`zip` [Arity
0..]) Name
name

    sel_ty :: Type
sel_ty = [InvisTVBinder] -> Type -> Type
mkInvisForAllTys [InvisTVBinder]
tyvars forall a b. (a -> b) -> a -> b
$
             Type -> Type -> Type
mkInvisFunTyMany (Class -> [Type] -> Type
mkClassPred Class
clas ([Id] -> [Type]
mkTyVarTys (forall tv argf. [VarBndr tv argf] -> [tv]
binderVars [InvisTVBinder]
tyvars))) forall a b. (a -> b) -> a -> b
$
             forall a. Scaled a -> a
scaledThing (forall a. Outputable a => [a] -> Arity -> a
getNth [Scaled Type]
arg_tys Arity
val_index)
               -- See Note [Type classes and linear types]

    base_info :: IdInfo
base_info = IdInfo
noCafIdInfo
                IdInfo -> Arity -> IdInfo
`setArityInfo`          Arity
1
                IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo`     StrictSig
strict_sig
                IdInfo -> CprSig -> IdInfo
`setCprInfo`            CprSig
topCprSig
                IdInfo -> Type -> IdInfo
`setLevityInfoWithType` Type
sel_ty

    info :: IdInfo
info | Bool
new_tycon
         = IdInfo
base_info IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
alwaysInlinePragma
                     IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  Arity -> SimpleOpts -> CoreExpr -> Unfolding
mkInlineUnfoldingWithArity Arity
1
                                           SimpleOpts
defaultSimpleOpts
                                           (Class -> Arity -> CoreExpr
mkDictSelRhs Class
clas Arity
val_index)
                   -- See Note [Single-method classes] in GHC.Tc.TyCl.Instance
                   -- for why alwaysInlinePragma

         | Bool
otherwise
         = IdInfo
base_info IdInfo -> RuleInfo -> IdInfo
`setRuleInfo` [CoreRule] -> RuleInfo
mkRuleInfo [CoreRule
rule]
                   -- Add a magic BuiltinRule, but no unfolding
                   -- so that the rule is always available to fire.
                   -- See Note [ClassOp/DFun selection] in GHC.Tc.TyCl.Instance

    -- This is the built-in rule that goes
    --      op (dfT d1 d2) --->  opT d1 d2
    rule :: CoreRule
rule = BuiltinRule { ru_name :: RuleName
ru_name = String -> RuleName
fsLit String
"Class op " RuleName -> RuleName -> RuleName
`appendFS`
                                     OccName -> RuleName
occNameFS (forall a. NamedThing a => a -> OccName
getOccName Name
name)
                       , ru_fn :: Name
ru_fn    = Name
name
                       , ru_nargs :: Arity
ru_nargs = Arity
n_ty_args forall a. Num a => a -> a -> a
+ Arity
1
                       , ru_try :: RuleFun
ru_try   = Arity -> Arity -> RuleFun
dictSelRule Arity
val_index Arity
n_ty_args }

        -- The strictness signature is of the form U(AAAVAAAA) -> T
        -- where the V depends on which item we are selecting
        -- It's worth giving one, so that absence info etc is generated
        -- even if the selector isn't inlined

    strict_sig :: StrictSig
strict_sig = [Demand] -> Divergence -> StrictSig
mkClosedStrictSig [Demand
arg_dmd] Divergence
topDiv
    arg_dmd :: Demand
arg_dmd | Bool
new_tycon = Demand
evalDmd
            | Bool
otherwise = Card
C_1N Card -> SubDemand -> Demand
:*
                          [Demand] -> SubDemand
Prod [ if Name
name forall a. Eq a => a -> a -> Bool
== Name
sel_name then Demand
evalDmd else Demand
absDmd
                               | Name
sel_name <- [Name]
sel_names ]

mkDictSelRhs :: Class
             -> Int         -- 0-indexed selector among (superclasses ++ methods)
             -> CoreExpr
mkDictSelRhs :: Class -> Arity -> CoreExpr
mkDictSelRhs Class
clas Arity
val_index
  = forall b. [b] -> Expr b -> Expr b
mkLams [Id]
tyvars (forall b. b -> Expr b -> Expr b
Lam Id
dict_id CoreExpr
rhs_body)
  where
    tycon :: TyCon
tycon          = Class -> TyCon
classTyCon Class
clas
    new_tycon :: Bool
new_tycon      = TyCon -> Bool
isNewTyCon TyCon
tycon
    [DataCon
data_con]     = TyCon -> [DataCon]
tyConDataCons TyCon
tycon
    tyvars :: [Id]
tyvars         = DataCon -> [Id]
dataConUnivTyVars DataCon
data_con
    arg_tys :: [Scaled Type]
arg_tys        = DataCon -> [Scaled Type]
dataConRepArgTys DataCon
data_con  -- Includes the dictionary superclasses

    the_arg_id :: Id
the_arg_id     = forall a. Outputable a => [a] -> Arity -> a
getNth [Id]
arg_ids Arity
val_index
    pred :: Type
pred           = Class -> [Type] -> Type
mkClassPred Class
clas ([Id] -> [Type]
mkTyVarTys [Id]
tyvars)
    dict_id :: Id
dict_id        = Arity -> Type -> Id
mkTemplateLocal Arity
1 Type
pred
    arg_ids :: [Id]
arg_ids        = Arity -> [Type] -> [Id]
mkTemplateLocalsNum Arity
2 (forall a b. (a -> b) -> [a] -> [b]
map forall a. Scaled a -> a
scaledThing [Scaled Type]
arg_tys)

    rhs_body :: CoreExpr
rhs_body | Bool
new_tycon = TyCon -> [Type] -> CoreExpr -> CoreExpr
unwrapNewTypeBody TyCon
tycon ([Id] -> [Type]
mkTyVarTys [Id]
tyvars)
                                                   (forall b. Id -> Expr b
Var Id
dict_id)
             | Bool
otherwise = CoreExpr -> Id -> AltCon -> [Id] -> CoreExpr -> CoreExpr
mkSingleAltCase (forall b. Id -> Expr b
Var Id
dict_id) Id
dict_id (DataCon -> AltCon
DataAlt DataCon
data_con)
                                           [Id]
arg_ids (forall b. Id -> Expr b
varToCoreExpr Id
the_arg_id)
                                -- varToCoreExpr needed for equality superclass selectors
                                --   sel a b d = case x of { MkC _ (g:a~b) _ -> CO g }

dictSelRule :: Int -> Arity -> RuleFun
-- Tries to persuade the argument to look like a constructor
-- application, using exprIsConApp_maybe, and then selects
-- from it
--       sel_i t1..tk (D t1..tk op1 ... opm) = opi
--
dictSelRule :: Arity -> Arity -> RuleFun
dictSelRule Arity
val_index Arity
n_ty_args RuleOpts
_ InScopeEnv
id_unf Id
_ [CoreExpr]
args
  | (CoreExpr
dict_arg : [CoreExpr]
_) <- forall a. Arity -> [a] -> [a]
drop Arity
n_ty_args [CoreExpr]
args
  , Just (InScopeSet
_, [FloatBind]
floats, DataCon
_, [Type]
_, [CoreExpr]
con_args) <- HasDebugCallStack =>
InScopeEnv
-> CoreExpr
-> Maybe (InScopeSet, [FloatBind], DataCon, [Type], [CoreExpr])
exprIsConApp_maybe InScopeEnv
id_unf CoreExpr
dict_arg
  = forall a. a -> Maybe a
Just ([FloatBind] -> CoreExpr -> CoreExpr
wrapFloats [FloatBind]
floats forall a b. (a -> b) -> a -> b
$ forall a. Outputable a => [a] -> Arity -> a
getNth [CoreExpr]
con_args Arity
val_index)
  | Bool
otherwise
  = forall a. Maybe a
Nothing

{-
************************************************************************
*                                                                      *
        Data constructors
*                                                                      *
************************************************************************
-}

mkDataConWorkId :: Name -> DataCon -> Id
mkDataConWorkId :: Name -> DataCon -> Id
mkDataConWorkId Name
wkr_name DataCon
data_con
  | TyCon -> Bool
isNewTyCon TyCon
tycon
  = IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId (DataCon -> IdDetails
DataConWrapId DataCon
data_con) Name
wkr_name Type
wkr_ty IdInfo
nt_work_info
      -- See Note [Newtype workers]

  | Bool
otherwise
  = IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId (DataCon -> IdDetails
DataConWorkId DataCon
data_con) Name
wkr_name Type
wkr_ty IdInfo
alg_wkr_info

  where
    tycon :: TyCon
tycon  = DataCon -> TyCon
dataConTyCon DataCon
data_con  -- The representation TyCon
    wkr_ty :: Type
wkr_ty = DataCon -> Type
dataConRepType DataCon
data_con

    ----------- Workers for data types --------------
    alg_wkr_info :: IdInfo
alg_wkr_info = IdInfo
noCafIdInfo
                   IdInfo -> Arity -> IdInfo
`setArityInfo`          Arity
wkr_arity
                   IdInfo -> CprSig -> IdInfo
`setCprInfo`            Arity -> Cpr -> CprSig
mkCprSig Arity
wkr_arity (DataCon -> Cpr
dataConCPR DataCon
data_con)
                   IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo`     InlinePragma
wkr_inline_prag
                   IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`      Unfolding
evaldUnfolding  -- Record that it's evaluated,
                                                           -- even if arity = 0
                   IdInfo -> Type -> IdInfo
`setLevityInfoWithType` Type
wkr_ty
                     -- NB: unboxed tuples have workers, so we can't use
                     -- setNeverLevPoly

    wkr_inline_prag :: InlinePragma
wkr_inline_prag = InlinePragma
defaultInlinePragma { inl_rule :: RuleMatchInfo
inl_rule = RuleMatchInfo
ConLike }
    wkr_arity :: Arity
wkr_arity = DataCon -> Arity
dataConRepArity DataCon
data_con
    ----------- Workers for newtypes --------------
    univ_tvs :: [Id]
univ_tvs = DataCon -> [Id]
dataConUnivTyVars DataCon
data_con
    arg_tys :: [Scaled Type]
arg_tys  = DataCon -> [Scaled Type]
dataConRepArgTys  DataCon
data_con  -- Should be same as dataConOrigArgTys
    nt_work_info :: IdInfo
nt_work_info = IdInfo
noCafIdInfo          -- The NoCaf-ness is set by noCafIdInfo
                  IdInfo -> Arity -> IdInfo
`setArityInfo` Arity
1      -- Arity 1
                  IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo`     InlinePragma
dataConWrapperInlinePragma
                  IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`      Unfolding
newtype_unf
                  IdInfo -> Type -> IdInfo
`setLevityInfoWithType` Type
wkr_ty
    id_arg1 :: Id
id_arg1      = Arity -> Scaled Type -> Id
mkScaledTemplateLocal Arity
1 (forall a. [a] -> a
head [Scaled Type]
arg_tys)
    res_ty_args :: [Type]
res_ty_args  = [Id] -> [Type]
mkTyCoVarTys [Id]
univ_tvs
    newtype_unf :: Unfolding
newtype_unf  = ASSERT2( isVanillaDataCon data_con &&
                            isSingleton arg_tys
                          , ppr data_con  )
                              -- Note [Newtype datacons]
                   SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts forall a b. (a -> b) -> a -> b
$
                   forall b. [b] -> Expr b -> Expr b
mkLams [Id]
univ_tvs forall a b. (a -> b) -> a -> b
$ forall b. b -> Expr b -> Expr b
Lam Id
id_arg1 forall a b. (a -> b) -> a -> b
$
                   TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapNewTypeBody TyCon
tycon [Type]
res_ty_args (forall b. Id -> Expr b
Var Id
id_arg1)

dataConCPR :: DataCon -> Cpr
dataConCPR :: DataCon -> Cpr
dataConCPR DataCon
con
  | TyCon -> Bool
isDataTyCon TyCon
tycon     -- Real data types only; that is,
                          -- not unboxed tuples or newtypes
  , forall (t :: * -> *) a. Foldable t => t a -> Bool
null (DataCon -> [Id]
dataConExTyCoVars DataCon
con)  -- No existentials
  , Arity
wkr_arity forall a. Ord a => a -> a -> Bool
> Arity
0
  , Arity
wkr_arity forall a. Ord a => a -> a -> Bool
<= Arity
mAX_CPR_SIZE
  = Arity -> Cpr
flatConCpr (DataCon -> Arity
dataConTag DataCon
con)
  | Bool
otherwise
  = Cpr
topCpr
  where
    tycon :: TyCon
tycon     = DataCon -> TyCon
dataConTyCon DataCon
con
    wkr_arity :: Arity
wkr_arity = DataCon -> Arity
dataConRepArity DataCon
con

    mAX_CPR_SIZE :: Arity
    mAX_CPR_SIZE :: Arity
mAX_CPR_SIZE = Arity
10
    -- We do not treat very big tuples as CPR-ish:
    --      a) for a start we get into trouble because there aren't
    --         "enough" unboxed tuple types (a tiresome restriction,
    --         but hard to fix),
    --      b) more importantly, big unboxed tuples get returned mainly
    --         on the stack, and are often then allocated in the heap
    --         by the caller.  So doing CPR for them may in fact make
    --         things worse.

{-
-------------------------------------------------
--         Data constructor representation
--
-- This is where we decide how to wrap/unwrap the
-- constructor fields
--
--------------------------------------------------
-}

type Unboxer = Var -> UniqSM ([Var], CoreExpr -> CoreExpr)
  -- Unbox: bind rep vars by decomposing src var

data Boxer = UnitBox | Boxer (TCvSubst -> UniqSM ([Var], CoreExpr))
  -- Box:   build src arg using these rep vars

-- | Data Constructor Boxer
newtype DataConBoxer = DCB ([Type] -> [Var] -> UniqSM ([Var], [CoreBind]))
                       -- Bind these src-level vars, returning the
                       -- rep-level vars to bind in the pattern

vanillaDataConBoxer :: DataConBoxer
-- No transformation on arguments needed
vanillaDataConBoxer :: DataConBoxer
vanillaDataConBoxer = ([Type] -> [Id] -> UniqSM ([Id], [CoreBind])) -> DataConBoxer
DCB (\[Type]
_tys [Id]
args -> forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
args, []))

{-
Note [Inline partially-applied constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We allow the wrapper to inline when partially applied to avoid
boxing values unnecessarily. For example, consider

   data Foo a = Foo !Int a

   instance Traversable Foo where
     traverse f (Foo i a) = Foo i <$> f a

This desugars to

   traverse f foo = case foo of
        Foo i# a -> let i = I# i#
                    in map ($WFoo i) (f a)

If the wrapper `$WFoo` is not inlined, we get a fruitless reboxing of `i`.
But if we inline the wrapper, we get

   map (\a. case i of I# i# a -> Foo i# a) (f a)

and now case-of-known-constructor eliminates the redundant allocation.

-}

mkDataConRep :: DynFlags
             -> FamInstEnvs
             -> Name
             -> Maybe [HsImplBang]
                -- See Note [Bangs on imported data constructors]
             -> DataCon
             -> UniqSM DataConRep
mkDataConRep :: DynFlags
-> FamInstEnvs
-> Name
-> Maybe [HsImplBang]
-> DataCon
-> UniqSM DataConRep
mkDataConRep DynFlags
dflags FamInstEnvs
fam_envs Name
wrap_name Maybe [HsImplBang]
mb_bangs DataCon
data_con
  | Bool -> Bool
not Bool
wrapper_reqd
  = forall (m :: * -> *) a. Monad m => a -> m a
return DataConRep
NoDataConRep

  | Bool
otherwise
  = do { [Id]
wrap_args <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Scaled Type -> UniqSM Id
newLocal [Scaled Type]
wrap_arg_tys
       ; CoreExpr
wrap_body <- [(Id, Unboxer)] -> CoreExpr -> UniqSM CoreExpr
mk_rep_app ([Id]
wrap_args forall a b. [a] -> [b] -> [(a, b)]
`zip` forall b a. [b] -> [a] -> [a]
dropList [EqSpec]
eq_spec [Unboxer]
unboxers)
                                 CoreExpr
initial_wrap_app

       ; let wrap_id :: Id
wrap_id = IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId (DataCon -> IdDetails
DataConWrapId DataCon
data_con) Name
wrap_name Type
wrap_ty IdInfo
wrap_info
             wrap_info :: IdInfo
wrap_info = IdInfo
noCafIdInfo
                         IdInfo -> Arity -> IdInfo
`setArityInfo`         Arity
wrap_arity
                             -- It's important to specify the arity, so that partial
                             -- applications are treated as values
                         IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo`    InlinePragma
wrap_prag
                         IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`     Unfolding
wrap_unf
                         IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo`    StrictSig
wrap_sig
                         IdInfo -> CprSig -> IdInfo
`setCprInfo`           Arity -> Cpr -> CprSig
mkCprSig Arity
wrap_arity (DataCon -> Cpr
dataConCPR DataCon
data_con)
                             -- We need to get the CAF info right here because GHC.Iface.Tidy
                             -- does not tidy the IdInfo of implicit bindings (like the wrapper)
                             -- so it not make sure that the CAF info is sane
                         IdInfo -> Type -> IdInfo
`setLevityInfoWithType` Type
wrap_ty

             wrap_sig :: StrictSig
wrap_sig = [Demand] -> Divergence -> StrictSig
mkClosedStrictSig [Demand]
wrap_arg_dmds Divergence
topDiv

             wrap_arg_dmds :: [Demand]
wrap_arg_dmds =
               forall a. Arity -> a -> [a]
replicate (forall (t :: * -> *) a. Foldable t => t a -> Arity
length [Type]
theta) Demand
topDmd forall a. [a] -> [a] -> [a]
++ forall a b. (a -> b) -> [a] -> [b]
map HsImplBang -> Demand
mk_dmd [HsImplBang]
arg_ibangs
               -- Don't forget the dictionary arguments when building
               -- the strictness signature (#14290).

             mk_dmd :: HsImplBang -> Demand
mk_dmd HsImplBang
str | HsImplBang -> Bool
isBanged HsImplBang
str = Demand
evalDmd
                        | Bool
otherwise    = Demand
topDmd

             wrap_prag :: InlinePragma
wrap_prag = InlinePragma
dataConWrapperInlinePragma
                         InlinePragma -> Activation -> InlinePragma
`setInlinePragmaActivation` Activation
activateDuringFinal
                         -- See Note [Activation for data constructor wrappers]

             -- The wrapper will usually be inlined (see wrap_unf), so its
             -- strictness and CPR info is usually irrelevant. But this is
             -- not always the case; GHC may choose not to inline it. In
             -- particular, the wrapper constructor is not inlined inside
             -- an INLINE rhs or when it is not applied to any arguments.
             -- See Note [Inline partially-applied constructor wrappers]
             -- Passing Nothing here allows the wrapper to inline when
             -- unsaturated.
             wrap_unf :: Unfolding
wrap_unf | TyCon -> Bool
isNewTyCon TyCon
tycon = SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts CoreExpr
wrap_rhs
                        -- See Note [Compulsory newtype unfolding]
                      | Bool
otherwise        = SimpleOpts -> CoreExpr -> Unfolding
mkInlineUnfolding SimpleOpts
defaultSimpleOpts CoreExpr
wrap_rhs
             wrap_rhs :: CoreExpr
wrap_rhs = forall b. [b] -> Expr b -> Expr b
mkLams [Id]
wrap_tvs forall a b. (a -> b) -> a -> b
$
                        forall b. [b] -> Expr b -> Expr b
mkLams [Id]
wrap_args forall a b. (a -> b) -> a -> b
$
                        TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapFamInstBody TyCon
tycon [Type]
res_ty_args forall a b. (a -> b) -> a -> b
$
                        CoreExpr
wrap_body

       ; forall (m :: * -> *) a. Monad m => a -> m a
return (DCR { dcr_wrap_id :: Id
dcr_wrap_id = Id
wrap_id
                     , dcr_boxer :: DataConBoxer
dcr_boxer   = [Boxer] -> DataConBoxer
mk_boxer [Boxer]
boxers
                     , dcr_arg_tys :: [Scaled Type]
dcr_arg_tys = [Scaled Type]
rep_tys
                     , dcr_stricts :: [StrictnessMark]
dcr_stricts = [StrictnessMark]
rep_strs
                       -- For newtypes, dcr_bangs is always [HsLazy].
                       -- See Note [HsImplBangs for newtypes].
                     , dcr_bangs :: [HsImplBang]
dcr_bangs   = [HsImplBang]
arg_ibangs }) }

  where
    ([Id]
univ_tvs, [Id]
ex_tvs, [EqSpec]
eq_spec, [Type]
theta, [Scaled Type]
orig_arg_tys, Type
_orig_res_ty)
      = DataCon -> ([Id], [Id], [EqSpec], [Type], [Scaled Type], Type)
dataConFullSig DataCon
data_con
    wrap_tvs :: [Id]
wrap_tvs     = DataCon -> [Id]
dataConUserTyVars DataCon
data_con
    res_ty_args :: [Type]
res_ty_args  = TCvSubst -> [Id] -> [Type]
substTyVars ([(Id, Type)] -> TCvSubst
mkTvSubstPrs (forall a b. (a -> b) -> [a] -> [b]
map EqSpec -> (Id, Type)
eqSpecPair [EqSpec]
eq_spec)) [Id]
univ_tvs

    tycon :: TyCon
tycon        = DataCon -> TyCon
dataConTyCon DataCon
data_con       -- The representation TyCon (not family)
    wrap_ty :: Type
wrap_ty      = DataCon -> Type
dataConWrapperType DataCon
data_con
    ev_tys :: [Type]
ev_tys       = [EqSpec] -> [Type]
eqSpecPreds [EqSpec]
eq_spec forall a. [a] -> [a] -> [a]
++ [Type]
theta
    all_arg_tys :: [Scaled Type]
all_arg_tys  = forall a b. (a -> b) -> [a] -> [b]
map forall a. a -> Scaled a
unrestricted [Type]
ev_tys forall a. [a] -> [a] -> [a]
++ [Scaled Type]
orig_arg_tys
    ev_ibangs :: [HsImplBang]
ev_ibangs    = forall a b. (a -> b) -> [a] -> [b]
map (forall a b. a -> b -> a
const HsImplBang
HsLazy) [Type]
ev_tys
    orig_bangs :: [HsSrcBang]
orig_bangs   = DataCon -> [HsSrcBang]
dataConSrcBangs DataCon
data_con

    wrap_arg_tys :: [Scaled Type]
wrap_arg_tys = (forall a b. (a -> b) -> [a] -> [b]
map forall a. a -> Scaled a
unrestricted [Type]
theta) forall a. [a] -> [a] -> [a]
++ [Scaled Type]
orig_arg_tys
    wrap_arity :: Arity
wrap_arity   = forall a. (a -> Bool) -> [a] -> Arity
count Id -> Bool
isCoVar [Id]
ex_tvs forall a. Num a => a -> a -> a
+ forall (t :: * -> *) a. Foldable t => t a -> Arity
length [Scaled Type]
wrap_arg_tys
             -- The wrap_args are the arguments *other than* the eq_spec
             -- Because we are going to apply the eq_spec args manually in the
             -- wrapper

    new_tycon :: Bool
new_tycon = TyCon -> Bool
isNewTyCon TyCon
tycon
    arg_ibangs :: [HsImplBang]
arg_ibangs
      | Bool
new_tycon
      = forall a b. (a -> b) -> [a] -> [b]
map (forall a b. a -> b -> a
const HsImplBang
HsLazy) [Scaled Type]
orig_arg_tys -- See Note [HsImplBangs for newtypes]
                                        -- orig_arg_tys should be a singleton, but
                                        -- if a user declared a wrong newtype we
                                        -- detect this later (see test T2334A)
      | Bool
otherwise
      = case Maybe [HsImplBang]
mb_bangs of
          Maybe [HsImplBang]
Nothing    -> forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (DynFlags -> FamInstEnvs -> Scaled Type -> HsSrcBang -> HsImplBang
dataConSrcToImplBang DynFlags
dflags FamInstEnvs
fam_envs)
                                [Scaled Type]
orig_arg_tys [HsSrcBang]
orig_bangs
          Just [HsImplBang]
bangs -> [HsImplBang]
bangs

    ([[(Scaled Type, StrictnessMark)]]
rep_tys_w_strs, [(Unboxer, Boxer)]
wrappers)
      = forall a b. [(a, b)] -> ([a], [b])
unzip (forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Scaled Type
-> HsImplBang
-> ([(Scaled Type, StrictnessMark)], (Unboxer, Boxer))
dataConArgRep [Scaled Type]
all_arg_tys ([HsImplBang]
ev_ibangs forall a. [a] -> [a] -> [a]
++ [HsImplBang]
arg_ibangs))

    ([Unboxer]
unboxers, [Boxer]
boxers) = forall a b. [(a, b)] -> ([a], [b])
unzip [(Unboxer, Boxer)]
wrappers
    ([Scaled Type]
rep_tys, [StrictnessMark]
rep_strs) = forall a b. [(a, b)] -> ([a], [b])
unzip (forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[(Scaled Type, StrictnessMark)]]
rep_tys_w_strs)

    wrapper_reqd :: Bool
wrapper_reqd =
        (Bool -> Bool
not Bool
new_tycon
                     -- (Most) newtypes have only a worker, with the exception
                     -- of some newtypes written with GADT syntax. See below.
         Bool -> Bool -> Bool
&& (forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any HsImplBang -> Bool
isBanged ([HsImplBang]
ev_ibangs forall a. [a] -> [a] -> [a]
++ [HsImplBang]
arg_ibangs)
                     -- Some forcing/unboxing (includes eq_spec)
             Bool -> Bool -> Bool
|| (Bool -> Bool
not forall a b. (a -> b) -> a -> b
$ forall (t :: * -> *) a. Foldable t => t a -> Bool
null [EqSpec]
eq_spec))) -- GADT
      Bool -> Bool -> Bool
|| TyCon -> Bool
isFamInstTyCon TyCon
tycon -- Cast result
      Bool -> Bool -> Bool
|| DataCon -> Bool
dataConUserTyVarsArePermuted DataCon
data_con
                     -- If the data type was written with GADT syntax and
                     -- orders the type variables differently from what the
                     -- worker expects, it needs a data con wrapper to reorder
                     -- the type variables.
                     -- See Note [Data con wrappers and GADT syntax].

    initial_wrap_app :: CoreExpr
initial_wrap_app = forall b. Id -> Expr b
Var (DataCon -> Id
dataConWorkId DataCon
data_con)
                       forall b. Expr b -> [Type] -> Expr b
`mkTyApps`  [Type]
res_ty_args
                       forall b. Expr b -> [Id] -> Expr b
`mkVarApps` [Id]
ex_tvs
                       forall b. Expr b -> [Coercion] -> Expr b
`mkCoApps`  forall a b. (a -> b) -> [a] -> [b]
map (Role -> Type -> Coercion
mkReflCo Role
Nominal forall b c a. (b -> c) -> (a -> b) -> a -> c
. EqSpec -> Type
eqSpecType) [EqSpec]
eq_spec

    mk_boxer :: [Boxer] -> DataConBoxer
    mk_boxer :: [Boxer] -> DataConBoxer
mk_boxer [Boxer]
boxers = ([Type] -> [Id] -> UniqSM ([Id], [CoreBind])) -> DataConBoxer
DCB (\ [Type]
ty_args [Id]
src_vars ->
                      do { let ([Id]
ex_vars, [Id]
term_vars) = forall b a. [b] -> [a] -> ([a], [a])
splitAtList [Id]
ex_tvs [Id]
src_vars
                               subst1 :: TCvSubst
subst1 = HasDebugCallStack => [Id] -> [Type] -> TCvSubst
zipTvSubst [Id]
univ_tvs [Type]
ty_args
                               subst2 :: TCvSubst
subst2 = TCvSubst -> [Id] -> [Type] -> TCvSubst
extendTCvSubstList TCvSubst
subst1 [Id]
ex_tvs
                                                           ([Id] -> [Type]
mkTyCoVarTys [Id]
ex_vars)
                         ; ([Id]
rep_ids, [CoreBind]
binds) <- TCvSubst -> [Boxer] -> [Id] -> UniqSM ([Id], [CoreBind])
go TCvSubst
subst2 [Boxer]
boxers [Id]
term_vars
                         ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
ex_vars forall a. [a] -> [a] -> [a]
++ [Id]
rep_ids, [CoreBind]
binds) } )

    go :: TCvSubst -> [Boxer] -> [Id] -> UniqSM ([Id], [CoreBind])
go TCvSubst
_ [] [Id]
src_vars = ASSERT2( null src_vars, ppr data_con ) return ([], [])
    go TCvSubst
subst (Boxer
UnitBox : [Boxer]
boxers) (Id
src_var : [Id]
src_vars)
      = do { ([Id]
rep_ids2, [CoreBind]
binds) <- TCvSubst -> [Boxer] -> [Id] -> UniqSM ([Id], [CoreBind])
go TCvSubst
subst [Boxer]
boxers [Id]
src_vars
           ; forall (m :: * -> *) a. Monad m => a -> m a
return (Id
src_var forall a. a -> [a] -> [a]
: [Id]
rep_ids2, [CoreBind]
binds) }
    go TCvSubst
subst (Boxer TCvSubst -> UniqSM ([Id], CoreExpr)
boxer : [Boxer]
boxers) (Id
src_var : [Id]
src_vars)
      = do { ([Id]
rep_ids1, CoreExpr
arg)  <- TCvSubst -> UniqSM ([Id], CoreExpr)
boxer TCvSubst
subst
           ; ([Id]
rep_ids2, [CoreBind]
binds) <- TCvSubst -> [Boxer] -> [Id] -> UniqSM ([Id], [CoreBind])
go TCvSubst
subst [Boxer]
boxers [Id]
src_vars
           ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
rep_ids1 forall a. [a] -> [a] -> [a]
++ [Id]
rep_ids2, forall b. b -> Expr b -> Bind b
NonRec Id
src_var CoreExpr
arg forall a. a -> [a] -> [a]
: [CoreBind]
binds) }
    go TCvSubst
_ (Boxer
_:[Boxer]
_) [] = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"mk_boxer" (forall a. Outputable a => a -> SDoc
ppr DataCon
data_con)

    mk_rep_app :: [(Id,Unboxer)] -> CoreExpr -> UniqSM CoreExpr
    mk_rep_app :: [(Id, Unboxer)] -> CoreExpr -> UniqSM CoreExpr
mk_rep_app [] CoreExpr
con_app
      = forall (m :: * -> *) a. Monad m => a -> m a
return CoreExpr
con_app
    mk_rep_app ((Id
wrap_arg, Unboxer
unboxer) : [(Id, Unboxer)]
prs) CoreExpr
con_app
      = do { ([Id]
rep_ids, CoreExpr -> CoreExpr
unbox_fn) <- Unboxer
unboxer Id
wrap_arg
           ; CoreExpr
expr <- [(Id, Unboxer)] -> CoreExpr -> UniqSM CoreExpr
mk_rep_app [(Id, Unboxer)]
prs (forall b. Expr b -> [Id] -> Expr b
mkVarApps CoreExpr
con_app [Id]
rep_ids)
           ; forall (m :: * -> *) a. Monad m => a -> m a
return (CoreExpr -> CoreExpr
unbox_fn CoreExpr
expr) }


dataConWrapperInlinePragma :: InlinePragma
-- See Note [DataCon wrappers are conlike]
dataConWrapperInlinePragma :: InlinePragma
dataConWrapperInlinePragma = InlinePragma
alwaysInlinePragma { inl_rule :: RuleMatchInfo
inl_rule = RuleMatchInfo
ConLike
                                                , inl_inline :: InlineSpec
inl_inline = InlineSpec
Inline }

{- Note [Activation for data constructor wrappers]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The Activation on a data constructor wrapper allows it to inline only in Phase
0. This way rules have a chance to fire if they mention a data constructor on
the left
   RULE "foo"  f (K a b) = ...
Since the LHS of rules are simplified with InitialPhase, we won't
inline the wrapper on the LHS either.

On the other hand, this means that exprIsConApp_maybe must be able to deal
with wrappers so that case-of-constructor is not delayed; see
Note [exprIsConApp_maybe on data constructors with wrappers] for details.

It used to activate in phases 2 (afterInitial) and later, but it makes it
awkward to write a RULE[1] with a constructor on the left: it would work if a
constructor has no wrapper, but whether a constructor has a wrapper depends, for
instance, on the order of type argument of that constructors. Therefore changing
the order of type argument could make previously working RULEs fail.

See also https://gitlab.haskell.org/ghc/ghc/issues/15840 .

Note [DataCon wrappers are conlike]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
DataCon workers are clearly ConLike --- they are the “Con” in
“ConLike”, after all --- but what about DataCon wrappers? Should they
be marked ConLike, too?

Yes, absolutely! As described in Note [CONLIKE pragma] in
GHC.Types.Basic, isConLike influences GHC.Core.Utils.exprIsExpandable,
which is used by both RULE matching and the case-of-known-constructor
optimization. It’s crucial that both of those things can see
applications of DataCon wrappers:

  * User-defined RULEs match on wrappers, not workers, so we might
    need to look through an unfolding built from a DataCon wrapper to
    determine if a RULE matches.

  * Likewise, if we have something like
        let x = $WC a b in ... case x of { C y z -> e } ...
    we still want to apply case-of-known-constructor.

Therefore, it’s important that we consider DataCon wrappers conlike.
This is especially true now that we don’t inline DataCon wrappers
until the final simplifier phase; see Note [Activation for data
constructor wrappers].

For further reading, see:
  * Note [Conlike is interesting] in GHC.Core.Op.Simplify.Utils
  * Note [Lone variables] in GHC.Core.Unfold
  * Note [exprIsConApp_maybe on data constructors with wrappers]
    in GHC.Core.SimpleOpt
  * #18012

Note [Bangs on imported data constructors]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

We pass Maybe [HsImplBang] to mkDataConRep to make use of HsImplBangs
from imported modules.

- Nothing <=> use HsSrcBangs
- Just bangs <=> use HsImplBangs

For imported types we can't work it all out from the HsSrcBangs,
because we want to be very sure to follow what the original module
(where the data type was declared) decided, and that depends on what
flags were enabled when it was compiled. So we record the decisions in
the interface file.

The HsImplBangs passed are in 1-1 correspondence with the
dataConOrigArgTys of the DataCon.

Note [Data con wrappers and unlifted types]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
   data T = MkT !Int#

We certainly do not want to make a wrapper
   $WMkT x = case x of y { DEFAULT -> MkT y }

For a start, it's still to generate a no-op.  But worse, since wrappers
are currently injected at TidyCore, we don't even optimise it away!
So the stupid case expression stays there.  This actually happened for
the Integer data type (see #1600 comment:66)!

Note [Data con wrappers and GADT syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Consider these two very similar data types:

  data T1 a b = MkT1 b

  data T2 a b where
    MkT2 :: forall b a. b -> T2 a b

Despite their similar appearance, T2 will have a data con wrapper but T1 will
not. What sets them apart? The types of their constructors, which are:

  MkT1 :: forall a b. b -> T1 a b
  MkT2 :: forall b a. b -> T2 a b

MkT2's use of GADT syntax allows it to permute the order in which `a` and `b`
would normally appear. See Note [DataCon user type variable binders] in GHC.Core.DataCon
for further discussion on this topic.

The worker data cons for T1 and T2, however, both have types such that `a` is
expected to come before `b` as arguments. Because MkT2 permutes this order, it
needs a data con wrapper to swizzle around the type variables to be in the
order the worker expects.

A somewhat surprising consequence of this is that *newtypes* can have data con
wrappers! After all, a newtype can also be written with GADT syntax:

  newtype T3 a b where
    MkT3 :: forall b a. b -> T3 a b

Again, this needs a wrapper data con to reorder the type variables. It does
mean that this newtype constructor requires another level of indirection when
being called, but the inliner should make swift work of that.

Note [HsImplBangs for newtypes]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Most of the time, we use the dataConSrctoImplBang function to decide what
strictness/unpackedness to use for the fields of a data type constructor. But
there is an exception to this rule: newtype constructors. You might not think
that newtypes would pose a challenge, since newtypes are seemingly forbidden
from having strictness annotations in the first place. But consider this
(from #16141):

  {-# LANGUAGE StrictData #-}
  {-# OPTIONS_GHC -O #-}
  newtype T a b where
    MkT :: forall b a. Int -> T a b

Because StrictData (plus optimization) is enabled, invoking
dataConSrcToImplBang would sneak in and unpack the field of type Int to Int#!
This would be disastrous, since the wrapper for `MkT` uses a coercion involving
Int, not Int#.

Bottom line: dataConSrcToImplBang should never be invoked for newtypes. In the
case of a newtype constructor, we simply hardcode its dcr_bangs field to
[HsLazy].
-}

-------------------------
newLocal :: Scaled Type -> UniqSM Var
newLocal :: Scaled Type -> UniqSM Id
newLocal (Scaled Type
w Type
ty) = do { Unique
uniq <- forall (m :: * -> *). MonadUnique m => m Unique
getUniqueM
                            ; forall (m :: * -> *) a. Monad m => a -> m a
return (RuleName -> Unique -> Type -> Type -> Id
mkSysLocalOrCoVar (String -> RuleName
fsLit String
"dt") Unique
uniq Type
w Type
ty) }
                 -- We should not have "OrCoVar" here, this is a bug (#17545)


-- | Unpack/Strictness decisions from source module.
--
-- This function should only ever be invoked for data constructor fields, and
-- never on the field of a newtype constructor.
-- See @Note [HsImplBangs for newtypes]@.
dataConSrcToImplBang
   :: DynFlags
   -> FamInstEnvs
   -> Scaled Type
   -> HsSrcBang
   -> HsImplBang

dataConSrcToImplBang :: DynFlags -> FamInstEnvs -> Scaled Type -> HsSrcBang -> HsImplBang
dataConSrcToImplBang DynFlags
dflags FamInstEnvs
fam_envs Scaled Type
arg_ty
                     (HsSrcBang SourceText
ann SrcUnpackedness
unpk SrcStrictness
NoSrcStrict)
  | Extension -> DynFlags -> Bool
xopt Extension
LangExt.StrictData DynFlags
dflags -- StrictData => strict field
  = DynFlags -> FamInstEnvs -> Scaled Type -> HsSrcBang -> HsImplBang
dataConSrcToImplBang DynFlags
dflags FamInstEnvs
fam_envs Scaled Type
arg_ty
                  (SourceText -> SrcUnpackedness -> SrcStrictness -> HsSrcBang
HsSrcBang SourceText
ann SrcUnpackedness
unpk SrcStrictness
SrcStrict)
  | Bool
otherwise -- no StrictData => lazy field
  = HsImplBang
HsLazy

dataConSrcToImplBang DynFlags
_ FamInstEnvs
_ Scaled Type
_ (HsSrcBang SourceText
_ SrcUnpackedness
_ SrcStrictness
SrcLazy)
  = HsImplBang
HsLazy

dataConSrcToImplBang DynFlags
dflags FamInstEnvs
fam_envs Scaled Type
arg_ty
                     (HsSrcBang SourceText
_ SrcUnpackedness
unpk_prag SrcStrictness
SrcStrict)
  | HasDebugCallStack => Type -> Bool
isUnliftedType (forall a. Scaled a -> a
scaledThing Scaled Type
arg_ty)
  = HsImplBang
HsLazy  -- For !Int#, say, use HsLazy
            -- See Note [Data con wrappers and unlifted types]

  | Bool -> Bool
not (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_OmitInterfacePragmas DynFlags
dflags) -- Don't unpack if -fomit-iface-pragmas
          -- Don't unpack if we aren't optimising; rather arbitrarily,
          -- we use -fomit-iface-pragmas as the indication
  , let mb_co :: Maybe (Coercion, Type)
mb_co   = FamInstEnvs -> Type -> Maybe (Coercion, Type)
topNormaliseType_maybe FamInstEnvs
fam_envs (forall a. Scaled a -> a
scaledThing Scaled Type
arg_ty)
                     -- Unwrap type families and newtypes
        arg_ty' :: Scaled Type
arg_ty' = case Maybe (Coercion, Type)
mb_co of { Just (Coercion
_,Type
ty) -> forall a b. Scaled a -> b -> Scaled b
scaledSet Scaled Type
arg_ty Type
ty; Maybe (Coercion, Type)
Nothing -> Scaled Type
arg_ty }
  , DynFlags -> FamInstEnvs -> Type -> Bool
isUnpackableType DynFlags
dflags FamInstEnvs
fam_envs (forall a. Scaled a -> a
scaledThing Scaled Type
arg_ty')
  , ([(Scaled Type, StrictnessMark)]
rep_tys, (Unboxer, Boxer)
_) <- Scaled Type -> ([(Scaled Type, StrictnessMark)], (Unboxer, Boxer))
dataConArgUnpack Scaled Type
arg_ty'
  , case SrcUnpackedness
unpk_prag of
      SrcUnpackedness
NoSrcUnpack ->
        GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_UnboxStrictFields DynFlags
dflags
            Bool -> Bool -> Bool
|| (GeneralFlag -> DynFlags -> Bool
gopt GeneralFlag
Opt_UnboxSmallStrictFields DynFlags
dflags
                Bool -> Bool -> Bool
&& [(Scaled Type, StrictnessMark)]
rep_tys forall a. [a] -> Arity -> Bool
`lengthAtMost` Arity
1) -- See Note [Unpack one-wide fields]
      SrcUnpackedness
srcUnpack -> SrcUnpackedness -> Bool
isSrcUnpacked SrcUnpackedness
srcUnpack
  = case Maybe (Coercion, Type)
mb_co of
      Maybe (Coercion, Type)
Nothing     -> Maybe Coercion -> HsImplBang
HsUnpack forall a. Maybe a
Nothing
      Just (Coercion
co,Type
_) -> Maybe Coercion -> HsImplBang
HsUnpack (forall a. a -> Maybe a
Just Coercion
co)

  | Bool
otherwise -- Record the strict-but-no-unpack decision
  = HsImplBang
HsStrict


-- | Wrappers/Workers and representation following Unpack/Strictness
-- decisions
dataConArgRep
  :: Scaled Type
  -> HsImplBang
  -> ([(Scaled Type,StrictnessMark)] -- Rep types
     ,(Unboxer,Boxer))

dataConArgRep :: Scaled Type
-> HsImplBang
-> ([(Scaled Type, StrictnessMark)], (Unboxer, Boxer))
dataConArgRep Scaled Type
arg_ty HsImplBang
HsLazy
  = ([(Scaled Type
arg_ty, StrictnessMark
NotMarkedStrict)], (Unboxer
unitUnboxer, Boxer
unitBoxer))

dataConArgRep Scaled Type
arg_ty HsImplBang
HsStrict
  = ([(Scaled Type
arg_ty, StrictnessMark
MarkedStrict)], (Unboxer
seqUnboxer, Boxer
unitBoxer))

dataConArgRep Scaled Type
arg_ty (HsUnpack Maybe Coercion
Nothing)
  | ([(Scaled Type, StrictnessMark)]
rep_tys, (Unboxer, Boxer)
wrappers) <- Scaled Type -> ([(Scaled Type, StrictnessMark)], (Unboxer, Boxer))
dataConArgUnpack Scaled Type
arg_ty
  = ([(Scaled Type, StrictnessMark)]
rep_tys, (Unboxer, Boxer)
wrappers)

dataConArgRep (Scaled Type
w Type
_) (HsUnpack (Just Coercion
co))
  | let co_rep_ty :: Type
co_rep_ty = Coercion -> Type
coercionRKind Coercion
co
  , ([(Scaled Type, StrictnessMark)]
rep_tys, (Unboxer, Boxer)
wrappers) <- Scaled Type -> ([(Scaled Type, StrictnessMark)], (Unboxer, Boxer))
dataConArgUnpack (forall a. Type -> a -> Scaled a
Scaled Type
w Type
co_rep_ty)
  = ([(Scaled Type, StrictnessMark)]
rep_tys, Coercion -> Type -> (Unboxer, Boxer) -> (Unboxer, Boxer)
wrapCo Coercion
co Type
co_rep_ty (Unboxer, Boxer)
wrappers)


-------------------------
wrapCo :: Coercion -> Type -> (Unboxer, Boxer) -> (Unboxer, Boxer)
wrapCo :: Coercion -> Type -> (Unboxer, Boxer) -> (Unboxer, Boxer)
wrapCo Coercion
co Type
rep_ty (Unboxer
unbox_rep, Boxer
box_rep)  -- co :: arg_ty ~ rep_ty
  = (Unboxer
unboxer, Boxer
boxer)
  where
    unboxer :: Unboxer
unboxer Id
arg_id = do { Id
rep_id <- Scaled Type -> UniqSM Id
newLocal (forall a. Type -> a -> Scaled a
Scaled (Id -> Type
idMult Id
arg_id) Type
rep_ty)
                        ; ([Id]
rep_ids, CoreExpr -> CoreExpr
rep_fn) <- Unboxer
unbox_rep Id
rep_id
                        ; let co_bind :: CoreBind
co_bind = forall b. b -> Expr b -> Bind b
NonRec Id
rep_id (forall b. Id -> Expr b
Var Id
arg_id forall b. Expr b -> Coercion -> Expr b
`Cast` Coercion
co)
                        ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
rep_ids, forall b. Bind b -> Expr b -> Expr b
Let CoreBind
co_bind forall b c a. (b -> c) -> (a -> b) -> a -> c
. CoreExpr -> CoreExpr
rep_fn) }
    boxer :: Boxer
boxer = (TCvSubst -> UniqSM ([Id], CoreExpr)) -> Boxer
Boxer forall a b. (a -> b) -> a -> b
$ \ TCvSubst
subst ->
            do { ([Id]
rep_ids, CoreExpr
rep_expr)
                    <- case Boxer
box_rep of
                         Boxer
UnitBox -> do { Id
rep_id <- Scaled Type -> UniqSM Id
newLocal (forall a. a -> Scaled a
linear forall a b. (a -> b) -> a -> b
$ HasCallStack => TCvSubst -> Type -> Type
TcType.substTy TCvSubst
subst Type
rep_ty)
                                       ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Id
rep_id], forall b. Id -> Expr b
Var Id
rep_id) }
                         Boxer TCvSubst -> UniqSM ([Id], CoreExpr)
boxer -> TCvSubst -> UniqSM ([Id], CoreExpr)
boxer TCvSubst
subst
               ; let sco :: Coercion
sco = TCvSubst -> Coercion -> Coercion
substCoUnchecked TCvSubst
subst Coercion
co
               ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
rep_ids, CoreExpr
rep_expr forall b. Expr b -> Coercion -> Expr b
`Cast` Coercion -> Coercion
mkSymCo Coercion
sco) }

------------------------
seqUnboxer :: Unboxer
seqUnboxer :: Unboxer
seqUnboxer Id
v = forall (m :: * -> *) a. Monad m => a -> m a
return ([Id
v], CoreExpr -> Id -> CoreExpr -> CoreExpr
mkDefaultCase (forall b. Id -> Expr b
Var Id
v) Id
v)

unitUnboxer :: Unboxer
unitUnboxer :: Unboxer
unitUnboxer Id
v = forall (m :: * -> *) a. Monad m => a -> m a
return ([Id
v], \CoreExpr
e -> CoreExpr
e)

unitBoxer :: Boxer
unitBoxer :: Boxer
unitBoxer = Boxer
UnitBox

-------------------------
dataConArgUnpack
   :: Scaled Type
   ->  ( [(Scaled Type, StrictnessMark)]   -- Rep types
       , (Unboxer, Boxer) )

dataConArgUnpack :: Scaled Type -> ([(Scaled Type, StrictnessMark)], (Unboxer, Boxer))
dataConArgUnpack (Scaled Type
arg_mult Type
arg_ty)
  | Just (TyCon
tc, [Type]
tc_args) <- HasDebugCallStack => Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
arg_ty
  , Just DataCon
con <- TyCon -> Maybe DataCon
tyConSingleAlgDataCon_maybe TyCon
tc
      -- NB: check for an *algebraic* data type
      -- A recursive newtype might mean that
      -- 'arg_ty' is a newtype
  , let rep_tys :: [Scaled Type]
rep_tys = forall a b. (a -> b) -> [a] -> [b]
map (forall a. Type -> Scaled a -> Scaled a
scaleScaled Type
arg_mult) forall a b. (a -> b) -> a -> b
$ DataCon -> [Type] -> [Scaled Type]
dataConInstArgTys DataCon
con [Type]
tc_args
  = ASSERT( null (dataConExTyCoVars con) )
      -- Note [Unpacking GADTs and existentials]
    ( [Scaled Type]
rep_tys forall a b. [a] -> [b] -> [(a, b)]
`zip` DataCon -> [StrictnessMark]
dataConRepStrictness DataCon
con
    ,( \ Id
arg_id ->
       do { [Id]
rep_ids <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Scaled Type -> UniqSM Id
newLocal [Scaled Type]
rep_tys
          ; let r_mult :: Type
r_mult = Id -> Type
idMult Id
arg_id
          ; let rep_ids' :: [Id]
rep_ids' = forall a b. (a -> b) -> [a] -> [b]
map (Type -> Id -> Id
scaleIdBy Type
r_mult) [Id]
rep_ids
          ; let unbox_fn :: CoreExpr -> CoreExpr
unbox_fn CoreExpr
body
                  = CoreExpr -> Id -> AltCon -> [Id] -> CoreExpr -> CoreExpr
mkSingleAltCase (forall b. Id -> Expr b
Var Id
arg_id) Id
arg_id
                             (DataCon -> AltCon
DataAlt DataCon
con) [Id]
rep_ids' CoreExpr
body
          ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
rep_ids, CoreExpr -> CoreExpr
unbox_fn) }
     , (TCvSubst -> UniqSM ([Id], CoreExpr)) -> Boxer
Boxer forall a b. (a -> b) -> a -> b
$ \ TCvSubst
subst ->
       do { [Id]
rep_ids <- forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Scaled Type -> UniqSM Id
newLocal forall b c a. (b -> c) -> (a -> b) -> a -> c
. HasCallStack => TCvSubst -> Scaled Type -> Scaled Type
TcType.substScaledTyUnchecked TCvSubst
subst) [Scaled Type]
rep_tys
          ; forall (m :: * -> *) a. Monad m => a -> m a
return ([Id]
rep_ids, forall b. Id -> Expr b
Var (DataCon -> Id
dataConWorkId DataCon
con)
                             forall b. Expr b -> [Type] -> Expr b
`mkTyApps` (TCvSubst -> [Type] -> [Type]
substTysUnchecked TCvSubst
subst [Type]
tc_args)
                             forall b. Expr b -> [Id] -> Expr b
`mkVarApps` [Id]
rep_ids ) } ) )
  | Bool
otherwise
  = forall a. HasCallStack => String -> SDoc -> a
pprPanic String
"dataConArgUnpack" (forall a. Outputable a => a -> SDoc
ppr Type
arg_ty)
    -- An interface file specified Unpacked, but we couldn't unpack it

isUnpackableType :: DynFlags -> FamInstEnvs -> Type -> Bool
-- True if we can unpack the UNPACK the argument type
-- See Note [Recursive unboxing]
-- We look "deeply" inside rather than relying on the DataCons
-- we encounter on the way, because otherwise we might well
-- end up relying on ourselves!
isUnpackableType :: DynFlags -> FamInstEnvs -> Type -> Bool
isUnpackableType DynFlags
dflags FamInstEnvs
fam_envs Type
ty
  | Just DataCon
data_con <- Type -> Maybe DataCon
unpackable_type Type
ty
  = NameSet -> DataCon -> Bool
ok_con_args NameSet
emptyNameSet DataCon
data_con
  | Bool
otherwise
  = Bool
False
  where
    ok_con_args :: NameSet -> DataCon -> Bool
ok_con_args NameSet
dcs DataCon
con
       | Name
dc_name Name -> NameSet -> Bool
`elemNameSet` NameSet
dcs
       = Bool
False
       | Bool
otherwise
       = forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (NameSet -> (Scaled Type, HsSrcBang) -> Bool
ok_arg NameSet
dcs')
             (DataCon -> [Scaled Type]
dataConOrigArgTys DataCon
con forall a b. [a] -> [b] -> [(a, b)]
`zip` DataCon -> [HsSrcBang]
dataConSrcBangs DataCon
con)
          -- NB: dataConSrcBangs gives the *user* request;
          -- We'd get a black hole if we used dataConImplBangs
       where
         dc_name :: Name
dc_name = forall a. NamedThing a => a -> Name
getName DataCon
con
         dcs' :: NameSet
dcs' = NameSet
dcs NameSet -> Name -> NameSet
`extendNameSet` Name
dc_name

    ok_arg :: NameSet -> (Scaled Type, HsSrcBang) -> Bool
ok_arg NameSet
dcs (Scaled Type
_ Type
ty, HsSrcBang
bang)
      = Bool -> Bool
not (HsSrcBang -> Bool
attempt_unpack HsSrcBang
bang) Bool -> Bool -> Bool
|| NameSet -> Type -> Bool
ok_ty NameSet
dcs Type
norm_ty
      where
        norm_ty :: Type
norm_ty = FamInstEnvs -> Type -> Type
topNormaliseType FamInstEnvs
fam_envs Type
ty

    ok_ty :: NameSet -> Type -> Bool
ok_ty NameSet
dcs Type
ty
      | Just DataCon
data_con <- Type -> Maybe DataCon
unpackable_type Type
ty
      = NameSet -> DataCon -> Bool
ok_con_args NameSet
dcs DataCon
data_con
      | Bool
otherwise
      = Bool
True        -- NB True here, in contrast to False at top level

    attempt_unpack :: HsSrcBang -> Bool
attempt_unpack (HsSrcBang SourceText
_ SrcUnpackedness
SrcUnpack SrcStrictness
NoSrcStrict)
      = Extension -> DynFlags -> Bool
xopt Extension
LangExt.StrictData DynFlags
dflags
    attempt_unpack (HsSrcBang SourceText
_ SrcUnpackedness
SrcUnpack SrcStrictness
SrcStrict)
      = Bool
True
    attempt_unpack (HsSrcBang SourceText
_  SrcUnpackedness
NoSrcUnpack SrcStrictness
SrcStrict)
      = Bool
True  -- Be conservative
    attempt_unpack (HsSrcBang SourceText
_  SrcUnpackedness
NoSrcUnpack SrcStrictness
NoSrcStrict)
      = Extension -> DynFlags -> Bool
xopt Extension
LangExt.StrictData DynFlags
dflags -- Be conservative
    attempt_unpack HsSrcBang
_ = Bool
False

    unpackable_type :: Type -> Maybe DataCon
    -- Works just on a single level
    unpackable_type :: Type -> Maybe DataCon
unpackable_type Type
ty
      | Just (TyCon
tc, [Type]
_) <- HasDebugCallStack => Type -> Maybe (TyCon, [Type])
splitTyConApp_maybe Type
ty
      , Just DataCon
data_con <- TyCon -> Maybe DataCon
tyConSingleAlgDataCon_maybe TyCon
tc
      , forall (t :: * -> *) a. Foldable t => t a -> Bool
null (DataCon -> [Id]
dataConExTyCoVars DataCon
data_con)
          -- See Note [Unpacking GADTs and existentials]
      = forall a. a -> Maybe a
Just DataCon
data_con
      | Bool
otherwise
      = forall a. Maybe a
Nothing

{-
Note [Unpacking GADTs and existentials]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
There is nothing stopping us unpacking a data type with equality
components, like
  data Equal a b where
    Equal :: Equal a a

And it'd be fine to unpack a product type with existential components
too, but that would require a bit more plumbing, so currently we don't.

So for now we require: null (dataConExTyCoVars data_con)
See #14978

Note [Unpack one-wide fields]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The flag UnboxSmallStrictFields ensures that any field that can
(safely) be unboxed to a word-sized unboxed field, should be so unboxed.
For example:

    data A = A Int#
    newtype B = B A
    data C = C !B
    data D = D !C
    data E = E !()
    data F = F !D
    data G = G !F !F

All of these should have an Int# as their representation, except
G which should have two Int#s.

However

    data T = T !(S Int)
    data S = S !a

Here we can represent T with an Int#.

Note [Recursive unboxing]
~~~~~~~~~~~~~~~~~~~~~~~~~
Consider
  data R = MkR {-# UNPACK #-} !S Int
  data S = MkS {-# UNPACK #-} !Int
The representation arguments of MkR are the *representation* arguments
of S (plus Int); the rep args of MkS are Int#.  This is all fine.

But be careful not to try to unbox this!
        data T = MkT {-# UNPACK #-} !T Int
Because then we'd get an infinite number of arguments.

Here is a more complicated case:
        data S = MkS {-# UNPACK #-} !T Int
        data T = MkT {-# UNPACK #-} !S Int
Each of S and T must decide independently whether to unpack
and they had better not both say yes. So they must both say no.

Also behave conservatively when there is no UNPACK pragma
        data T = MkS !T Int
with -funbox-strict-fields or -funbox-small-strict-fields
we need to behave as if there was an UNPACK pragma there.

But it's the *argument* type that matters. This is fine:
        data S = MkS S !Int
because Int is non-recursive.

************************************************************************
*                                                                      *
        Wrapping and unwrapping newtypes and type families
*                                                                      *
************************************************************************
-}

wrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
-- The wrapper for the data constructor for a newtype looks like this:
--      newtype T a = MkT (a,Int)
--      MkT :: forall a. (a,Int) -> T a
--      MkT = /\a. \(x:(a,Int)). x `cast` sym (CoT a)
-- where CoT is the coercion TyCon associated with the newtype
--
-- The call (wrapNewTypeBody T [a] e) returns the
-- body of the wrapper, namely
--      e `cast` (CoT [a])
--
-- If a coercion constructor is provided in the newtype, then we use
-- it, otherwise the wrap/unwrap are both no-ops

wrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapNewTypeBody TyCon
tycon [Type]
args CoreExpr
result_expr
  = ASSERT( isNewTyCon tycon )
    CoreExpr -> Coercion -> CoreExpr
mkCast CoreExpr
result_expr (Coercion -> Coercion
mkSymCo Coercion
co)
  where
    co :: Coercion
co = Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo Role
Representational (TyCon -> CoAxiom Unbranched
newTyConCo TyCon
tycon) [Type]
args []

-- When unwrapping, we do *not* apply any family coercion, because this will
-- be done via a CoPat by the type checker.  We have to do it this way as
-- computing the right type arguments for the coercion requires more than just
-- a splitting operation (cf, GHC.Tc.Gen.Pat.tcConPat).

unwrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
unwrapNewTypeBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
unwrapNewTypeBody TyCon
tycon [Type]
args CoreExpr
result_expr
  = ASSERT( isNewTyCon tycon )
    CoreExpr -> Coercion -> CoreExpr
mkCast CoreExpr
result_expr (Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo Role
Representational (TyCon -> CoAxiom Unbranched
newTyConCo TyCon
tycon) [Type]
args [])

-- If the type constructor is a representation type of a data instance, wrap
-- the expression into a cast adjusting the expression type, which is an
-- instance of the representation type, to the corresponding instance of the
-- family instance type.
-- See Note [Wrappers for data instance tycons]
wrapFamInstBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapFamInstBody :: TyCon -> [Type] -> CoreExpr -> CoreExpr
wrapFamInstBody TyCon
tycon [Type]
args CoreExpr
body
  | Just CoAxiom Unbranched
co_con <- TyCon -> Maybe (CoAxiom Unbranched)
tyConFamilyCoercion_maybe TyCon
tycon
  = CoreExpr -> Coercion -> CoreExpr
mkCast CoreExpr
body (Coercion -> Coercion
mkSymCo (Role -> CoAxiom Unbranched -> [Type] -> [Coercion] -> Coercion
mkUnbranchedAxInstCo Role
Representational CoAxiom Unbranched
co_con [Type]
args []))
  | Bool
otherwise
  = CoreExpr
body

{-
************************************************************************
*                                                                      *
\subsection{Primitive operations}
*                                                                      *
************************************************************************
-}

mkPrimOpId :: PrimOp -> Id
mkPrimOpId :: PrimOp -> Id
mkPrimOpId PrimOp
prim_op
  = Id
id
  where
    ([Id]
tyvars,[Type]
arg_tys,Type
res_ty, Arity
arity, StrictSig
strict_sig) = PrimOp -> ([Id], [Type], Type, Arity, StrictSig)
primOpSig PrimOp
prim_op
    ty :: Type
ty   = [Id] -> Type -> Type
mkSpecForAllTys [Id]
tyvars ([Type] -> Type -> Type
mkVisFunTysMany [Type]
arg_tys Type
res_ty)
    name :: Name
name = Module -> OccName -> Unique -> TyThing -> BuiltInSyntax -> Name
mkWiredInName Module
gHC_PRIM (PrimOp -> OccName
primOpOcc PrimOp
prim_op)
                         (Arity -> Unique
mkPrimOpIdUnique (PrimOp -> Arity
primOpTag PrimOp
prim_op))
                         (Id -> TyThing
AnId Id
id) BuiltInSyntax
UserSyntax
    id :: Id
id   = IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId (PrimOp -> IdDetails
PrimOpId PrimOp
prim_op) Name
name Type
ty IdInfo
info

    -- PrimOps don't ever construct a product, but we want to preserve bottoms
    cpr :: Cpr
cpr
      | Divergence -> Bool
isDeadEndDiv (forall a b. (a, b) -> b
snd (StrictSig -> ([Demand], Divergence)
splitStrictSig StrictSig
strict_sig)) = Cpr
botCpr
      | Bool
otherwise                                      = Cpr
topCpr

    info :: IdInfo
info = IdInfo
noCafIdInfo
           IdInfo -> RuleInfo -> IdInfo
`setRuleInfo`           [CoreRule] -> RuleInfo
mkRuleInfo (forall a. Maybe a -> [a]
maybeToList forall a b. (a -> b) -> a -> b
$ Name -> PrimOp -> Maybe CoreRule
primOpRules Name
name PrimOp
prim_op)
           IdInfo -> Arity -> IdInfo
`setArityInfo`          Arity
arity
           IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo`     StrictSig
strict_sig
           IdInfo -> CprSig -> IdInfo
`setCprInfo`            Arity -> Cpr -> CprSig
mkCprSig Arity
arity Cpr
cpr
           IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo`     InlinePragma
neverInlinePragma
           IdInfo -> Type -> IdInfo
`setLevityInfoWithType` Type
res_ty
               -- We give PrimOps a NOINLINE pragma so that we don't
               -- get silly warnings from Desugar.dsRule (the inline_shadows_rule
               -- test) about a RULE conflicting with a possible inlining
               -- cf #7287

-- For each ccall we manufacture a separate CCallOpId, giving it
-- a fresh unique, a type that is correct for this particular ccall,
-- and a CCall structure that gives the correct details about calling
-- convention etc.
--
-- The *name* of this Id is a local name whose OccName gives the full
-- details of the ccall, type and all.  This means that the interface
-- file reader can reconstruct a suitable Id

mkFCallId :: DynFlags -> Unique -> ForeignCall -> Type -> Id
mkFCallId :: DynFlags -> Unique -> ForeignCall -> Type -> Id
mkFCallId DynFlags
dflags Unique
uniq ForeignCall
fcall Type
ty
  = ASSERT( noFreeVarsOfType ty )
    -- A CCallOpId should have no free type variables;
    -- when doing substitutions won't substitute over it
    IdDetails -> Name -> Type -> IdInfo -> Id
mkGlobalId (ForeignCall -> IdDetails
FCallId ForeignCall
fcall) Name
name Type
ty IdInfo
info
  where
    occ_str :: String
occ_str = DynFlags -> SDoc -> String
showSDoc DynFlags
dflags (SDoc -> SDoc
braces (forall a. Outputable a => a -> SDoc
ppr ForeignCall
fcall SDoc -> SDoc -> SDoc
<+> forall a. Outputable a => a -> SDoc
ppr Type
ty))
    -- The "occurrence name" of a ccall is the full info about the
    -- ccall; it is encoded, but may have embedded spaces etc!

    name :: Name
name = Unique -> String -> Name
mkFCallName Unique
uniq String
occ_str

    info :: IdInfo
info = IdInfo
noCafIdInfo
           IdInfo -> Arity -> IdInfo
`setArityInfo`          Arity
arity
           IdInfo -> StrictSig -> IdInfo
`setStrictnessInfo`     StrictSig
strict_sig
           IdInfo -> CprSig -> IdInfo
`setCprInfo`            CprSig
topCprSig
           IdInfo -> Type -> IdInfo
`setLevityInfoWithType` Type
ty

    ([TyBinder]
bndrs, Type
_) = Type -> ([TyBinder], Type)
tcSplitPiTys Type
ty
    arity :: Arity
arity      = forall a. (a -> Bool) -> [a] -> Arity
count TyBinder -> Bool
isAnonTyCoBinder [TyBinder]
bndrs
    strict_sig :: StrictSig
strict_sig = [Demand] -> Divergence -> StrictSig
mkClosedStrictSig (forall a. Arity -> a -> [a]
replicate Arity
arity Demand
topDmd) Divergence
topDiv
    -- the call does not claim to be strict in its arguments, since they
    -- may be lifted (foreign import prim) and the called code doesn't
    -- necessarily force them. See #11076.
{-
************************************************************************
*                                                                      *
\subsection{DictFuns and default methods}
*                                                                      *
************************************************************************

Note [Dict funs and default methods]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Dict funs and default methods are *not* ImplicitIds.  Their definition
involves user-written code, so we can't figure out their strictness etc
based on fixed info, as we can for constructors and record selectors (say).

NB: See also Note [Exported LocalIds] in GHC.Types.Id
-}

mkDictFunId :: Name      -- Name to use for the dict fun;
            -> [TyVar]
            -> ThetaType
            -> Class
            -> [Type]
            -> Id
-- Implements the DFun Superclass Invariant (see GHC.Tc.TyCl.Instance)
-- See Note [Dict funs and default methods]

mkDictFunId :: Name -> [Id] -> [Type] -> Class -> [Type] -> Id
mkDictFunId Name
dfun_name [Id]
tvs [Type]
theta Class
clas [Type]
tys
  = IdDetails -> Name -> Type -> Id
mkExportedLocalId (Bool -> IdDetails
DFunId Bool
is_nt)
                      Name
dfun_name
                      Type
dfun_ty
  where
    is_nt :: Bool
is_nt = TyCon -> Bool
isNewTyCon (Class -> TyCon
classTyCon Class
clas)
    dfun_ty :: Type
dfun_ty = [Id] -> [Type] -> Class -> [Type] -> Type
mkDictFunTy [Id]
tvs [Type]
theta Class
clas [Type]
tys

mkDictFunTy :: [TyVar] -> ThetaType -> Class -> [Type] -> Type
mkDictFunTy :: [Id] -> [Type] -> Class -> [Type] -> Type
mkDictFunTy [Id]
tvs [Type]
theta Class
clas [Type]
tys
 = [Id] -> [Type] -> Type -> Type
mkSpecSigmaTy [Id]
tvs [Type]
theta (Class -> [Type] -> Type
mkClassPred Class
clas [Type]
tys)

{-
************************************************************************
*                                                                      *
\subsection{Un-definable}
*                                                                      *
************************************************************************

These Ids can't be defined in Haskell.  They could be defined in
unfoldings in the wired-in GHC.Prim interface file, but we'd have to
ensure that they were definitely, definitely inlined, because there is
no curried identifier for them.  That's what mkCompulsoryUnfolding
does. Alternatively, we could add the definitions to mi_decls of ghcPrimIface
but it's not clear if this would be simpler.

coercionToken# is not listed in ghcPrimIds, since its type uses (~#)
which is not supposed to be used in expressions (GHC throws an assertion
failure when trying.)
-}

nullAddrName, seqName,
   realWorldName, voidPrimIdName, coercionTokenName,
   magicDictName, coerceName, proxyName,
   leftSectionName, rightSectionName :: Name
nullAddrName :: Name
nullAddrName      = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"nullAddr#")      Unique
nullAddrIdKey      Id
nullAddrId
seqName :: Name
seqName           = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"seq")            Unique
seqIdKey           Id
seqId
realWorldName :: Name
realWorldName     = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"realWorld#")     Unique
realWorldPrimIdKey Id
realWorldPrimId
voidPrimIdName :: Name
voidPrimIdName    = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"void#")          Unique
voidPrimIdKey      Id
voidPrimId
coercionTokenName :: Name
coercionTokenName = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"coercionToken#") Unique
coercionTokenIdKey Id
coercionTokenId
magicDictName :: Name
magicDictName     = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"magicDict")      Unique
magicDictKey       Id
magicDictId
coerceName :: Name
coerceName        = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"coerce")         Unique
coerceKey          Id
coerceId
proxyName :: Name
proxyName         = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"proxy#")         Unique
proxyHashKey       Id
proxyHashId
leftSectionName :: Name
leftSectionName   = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"leftSection")    Unique
leftSectionKey     Id
leftSectionId
rightSectionName :: Name
rightSectionName  = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_PRIM  (String -> RuleName
fsLit String
"rightSection")   Unique
rightSectionKey    Id
rightSectionId

-- Names listed in magicIds; see Note [magicIds]
lazyIdName, oneShotName, noinlineIdName :: Name
lazyIdName :: Name
lazyIdName        = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_MAGIC (String -> RuleName
fsLit String
"lazy")           Unique
lazyIdKey          Id
lazyId
oneShotName :: Name
oneShotName       = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_MAGIC (String -> RuleName
fsLit String
"oneShot")        Unique
oneShotKey         Id
oneShotId
noinlineIdName :: Name
noinlineIdName    = Module -> RuleName -> Unique -> Id -> Name
mkWiredInIdName Module
gHC_MAGIC (String -> RuleName
fsLit String
"noinline")       Unique
noinlineIdKey      Id
noinlineId

------------------------------------------------
proxyHashId :: Id
proxyHashId :: Id
proxyHashId
  = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
proxyName Type
ty
       (IdInfo
noCafIdInfo IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo` Unfolding
evaldUnfolding -- Note [evaldUnfoldings]
                    HasDebugCallStack => IdInfo -> Type -> IdInfo
`setNeverLevPoly`  Type
ty)
  where
    -- proxy# :: forall {k} (a:k). Proxy# k a
    --
    -- The visibility of the `k` binder is Inferred to match the type of the
    -- Proxy data constructor (#16293).
    [Id
kv,Id
tv] = [Type] -> ([Type] -> [Type]) -> [Id]
mkTemplateKiTyVars [Type
liftedTypeKind] forall a. a -> a
id
    kv_ty :: Type
kv_ty   = Id -> Type
mkTyVarTy Id
kv
    tv_ty :: Type
tv_ty   = Id -> Type
mkTyVarTy Id
tv
    ty :: Type
ty      = Id -> Type -> Type
mkInfForAllTy Id
kv forall a b. (a -> b) -> a -> b
$ Id -> Type -> Type
mkSpecForAllTy Id
tv forall a b. (a -> b) -> a -> b
$ Type -> Type -> Type
mkProxyPrimTy Type
kv_ty Type
tv_ty

------------------------------------------------
nullAddrId :: Id
-- nullAddr# :: Addr#
-- The reason it is here is because we don't provide
-- a way to write this literal in Haskell.
nullAddrId :: Id
nullAddrId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
nullAddrName Type
addrPrimTy IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
alwaysInlinePragma
                       IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts (forall b. Literal -> Expr b
Lit Literal
nullAddrLit)
                       HasDebugCallStack => IdInfo -> Type -> IdInfo
`setNeverLevPoly`   Type
addrPrimTy

------------------------------------------------
seqId :: Id     -- See Note [seqId magic]
seqId :: Id
seqId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
seqName Type
ty IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
inline_prag
                       IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts CoreExpr
rhs

    inline_prag :: InlinePragma
inline_prag
         = InlinePragma
alwaysInlinePragma InlinePragma -> Activation -> InlinePragma
`setInlinePragmaActivation` SourceText -> Arity -> Activation
ActiveAfter
                 SourceText
NoSourceText Arity
0
                  -- Make 'seq' not inline-always, so that simpleOptExpr
                  -- (see GHC.Core.Subst.simple_app) won't inline 'seq' on the
                  -- LHS of rules.  That way we can have rules for 'seq';
                  -- see Note [seqId magic]

    -- seq :: forall (r :: RuntimeRep) a (b :: TYPE r). a -> b -> b
    ty :: Type
ty  =
      Id -> Type -> Type
mkInfForAllTy Id
runtimeRep2TyVar
      forall a b. (a -> b) -> a -> b
$ [Id] -> Type -> Type
mkSpecForAllTys [Id
alphaTyVar, Id
openBetaTyVar]
      forall a b. (a -> b) -> a -> b
$ Type -> Type -> Type
mkVisFunTyMany Type
alphaTy (Type -> Type -> Type
mkVisFunTyMany Type
openBetaTy Type
openBetaTy)

    [Id
x,Id
y] = [Type] -> [Id]
mkTemplateLocals [Type
alphaTy, Type
openBetaTy]
    rhs :: CoreExpr
rhs = forall b. [b] -> Expr b -> Expr b
mkLams ([Id
runtimeRep2TyVar, Id
alphaTyVar, Id
openBetaTyVar, Id
x, Id
y]) forall a b. (a -> b) -> a -> b
$
          forall b. Expr b -> b -> Type -> [Alt b] -> Expr b
Case (forall b. Id -> Expr b
Var Id
x) Id
x Type
openBetaTy [forall b. AltCon -> [b] -> Expr b -> Alt b
Alt AltCon
DEFAULT [] (forall b. Id -> Expr b
Var Id
y)]

------------------------------------------------
lazyId :: Id    -- See Note [lazyId magic]
lazyId :: Id
lazyId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
lazyIdName Type
ty IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo HasDebugCallStack => IdInfo -> Type -> IdInfo
`setNeverLevPoly` Type
ty
    ty :: Type
ty  = [Id] -> Type -> Type
mkSpecForAllTys [Id
alphaTyVar] (Type -> Type -> Type
mkVisFunTyMany Type
alphaTy Type
alphaTy)

noinlineId :: Id -- See Note [noinlineId magic]
noinlineId :: Id
noinlineId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
noinlineIdName Type
ty IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo HasDebugCallStack => IdInfo -> Type -> IdInfo
`setNeverLevPoly` Type
ty
    ty :: Type
ty  = [Id] -> Type -> Type
mkSpecForAllTys [Id
alphaTyVar] (Type -> Type -> Type
mkVisFunTyMany Type
alphaTy Type
alphaTy)

oneShotId :: Id -- See Note [The oneShot function]
oneShotId :: Id
oneShotId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
oneShotName Type
ty IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
alwaysInlinePragma
                       IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts CoreExpr
rhs
    ty :: Type
ty  = [Id] -> Type -> Type
mkInfForAllTys  [ Id
runtimeRep1TyVar, Id
runtimeRep2TyVar ] forall a b. (a -> b) -> a -> b
$
          [Id] -> Type -> Type
mkSpecForAllTys [ Id
openAlphaTyVar, Id
openBetaTyVar ]      forall a b. (a -> b) -> a -> b
$
          Type -> Type -> Type
mkVisFunTyMany Type
fun_ty Type
fun_ty
    fun_ty :: Type
fun_ty = Type -> Type -> Type
mkVisFunTyMany Type
openAlphaTy Type
openBetaTy
    [Id
body, Id
x] = [Type] -> [Id]
mkTemplateLocals [Type
fun_ty, Type
openAlphaTy]
    x' :: Id
x' = Id -> Id
setOneShotLambda Id
x  -- Here is the magic bit!
    rhs :: CoreExpr
rhs = forall b. [b] -> Expr b -> Expr b
mkLams [ Id
runtimeRep1TyVar, Id
runtimeRep2TyVar
                 , Id
openAlphaTyVar, Id
openBetaTyVar
                 , Id
body, Id
x'] forall a b. (a -> b) -> a -> b
$
          forall b. Id -> Expr b
Var Id
body forall b. Expr b -> Expr b -> Expr b
`App` forall b. Id -> Expr b
Var Id
x'

----------------------------------------------------------------------
{- Note [Wired-in Ids for rebindable syntax]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
The functions leftSectionId, rightSectionId are
wired in here ONLY because they are use in a levity-polymorphic way
by the rebindable syntax mechanism. See GHC.Rename.Expr
Note [Handling overloaded and rebindable constructs].

Alas, we can't currenly give Haskell definitions for
levity-polymorphic functions.

They have Compulsory unfoldings to so that the levity polymorphism
does not linger for long.
-}

-- See Note [Left and right sections] in GHC.Rename.Expr
-- See Note [Wired-in Ids for rebindable syntax]
--   leftSection :: forall r1 r2 n (a:Type r1) (b:TYPE r2).
--                  (a %n-> b) -> a %n-> b
--   leftSection f x = f x
-- Important that it is eta-expanded, so that (leftSection undefined `seq` ())
--   is () and not undefined
-- Important that is is multiplicity-polymorphic (test linear/should_compile/OldList)
leftSectionId :: Id
leftSectionId :: Id
leftSectionId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
leftSectionName Type
ty IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
alwaysInlinePragma
                       IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts CoreExpr
rhs
    ty :: Type
ty  = [Id] -> Type -> Type
mkInfForAllTys  [Id
runtimeRep1TyVar,Id
runtimeRep2TyVar, Id
multiplicityTyVar1] forall a b. (a -> b) -> a -> b
$
          [Id] -> Type -> Type
mkSpecForAllTys [Id
openAlphaTyVar,  Id
openBetaTyVar]    forall a b. (a -> b) -> a -> b
$
          CoreExpr -> Type
exprType CoreExpr
body
    [Id
f,Id
x] = [Type] -> [Id]
mkTemplateLocals [Type -> Type -> Type -> Type
mkVisFunTy Type
mult Type
openAlphaTy Type
openBetaTy, Type
openAlphaTy]

    mult :: Type
mult = Id -> Type
mkTyVarTy Id
multiplicityTyVar1 :: Mult
    xmult :: Id
xmult = Id -> Type -> Id
setIdMult Id
x Type
mult

    rhs :: CoreExpr
rhs  = forall b. [b] -> Expr b -> Expr b
mkLams [ Id
runtimeRep1TyVar, Id
runtimeRep2TyVar, Id
multiplicityTyVar1
                  , Id
openAlphaTyVar,   Id
openBetaTyVar   ] CoreExpr
body
    body :: CoreExpr
body = forall b. [b] -> Expr b -> Expr b
mkLams [Id
f,Id
xmult] forall a b. (a -> b) -> a -> b
$ forall b. Expr b -> Expr b -> Expr b
App (forall b. Id -> Expr b
Var Id
f) (forall b. Id -> Expr b
Var Id
xmult)

-- See Note [Left and right sections] in GHC.Rename.Expr
-- See Note [Wired-in Ids for rebindable syntax]
--   rightSection :: forall r1 r2 r3 (a:TYPE r1) (b:TYPE r2) (c:TYPE r3).
--                   (a %n1 -> b %n2-> c) -> b %n2-> a %n1-> c
--   rightSection f y x = f x y
-- Again, multiplicity polymorphism is important
rightSectionId :: Id
rightSectionId :: Id
rightSectionId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
rightSectionName Type
ty IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
alwaysInlinePragma
                       IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts CoreExpr
rhs
    ty :: Type
ty  = [Id] -> Type -> Type
mkInfForAllTys  [Id
runtimeRep1TyVar,Id
runtimeRep2TyVar,Id
runtimeRep3TyVar
                          , Id
multiplicityTyVar1, Id
multiplicityTyVar2 ] forall a b. (a -> b) -> a -> b
$
          [Id] -> Type -> Type
mkSpecForAllTys [Id
openAlphaTyVar,  Id
openBetaTyVar,   Id
openGammaTyVar ]  forall a b. (a -> b) -> a -> b
$
          CoreExpr -> Type
exprType CoreExpr
body
    mult1 :: Type
mult1 = Id -> Type
mkTyVarTy Id
multiplicityTyVar1
    mult2 :: Type
mult2 = Id -> Type
mkTyVarTy Id
multiplicityTyVar2

    [Id
f,Id
x,Id
y] = [Type] -> [Id]
mkTemplateLocals [ [Scaled Type] -> Type -> Type
mkVisFunTys [ forall a. Type -> a -> Scaled a
Scaled Type
mult1 Type
openAlphaTy
                                             , forall a. Type -> a -> Scaled a
Scaled Type
mult2 Type
openBetaTy ] Type
openGammaTy
                               , Type
openAlphaTy, Type
openBetaTy ]
    xmult :: Id
xmult = Id -> Type -> Id
setIdMult Id
x Type
mult1
    ymult :: Id
ymult = Id -> Type -> Id
setIdMult Id
y Type
mult2
    rhs :: CoreExpr
rhs  = forall b. [b] -> Expr b -> Expr b
mkLams [ Id
runtimeRep1TyVar, Id
runtimeRep2TyVar, Id
runtimeRep3TyVar
                  , Id
multiplicityTyVar1, Id
multiplicityTyVar2
                  , Id
openAlphaTyVar,   Id
openBetaTyVar,    Id
openGammaTyVar ] CoreExpr
body
    body :: CoreExpr
body = forall b. [b] -> Expr b -> Expr b
mkLams [Id
f,Id
ymult,Id
xmult] forall a b. (a -> b) -> a -> b
$ forall b. Expr b -> [Id] -> Expr b
mkVarApps (forall b. Id -> Expr b
Var Id
f) [Id
xmult,Id
ymult]

--------------------------------------------------------------------------------
magicDictId :: Id  -- See Note [magicDictId magic]
magicDictId :: Id
magicDictId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
magicDictName Type
ty IdInfo
info
  where
  info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
neverInlinePragma
                     HasDebugCallStack => IdInfo -> Type -> IdInfo
`setNeverLevPoly`   Type
ty
  ty :: Type
ty   = [Id] -> Type -> Type
mkSpecForAllTys [Id
alphaTyVar] Type
alphaTy

--------------------------------------------------------------------------------

coerceId :: Id
coerceId :: Id
coerceId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
coerceName Type
ty IdInfo
info
  where
    info :: IdInfo
info = IdInfo
noCafIdInfo IdInfo -> InlinePragma -> IdInfo
`setInlinePragInfo` InlinePragma
alwaysInlinePragma
                       IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo`  SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts CoreExpr
rhs
    eqRTy :: Type
eqRTy     = TyCon -> [Type] -> Type
mkTyConApp TyCon
coercibleTyCon [ Type -> Type
tYPE Type
r , Type
a, Type
b ]
    eqRPrimTy :: Type
eqRPrimTy = TyCon -> [Type] -> Type
mkTyConApp TyCon
eqReprPrimTyCon [ Type -> Type
tYPE Type
r, Type -> Type
tYPE Type
r, Type
a, Type
b ]
    ty :: Type
ty        = [InvisTVBinder] -> Type -> Type
mkInvisForAllTys [ forall var argf. var -> argf -> VarBndr var argf
Bndr Id
rv Specificity
InferredSpec
                                 , forall var argf. var -> argf -> VarBndr var argf
Bndr Id
av Specificity
SpecifiedSpec
                                 , forall var argf. var -> argf -> VarBndr var argf
Bndr Id
bv Specificity
SpecifiedSpec
                                 ] forall a b. (a -> b) -> a -> b
$
                Type -> Type -> Type
mkInvisFunTyMany Type
eqRTy forall a b. (a -> b) -> a -> b
$
                Type -> Type -> Type
mkVisFunTyMany Type
a Type
b

    bndrs :: [Id]
bndrs@[Id
rv,Id
av,Id
bv] = Type -> (Type -> [Type]) -> [Id]
mkTemplateKiTyVar Type
runtimeRepTy
                        (\Type
r -> [Type -> Type
tYPE Type
r, Type -> Type
tYPE Type
r])

    [Type
r, Type
a, Type
b] = [Id] -> [Type]
mkTyVarTys [Id]
bndrs

    [Id
eqR,Id
x,Id
eq] = [Type] -> [Id]
mkTemplateLocals [Type
eqRTy, Type
a, Type
eqRPrimTy]
    rhs :: CoreExpr
rhs = forall b. [b] -> Expr b -> Expr b
mkLams ([Id]
bndrs forall a. [a] -> [a] -> [a]
++ [Id
eqR, Id
x]) forall a b. (a -> b) -> a -> b
$
          CoreExpr -> Scaled Type -> Type -> [Alt Id] -> CoreExpr
mkWildCase (forall b. Id -> Expr b
Var Id
eqR) (forall a. a -> Scaled a
unrestricted Type
eqRTy) Type
b forall a b. (a -> b) -> a -> b
$
          [forall b. AltCon -> [b] -> Expr b -> Alt b
Alt (DataCon -> AltCon
DataAlt DataCon
coercibleDataCon) [Id
eq] (forall b. Expr b -> Coercion -> Expr b
Cast (forall b. Id -> Expr b
Var Id
x) (Id -> Coercion
mkCoVarCo Id
eq))]

{-
Note [seqId magic]
~~~~~~~~~~~~~~~~~~
'GHC.Prim.seq' is special in several ways.

a) Its fixity is set in GHC.Iface.Load.ghcPrimIface

b) It has quite a bit of desugaring magic.
   See GHC.HsToCore.Utils Note [Desugaring seq] (1) and (2) and (3)

c) There is some special rule handing: Note [User-defined RULES for seq]

Historical note:
    In GHC.Tc.Gen.Expr we used to need a special typing rule for 'seq', to handle calls
    whose second argument had an unboxed type, e.g.  x `seq` 3#

    However, with levity polymorphism we can now give seq the type seq ::
    forall (r :: RuntimeRep) a (b :: TYPE r). a -> b -> b which handles this
    case without special treatment in the typechecker.

Note [User-defined RULES for seq]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Roman found situations where he had
      case (f n) of _ -> e
where he knew that f (which was strict in n) would terminate if n did.
Notice that the result of (f n) is discarded. So it makes sense to
transform to
      case n of _ -> e

Rather than attempt some general analysis to support this, I've added
enough support that you can do this using a rewrite rule:

  RULE "f/seq" forall n.  seq (f n) = seq n

You write that rule.  When GHC sees a case expression that discards
its result, it mentally transforms it to a call to 'seq' and looks for
a RULE.  (This is done in GHC.Core.Opt.Simplify.trySeqRules.)  As usual, the
correctness of the rule is up to you.

VERY IMPORTANT: to make this work, we give the RULE an arity of 1, not 2.
If we wrote
  RULE "f/seq" forall n e.  seq (f n) e = seq n e
with rule arity 2, then two bad things would happen:

  - The magical desugaring done in Note [seqId magic] item (b)
    for saturated application of 'seq' would turn the LHS into
    a case expression!

  - The code in GHC.Core.Opt.Simplify.rebuildCase would need to actually supply
    the value argument, which turns out to be awkward.

See also: Note [User-defined RULES for seq] in GHC.Core.Opt.Simplify.


Note [lazyId magic]
~~~~~~~~~~~~~~~~~~~
lazy :: forall a. a -> a

'lazy' is used to make sure that a sub-expression, and its free variables,
are truly used call-by-need, with no code motion.  Key examples:

* pseq:    pseq a b = a `seq` lazy b
  We want to make sure that the free vars of 'b' are not evaluated
  before 'a', even though the expression is plainly strict in 'b'.

* catch:   catch a b = catch# (lazy a) b
  Again, it's clear that 'a' will be evaluated strictly (and indeed
  applied to a state token) but we want to make sure that any exceptions
  arising from the evaluation of 'a' are caught by the catch (see
  #11555).

Implementing 'lazy' is a bit tricky:

* It must not have a strictness signature: by being a built-in Id,
  all the info about lazyId comes from here, not from GHC.Magic.hi.
  This is important, because the strictness analyser will spot it as
  strict!

* It must not have an unfolding: it gets "inlined" by a HACK in
  CorePrep. It's very important to do this inlining *after* unfoldings
  are exposed in the interface file.  Otherwise, the unfolding for
  (say) pseq in the interface file will not mention 'lazy', so if we
  inline 'pseq' we'll totally miss the very thing that 'lazy' was
  there for in the first place. See #3259 for a real world
  example.

* Suppose CorePrep sees (catch# (lazy e) b).  At all costs we must
  avoid using call by value here:
     case e of r -> catch# r b
  Avoiding that is the whole point of 'lazy'.  So in CorePrep (which
  generate the 'case' expression for a call-by-value call) we must
  spot the 'lazy' on the arg (in CorePrep.cpeApp), and build a 'let'
  instead.

* lazyId is defined in GHC.Base, so we don't *have* to inline it.  If it
  appears un-applied, we'll end up just calling it.

Note [noinlineId magic]
~~~~~~~~~~~~~~~~~~~~~~~
'noinline' is used to make sure that a function f is never inlined,
e.g., as in 'noinline f x'.  We won't inline f because we never inline
lone variables (see Note [Lone variables] in GHC.Core.Unfold

You might think that we could implement noinline like this:
   {-# NOINLINE #-}
   noinline :: forall a. a -> a
   noinline x = x

But actually we give 'noinline' a wired-in name for three distinct reasons:

1. We don't want to leave a (useless) call to noinline in the final program,
   to be executed at runtime. So we have a little bit of magic to
   optimize away 'noinline' after we are done running the simplifier.
   This is done in GHC.CoreToStg.Prep.cpeApp.

2. 'noinline' sometimes gets inserted automatically when we serialize an
   expression to the interface format, in GHC.CoreToIface.toIfaceVar.
   See Note [Inlining and hs-boot files] in GHC.CoreToIface

3. Given foo :: Eq a => [a] -> Bool, the expression
     noinline foo x xs
   where x::Int, will naturally desugar to
      noinline @Int (foo @Int dEqInt) x xs
   But now it's entirely possible htat (foo @Int dEqInt) will inline foo,
   since 'foo' is no longer a lone variable -- see #18995

   Solution: in the desugarer, rewrite
      noinline (f x y)  ==>  noinline f x y
   This is done in GHC.HsToCore.Utils.mkCoreAppDs.

Note that noinline as currently implemented can hide some simplifications since
it hides strictness from the demand analyser. Specifically, the demand analyser
will treat 'noinline f x' as lazy in 'x', even if the demand signature of 'f'
specifies that it is strict in its argument. We considered fixing this this by adding a
special case to the demand analyser to address #16588. However, the special
case seemed like a large and expensive hammer to address a rare case and
consequently we rather opted to use a more minimal solution.

Note [The oneShot function]
~~~~~~~~~~~~~~~~~~~~~~~~~~~
In the context of making left-folds fuse somewhat okish (see ticket #7994
and Note [Left folds via right fold]) it was determined that it would be useful
if library authors could explicitly tell the compiler that a certain lambda is
called at most once. The oneShot function allows that.

'oneShot' is levity-polymorphic, i.e. the type variables can refer to unlifted
types as well (#10744); e.g.
   oneShot (\x:Int# -> x +# 1#)

Like most magic functions it has a compulsory unfolding, so there is no need
for a real definition somewhere. We have one in GHC.Magic for the convenience
of putting the documentation there.

It uses `setOneShotLambda` on the lambda's binder. That is the whole magic:

A typical call looks like
     oneShot (\y. e)
after unfolding the definition `oneShot = \f \x[oneshot]. f x` we get
     (\f \x[oneshot]. f x) (\y. e)
 --> \x[oneshot]. ((\y.e) x)
 --> \x[oneshot] e[x/y]
which is what we want.

It is only effective if the one-shot info survives as long as possible; in
particular it must make it into the interface in unfoldings. See Note [Preserve
OneShotInfo] in GHC.Core.Tidy.

Also see https://gitlab.haskell.org/ghc/ghc/wikis/one-shot.


Note [magicDictId magic]
~~~~~~~~~~~~~~~~~~~~~~~~~
The identifier `magicDict` is just a place-holder, which is used to
implement a primitive that we cannot define in Haskell but we can write
in Core.  It is declared with a place-holder type:

    magicDict :: forall a. a

The intention is that the identifier will be used in a very specific way,
to create dictionaries for classes with a single method.  Consider a class
like this:

   class C a where
     f :: T a

We are going to use `magicDict`, in conjunction with a built-in Prelude
rule, to cast values of type `T a` into dictionaries for `C a`.  To do
this, we define a function like this in the library:

  data WrapC a b = WrapC (C a => Proxy a -> b)

  withT :: (C a => Proxy a -> b)
        ->  T a -> Proxy a -> b
  withT f x y = magicDict (WrapC f) x y

The purpose of `WrapC` is to avoid having `f` instantiated.
Also, it avoids impredicativity, because `magicDict`'s type
cannot be instantiated with a forall.  The field of `WrapC` contains
a `Proxy` parameter which is used to link the type of the constraint,
`C a`, with the type of the `Wrap` value being made.

Next, we add a built-in Prelude rule (see GHC.Core.Opt.ConstantFold),
which will replace the RHS of this definition with the appropriate
definition in Core.  The rewrite rule works as follows:

  magicDict @t (wrap @a @b f) x y
---->
  f (x `cast` co a) y

The `co` coercion is the newtype-coercion extracted from the type-class.
The type class is obtained by looking at the type of wrap.

In the constant folding rule it's very import to make sure to strip all ticks
from the expression as if there's an occurence of
magicDict we *must* convert it for correctness. See #19667 for where this went
wrong in GHCi.


-------------------------------------------------------------
@realWorld#@ used to be a magic literal, \tr{void#}.  If things get
nasty as-is, change it back to a literal (@Literal@).

voidArgId is a Local Id used simply as an argument in functions
where we just want an arg to avoid having a thunk of unlifted type.
E.g.
        x = \ void :: Void# -> (# p, q #)

This comes up in strictness analysis

Note [evaldUnfoldings]
~~~~~~~~~~~~~~~~~~~~~~
The evaldUnfolding makes it look that some primitive value is
evaluated, which in turn makes Simplify.interestingArg return True,
which in turn makes INLINE things applied to said value likely to be
inlined.
-}

realWorldPrimId :: Id   -- :: State# RealWorld
realWorldPrimId :: Id
realWorldPrimId = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
realWorldName Type
realWorldStatePrimTy
                     (IdInfo
noCafIdInfo IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo` Unfolding
evaldUnfolding    -- Note [evaldUnfoldings]
                                  IdInfo -> OneShotInfo -> IdInfo
`setOneShotInfo`   OneShotInfo
stateHackOneShot
                                  HasDebugCallStack => IdInfo -> Type -> IdInfo
`setNeverLevPoly`  Type
realWorldStatePrimTy)

voidPrimId :: Id     -- Global constant :: Void#
                     -- The type Void# is now the same as (# #) (ticket #18441),
                     -- this identifier just signifies the (# #) datacon
                     -- and is kept for backwards compatibility.
                     -- We cannot define it in normal Haskell, since it's
                     -- a top-level unlifted value.
voidPrimId :: Id
voidPrimId  = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
voidPrimIdName Type
unboxedUnitTy
                (IdInfo
noCafIdInfo IdInfo -> Unfolding -> IdInfo
`setUnfoldingInfo` SimpleOpts -> CoreExpr -> Unfolding
mkCompulsoryUnfolding SimpleOpts
defaultSimpleOpts forall {b}. Expr b
rhs
                             HasDebugCallStack => IdInfo -> Type -> IdInfo
`setNeverLevPoly`  Type
unboxedUnitTy)
    where rhs :: Expr b
rhs = forall b. Id -> Expr b
Var (DataCon -> Id
dataConWorkId DataCon
unboxedUnitDataCon)


voidArgId :: Id       -- Local lambda-bound :: Void#
voidArgId :: Id
voidArgId = RuleName -> Unique -> Type -> Type -> Id
mkSysLocal (String -> RuleName
fsLit String
"void") Unique
voidArgIdKey Type
Many Type
unboxedUnitTy

coercionTokenId :: Id         -- :: () ~# ()
coercionTokenId :: Id
coercionTokenId -- See Note [Coercion tokens] in "GHC.CoreToStg"
  = Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
coercionTokenName
                 (TyCon -> [Type] -> Type
mkTyConApp TyCon
eqPrimTyCon [Type
liftedTypeKind, Type
liftedTypeKind, Type
unitTy, Type
unitTy])
                 IdInfo
noCafIdInfo

pcMiscPrelId :: Name -> Type -> IdInfo -> Id
pcMiscPrelId :: Name -> Type -> IdInfo -> Id
pcMiscPrelId Name
name Type
ty IdInfo
info
  = Name -> Type -> IdInfo -> Id
mkVanillaGlobalWithInfo Name
name Type
ty IdInfo
info